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SUMMARY
The immune system makes decisions in response to combinations of multiple microbial inputs. We do not
understand the combinatorial logic governing how higher-order combinations of microbial signals shape im-
mune responses. Here, using coculture experiments and statistical analyses, we discover a general property
for the combinatorial sensing of microbial signals, whereby the effects of triplet combinations of microbial
signals on immune responses can be predicted by combining the effects of single and pairs. Mechanistically,
we find that singles and pairs dictate the information signaled by triplets in mouse and human DCs at the
levels of transcription, chromatin, and protein secretion. We exploit this simplifying property to develop
cell-based immunotherapies prepared with adjuvant combinations that trigger protective responses in
mouse models of cancer. We conclude that the processing of multiple input signals by innate immune cells
is governed by pairwise effects, which will inform the rationale combination of adjuvants to manipulate im-
munity.
INTRODUCTION

Biological systems make decisions in response to combinations

of multiple signals. For example, to stop an infection, the immune

system has learned to recognize and exploit the inter-depen-

dencies of microbial signals by evolving in a chance-driven world

of encounters with pathogens. By mimicking such responses to

complexmicrobial signals, live vaccines that are empirically atten-

uated from pathogens have been a powerful means to yield life-

long immunity against many deadly pathogens (Plotkin et al.,

2017). However, the rational design of non-live vaccines using

immunomodulatory agents, such as adjuvants, has remained an

elusive task in many cases where live vaccination is not effica-

cious or feasible (Coffman et al., 2010; Levitz and Golenbock,

2012; Pulendran and Ahmed, 2011). To tackle this challenge, a

central question to answer is howdocomplex combinationsofmi-

crobial or adjuvant signals shape immune responses? Filling this

fundamental gap in our knowledge is critical to learn how to ratio-

nally choose and combine adjuvants to manipulate immunity

against infectious and non-infectious diseases such as cancer.

The molecular signals derived from pathogens, live vaccines,

or adjuvants are largely processed by pattern recognition recep-

tors (PRRs) of the innate immune system (Ablasser and Chen,
Cell Systems 11, 495–508, Novem
This is an open access article under the CC BY-N
2019; Brown et al., 2018; Chow et al., 2018; Iwasaki and Medz-

hitov, 2015; Janeway, 1989; Medzhitov, 2009; Takeuchi and

Akira, 2010). To date, pathogen-sensing pathways have been

much studied one pathway at a time. As a first step beyond

the analysis of single pathway effects, many examples of syn-

ergy, independence, or antagonism between pathogen-sensing

pathways have been reported using pairwise stimulations, adju-

vant combinations, or genetic deletions (Bagchi et al., 2007;

Cappuccio et al., 2015; Crozat et al., 2009; Elinav et al., 2011;

Gantner et al., 2003; Kasturi et al., 2011; Kawai and Akira,

2011; Lin et al., 2017; Loo and Gale, 2011; Napolitani et al.,

2005; Negishi et al., 2012; Nish and Medzhitov, 2011; Osorio

and Reis e Sousa, 2011; Ozinsky et al., 2000; Thaiss et al.,

2016). These observations suggest that responses to twomicro-

bial stimuli cannot be explained by combining the effects of sin-

gle stimuli. In addition, the higher-order effects of microbial in-

puts on pathogen-sensing pathways and downstream immune

responses have not been systematically analyzed. Thus, we do

not know how pathogen-sensing pathways respond collectively

to multiple input signals, as is often the case with natural infec-

tions or mixtures of adjuvants in vaccines.

Since studying the full scope of combinatorial effects in path-

ogen sensing is impractical because the number of experiments
ber 18, 2020 ª 2020 The Author(s). Published by Elsevier Inc. 495
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Figure 1. Systematic Analysis of the Combi-

natorial Effects of Microbial Stimuli in a

Coculture System

(A) Schematic depicting the unknown relationships

between the effects of input singles (A, B, and C;

left), pairs (AB, AC, and BC; center), and triplet

(ABC; right) on a hypothetical output response.

(B) Schematic overview of the coculture assay

used to measure the combinatorial effects of mi-

crobial inputs. Dendritic cells stimulated with sin-

gles, pairs, or triplets of stimuli are pulsed with

ovalbumin and subsequently incubated with

transgenic OT-II T cells. T cell proliferation is

measured by CFSE dilution.

(C) Heatmap showing all 63 microbial stimuli

combinations (rows) used in the study: 7 singles

(blue; top), 21 pairs (green; middle), and 35 triplets

(orange; bottom). Columns indicate the cell gen-

eration and values are average cell numbers (color

scale) (n = 8).

(D) Frequency distribution of the proportion of

divided T cells for single (left), pair (center), and

triplet (right) ligand stimulations.

See also Figures S1 and S2; Table S1.
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grows exponentially with the number of stimuli, we need an inno-

vative strategy to decipher the complexity and the combinatorial

logic underlying innate immune sensing. The key challenges to

address include (1) identifying assays and readouts to capture

the complexity of multi-input effects on the immune response

both in vitro and in vivo for immunotherapeutic design; (2) dis-

secting themechanistic underpinnings of combinatorial sensing;

and (3) finding ways to predict higher-order effects in cells and in

the host, as a means to circumvent the need for testing many

combinations.

Here, we studied how the interplay between higher-order

combinations of microbial signals shapes the output of immune

responses. We asked if the relationships between the effects of

singles, pairs, and triplets of inputs can reveal the combinatorial

logic governing microbial sensing by the immune system (Fig-

ure 1A). First, we measured the effects of a representative set

of seven microbial stimuli and all corresponding pairwise (21)

and triplet (35) combinations on T cell responses using dendritic

cell (DC)-T cocultures in vitro, which provide an integrated

readout for the various DC-derived signals that are regulated

by the combinatorial activation of pathogen-sensing pathways.

Remarkably, we found that the effects of triplet combinations

of stimuli on DC-T responses can be predicted using only the re-

sponses to single and pairwise stimulations. Second, as amech-

anistic basis for our finding, we observed that singles and pairs of

microbial inputs dictate the information signaled by triplets in

mouse and human DCs at the levels of transcription, chromatin,

and protein secretion. Third, we asked if the combinatorial logic

governing pathogen sensing in vitro would be applicable in vivo

using cell-based immunotherapies in mouse models of cancer.
496 Cell Systems 11, 495–508, November 18, 2020
We identified several triplets of immune

adjuvants with potent anti-tumor effects

and showed that their effects can be ex-

plained using only data on the in vivo ef-

fects of adjuvant singles and pairs. Over-
all, we discovered a general property that explains the

combinatorial logic of pathogen sensing and can be exploited

to rationally combine adjuvants for therapeutic design.

RESULTS

A Coculture Assay to Characterize the Combinatorial
Effects of Microbial Stimuli
First, we sought to explore the combinatorial effects of microbial

inputs on the output of an immune response (Figure 1A). To this

end, we systematically measured the effects of singles, pairs,

and triplets of microbial stimuli on the ability of DCs to instruct

T cell responses (Figure 1B). We reasoned that measuring

T cell proliferation provides an integrated readout for the various

DC-derived signals triggered by the combinatorial activation of

pathogen-sensing pathways, which include the regulation of an-

tigen presentation and membrane-bound and secreted co-stim-

uli such as cytokines.

We selected seven well-established ligands for pathogen-

sensing pathways: (1) lipopolysaccharide (LPS or L), (2)

Pam3CSK4 (P), (3) high molecular weight poly(I:C) (H), (4) CpG

DNA type B (C), (5) Sendai virus (SeV or S), (6) depleted zymosan

(Z), and (7) cyclic [G(30,50)pA(30,50)p] (3030-cGAMP or G), which

are agonists for, respectively, TLR4, TLR2, TLR3/MDA-5,

TLR9, RIG-I, Dectin-1, and STING, the adaptor downstream of

the cGAS pathway. These ligands were selected (1) to encom-

pass most PRR families, (2) because their receptors are ex-

pressed in steady-state DCs (Figure S1A) and are functional as

shown using knockout cells (Figure S1B), (3) by performing

dose-response experiments (Figure S1C), and (4) ensuring that
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each ligand had no direct effects on T cell viability and prolifera-

tion (Figure S1D). Next, we incubated mouse bone-marrow-

derived DCs with the chicken ovalbumin (OVA) protein with or

without ligands for 6 h, then washed and cultured DCs with car-

boxyfluorescein succinimidyl ester (CFSE)-labeled OT-II trans-

genic CD4+ T cells specific for the OVA323�339 peptide bound

to the major histocompatibility (MHC) class II molecule I-Ab (Fig-

ure 1B) (Barnden et al., 1998). In these experimental settings, li-

gands P and L were the strongest inducers of T cell proliferation

(>45%); G and H the weakest (<10%); and C, S, and Z showed

intermediate levels (20%–40%) (Figure S2A).

We then measured the effects of all possible two- and three-

way ligand combinations in our DC-T coculture system, leading

to 21 pairs and 35 triplets in total (Figures 1C and S2A; Table S1).

The distributions of T cell proliferation values across singles,

pairs, and triplets were comparable, albeit slightly shifted toward

higher values (>60% of T cells divided) in pairs and triplets (Fig-

ures 1D and S2B). We also found that IFN-g secretion by T cells

was higher in pairs compared with singlets and seemingly

reached a plateau at the pair and triplet levels (Figure S2C). Of

note, these changes in proliferation and IFN-g were not due to

toxicity effects of ligand combinations: 90% (57/63) of the condi-

tions tested led to >65% viability in T cells, with the exception of

6 triplets, namely P-Z-G, P-Z-S, P-H-Z, P-L-Z, Z-S-C, and Z-G-

C, which led to viability values ranging from 39% to 62%

(Figure S2D).

Pairwise and Single Stimulations Predict the Effects of
Triplet Combinations
Next, we examined the relationship between single and pairwise

ligand stimulations and the net interactions of three ligands using

the T cell growth data from our combinatorial experiments (Fig-

ure 1C; Table S1). First, we sought to classify how pairs of micro-

bial signals interact. Qualitatively, pairwise ligand stimulations of

DCs resulted in T cell growth patterns that appeared synergistic,

antagonistic, or additive (Figure S3), as shown, for example, in

the pairs of ligands that compose the following triplets: Z-S-G,

P-S-G, and P-L-Z (Figure 2A). We ensured that pairwise ligand

effects were due to the integration of signals at the level of single

DCs, as shown by experiments mixing (1) ligands to stimulate

DCs, or (2) DCs stimulated with single ligands (Figure S4A).

