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Abstract
Purpose of Review Hematopoietic stem cells (HSCs) are responsible for the lifelong production of blood and immune cells. This
review provides an overview of how single-cell (multi)-omic approaches have recently advanced our understanding of healthy
hematopoiesis, hematological malignancies, and the stem cell niche.
Recent Findings Single-cell technologies have revealed tremendous heterogeneity of the HSC compartment, conflicting with the
classical view of hematopoiesis. Large-scale single-cell approaches mapping the entire hematopoietic system have enabled an
ordering of the observed heterogeneity along meaningful differentiation and cell-state trajectories. These studies provided novel
insights into lineage commitment pathways and led to the suggestion of advanced models of hematopoiesis. Single-cell multi-
omic technologies, where several entities of individual cells are measured in parallel, have permitted the fine mapping of clonal
and developmental differentiation hierarchies, and revealed the molecular consequences of clonal diversification.
Summary Recent single-cell approaches have changed our perception of healthy hematopoiesis, provided an understanding of
hematological malignancies at unprecedented depth, and revealed new insights into the stem cell niche.
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Introduction

The majority of blood and immune cells are constantly
replenished by a small population of hematopoietic stem cells
(HSCs) located in the bone marrow [1]. Multipotent HSCs
give rise to progressively restricted progenitors, finally
resulting in the generation of mature blood and immune cells.
In the classical model of hematopoiesis, stem and progenitor
cell populations have been conceptualized to form discrete
cell types resulting in a rigid tree-like model [2, 3]. In this
model, HSCs can give rise to additional HSCs in a process

called self-renewal, or produce multipotent progenitors
(MPPs) that exhibit reduced self-renewal capacity while main-
taining multipotency. Subsequently, MPPs diversify into
oligopotent progenitors, which display restricted lineage dif-
ferentiation capacity, and finally produce lineage-restricted
progenitors and mature cell types of the blood and immune
system (see below).

Basic single-cell technologies, such as flow cytometry, col-
ony forming assays, and single-cell transplantations, have
been utilized for decades in the field of hematology [4].
These single-cell approaches have revealed extensive molec-
ular and functional heterogeneity within the hematopoietic
stem and progenitor cell (HSPC) compartment with regard
to cell cycle activity, lineage bias, metabolic activity, or self-
renewal capacity [5–8]. To account for the observed hetero-
geneity, a variety of subpopulations that enrich for particular
cell states or phenotypes have been introduced [9–19]. Such a
compartmentalization of the early hematopoietic system has
proven highly valuable, but reinforced the notion that molec-
ular and cellular changes along differentiation pathways and
cell states typically occur stepwise. Single-cell analyses re-
vealed that such populations still remain heterogenous [19,
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20••, 21–27, 28••, 29]. The recent development of powerful
single-cell omic approaches spanning the entire hematopoietic
system has facilitated an ordering of the observed heterogene-
ity along differentiation trajectories, suggesting more gradual
rather than discrete, step-wise transitions between cell states
[30–34, 35••, 36••]. Together with functional single-cell and
lineage tracing approaches, these studies have enabled a more
comprehensive understanding of hematopoiesis, including
new insights into lineage commitment hierarchies [5–8].

Large-scale single-cell approaches have also recently been
exploited to study the bone marrow microenvironment re-
sponsible for maintaining HSCs and orchestrating their differ-
entiation into mature blood cells [37–41]. These studies have
provided fundamental insights into the niche composition and
clarified some of the existing controversies in the field.
Finally, powerful single-cell multi-omic technologies, where
several entities of single cells such transcriptome, mutations,
chromatin accessibility, and surface markers are measured in
parallel, have recently been developed [42–48]. These tech-
nologies have significantly advanced our understanding of
hematological malignancies deriving from HSPCs.

In the following, I discuss how recent single-cell
(multi-)omic studies have transformed our understanding of
normal and malignant hematopoiesis, as well as the bone mar-
row niche.