Indeed, mixing cells stimulated with single ligands did not lead

to the synergistic effects observed when mixing ligands for 10

out of the 15 pairs of ligands tested (Figure S4B). To quantify

the effects of crosstalk between ligand pairs, we used the prolif-

eration index (Pi) as a proxy for the T cell response in our in vitro

co-culture system, which corresponds to the average number of

divisions per activated T cell in our DC-T co-culture system (Roe-

derer, 2011) (STAR Methods). Using the proliferation indices

associated with two ligands, A and B, used alone, PiA and PiB,

and in combination, PiAB, we computed a pairwise interaction

score PiAB for each ligand pair defined as IAB = PiAB � PiAPiB
(STAR Methods). The pairwise interaction score IAB quantifies

the level of synergy, antagonism or lack thereof that results

from crosstalk between two pathways triggered by the ligands

A andB. Indeed, if two responses are independent as postulated

for example in the Bliss independence model (Bliss, 1939, 1956),

then IABwould be equal to PiAPiB and the effects of ligands A and

Bwould simply be deemed independent from one another. How-
ever, any deviations of IAB from PiAPiB indicates the existence of

interactions between the ligand-activated pathways, which can

either enhance (synergy) or inhibit (antagonism) each other’s ef-

fects. For example, the pairs P-L and P-S showed antagonistic

effects whereas Z-S, Z-C, and S-G were synergistic (Figure 2B).

Overall, pairwise interaction score calculations revealed that

52% (11/21) of the pairs were synergistic, 10% (2/21) were

antagonistic and 38% (8/21) were additive (Figure 2D), which in-

dicates a complex interplay between pairs of ligands at the level

of DC-T cell responses.

Second, we investigated the relationship between the net ef-

fects of three-ligand interactions and matching singles and

pairs. To do so, we computed a triplet interaction score IABC
for each triplet of ligands defined as IABC = PiABC � PiAPiBPiC
(STAR Methods), which encapsulates the level of net pairwise

and triplet interactions by subtracting single ligand effects

from the triplet proliferation index. The proportions of synergis-

tic (51%, 18/35), antagonistic (17%, 6/35), and additive (31%,

11/35) triplet effects were comparable with those measured

for pairwise effects (Figure 2E). Remarkably, pairwise effects

combined qualitatively in a variety of ways to yield triplet effects

IABC. For example, synergistic interactions of intermediate

strength between pairs, such as those between Z-S and Z-C,

can combine to yield a cumulative effect that is strongly syner-

gistic (Figures 2B and 2C, top panel). Conversely, pairs with

antagonistic (P-S and P-G) and synergistic (S-G) interactions

can combine to yield a cumulative triplet effect (P-S-G) that is

close to zero (Figures 2B and 2C, middle panel). Further, the

pairs P-Z and L-Z showing weak interactions in negative and

positive directions, respectively, combined with the strongly

antagonistic pair P-L to generate a net P-L-Z triplet effect

whose magnitude is similarly antagonistic than that of the P-L

pair alone (Figures 2B and 2C, bottom panel). Taken together,

these results qualitatively showed that pairwise effects

combine in a variety of ways to explain the net effect of triplets,

suggesting an intrinsic property for pathogen-sensing path-

ways whereby three-way interactions between input signals

may be encapsulated in the corresponding pairwise effects

when monitoring DC-T co-culture outputs.

To test the robustness of this property, we asked whether

triplet ligand interactions could be predicted by using only data

from single and pairwise effects. To do so, we used a statistical

analysis derived from the Isserlis theorem (Isserlis, 1918), which

was previously applied to evaluate higher-order effects in com-

binations of antibiotics on bacterial growth (Wood et al., 2012).

We used the following Isserlis expression: PiABC = PiABPiC +

PiACPiB+PiBCPiA� 2PiAPiBPiC, wherePi is the proliferation index

of T cells from DC-T cocultures for the indicated combinations of

ligands A, B, and C (STAR Methods). In this approach, the

equality is satisfied when there are no three-way interactions be-

tween signals. As a first approximation, we compared the triplet

interaction scores obtained from experimental values to the

scores inferred computationally using the Isserlis statistical

approach and found a strong agreement between observed

and calculated values (R2 = 0.9) (Figures 2C and 3A). Going

further, we found that the proliferation indices for triplets ob-

tained from experiments were similar to those calculated using

the Isserlis formula that uses only single and pairwise prolifera-

tion indices as input values (R2 = 0.77) (Figure 3B). The statistical
Cell Systems 11, 495–508, November 18, 2020 497
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Figure 2. Pairwise Effects Qualitatively Combine to Explain the Net Effect of Triplets of Microbial Stimuli

(A) T cell growth pattern upon DC stimulations with ligand singles and pairs. Line plots showing the number of OT-II cells in each generation of activated cells (cell

generation 1 to 6) upon coculture with DCs stimulated with singles (blue) and pairs (green) corresponding to the triplets Z-S-C (zymosan/SeV/CpG-B; top), P-S-G

(Pam3CSK4/SeV/cGAMP; middle), and P-L-Z (Pam3CSK4/LPS/zymosan; bottom). Error bars, SEM (n = 8).

(B and C) Pairwise (IAB = PiAB � PiAPiB) and triplet (IABC = PiABC � PiAPiBPiC) interaction scores for the triplets Z-S-C (top), P-S-G (middle), and P-L-Z (bottom) (C)

and their composite pairs (B). Triplet scores (C) are derived from PiABC values observed experimentally (orange) or calculated (white) using the Isserlis formula:

piABC = PiABPiC+ PiACPiB + PiBCPiA� 2PiAPiBPiC. Dashed horizontal lines indicate themean of SEM values across all pairs (B) or triplets (C), used as thresholds for

synergy and antagonism (±0.0256 for pairs and ±0.0275 for triplets). Error bars, SEM (n = 8).

(D and E) Bar plots showing pairwise (Iab = Piab�PiaPib; D) and triplet (Iabc = Piabc�PiaPibPic; E) interaction scores for indicated ligand combinations. Dashed

horizontal lines indicate the mean of SEM values across all pairs (D) or triplets (E) and are used as thresholds for synergy (opaque colors), additivity (medium

opacity colors), or antagonism (light opacity colors). Error bars, SEM (n = 8).

See also Figure S3; Table S1.
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significance of this correlation between values observed exper-

imentally and calculated with Isserlis was confirmed by boot-

strap analysis from one million trials of randomly scrambling sin-

gles and pairs across triplets of different ligands (Figure 3C and
498 Cell Systems 11, 495–508, November 18, 2020
STAR Methods). Using an additional transgenic CD4+ T cell

model specific for an H2-I-Ab-restricted lymphocytic choriome-

ningitis virus (LCMV) glycoprotein-derived epitope (residues 61

to 80) (Oxenius et al., 1998), we obtained similar results



A B

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Observed proliferation index

C
al

cu
la

te
d 

pr
ol

ife
ra

tio
n 

in
de

x

−0.4

−0.2

0

0.2

0.4

0.6

−0.2 0 0.2 0.4
Observed triplet interaction score

C
al

cu
la

te
d 

tr
ip

le
t i

nt
er

ac
tio

n 
sc

or
e

R2 = 0.9
y = 1.58x

R2 = 0.77
y = x

C

0

5

10

15

20

0 0.25 0.5 0.75 1

D
en

si
ty

R2 value

R2 = 0.78
y = x

LZS

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Observed proliferation index

C
al

cu
la

te
d 

pr
ol

ife
ra

tio
n 

in
de

xR2 = 0.82
y = 1.07x

PSCp

−0.4

−0.2

0

0.2

0.4

−0.1 0 0.1 0.2 0.3
Observed triplet interaction score

C
al

cu
la

te
d 

tr
ip

le
t i

nt
er

ac
tio

n 
sc

or
e

0

10

20

0 0.25 0.5 0.75 1

D
en

si
ty

 p = 2x10-6 0.77

 p = 10-7 0.78

R2 value

OT-II

SMARTA

Figure 3. Single and Pairwise Stimulations Predict Triplet Effects

(A) Dot plots of the observed (x axis) and calculated (y axis) triplet interaction scores for all 35 ligand triplets tested and using CD4+ T cells from OT-II (top) or

SMARTA (bottom) transgenic mice. Dashed lines indicate the x and y axis. The solid line indicates a linear model fit (top, y = 1.583; bottom, y = 1.073). Error bars,

SEM (n = 8 for OT-II and n = 2 for SMARTA).

(B) Dot plots of the observed (x axis) and calculated (based on the Isserlis formula; y axis) triplet proliferation index values for all 35 ligand triplets tested, using OT-

II (top) or SMARTA (bottom) T cells. The solid line indicates y = x. Error bars, SEM (n = 8 for OT-II and n = 2 for SMARTA).

(C) Distribution of R2 values obtained between observed and calculated proliferation indices for ligand triplets with random shuffling by bootstrapping (black line)

or without (red line). The number in red indicates the R2 value obtained by correlating experimental and calculated triplet proliferation indices as shown in (B). Data

obtained with OT-II (top) and SMARTA (bottom) T cells.

See also Figure S4; Table S1.
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suggesting the broad applicability of our observation (Figures

3A–3C, bottom panels).

Using indices that capture other characteristics of T cell

growth patterns from CFSE profiles led to poor correlations be-

tween observed and calculated values, with the exception of the

replication index and, to a lesser extent, the expansion index

which captures similar information to Pi (Figure S4C and STAR

Methods) (Roederer, 2011). Using IFN-g production was not a

good predictor of triplet effects using only data from singles

and pairs (Figure S4D). In addition, the types of PRR pathways

targeted in ligand triplets did not impact the distribution of prolif-

eration indices, although combining ligands from two or three

different PRR families of receptors tended to display higher pro-

liferation level than those combinations of ligands targeting only

the Toll-like receptor (TLR) family (Figures S4E and S4F).

Furthermore, we showed in two control experiments that the

heterogeneity of bone marrow-derived DC cultures, previously

described by others (Helft et al., 2015), did not impact our find-

ings about estimating triplet effects using only data from singles

and pairs. First, the three cell subsets present in DC cultures

based on the surface markers CD11b, CD11c, and MHC class

II (Figure S4G) responded similarly to combinatorial stimulations

as measured by the transcriptional expression of four signature

cytokines of DC activation (i.e., Cxcl1, Cxcl10, Ifnb1, and Il6),
albeit with variations in the magnitude of gene activation (Fig-

ure S4H). Second, when using a homogenous DC culture based

on the enrichment of MHC class II-positive cells (Figure S4I), we

found that the proliferation indices for triplets obtained experi-

mentally were similar to those calculated using the Isserlis for-

mula (Figure S4J).

Overall, these results reveal a simplifying property for the

combinatorial sensing of microbial signals, whereby the effects

of triplet combinations of stimuli can be reduced to the effects

of single and pairwise stimulations.

Singles and Pairs of Microbial Stimuli Dictate the
Information Signaled by Triplets in DCs
To investigate the effects of combinatorial stimulations on DC

states, we first measured changes in gene expression in DCs

stimulated for 6 h with all the ligand singles (7), pairs (21), and

triplets (35) used in our co-culture assay. We identified 1,357

genes that were differentially expressed between stimulated

and unstimulated DCs across all 63 combinations (Figure 4A; Ta-

ble S2A; STAR Methods). Interestingly, all of the transcriptional

profiles for triplets clustered closely with singles and pairs using

hierarchical clustering (Figure 4A) and principal component anal-

ysis (PCA) (Figure 4B), without any triplet clustering indepen-

dently of singles or pairs, which suggests that the transcriptional
Cell Systems 11, 495–508, November 18, 2020 499
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Figure 4. Single and Pairwise Stimulations Dictate the Information Signaled by Triplets in Mouse and Human DCs

(A) Heatmap of differentially expressed genes (1,357 in total; rows) frommRNA profiles of mouse DCs stimulated with ligand singles (blue), pairs (green), or triplets

(orange) (columns). Values are log2 fold-changes relative to unstimulated cells (FDR-adjusted p-value < 0.01; n = 3). Hierarchical tree is based on clustering using

Pearson’s correlation.

(B) PCA of mRNA profiles of mouse DCs stimulated with ligand singles (7; blue), pairs (21; green), or triplets (35; orange).

(C and D) Bar plots showing for each ligand pair (green) or triplet (orange) the proportion of genes regulated by a triplet or a pair but not by matching composite

singles and/or pairs relative to the total number of genes regulated by that triplet or pair, using a mouse (C) and human (D) DCs (n = 3).

(E and F) Box plots showing the smallest divergences between the level of expression of genes regulated by ligand pairs (green) and triplets (orange) and their

composite singles and/or pairs, using mouse (E) and human (F) DCs (n = 3). Box plots represent the median, first quartile, and third quartile with lines extending to

the furthest value within 1.5 of the interquartile range (IQR).

See also Figures S5 and S6; Tables S2 and S3.
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states of DCs stimulatedwith ligand triplets is comparable to that

of DCs exposed to singles and pairs. To test this, we counted

how many genes were found to be up- or down-regulated in a

ligand pair but not in either one of the singles forming that pair

(referred to as newly regulated genes) (STAR Methods). We

found that 67% (14/21) of the pairs tested regulated genes that

were not differentially expressed in the corresponding single-

ligand treated cells compared to unstimulated control cells (Fig-

ures 4C and S5A; Table S2B). 0.2% to 39% of the genes regu-

lated by those 14 pairs were found to be newly regulated at
500 Cell Systems 11, 495–508, November 18, 2020
the pair level (Figure 4C). In contrast, 77% (27/35) of the triplets

tested did not regulate new genes relative to matching singles

and pairs, with only 20% (7/35) of the triplets displaying 0.2%–

1.3% of newly regulated genes and one triplet, P-H-Z, regulating

26 new genes, which is 6.3% (26/412) of all its regulated genes

(Figures 4C and S5A–S5I; Table S2B).

To test whether the genes that were regulated by triplets

showed changes in expression levels that were similar or

different in amplitude compared to all matching singles and

pairs, we computed the smallest possible difference in fold-
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change values relative to control cells for a given gene between

(1) a pair and its matching singles, and (2) a triplet and its match-

ing singles and pairs, which we refer to as expression divergence

(STAR Methods). A low expression divergence value indicates

that the amplitude of the expression change for a given gene

upon triplet stimulation is close to at least one of the composite

stimuli for that triplet, whereas a high expression divergence

highlights genes whose change in expression upon triplet stimu-

lation is different from all-composite stimuli singles and pairs.

While pairs led to significant changes in expression levels

compared to their matching singles, triplets triggered little to

no change in expression levels compared to their composite sin-

gle and pairwise conditions (Figure 4E). These results show that

the genes regulated by ligand triplets are also found to be regu-

lated inmatching singles and pairs and at similar levels relative to

unstimulated cells. In other words, triplets of ligands do not seem

to encode new information at the transcriptional level compared

to singles and pairs. Notably, similar results were obtained when

using DCs derived from human blood monocytes isolated from

three independent donors, suggesting that this property of the

response of PRR pathways to multi-stimuli stimulations is pre-

served in humans (Figures 4D, 4F, and S6A; Table S3).

Next, we tested whether this phenomenon would hold true at

the chromatin and secreted protein levels. To do so, we first

compared changes in the gene expression and genome-wide

chromatin accessibility states of DCs stimulated with three

randomly selected ligand triplets P-L-H, P-S-G, or Z-S-G and

their matching singles and pairs (STAR Methods). We found

that similar to what we observed at the mRNA level, triplet stim-

ulations triggered changes in chromatin accessibility at genomic

loci that were already regulated by single and pairwise stimula-

tions (Figures S6B, S6C, S6E, S6F, S6H, and S6I; Table S4). Sec-

ond, we used mass spectrometry on cell culture supernatants to

measure changes in the secretome of DCs stimulated with the

same three triplets and their matching singles and pairs (Figures

S6D and S6G; Table S5; STAR Methods). Similar to the tran-

scriptional and chromatin levels, the secretome of DCs did not

differ significantly in triplet conditions compared tomatching sin-

gles and pairs (Figures S6B–S6G). Taken together, these obser-

vations suggest amodel whereby activating triplets of pathogen-

sensing pathways does not lead to the regulation of new genes—

at the level of chromatin, transcription, and protein secretion—

compared to corresponding singles and pairs.

Adjuvant Triplets Generate Potent DC-Based Vaccines
against Melanoma in Mice
Having identified a simplifying, intrinsic property that explains

the collective effects of pathogen-sensing pathways in cocul-

tures in vitro, we next sought to test the applicability of this prop-

erty in the natural setting of the host. To do so, we sought to

establish an in vivomodel in which triplets of PRR ligands would

lead to a variety of outcomes in terms of host protection. We

reasoned that finding triplets leading to different outcomes for

the host—such as protection against tumor versus none—would

allow us to test whether using data from single and pairwise adju-

vant treatments could describe triplet effects in vivo. To test this,

we used a DC vaccination model to precisely control the expo-

sure of DCs to combinations of microbial stimuli prior to injecting

DCs subcutaneously in mice to assess their protective potential.
We selected 12 out of the 35 triplets studied to cover all major

transcriptional clusters observed in vitro (Figure 4A). We gener-

ated DC vaccines by stimulating DCs ex vivo with either one of

the triplets for 6 h in the presence of the full ovalbumin (OVA) pro-

tein in the culture medium. Next, we screened the effects of

these DC-based vaccines by injecting them subcutaneously in

mice which received 105 OVA-expressing B16.F10 melanoma

cells (B16-OVA) in the contralateral skin region (Figure 5A).

Remarkably, out of the 12 triplets used to create DC vaccines,

4 led to a strong decrease in melanoma growth whereas the re-

maining 8 triplets did not (Figure 5B).

Next, we sought to characterize the anti-tumor effects of the H-

Z-G adjuvant triplet. First, we used tumor-bearing animals, which

were injected with OVA-loaded DCs that did not receive any stim-

ulation andwhich showed similar tumor progression asmice inoc-

ulatedwithB16-OVAcells only (Figure 6A), and thus confirmed the

adjuvant-dependent effects on decreasing tumor growth. In addi-

tion, the anti-tumor effects triggered by H-Z-G-stimulated DCs

loadedwith OVA (1) were antigen-specific (Figure 6B), (2) required

the presence of T cells (Figures 6C and 6D), and (3) were appli-

cable to OVA-expressing MC38 colorectal adenocarcinoma and

E.G7 lymphoma cells (Figure 6E). H-Z-G-based DC therapy led

to an increase in CD8+ T cell infiltration in the tumor, as opposed

to a DC vaccine prepared with P-L-H that showed no effect on tu-

mor growth (Figure 6F). Second, we found that the anti-tumor ef-

fects of the triplet H-Z-Gweremediated in part (1) by endogenous,

migratory DCs not exposed to adjuvant signals but likely activated

by cytokines released by DC-based therapy, as shown by the use

of Batf3�/� mice lacking conventional DC1 cells (Guilliams et al.,

2014), and (2) by direct antigen presentation by the DC vaccine it-

self as shown by the decrease in anti-tumor activity when using

DCs lacking MHC class II (Figure 6G). Third, the anti-tumor adju-

vant triplet H-Z-G displayed stronger effects than those observed

with its corresponding adjuvant singles and pairs (Figure 6H) and

with aDCmaturation cocktail used in a humanDCvaccine against

melanoma (Carreno et al., 2013, 2015) (Figure 6I).