HSC Heterogeneity and Conflicts
with the Classical Model of Hematopoiesis

Over the past years, single-cell approaches have revealed ex-
tensive molecular and functional heterogeneity within the
HSPC compartment, conflicting with the traditional view of
hematopoiesis [5–8]. In this section, I will briefly review the
observed heterogeneity in the HSPC compartment, and intro-
duce concepts of lineage-biased HSCs and transcriptional lin-
eage priming. In the following section, I will set the observed
heterogeneity in relation to newly introduced models of
hematopoiesis.

Functional Heterogeneity of HSPCs

Functional heterogeneity of HSPCs has been recognized for
decades [4]. In particular, differences in self-renewal capaci-
ties of HSCs have been studied in detail using transplantation
of bulk subpopulations or single HSCs [2, 17–19, 20••, 21, 25,
27, 49–51]. Fluorescence-activated cell sorting (FACS) has
been used to purify subpopulations that distinguish HSCs with
high self-renewal capacity from MPPs. For example, the
SLAM markers CD150 and CD48, the surface markers CD34
and Flt3, or EPCR have been used to identify HSCs with long-
term self-renewal capacity, displaying the combined phenotype
of Lineage−Sca1+cKit+CD150+CD48−Flt3−CD34−EPCR+ [13,

17–19, 52]. Combinations of these markers have also been
used to define a plethora of MPPs with different self-
renewal capacities, lineage biases, and molecular characteris-
tics [10, 13]. In the classical model, self-renewal capacity is
restricted to HSCs. However, elegant single-cell transplanta-
tion studies demonstrated that lineage-restricted progenitors
present in the phenotypic HSC compartment (here: Lin−Sca-
1+cKit+CD34−) might exhibit high self-renewal capacities as
well, exceeding those of some stem and multipotent progen-
itor cells [20••]. In particular, some transplanted phenotypic
HSCs showed exclusive reconstitution of platelets, platelets
and erythroid cells or platelet, erythroid, and myeloid cells
with the absence of other lineages, both in primary and sec-
ondary transplantations. This observation challenged the strict
mutual dependence of multipotency and self-renewal capaci-
ty. However, others have argued that this phenomenon might
be restricted to the megakaryocytic lineage (see below) [53].

Moreover, single-cell transplantation and molecular
barcoding experiments have demonstrated that the reconstitu-
tion patterns of individual HSCs are rarely identical [19, 21,
25, 51, 54–56]. In particular, certain lineages are frequently
produced more abundantly than others. In this context, the
term “lineage bias” has been introduced, referring to the rela-
tively higher production of one or several lineages at the ex-
pense of the remaining lineages. The existence of megakaryo-
cyte-, erythrocyte-, pan-myeloid- and pan-lymphoid-biased
HSCs has been proposed [16, 18, 19, 20••, 29, 36••, 52, 57,
58]. It is important to note that a heterogenous lineage contri-
bution of a single clone might be the consequence of an in-
trinsic lineage bias, but might also be imparted by the micro-
environment, or simply reflect the consequence of the differ-
ent kinetics of individual blood lineages [53]. Time-resolved
lineage tracing approaches coupled to single-cell
transcriptomic readouts will likely unravel the exact nature
of HSC lineage biases [56].

Molecular Heterogeneity

In accordance with the existence of lineage-biased HSCs, the
expression of transcriptional programs associated with lineage
committed progenitors has been observed in individual cells
of the phenotypic HSC compartment using single-cell
transcriptomic profiling [17, 29, 30, 32–34, 35••, 59]. For
example, von Willebrand factor and several other genes asso-
ciated with the megakaryocytic lineage are expressed in a
subset of HSCs [60•].This phenomenon has been termed
“transcriptional lineage priming”. The use of indexed FACS
surface markers common to both single-cell RNAseq data and
single-cell ex vivo culture data has allowed to quantitatively
link the direction of transcriptional lineage priming to func-
tional properties [35••]. These analyses have revealed that the
degree and direction of transcriptional lineage priming is
quantitatively linked to the functional bias, with HSCs
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displaying a certain type of transcriptional priming exhibiting
a higher likelihood of commitment into the respective lineage
[35••]. In line with heterogeneity in gene expression pro-
grams, a study measuring chromatin accessibility using
single-cell assays for transposase-accessible chromatin by se-
quencing (ATACseq) revealed cellular variations among
HSPCs at the regulatory level consistent with lineage biases
towards different hematopoietic branches [61]. DNA methyl-
ation and chromatin modifications have so far been mainly
studied at the bulk level in highly purified HSPC compart-
ments [13, 62–65]. These analyses suggest that extensive het-
erogeneity might already be imprinted at the epigenetic level
in HSC subsets. To address this point mechanistically, an
elegant study made use of a mouse model in which individual
HSC clones express unique combinations of fluorescent tags
[66]. This permitted the simultaneous tracking of clonal fates
at the functional level, as well as the mapping of transcription-
al and epigenomic programs underlying the clonal heteroge-
neity. The study revealed that HSC function highly corre-
sponds to its underlying epigenetic configuration under ho-
meostatic and stress conditions [66]. In the future, combined
readouts of transcriptome and epigenomic marks from single
cells might be instrumental for a detailed rewiring of the
cause-effect relationship between epigenetic remodeling and
transcription in mediating HSC fate decisions [48, 67].