The Effects of Adjuvant Triplets on Tumors In Vivo Are
Predicted by Computation Using Only Single and
Pairwise Effects
Lastly, we asked whether the anti-tumor effects induced by the 4

out of 12 adjuvant triplets tested could be captured by the in vivo

effects of single and pairwise stimulations of DC vaccines. To do

so, we first sought to identify an in vivo proxy for the anti-tumor

effects of the DC vaccination strategies discovered above. We

measured the impact of the 12 DC vaccines tested in our B16-

OVA model (Figure 5B) on the production of 12 T cell-associated

cytokines in the inguinal draining lymph node (dLN) for the skin

site of DC injection. A week after DC vaccine injection subcuta-

neously, the dLN was collected, dissociated and 5 3 105 total

dLN cells were kept in culture in the presence of the OVA protein

(Figure 7A; STARMethods). By PCA, the 12 triplets tested in vivo

in our tumor model broadly clustered into three groups based on

the cytokine profiles measured in the draining dLN, which re-

vealed that the 4 triplets with anti-tumor effects separated from

the other 8 (Figure S7B; Table S6A). We found that the levels

of IL-17A production by dLN cells at 1-week post-vaccination

were the most strongly anti-correlated with tumor volumes at

�3-weeks post-tumor cell inoculation, suggesting that IL-17A
Cell Systems 11, 495–508, November 18, 2020 501
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Figure 5. Adjuvant Triplets Generate Potent Cell-Based Vaccines Against Melanoma in Mice

(A) Schematic overview of the experimental design. From left to right: mouse DCs are stimulated with adjuvant triplets and pulsed with ovalbumin (OVA) in vitro;

then DCs are injected subcutaneously in mice which received 105 OVA-expressing B16.F10melanoma cells (B16-OVA) in the contralateral skin region; and tumor
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(B) Average tumor growth (solid line) in cohorts of mice treated with DCs pulsed with OVA and stimulated with indicated adjuvant triplets (orange) or left un-

stimulated as control (black). Light color lines indicate the growth from each mouse within each cohort. Error bars, SEM (n = 3–15 mice per cohort).
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could be used as a proxy for the anti-tumor effects of the DC vac-

cines used in this study (Figures 7B and S7A–S7C). IL-6 and Il-

17F also correlated well with anti-tumor effects but their levels

were lower and closer to the detection limit of our assay (Fig-

ure S7A). Interestingly, IFN-g levels were high in the 4 triplets

leading to strong anti-tumor effects but were also found to be

elevated in 3 out of the 8 triplets which did not lead to anti-tumor

responses (Figure S7A).

We found that IL-17A production by dLN cells was fully attrib-

utable to CD4+ T cells, as shown by cell depletion experiments

(Figure S7D). In addition, using Il17a�/� or Rorc�/� mice abol-
502 Cell Systems 11, 495–508, November 18, 2020
ished the anti-tumor effects of the adjuvant triplet H-Z-G (Fig-

ures S7E and S7F), which further reinforce the potential use

of IL-17A production in the dLN as a surrogate for anti-tumor

effects.

We then measured the levels of IL-17A production by dLN cells

from mice injected with DC vaccines generated with the 4 triplets

displaying anti-tumor effects, namely P-S-G, L-S-G, H-Z-G, and

Z-S-G, as well as their matching singles and pairs (Figures 7C,

S7G, and S7H; Table S6B). Using the statistical framework estab-

lished above for our in vitro DC-T system, we found that the levels

of IL-17A induced by DC vaccines producedwith adjuvant triplets
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Figure 6. In Vivo Characterization of the Anti-tumor Effects Mediated by the H-Z-G (Poly(I:C)-Zymosan-cGAMP) Adjuvant Triplet Using

DC-Based Therapy

(A–E) Mean tumor growth (solid lines) in cohorts of wild-typemice, unless indicated otherwise for knockout strains (Tcra�/�, C;Cd8a�/�, D), injected with 105 B16-

OVA (A–D), 105 MC38-OVA, or 53 105 EG7-OVA (E) tumor cells and indicated DC vaccines. DCs + OVA, unstimulated DCs pulsed with ovalbumin protein (OVA);

DCs +H-Z-G, DCs stimulated with the H-Z-G (poly(I:C)-zymosan-cGAMP) ligand triplet without OVA; DCs +OVA +H-Z-G, DCs stimulated with H-Z-G and pulsed

with OVA. Light color lines indicate tumor growth for individual mice within each cohort. Error bars, SEM (n = 3–6 mice per cohort).

(F) Quantification of CD8+ T cells infiltrated in B16-OVA tumors (left) and corresponding tumor volumes (right) at day 13 post-injection of tumor cells and indicated

DC vaccines. Ctrl, unstimulated DCs pulsed with OVA; H-Z-G and P-L-H, DCs pulsed with OVA and stimulated with ligand triplets H-Z-G or P-L-H (Pam3CSK4-

LPS-poly(I:C)), respectively. Error bars, SEM (n = 3 mice per cohort).

(G) Mean tumor growth (solid lines) in cohorts of wild-typemice (except for the group indicated asBatf3�/�, middle panel) injected with 105 B16-OVA cells and left

untreated as controls (tumor cells only; black lines), or treated (orange lines) as follows at day zero with wild-type (left and middle panels; WT) or MHC class II-

deficient (right panel; MHCII�/�) DCs pulsed with OVA and stimulated with H-Z-G. Light color lines indicate tumor growth for individual mice within each cohort.

Error bars, SEM (n = 4–7 mice per cohort).

(H and I)Mean tumor growth (solid lines) in cohorts of wild-typemice injectedwith 105 B16-OVA cells and left untreated as controls (tumor cells only; black lines) or

treated with DCs pulsed with OVA and stimulated with indicated ligand singles (H, poly(I:C); Z, zymosan; G, cGAMP), pairs (H-Z, H-G, Z-G) and triplet (H-Z-G) (H),

or with the I-C-R-H quadruplet (IFN-g at 100 U/mL, sCD40L at 100 ng/mL, R848 at 20 mg/mL, and poly(I:C) at 20 mg/mL) (I).

Light color lines indicate tumor growth for individual mice within each cohort. Error bars, SEM (n = 4–9 mice per cohort).
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were accurately described using only the data from DC vaccines

made with the corresponding singles and pairs (Figure 7D). The

correlation between observed and calculated IL-17A values was

(1) maintained at two concentrations of OVA and without OVA be-

ing added to dLN cell cultures (Figures 7C, S7G, and S7H) and (2)

statistically significant as shown by bootstrap analysis in which

singles andpairswere scrambled prior to Isserlis calculations (Fig-

ure 7D). These results suggest that interactions among triplets of

immune adjuvants are accurately described by single and pair-

wise effects at the level of the host.
DISCUSSION

We studied the combinatorial effects of pathogen-sensing path-

ways using a representative set of microbial stimuli. Our data

reveal an intrinsic property governing the combinatorial logic of

microbial sensing: the effects of triplet combinations of microbial

signals can be accurately predicted using the data from the ef-

fects of singles and pairs of stimuli. Remarkably, this simplifying

property of pathogen-sensing pathways was applicable both in

cell cocultures in vitro and cell-based immunotherapies inmouse
Cell Systems 11, 495–508, November 18, 2020 503
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Figure 7. Adjuvant Triplet Effects on Tumor Growth in Mice Are Predicted by Singles and Pairs

(A) Schematic overview of the experimental design. From left to right: mouse DCs are stimulated with adjuvant singles, pairs or triplets and pulsed with ovalbumin

(OVA) in vitro. DCs are then injected subcutaneously in mice and a week later total draining lymph node (inguinal; dLN) cells are placed in culture with or without

OVA. Cytokine concentrations are measured in the dLN cell culture supernatant after 2 days.

(B) Relationship between tumor volume and IL-17A production in the dLN for indicated triplets used to prepare DC vaccines. Shown are B16-OVA tumor volumes

at day 19 post-tumor cell and DC vaccine injections (top), and IL-17A concentrations in dLN cell culture supernatants (bottom). Control, unstimulated DC vaccine

pulsed with OVA only. Error bars, SEM (top, n = 4; bottom, n = 3–15 mice per cohort).

(C) IL-17A production by inguinal dLN cells from mice injected subcutaneously with DC vaccines loaded with OVA and stimulated with indicated singles or

combinations for the four adjuvant triplets with anti-tumor effects: H-Z-G (top left), L-S-G (top right), P-S-G (bottom left), and Z-S-G (bottom right). dLN cells were

plated 7 days post-DC vaccination in a medium containing 1 mg/mL of purified OVA protein. Blue, singles; green, pairs; orange, triplets. Error bars, SEM (n = 4).

(D) Distribution of the distances between IL-17A concentrations for adjuvant triplets with anti-tumor effects (H-Z-G, L-S-G, Z-S-G, and Z-S-G) that were

experimentally observed and calculated using data from composite singles and pairs. Orange line, distribution from experimental values; black line, distribution

observed by bootstrap analysis prior to calculating triplet values using Isserlis.

See also Figure S7; Table S6.
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models of cancer. Our finding greatly simplifies the description of

the combinatorial problem posed by the sensing of complex mi-

crobial or adjuvant inputs by innate immune pathways and their

downstream impact on immunity. Overall, our findings are

important for the fundamental understanding of how innate im-

munity processes information from complex inputs, which is

key for the rational control of the innate immune system in ther-

apy (Demaria et al., 2019).

What do our findings tell us about the properties of path-

ogen-sensing pathways in terms of their topology, information

processing capacity, and evolution? First, our results suggest

that the wiring of the pathogen-sensing system allows pairwise

interactions between pathways but limits, if not eliminate,

higher-order interactions, which is reminiscent of results from

disparate studies on other biological systems, such as ecolog-

ical and microbial interactions (Friedman et al., 2017; Grilli

et al., 2017; Vandermeer, 1969); protein folding (Socolich

et al., 2005); neuronal networks (Schneidman et al., 2006);

and responses to antibiotics, drugs, or agonists (Chatterjee

et al., 2010; Wood et al., 2012; Zimmer et al., 2016). It remains
504 Cell Systems 11, 495–508, November 18, 2020
unknown whether such inter-pathway wiring is similar in the

context of interactions between pathogen-sensing and other

pathways for stress, costimulatory, or cytokine signals. Previ-

ous work by others combining one PRR agonist, LPS, and

other non-PRR agonists found limited higher-order effects at

the level of secretion of few cytokines (Hsueh et al., 2009),

although it remains to be tested systematically using a variety

of stimuli as inputs and by monitoring the net effects of stimuli

combinations on immune responses . Interestingly, pioneering

work by others on how T cells respond to combinatorial costi-

mulatory and cytokine stimuli revealed an even simpler picture

from the one proposed here for pathogen sensing, whereby

pathways acted independently (Gett and Hodgkin, 2000;

Marchingo et al., 2014). Thus, conducting comparative studies

of the combinatorics of various immune signaling pathways will

undoubtedly yield critical information to decipher and manipu-

late these complex systems. Future work is also needed to

decipher the molecular mechanisms underlying the numerous

cases of pairwise synergy and antagonism observed in this

study by, for example, building upon recent systematic efforts



ll
OPEN ACCESSArticle
to understand pairwise crosstalk between TLR pathways (Lin

et al., 2017).

Second, the computation performed by innate immune cells

sensingmultiplemicrobial stimuli aims to rapidly identify amicro-

bial threat and respond appropriately (Janeway, 1989). By

decreasing the likelihood of higher-order interactions, the path-

ogen-sensing system perhaps increases its ability to reliably

perform its functions – detecting microbes and transmitting in-

formation to adaptive immune cells (Iwasaki and Medzhitov,

2015) – in the face of perturbations, such as virulence factors

(Finlay and McFadden, 2006) or inborn genetic errors (Bousfiha

et al., 2018).

Third, why are pathogen-sensing pathways limited in the num-

ber of ways that they can interact? From a network biology

standpoint, having some degree of shared and interacting nodes

within a network of pathways is a likely requirement for the

simplifying property we describe for PRRs to emerge. Although

the exact level of node sharing and interactions is not known

across PRR pathways, two decades of work on pathogen

sensing has identified many shared components and examples

of interactions between pathways (Chevrier et al., 2011; Crozat

et al., 2009; Kawai and Akira, 2011; Loo and Gale, 2011; Osorio

and Reis e Sousa, 2011; Thaiss et al., 2016). However, it remains

unknownwhat a network of pathways should look like in terms of

node sharing and degree of interactions for the simplifying rule

put forth by our results to apply. In other words, what are the

lower and upper limits on node sharing and interactions that

are needed within a network responding to multiple inputs?

Thus, there is a need for theoretical (e.g., simulations) and exper-

imental (e.g., pathway- or network-level engineering) work on

this topic. From an evolutionary standpoint, one possibility is

that while PRR pathways have been selected for by coevolu-

tionary mechanisms between hosts and pathogens, the degree

of crosstalk between PRR pathways is limited by the general

evolutionary forces that guide the assembly of complex biolog-

ical systems. The appearance of a novel pathogen-sensing

pathway, or any other pathway, during evolution, is constrained

by the existing intracellular wiring of the cell. As a result, evolving

a new pathway that could generate many-body interactions is

perhaps an unlikely scenario. More generally, the constraints

imposed by the sequential assembly of evolved systems are

possible explanations as to why pairwise correlations can some-

times capture the complexity of biological systems.

We found that the proliferation and, to a lesser extent, expan-

sion indices are useful metrics to predict higher-order effects us-

ing only data from single and pairwise effects (Figures 3B and

S5C). On the other hand, IFN-g secretion by CD4+ T cells in

co-culture with DCs was a poor predictor of triplet effects

when using only data from singles and pairs (Figure S5D). These

observations suggest that predicting triplet effects on DC-T cell

cocultures from singles and pairs requires to focus on the

behavior of activated T cells, which came into contact with

DCs processing combinatorial stimuli. Using metrics taking

into account all T cells in the culture, including inactivated cells,

and single cytokines such as IFN-g leads to poor predictive po-

wer because these readouts likely do not reflect the full scope of

intercellular signaling events between DCs and T cells.

Our data show that all mRNAs, accessible chromatin loci, and

secreted proteins regulated by triplet stimulations were also
regulated by pairs and singles. Although rare, few exceptions

to this observation were found. For example, the levels of the

Il10 and Il33 genes appeared significantly different in triplet stim-

ulations compared to matching singles and pairs (Figures S5D–

S5H). Further investigations are needed to uncover the transcrip-

tional mechanisms underlying this finding. In addition, the effects

of combinatorial microbial inputs on other functions of innate

cells, such as phagocytosis, chemotaxis, or metabolism, as

well as on T cells in our co-culture system remain to be studied.

We demonstrated that DC-based vaccines which are pre-

pared with triplet combinations of adjuvants can induce potent

anti-tumor responses. Going further, we found that triplet adju-

vant effects can largely be explained by pairwise and single adju-

vant effects, using the production of IL-17A in the draining lymph

node as a proxy for tumoricidal effects. Our findings provide a

first test for the applicability of our model on the collective

behavior of the pathogen sensing system in vivo. These observa-

tions have several critical implications for therapy and future

research avenues. First, while DC-based vaccines have shown

limited efficacy (Kantoff et al., 2010), partly owing to suboptimal

DCmaturation conditions (Garg et al., 2017; Sabado et al., 2017),

we suggest that improved formulations based on the rationale

combination of adjuvants could broaden the scope of therapeu-

tic applications for such cell-based immunotherapies (Figure 6I)

(Carreno et al., 2013, 2015). Second, IL-17A could be useful as a

biomarker for the generation of potent anti-tumor T cell re-

sponses and thus used for the screening of candidate immuno-

therapies that rely on vaccination or other modalities. While an

increase in the number of IL-17-producing cells in the tumor

environment correlates with improved survival for patients with

esophageal squamous cell carcinoma (Lv et al., 2011), further

work is needed to assess its precise role in our DC vaccine

model. Perhaps IL-17 plays an indirect role in the promotion of

cytotoxic T cell responses in the lymph node through the induc-

tion of other cytokines such as IL-12 and IL-6, as shown in other

contexts (Benchetrit et al., 2002; Qian et al., 2017). Lastly, future

studies are needed to translate in vitro effects and predictions

into in vivo outcomes by, for example, identifying in vitrometrics

at the level of DCs or DC-T cell cocultures that can inform how

well a set of adjuvants will perform in vivo.

Overall, our work provides a conceptual framework to deci-

pher the general rules governing the combinatorial logic of im-

mune signaling and to build predictive models for combining ad-

juvants in therapy.
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Antibodies

FITC anti-mouse/Human CD11b antibody (Clone M1/70) Biolegend Cat#101205; RRID: AB_312788

APC anti-mouse CD11c antibody (Clone N418) Biolegend Cat#117309; RRID: AB_313778

PE/Cyanine 7 anti-mouse I-A/I-E antibody

(Clone M5/114.15.2)

Biolegend Cat#107629; RRID: AB_2290801

APC/Cyanine 7 anti-mouse CD4 antibody (Clone GK1.5) Biolegend Cat#100413; RRID: AB_312698

APC/Cyanine 7 anti-mouse CD3e antibody

(Clone 145-2C11)

Biolegend Cat#100329; RRID:AB_1877171

PerCP/Cyanine 5.5 anti-mouse CD45 antibody

(Clone 30-F11)

Biolegend Cat#103131; RRID:AB_893344

Alexa flor 488 anti-mouse CD8a antibody (Clone 53-6.7) Biolegend Cat#100726; RRID:AB_493423

Bacterial and Virus Strains

Sendai Virus strain Cantell ATCC Cat#VR-907

Chemicals, Peptides, and Recombinant Proteins

Recombinant murine GM-CSF Peprotech Cat#315-03-100mg

Recombinant human IL-4 Peprotech Cat#Peprotech 200-04mg

Recombinant human GM-CSF Peprotech Cat#Peprotech 300-03mg

Recombinant murine IFN-g Peprotech Cat#315-05

Recombinant murine sCD40L Peprotech Cat#315-15

EndoFit grade ovalbumin Invivogen Cat#vac-pov

LCMV GP61-80 peptide Biosynthesis Cat#14258-01

Lipopolysaccharide from E. coli K12 Invivogen Cat#tlrl-peklps

Pam3CSK4 Invivogen Cat#tlrl-pms

High-molecular weight polyinosinic-polycytidylic

acid (poly(I:C)