Cellular Heterogeneity

HSCs display pronounced heterogeneity in cellular processes,
such as cell metabolism, autophagy, and cell cycle activity.
The most potent HSCs are thought to depend on glycolysis,
exhibit low mitochondrial respiration, and, consequently, pro-
duce low levels of reactive oxygen species (ROS) [68].
Importantly, a fraction of HSCs are maintained in a long-
term quiescent state, termed dormancy, which is associated
with a high self-renewal potential [14, 69]. Single-cell analy-
ses in mouse and human have indicated that dormancy is
associated with a biosynthetic inactive state and low transla-
tional activity [35••, 70]. Similar to the state of dormancy,
high autophagy levels in HSCs have been associated with
self-renewal capacity, a low metabolic state and quiescence
[71, 72]. It is tempting to speculate that the states of dormancy
and autophagy are directly linked.

In case of emergency, such as viral infections or blood loss,
dormant HSCs are recruited into the cell cycle to accelerate
blood production [14, 73–76]. HSC activation and differenti-
ation is associated with increased metabolic activity, a switch
to oxidative phosphorylation, elevated ROS production, and
loss of self-renewal activity (Fig. 1).

Together, extensive molecular, cellular, and functional het-
erogeneity is observed in the HSPC compartment. While a
large extent of this heterogeneity can be linked to the exit of
dormancy, change of metabolic states, and preparation for

lineage commitment, additional sources of heterogeneity re-
main to be investigated.

Hematopoietic Landscapes Inferred
from Single-Cell Omic Approaches

Large-scale single-cell transcriptomics spanning the entire
hematopoietic system of the bone marrow have provided
important insights into the organization of hematopoiesis,
and enabled the translation of the observed heterogeneity
into meaningful differentiation and cell-state trajectories
(Fig. 1). While HSC and MPP populations have been con-
ceptualized to form discrete cell types in the classical tree
model of hematopoies is , la rge-sca le s ingle -ce l l
transcriptomic studies in mouse, zebrafish, and human have
revealed that HSCs do not acquire transcriptionally stable,
discrete cell stages upon lineage commitment, but rather
gradually pass through a continuum of differentiation states
[32–34, 35••, 54, 77]. In trajectory analyses of single-cell
transcriptome data, HSCs initially upregulate transcription-
al programs associated with lineage priming towards the
megakaryocyte/erythrocyte/eosinophil/basophil versus the
neutrophil/lymphoid direction, followed by branching into
separate lineages and activation of lineage-specific tran-
scriptional programs [32, 35••, 56, 78]. This pattern is ob-
served not only in adult hematopoiesis, but also during em-
bryonic hematopoiesis at the fetal liver stage [31].
Integration of single-cell culture or lineage tracing data with
single-cell transcriptomic data suggested that early tran-
scriptional lineage priming (megakaryocyte/erythrocyte/
eosinophil/basophil versus the neutrophil/lymphoid prim-
ing) is associated with an increased likelihood of lineage
commitment, whereas subsequent activation of lineage-
specific transcriptional programs is linked to definitive lin-
eage commitment [35••, 54, 56]. Importantly, lineage com-
mitment occurs earlier than previously anticipated as re-
vealed by single-cell molecular and functional analyses of
progenitors downstream of HSCs [21, 22, 28••, 35••, 79].
These studies demonstrated that the majority of cells sug-
gested to be oligopotent by the classical model of hemato-
poiesis (CMPs, MEPs, GMPs) have already acquired tran-
scriptional lineage programs associated with functional lin-
eage commitment [21, 22, 28, 35••, 79]. While oligopotent
HSPCs and transcriptional mixed-lineage states do exist,
they are much less frequent than suggested by the classical
model [20–22, 35••, 80].