Invivogen Cat#tlrl-pic-5

Class B CpG oligonucleotide (ODN 1668) Invivogen Cat#tlrl-1668-1

Cyclic [G(3’,5’)pA(3’,5’)p] (3’3’-cGAMP) Invivogen Cat#tlrl-nacga-1

Cyclic [G(2’,5’)pA(3’,5’)p] (2’3’-cGAMP) Invivogen Cat#tlrl-nacga23

Zymosan depleted Invivogen Cat#tlrl-zyd

R848 Invivogen Cat#tlrl-r848

DAPI Biotium Cat#40043

DMSO hybrimax Sigma Aldrich Cat#D2650-5X5ML; CAS: 67-68-5

Percoll PLUS GE Healthcare Life Sciences Cat#17-5445-02

Lymphocyte separation medium Corning Cat#25072CV

0.5M EDTA VWR Cat#BDH7830-1

Zombie-NIR Biolegend Cat#423105

RPMI-1640 without phenol red ThermoFisher Scientific Cat#11835-030

Urea Sigma Aldrich Cat#U4883; CAS: 57-13-6

Dithiotreitol ThermoFisher scientific Cat#20291; CAS: 3483-12-3

Iodoacetamide Sigma Aldrich Cat#A3221-1VL; CAS: 144-48-9

Trypsin Promega Cat#V5113

Formic acid Honeywell Fluka Cat#56302-10X1ML; CAS: 64-18-6

Acetonitrile Honeywell Fluka Cat#349998; CAS: 75-05-8

TMT-10 reagents ThermoFisher Scientific Cat#90110

IGEPAL CA-630 Sigma Aldrich Cat#I8896; 9002-93-1

Collagenase type I Worthington Biochemical Cat#LS004194

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Buffer RLT Qiagen Cat#79216

Exonuclease I New England Biolabs Cat#M0293

DNase I Thermo Fisher Scientific Cat#AM2239

Critical Commercial Assays

CellTrace CFSE cell proliferation kit ThermoFisher Scientific Cat#C34554

Dynabeads MyOne Silane ThermoFisher Scientific Cat#37002D

High Capacity cDNA Reverse Transcription Kit ThermoFisher Scientific Cat#4368813

LightCycler 480 SYBR Green I Master mix Roche Cat#04707516001

Maxima H Minus Reverse Transcriptase ThermoFisher Scientific Cat#EP0753

Q5 Hot Start High-Fidelity 2X Master Mix New England Biolabs Cat#M0494

DNA Clean & Concentrator-5 Zymo Research Cat#D4013

DNA Clean & Concentrator-25 Zymo Research Cat#D4033

Advantage 2 PCR Kit Clontech Cat#639206

Agencourt AMPure XP Beckman Coulter Cat#A63880

Qubit dsDNA High Sensitivity Assay Kit ThermoFisher Scientific Cat#Q32851

E-Gel EX Agarose Gels, 2% ThermoFisher Scientific Cat#G402002

Nextera XT DNA Library Preparation Kit Illumina Cat#FC-131-1024

Nextera DNA library prep kit Illumina Cat#FC-121-1030

Anti-MHC Class II microbeads, mouse Miltenyi Biotec Cat#130-052-401

Monocyte isolation kit II, human Miltenyi Biotec Cat#130-091-153

CD4(L3T4) Microbeads, mouse Miltenyi Biotec Cat#130-117-043

Mojosort Mouse CD4 T cell isolation Kit Biolegend Cat#480005

ELISA MAX standard set mouse IFN-g Biolegend Cat#430801

ELISA MAX standard set mouse IL-17A Biolegend Cat#432501

LEGENDPLEX Mouse anti-virus response panel Biolegend Cat#740622

LEGENDPLEX Mouse Th cytokine panel Biolegend Cat#740740

Deposited Data

Mouse bone marrow-derived dendritic

cell RNA-seq

This paper GEO: GSE134869

Mouse bone marrow-derived dendritic

cell ATAC-seq

This paper GEO: GSE134867

Human blood monocyte-derived dendritic

cell RNA-seq

This paper GEO: GSE134874

Mouse bone marrow-derived dendritic cell

supernatant mass spectrometry

This paper MassIVE: MSV000086093

Experimental Models: Cell Lines

Mouse: Ovalbumin expressing B16 Arlene Sharpe N/A

Mouse: Ovalbumin expressing MC38 Darrell Irvine N/A

Mouse: Ovalbumin expressing EG.7 Darrell Irvine N/A

Experimental Models: Organisms/Strains

Mouse: C57BL/6J JAX Cat#000664

Mouse: B6.Cg-Ptprca Pepcb Tg(TcrLCMV)1Aox/Ppmj JAX Cat#030450

Mouse: B6.129S(C)-Batf3tm1Kmm/J JAX Cat#013755

Mouse: B6(Cg)-Sting1tm1.2Camb/J JAX Cat#025805

Mouse: B6.129S6-Clec7atm1Gdb/J JAX Cat#012337

Mouse: B6.129P2(SJL)-Myd88tm1.1Defr/J JAX Cat#009088

Mouse: C57BL/6J-Ticam1Lps2/J JAX Cat#005037

Mouse: B6.129-Mavstm1Zjc/J JAX Cat#008634

Mouse: B6.Cg-Ifih1tm1.1Cln/J JAX Cat#015812

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: B6.129S2-H2dlAb1-Ea/J JAX Cat#003584

Mouse: Il17atm1.1(icre)Stck/J JAX Cat#016879

Mouse: B6.129P2-Rorctm1Litt/J JAX Cat#007571

Mouse: B6.129S2-Cd8atm1Mak/J JAX Cat#002665

Mouse: OT-II+ TCRa-/-CD45.1+/+ Arlene Sharpe N/A

Oligonucleotides

Primers for ATAC-seq, see Table S7 Buenrostro et al., 2013 and this paper N/A

Primers for qPCR and RNA-seq, see Table S7 This paper N/A

Software and Algorithms

R version 3.3.2 The R Project https://www.r-project.org/

RStudio Version 1.0.136 RStudio https://rstudio.com/

CFX Manager Bio-Rad https://www.bio-rad.com/en-us/sku/1845000-

cfx-manager-software?ID=1845000

Morpheus The Broad Institute https://software.broadinstitute.org/morpheus/

Limma Ritchie et al., 2015 http://bioinf.wehi.edu.au/limma/

Flowjo BD https://www.flowjo.com/solutions/flowjo

LEGENDplex Data Analysis software Biolegend http://www.vigenetech.com/LEGENDplex7.htm

Bcbio-nextgen version 1.1.15 N/A https://bcbio-nextgen.readthedocs.io/en/latest/

STAR version 2.6.1d Dobin et al., 2013 https://github.com/alexdobin/STAR

FastQC Babraham Institute https://www.bioinformatics.babraham.ac.uk/

projects/fastqc/

Qualimap Garcı́a-Alcalde et al., 2012 http://qualimap.bioinfo.cipf.es/

MultiQC Ewels et al, 2016 https://multiqc.info/

featureCounts version 1.4.4 Liao et al. 2014 http://subread.sourceforge.net/

Sailfish version 0.9.2 Patro et al., 2014 http://www.cs.cmu.edu/�ckingsf/

software/sailfish/

BWA version 0.7.15 Li and Durbin, 2009 http://bio-bwa.sourceforge.net/

edgeR Robinson et al., 2010 https://bioconductor.org/packages/release/

bioc/html/edgeR.html

Bowtie2 version 2.2.9 Langmead and Salzberg,

2012

http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml

MACS2 version 1.4 Zhang et al., 2008 https://github.com/macs3-project/MACS

Samtools version 1.4.1 Li et al., 2009 http://www.htslib.org/

Bedtools version 2.26 Quinlan and Hall, 2010 https://bedtools.readthedocs.io/en/latest/

Rsubread Liao et al., 2019 https://bioconductor.org/packages/release/

bioc/html/Rsubread.html

MaxQuant version 1.6.0.1 Cox and Mann, 2008 https://www.maxquant.org/

sva Leek et al., 2012 https://bioconductor.org/packages/release/

bioc/html/sva.html

All scripts and preprocessed datasets

are publicly available

This paper https://github.com/chevrierlab/combos-paper

ll
OPEN ACCESSArticle
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Nicolas

Chevrier (nchevrier@uchicago.edu).

Materials Availability
This study did not generate new unique reagents.
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Data and Code Availability
d The sequencing and mass spectrometry datasets generated during this study have been respectively deposited in the Gene

Expression Omnibus and MassIVE repositories under accession numbers GSE134869, GSE134874 and GSE134867, and

MSV000086093, respectively.

d All scripts and preprocessed datasets are publicly available at the following repository: https://github.com/chevrierlab/

combos-paper.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
Female C57BL/6J (stock 000664), B6.Cg-Ptprca Pepcb Tg(TcrLCMV)1Aox/Ppmj (SMARTA-1; stock 030450), B6.129S(C)-

Batf3tm1Kmm/J (Batf3 knockout; stock 013755), B6(Cg)-Sting1tm1.2Camb/J (Sting-1 knockout; stock 025805), B6.129S6-

Clec7atm1Gdb/J (Dectin-1 knockout; stock 012337), B6.129P2(SJL)-Myd88tm1.1Defr/J (Myd88 knockout, stock 009088), C57BL/6J-

Ticam1Lps2/J (Trif knockout, stock 005037), B6.129-Mavstm1Zjc/J (MAVS knockout, stock 008634), B6.Cg-Ifih1tm1.1Cln/J (Mda5

knockout, stock 015812), B6.129S2-H2dlAb1-Ea/J (MHC class II knockout; stock 003584), Il17atm1.1(icre)Stck/J (IL-17a knockout;

stock 016879), B6.129P2-Rorctm1Litt/J (RORgt knockout; stock 007571), and B6.129S2-Cd8atm1Mak/J (CD8a knockout; 002665)

mice were obtained from the Jackson Laboratories. OT-II+ TCRa-/-CD45.1+/+(OT-II) mice were kindly provided by Arlene Sharpe

(Harvard Medical School, Boston, USA). Animals were housed in specific pathogen-free and BSL2 conditions at The University of

Chicago, and all experiments were performed in accordance with the US National Institutes of Health Guide for the Care and Use

of Laboratory Animals and approved by The University of Chicago Institutional Animal Care and Use Committee.

Cell Lines
Ovalbumin-expressing B16.F10 (B16-OVA; a gift fromArlene Sharpe, HarvardMedical School, Boston, USA) andMC38 (MC38-OVA;

a gift from Darrell Irvine, MIT, Cambridge, USA) cell lines were cultured in DMEM (ThermoFisher Scientific 11995073) supplemented

with 10% v/v heat-inactivated FBS (Seradigm 1400-500) and penicillin/streptomycin (100 U/mL/100mg/mL, Lonza Biowhittaker

17602E). Ovalbumin-expressing E.G7 (E.G7-OVA; a gift from Darrell Irvine, MIT, Cambridge, USA) cells were cultured in complete

RPMI medium (composition described in Method Details).

METHOD DETAILS

Cells
Bonemarrow-derived dendritic cells (BMDCs) were generated from 6- to 8-week old female mice. Bone marrow cells were collected

from femora and tibiae and plated at 2 x106 cells in 10-cm non-tissue culture treated petri dishes (Corning 351029) in 10 mL of com-

plete RPMI medium containing RPMI-1640 medium (ThermoFisher Scientific 11875119) supplemented with 10% volume/volume

(v/v) heat-inactivated fetal bovine serum (Seradigm 1400-500), L-glutamine (2 mM, Corning 25005CI), penicillin and streptomycin

(Lonza Biowhittaker 17602E), MEM non-essential amino acids (Corning 25025CI), HEPES (10 mM, Corning 25-060-CI), sodium py-

ruvate (1mM,Corning 25000CI), b-mercaptoethanol (55 mM, Fisher Scientific 21-985-023). Recombinant murine GM-CSF (15 ng/mL;

Peprotech 315-03-100mg) was added to the complete RPMI medium. Cells were fed at days 2, 5, and 7 with 3 mL of complete RPMI

medium containing GM-CSF. At day 8, non-adherent cells were collected by pipetting, centrifuged, and resuspended in fresh com-

plete RPMI medium without GM-CSF. Cells were plated in 100 mL of the medium in non-tissue culture treated 96-well flat-bottom

plates (ThermoFisher Scientific 260860) and incubated overnight prior to stimulations as indicated.

To enrich MHC class II (MHC-II)-positive DCs from total BMDC cultures, non-adherent cells were collected on day 8 and positively

selected using anti-MHC class II microbeads (Miltenyi Biotec 130-052-401).

To purify the three DC populations present in total BMDC cultures based on the following markers: CD11c, CD11b andMHC-II, we

used FACS. CD11c+ cells were stained with the following fluorescently conjugated antibodies (Biolegend): anti-CD11b (M1/70;

101205), anti-CD11c (N418; 117309), anti-IA/IE (M5/114.15.2; 107629) and DAPI (live/dead marker). Cells were sorted into

CD11b+MHC-IIhi, CD11b+MHC-IImed, CD11b+MHC-IIlo subpopulations using a BD FACSAria II instrument.