Highly similar findings that include the continuous na-
ture of cell state transitions and branching hierarchies were
made by measuring chromatin accessibility, instead of
single-cell transcriptomes in large-scale single-cell
ATACseq studies [48, 61]. To account for the continuous
nature of hematopoiesis, continuum-based models have
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been suggested that are capable of explaining single-cell
data much more accurately [5, 7, 35••, 61, 80]. In this
framework, quiescent and metabolically inactive HSCs are
maintained in a flat valley at the top of the hierarchy [35••,
70]. Upon cell cycle induction, HSCs become biosyntheti-
cally active and subsequently acquire transcriptional line-
age priming in a gradual manner. While in the early phases
combinatorial lineage priming might be acquired, unidirec-
tional priming becomes more prevalent over time, increas-
ing the likelihood of future lineage commitment. Initially,
barriers between lineages are small, allowing some plastic-
ity. However, rapidly, transcriptional lineage programs as-
sociated with lineage commitment and cell-type manifesta-
tion are engaged.

Lineage Commitment Hierarchies

According to the classical model of hematopoiesis, the first
bifurcation point into common lymphoid progenitor (CLPs)

and common myeloid progenitor (CMPs) separates lym-
phoid lineages (B, T, and NK cell lineages) from all mye-
loid, megakaryocyte, and erythrocyte lineages, followed by
further sub-branching [2, 3, 11, 12]. This hierarchy was first
revised when it was noted that megakaryocytes and eryth-
rocytes branch off from lymphoid and myeloid progenitors,
marked by a population termed lymphoid primed multipo-
tent progenitor (LMPP) in mice [17] or multilymphoid pro-
genitor (MLP) in human [81]. However, in these analyses,
all myeloid lineages were investigated together and not in-
dividually. When myeloid lineages were investigated sepa-
rately using molecular and functional single-cell ap-
proaches, it was noted that eosinophil and basophil lineages
share common precursors with the megakaryocyte/
erythrocytic lineages, whereas the neutrophil, dendritic cell,
and monocyte lineages initially co-develop with lymphoid
branches, followed by further sub-branching [79, 82, 83]
(Fig. 1). This is in line with trajectory analyses from
large-scale single-cell transcriptome data of HSPCs (see
above).

Fig. 1 Hematopoietic stem cell commitment model. a Overview. b Self-
renewal capacity and indication of direct lineage commitment to the
megakaryocytic lineage. c Indication of transcriptional lineage priming.
d Indication of cellular activity. Mk megakaryocyte, Ery erythrocytes,

Eosino eosinophils, Baso basophils, Neutro neutrophils, Mono
monocytes, cDC conventional dendritic cells, pDCs plasmacytoid
dendritic cells, NK cells natural killer cells
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Megakaryocyte Lineage Commitment—a Special
Case?

A decade ago, it was already noted that despite their apparent
phenotypic differences, HSCs and the megakaryocytic lineage
share many common features [84]. These include commonly
used transcription factors (e.g., Runx-1, Gata2, Evi-1, Tal-1),
common surface receptors (e.g., c-mpl), and specific signaling
pathways [84]. Later, it was shown that the phenotypic HSC
compartment contains (i) megakaryocyte-biased HSCs that
reside at the apex of the differentiation hierarchy [60•] and
(ii) stem-like megakaryocyte progenitors that share many fea-
tures with HSCs, exhibit high self-renewal capacity, but are
committed to the megakaryocytic lineage [20••, 29]. An ele-
gant study recently addressed the relationship between HSCs
and the megakaryocytic lineage in unperturbed, native hema-
topoiesis [36]. For this purpose, the authors made use of
transposon-based tagging of HSPCs combined with single-
cell transcriptomic readouts to trace lineage relationships.
This analysis revealed megakaryocyte commitment to be the
predominant native fate outcome of HSCs (Fig. 1b). The close
connection between HSCs and the megakaryocytic lineage
might serve as an emergency pathway. For example, dramatic
losses of platelets that might occur during infections induce
rapid proliferation and differentiation of megakaryocyte-
primed cells of the HSC compartment [29, 60•]. On the mo-
lecular level, stem-like megakaryocyte progenitors express
Mk transcripts, but protein synthesis is suppressed during ho-
meostasis. Upon inflammatory signaling initiation, translation
of Mk transcripts is induced, mediating an emergency differ-
entiation program that rapidly restores platelet levels [29].