To generate human blood monocyte-derived dendritic cells (moDCs), human whole peripheral blood from three healthy donors

was obtained from Stemcell Technologies (catalog number 70504.5). Peripheral blood mononuclear cells (PBMCs) were isolated

by density gradient centrifugation as follows: 15 mL of lymphocyte separation medium (LSM) (Corning 25072CV) was carefully un-

derlaid beneath 35mL of blood diluted 2Xwith 1XPBS/2mMEDTA in a 50mL tube and centrifuged at 400 g for 30min at 20
�
Cwithout

break. The upper layer was aspirated leaving the white buffy coat interphase containing PBMCs undisturbed. The interphase was

transferred to a new 50 mL tube containing 10 mL of 1X PBS, mixed and centrifuged at 400 g for 10 h at 20
�
C. Following the washing

step, the supernatant was removed and PBMCs resuspended in 1X PBS. CD14+ Monocytes were then purified from total PBMCs

using the Monocyte Isolation kit II (purity >90%; Miltenyi Biotec 130-091-153). CD14+ monocytes were plated at 106 cells/mL in

10-cm non-tissue culture treated petri in 10 mL of complete RPMI medium prepared as above but without sodium pyruvate and

MEM non-essential amino acids and by adding recombinant human IL-4 (40 ng/mL; Peprotech 200-04mg) and human GM-CSF

(100 ng/mL; Peprotech 300-03mg). Cells were fed at day 3 and 5 with 5 ml of complete RPMI medium for human DCs supplemented
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with GM-CSF as described above. At day 7, non-adherent cells were collected by pipetting, centrifuged and resuspended in fresh

complete RPMI medium without GM-CSF and IL-4. Cells were plated in 100 mL of medium in non-tissue culture treated 96-well flat

bottom plates and incubated overnight prior to stimulations as indicated.

Mouse splenic CD4+ T cells were isolated from OT-II or SMARTA-1 mice using CD4 (L3T4) MicroBeads (130-117-043) and LS col-

umns (130-042-401) from Miltenyi Biotec and labeled with 1 mM CFSE (Thermo Fisher Scientific C34554).

Reagents
Lipopolysaccharide (L) from E. coli K12 (tlrl-peklps), Pam3CSK4 (P) (tlrl-pms), high-molecular-weight polyinosinic-polycytidylic acid

(poly(I:C) or H) (tlrl-pic-5), class B CpG oligonucleotide (ODN 1668 or C) (tlrl-1668-1), cyclic [G(3’,5’)pA(3’,5’)p] (3’3’-cGAMP or G for

stimulating mouse cells) (tlrl-nacga-1), cyclic [G(2’,5’)pA(3’,5’)p] (2’3’-cGAMP or G for stimulating human cells) (tlrl-nacga23),

Zymosan depletedwhich is a S. cerevisiae cell wall preparation (tlrl-zyd), andR848 (tlrl-r848) were purchased from Invivogen. Purified

EndoFit grade ovalbumin (OVA) was obtained from Invivogen (vac-pova). Sendai Virus (SeV) was obtained from ATCC (VR-907). Re-

combinantmurine IFN-g (315-05) and sCD40L (315-15) were purchased fromPeprotech. The antibody anti-CD4was purchased from

Biolegend (GK1.5; 100414), and DAPI from Biotium (40043).

In Vitro DC-T Coculture
Mouse BMDCs prepared and plated in 96-well plates as detailed above (10,000 cells/well after overnight incubation) were incubated

for 6 h at 37
�
Cwith 200 mg/mL of OVA (for OT-II CD4+ T cells) or 0.005 mg/ml GP61-80 peptide (for SMARTA-1 CD4+ T cells) and with or

without indicated ligands used alone or in combination at the following concentrations unless otherwise indicated: LPS, 100 ng/mL;

PAM3CSK4, 250 ng/mL; 3’3’cGAMP or 2’3’cGAMP, 20 mg/mL; Zymosan depleted, 30 mg/mL; Sendai Virus, MOI 10; ODN 1668CpG-

B, 10 mg/mL; poly(I:C), 20mg/mL. After incubation, BMDCs were washed bymedium replacement, and fresh complete RPMI medium

(100 mL) was added to the cultures. 50,000 freshly isolated and CFSE-labeled transgenic OT-II or SMARTA-1 T cells were then added

to the DC culture in 100 mL of complete RPMI medium. Cocultures were incubated at 37
�
C for 3 days and T cells were harvested by

pipetting and centrifugation. T cells were resuspended in 1X PBS buffer supplemented with 0.5% FBS and 2 mM EDTA (VWR

BDH7830-1) and stained using an anti-CD4 antibody and DAPI to exclude dead cells. Flow cytometry data were acquired on the No-

voCyte flow cytometer (Acea Biosciences/Agilent) and analyzed using the FlowJo software (BD).

For experiments whereby DCs stimulated with single ligands were mixed prior to coculture with T cells, mouse 100,000 DCs were

incubated for 6 h at 37
�
C with 200 mg/mL of OVA with single ligands. The supernatant was aspirated and 100 mL of PBS containing

10 mM EDTA was added to cells for 10 minutes at 37
�
C to detach them. Cells were harvested by pipetting, counted, and plated at a

1:1 ratio (5,000 cells for every single ligand). 50,000 freshly isolated and CFSE-labeled transgenic OT-II T cells were then added to the

DC culture in 100 mL of complete RPMI medium.

Mouse Tumor Models
The abdomen ofmice used for experiments were shaved using a pet trimmer (Wahl Bravmini CLP-41590) on the day before tumor cell

and BMDC injections. Mice were injected subcutaneously with 500,000 E.G7-OVA, 100,000 B16-OVA, or MC38-OVA cells resus-

pended in 100 mL of sterile saline in the flank. At the same time, mice were injected subcutaneously in the contralateral flank with

250,000 BMDCs that had been incubated with 25 mg/mL of OVA and indicated ligands for 6 h at 37
�
C and washed three times

with 1X PBS prior to being resuspended at 250,000 cells/100 mL in sterile saline. For consistency across experiments, tumor cells

were thawed from liquid nitrogen stocks frozen in 90% FBS and 10% DMSO 2 days prior to injections and passaged twice in total.

Tumor volumes were calculated using the formula 1/2 3 D 3 d2, where D is the major axis and d the minor axis (in mm). Mice were

sacrificed when tumors reached 1000 cm3 or upon ulceration.

For analysis of tumor-infiltrating lymphocytes, B16-OVA tumors were dissected from mice, weighed, and mechanically disaggre-

gated before digestion with collagenase type I (400 U/ml; Worthington Biochemical) for 30 min at 37�C. After digestion, tumors were

passed through 70-mmfilters, and lymphocytes were enriched by centrifugation using a gradient of 40/70%Percoll PLUS (GEHealth-

care Life Sciences 17-5445-02). Cells were stained with the following fluorescently conjugated antibodies (Biolegend): anti-CD3e

(145-2c11), anti- CD45 (30-F11), anti-CD8a (53-6.7) and Zombie-NIR (live/dead marker). Flow cytometry data were acquired on

the NovoCyte flow cytometer (Acea Biosciences/Agilent) and analyzed using the FlowJo software (BD).

Restimulation of Total Lymph Node Cells with Ovalbumin
Mice were injected subcutaneously in both flanks with 250,000 BMDCs that had been incubated with 25 mg/mL of OVA and indicated

ligands for 6 h at 37
�
C and washed three times with 1X PBS prior to being resuspended at 250K cells/100 mL in sterile saline. Seven

days after DC injections, the inguinal draining lymph nodes (dLNs) were collected from each mouse and minced using a microtube

pestle (USA Scientific 1415-5390) in 1.5 mL tubes containing 500 mL of complete RPMI medium. Cell suspensions were filtered on a

100-mm filter mesh, centrifuged, and resuspended in complete RPMI medium prior to counting cell concentrations. Cells were then

plated at 500,000 total dLN cells/well in 200 mL of complete RPMI medium in non-tissue culture treated flat-bottom 96-well plates

(Thermofisher Scientific 260860). Cells were incubated with 1 or 10 mg/mL OVA or left untreated for 2 days at 37
�
C and 5% CO2.

Cell culture supernatants were collected and stored in single-use aliquots at -80oC until further processing for measuring cytokine

concentrations as described below.
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For the culture of CD4+ T cells depleted dLN cells, CD4+ T cells were depleted from whole lymph node single-cell suspension by

positive selection using the MojoSort Mouse CD4 T Cell Isolation Kit (BioLegend 480006).

Cytokine Quantifications
Cell culture supernatants were collected from (1) BMDC (100,000 cells/well) cultures 8 h after stimulation, (2) DC-T cocultures after a

3-day incubation period, or (3) total draining lymph node (dLN) cell cultures (500,000 cells/well) kept in culture for 2 days, and stored

frozen at -80oC in single-use aliquots.

For sandwich Enzyme-Linked Immunosorbent Assay (ELISA), cell culture supernatants were diluted using the ELISA assay diluent

(Biolegend 4212013), and cytokine concentrations were measured using the ELISA MAX standard set mouse IFN-g (BioLegend

430801) and IL-17A (BioLegend 432501) kits according to the manufacturer’s instructions.

For flow cytometric, bead-based immunoassays, DC, and dLN cell culture supernatants were diluted and processed using the

LEGENDplex mouse anti-virus response panel (BioLegend 740622) and the LEGENDplex mouse Th cytokine panel (BioLegend

740740) kits, respectively. Data were acquired on the NovoCyte flow cytometer (Acea Biosciences/Agilent) and analyzed using

the LEGENDplex software v8 (BioLegend).

Secretome Analysis
Mouse BMDCs (105 cells/96-well in 100 mL of medium) were stimulated for 8 h at 37

�
C in complete RPMI mediummade with RPMI-

1640 without phenol red (ThermoFisher Scientific 11835-030) and without FBS (serum-free conditions). Cell culture supernatants

were collected by pooling 3 wells per condition for a total volume of �330-390 mL in a 1.5-mL tube and centrifuged at 1000 g for

5 min to remove remaining cells. Supernatants were transferred to new tubes and centrifuged at 20,000 g for 10 min to remove cell

debris.