Single-Cell Multi-omic Approaches
in Hematological Disease

Leukemias frequently develop from healthy stem progenitor
or precursor cells by a stepwise acquisition of genetic lesions,
resulting in a differentiation block and accumulation of leuke-
mia cells in the bone marrow. Understanding the complex
clonal hierarchies in cancer is of great importance, since small
sub-clones present at diagnosis might expand, and ultimately
cause therapy resistance and relapse. While single-cell muta-
tional profiling provides highly detailed maps of clonal hier-
archies, combined single-cell transcriptomic and genomic as-
says offer the possibility of determining the molecular conse-
quences of clonal evolution. In recent years, several methods
that permit combined transcriptomic and genomic readouts
have been introduced [42–47, 85], where mutations are called
either indirectly from cDNA of scRNAseq data or separately
from genomic DNA. Such approaches have been applied to
distinct hematological malignancies, including acute myeloid
leukemia (AML) and myeloproliferative neoplasms (MPNs).

Chronic myeloid leukemia (CML) is anMPN typically driven
by the oncogenic fusion of BCR and ABL1. In an elegant
single-cell multi-omic study of CML, the Mead group com-
bined high sensitivity BCR-ABL detection with whole tran-
scriptome scRNAseq [43]. This allowed the discrimination of
mutated CML cells at high precision and sensitivity, enabled
the prediction of therapy response to tyrosine kinase inhibitors
(TKIs), and led to the characterization of a quiescent CML
stem cell population persisting throughout TKI therapy. In
BCR-ABL-negativeMPNs, the CALR gene has recently been
described to be recurrently mutated [86]. To determine the
effects of CALR mutations in MPNs, combined CALR
genotyping and transcriptome analyses of thousands of
single-cells has recently been performed using a novel high-
throughput, droplet-based approach, termed genotyping of
transcriptomes (GoT) [45]. This revealed that CALR muta-
tions impart different effects on the transcriptome, dependent
on the cellular state and disease type. For example, in patients
with essential thrombocythemia, an MPN associated with an
overproduction of platelets, CALR mutations resulted specif-
ically in a pronounced cell cycle activation of mutant mega-
karyocyte progenitors [45].

To understand complex sub-clonal structures, protocols
that allow the simultaneous mapping of many mutations in
scRNAseq experiments have been developed and applied to
bone marrow samples of MPN and AML patients [42, 44, 45,
47]. In AML, such studies have enabled the fine mapping of
clonal and developmental differentiation hierarchies, revealed
gene expression programs associated with pre-leukemic (e.g.,
TET2, SRSF2) and leukemic (e.g., CEBPA) mutations, and
suggested that AMLs with monocyte-like phenotypes prefer-
entially display immune modularity activity and T cell sup-
pression [42, 44]. Importantly, computational pipelines for
calling mutations directly from standard droplet-based
scRNAseq approaches have been developed [85], facilitating
multi-omic analyses without additional technical adaptations,
albeit with much higher dropout rates if compared with spe-
cializedmethods.Moreover, the possibility of tracking genetic
clones by measuring mitochondrial mutations in single-cell
genomic assays has been demonstrated, offering an elegant
and efficient approach of tracing lineage relationships inde-
pendent of genomic mutations [87].

Beyond mutations, a recent singe-cell multi-omic study
combined simultaneous measurements of transcriptomes,
chromatin accessibility, and surface markers of single cells
[48]. Using this approach, the authors generated maps of
healthy hematopoiesis and mixed-phenotype acute leukemia.
Integrative analyses identified putative transcription factors
which regulate leukemia-specific expression programs.

Together, these single-cell multi-omic studies provide a
framework for future integrative analyses and set the starting
point for an in-depth understanding of hematological
malignancies.
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The Hematopoietic Stem Cell Niche
at a Single-Cell Resolution

The bone marrow (BM) microenvironment, also referred to as
the niche, plays a fundamental role in the maintenance and
differentiation of HSCs [88, 89]. A multitude of niche cell
types have been implicated in regulating HSC maintenance,
including leptin receptor (Lepr) expressing cells, CXCL12
abundant reticular (CAR) cells, Nestin, and Ng2 expressing
cells, as well as others [90–96]. The most intensively studied
factors required for HSC maintenance in the BM are
CXCLl12 and SCF [90–92, 94–96]. Conventional approaches
to study the niche typically make use of genetic labelling
based on a single marker gene, in combination with genetic
deletion of molecular factors, cell type ablation, or imaging.
These approaches have provided fundamental insights into the
contribution of niche cell types and cytokines required for
HSC maintenance. However, the use of single genes for cell
type definition has frequently resulted in the labelling of het-
erogenous cell populations, and has therefore led to some
controversies with fundamental questions remaining
unaddressed.

Recently, single-cell transcriptomic studies from non-
hematopoietic cells of the BM have elucidated the niche com-
position and clarified some of the controversies [37–41].
Notably, such studies permitted the unbiased identification
and molecular characterization of known as well as previously
unknown BM-resident cell types. For example, previously
described CAR cells were shown to consist of subpopulations
differing in their osteogenic versus adipogenic transcriptional
priming, with the latter highly overlapping with previously
described Lepr expressing cells. In line with previous studies,
systematic assessments of cytokine synthesis across all BM
cell types demonstrated that Lepr-expressing CAR cell popu-
lations were the main producers of CXCL12 and SCF, with
relatively minor contributions of arterial endothelial cells.
Remarkably, among all BM-resident cell types, CAR cell pop-
ulations devote the largest proportion of their transcriptional
activity to cytokine synthesis, suggesting that they act as pro-
fessional cytokine producing cells [37].

Combining single-cell with laser-capture microdissection-
based spatial transcriptomics allowed the systematic localiza-
tion of BM cell types to distinct niches and enabled the spatial
mapping of cytokine synthesis [37]. This approach demon-
strated that CAR cell subsets differentially localize to either
sinusoidal endothelia in the case of adipo-primed CAR cells,
or to arterioles and non-vascular regions in the case of osteo-
primed CAR cells. In line with this, in situ measurement of
cytokine production demonstrated that the highest production
of HSC factors occurs around both sinusoidal and arterial
vessels. This suggests that unique niches are established by
the differential localization of professional cytokine producing
cells to specific regions in the BM. In line with previous

studies, these findings point to a particular importance of (pe-
ri)-vascular niches for the production of HSC maintenance
factors. Interestingly, osteo-primedCAR cells were also found
to localize to the trabecular part of the bone, suggesting a
potential role in osteogenesis [40].

Together, single-cell studies of the BM niche have provid-
ed valuable insights into the HSC niche organization, and
clarified the cellular and spatial sources of key HSC factors
(see [41] for a detailed review). In the future, imaging mass
cytometry and advanced spatial transcriptomic approaches, in
combination with conventional approaches, could lead to a
deeper understanding of the complex molecular and spatial
organization of the bone marrow niche.

Conclusions

Single-cell approaches have considerably refined our percep-
tion of healthy hematopoiesis, hematological malignancies,
and the bone marrow niche. In the future, integrative ap-
proaches should deliver multi-scale insights into the pheno-
types, function, and spatial organization of the hematopoietic
system at the single-cell resolution. Descriptive multi-scale
phenotyping will include single-cell readouts at the tran-
scriptome, genome, chromatin accessibility, DNA methyla-
tion, B cell and T cell receptor sequence, and surface proteome
(CITE-seq, AB-seq-related technologies) level [48, 97–99],
combined with lineage tracing approaches or pooled
CRISPR screens in order to bridge descriptive phenotypes
with mechanistic or functional data [56, 100–103].
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