Supernatants (�300 mL) were denatured by adding 100 mL of 8 M urea (Sigma Aldrich U4883) and incubating for 5 min at room

temperature (RT) with shaking at 800 rpm. Proteins were reduced with 5 mM dithiotreitol (Thermo Fisher scientific 20291) for

30 minutes at RT and alkylated with 10 mM iodoacetamide (Sigma A3221-1VL) for 30 minutes at RT in the dark with shaking

at 1000 rpm. Proteins were digested with 0.5 mg of trypsin (Promega V5113) for 16 h at room temperature with shaking at

700 rpm. The digestion was stopped by acidification by adding 4mL of formic acid (Honeywell Fluka 56302-10X1ML) to obtain

a pH < 3 (pH indicator strips, EMD 9586). Peptide samples were desalted on C18 stage tips and to enable multiplexing,

peptide samples were labeled with TMT-10 reagents (Thermo Scientific). The TMT-labeled samples were loaded on C18 stage

tips and separated into 6 high-pH fractions using elution solvents containing ammonium formate buffer (0.0175% NH4OH,

Sigma-Aldrich; 0.01125% formic acid, Fluka; 2% acetonitrile, Honeywell) and 10, 15, 20, 22.5, 25 and 50 % acetonitrile

(Honeywell).

Tryptic peptides were analyzed on an EASY-nLC 1200 system coupled to a Q-Exactive Plus (ThermoFisher Scientific). The EASY-

nLC system was equipped with a 75 mm x 20 cm column (packed in-house with 1.9 um C18 resin; Reprosil Gold, Dr. Maisch) and

operated at a flow rate of 250 nL/min applying a 110 min linear gradient from 2 to 90 % solvent B (90 % ACN, 0.1 % FA) in A (3

% ACN, 0.1 % FA). MS measurements were performed on Q Exactive Plus with the following modifications: MS1 spectra were re-

corded at a resolution of 60k using a maxIT of 10 ms. Fragment spectra were acquired at 45-k resolution using a maxIT of 86 ms for

proteome measurements.

RNA Extraction
Mouse BMDCs (100,000/96-well or 10,000/96-well for sorted BMDCs) and humanmoDCs (10,000/96-well) were stimulatedwith indi-

cated ligands for 6 h at 37
�
C, and after stimulation culture, supernatants were removed by aspiration. Cells were lysed with 30 mL of

RLT buffer (Qiagen 79216) containing 1% (v/v) b-mercaptoethanol (VWR 97604-848). Total RNA was isolated using Dynabeads My-

One Silane (Thermo Fisher Scientific 37002D) and RLT buffer using a custom protocol (Kadoki et al., 2017). The remaining genomic

DNAwas removed by on-bead DNase I (Thermo Fisher Scientific AM2239) treatment at 37
�
C for 20min. After washing two times with

80% ethanol, total RNA was eluted from beads in nuclease-free water.

RT-qPCR
Total RNA was reverse transcribed using the High Capacity cDNA Reverse Transcription Kit (ThermoFisher Scientific 4368813) with

both random nonamers (N9) and oligo(dT) primers. Real-time quantitative PCR reactions were performed on the CFX384 Real-Time

PCR Detection System (Bio-Rad Laboratories) with LightCycler 480 SYBR Green I Master mix (Roche) and 0.5 mM of each primer in

a final volume of 10 mL with 40 cycles of denaturation at 95
�
C for 15 s and annealing/extension at 60

�
C for 40 s. The following for-

ward-reverse primer pairs were used to measure levels the following mouse genes: Gapdh (5’-ggcaaattcaacggcacagt-3’, 5’-agatggt

gatgggcttccc-3’), Tlr2 (5’-aagaggaagcccaagaaagc-3’, 5’-cgatggaatcgatgatgttg-3’), Tlr3 (5’-cacaggctgagcagtttgaa-3’, 5’-tttcgg

cttcttttgatgct-3’), Tlr4 (5’-acctggctggtttacacgtc-3’, 5’-ctgccagagacattgcagaa-3’), Tlr9 (5’-actgagcacccctgcttcta-3’, 5’-agattagtcag

cggcaggaa-3’), Ddx58 (5’-ccacctacatcctcagctacatga-3’, 5’-tgggcccttgttgttcttct-3’), Tmem173 (5’-tgaaaggctcttcattgtctctt-3’, 5’-tggc

atcttctgcttcctaga-3’), Clec7a (5’-atcagcattcttccccaactcg-3’,5’-cagttccttctcacagatactgtatga-3’), Cxcl10 (5’-gccgtcattttctgcctca-3’,

5’-cgtccttgcgagagggatc-3’), Tnf (5’-ccctcacactcagatcatcttct-3’, 5’-gctacgacgtgggctacag-3’), Cxcl1 (5’-ctgggattcacctcaagaacatc-3’,

5’-cagggtcaaggcaagcctc-3’), Ifnb (5’-ctggcttccatcatgaacaa-3’, 5’-agagggctgtggtggagaa-3’), Il6 (5’-tgttctctgggaaatcgtgga-3’, 5’-gctac

gacgtgggctacag-3’) and human gene: GAPDH (5’-agccacatcgctcagacac-3’, 5’-aatacgaccaaatccgttgact-3’). Amplification products
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were subjected to melting curve analysis using the CFX Manager System (Bio-Rad Laboratories) to exclude the amplification of non-

specific products.

RNA-seq

Multiplexed RNA-seq libraries were prepared using the following overall workflow (Kadoki et al., 2017): (1) oligo(dT)-primed RT re-

action with sample barcoding followed by cDNA pooling; (2) single-primer PCR amplification; and (3) full-length cDNA tagmentation

and amplification by PCR.

First, total RNA samples obtained from 1x105 mouse BMDCs or 1x104 human moDCs were reverse transcribed to cDNA by dena-

turing 10-mL RNA samples with 1 mL containing 2 pmoles of a customRT primer, which is biotinylated in 5’ and containing sequences

from 5’ to 3’ for the Illumina read 1 primer, a 6-bp cell barcode, a 10-bp unique molecular identifier (UMI) and an anchored oligo(dT)30
for priming (5’-/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCT[6-bp barcode]NNNNNNNNNNTTTTTTTTTTTTTTTTTTTT

TTTTTTTTTTVN-3’; where 5Biosg = 5’biotinylation, V=A, G or C, N=A, G, C or T) (Table S7), at 72
�
C for 2 min and snap cooled on

ice. A 9-mL RT mix containing 4 mL of 5X RT buffer, 1 mL of 10 mM dNTPs, 2 pmoles of template switching oligo (5’-iCiGiCA-

CACTCTTTCCCTACACGACGCrGrGrG-3’; where iC = iso-dC, iG = iso-dC, rG = RNA G) (Table S7), 0.5 mL Maxima HMinus Reverse

Transcriptase (ThermoFisher Scientific EP0753) and 3.5 mL of nuclease-free water was added to the denatured RNA samples, and

plates were incubated at 42
�
C for 120 min. Next, double-stranded cDNA samples were pooled using DNA Clean & Concentrator-5

columns (Zymo Research D4013), and residual RT primers were removed using exonuclease I (New England Biolabs M0293).

Second, pooled full-length cDNA was amplified with 4-6 cycles of single-primer PCR using the following primer: 5’-/5Biosg/

ACACTCTTTCCCTACACGACGC-3’ (5Biosg = 5’ biotinylation) (Table S7) and the Advantage 2 PCR Kit (Clontech 639206) in a 50-

mL reaction volume and using the following cycling condition: 1 cycle at 95
�
C for 1 min; 4-6 cycles at 95

�
C for 15 sec, 65

�
C for 30

sec, 68
�
C for 6 min; and 1 cycle at 72

�
C for 10 min. Amplified cDNAs were cleaned up using 0.6X volume of magnetic beads Agen-

court AMPure XP (Beckman Coulter A63880) and quantified using the Qubit dsDNA High Sensitivity Assay Kit (ThermoFisher Scien-

tific Q32851).

Third, 1 ng of cDNA was tagmented and amplified by PCR using the following forward forward 5’-aatgatacggcgaccaccgagatcta-

cactctttccctacacgacgctcttccg*a*t*c*t-3’ (Table S7), where * indicates phosphorothioated DNA bases, and Illumina i7 reverse primers

using the Nextera XT Kit (Illumina) with the following cycling conditions: 1 cycle at 72
�
C for 3 min; 1 cycle at 95

�
C for 30 sec; 12 cycles

at 95
�
C for 10 sec, 55

�
C for 30 sec and 72

�
C for 30 sec; and 1 cycle at 72

�
C for 5 min. Libraries were cleaned up using 0.8X volume of

magnetic beads Agencourt AMPure XP and gel purified using E-Gel EX Agarose Gels, 2% (ThermoFisher Scientific G402002), quan-

tified with the Qubit dsDNAHigh Sensitivity Assay Kit (ThermoFisher Scientific Q32851), and sequenced on the NextSeq550 platform

(Illumina) using the NextSeq 500/550 high output kit v2 and following sequencing conditions: 17 cycles for Read 1, 8 cycles for Index

1, 66 cycles for Read 2.

Chromatin Accessibility
The original ATAC-seq protocol (Buenrostro et al., 2013) was used with modifications as follows. 50,000 mouse BMDCs were centri-

fuged and cell pellets were lysed in 50 mL of ice-cold lysis buffer containing 10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mMMgCl2, and

0.1% IGEPALCA-630, and immediately centrifuged at 500 g for 10min at 4
�
C. Supernatants were discarded and pelleted nuclei were

processed for tagmentation by adding the followingmix: 22.5 mL of nuclease-free water, 2.5 mL of transposase and 25 mL of TD buffer

from the Nextera DNA library prep kit (Illumina FC-121-1030), and by incubating the mixture at 37
�
C for 30 min. Tagmented genomic

DNA was purified using DNA Clean & Concentrator-25 columns (Zymo research D4033). Sequencing libraries were generated using

the following forward (5’-aatgatacggcgaccaccgagatctacactcgtcggcagcgtcagatgtg-3’) and barcoded reverse (5’-caagcagaagacgg-

catacgagat[8-bp barcode]gtctcgtgggctcggagatgt-3’) primers, and by performing 12 cycles of amplification with the Q5 Hot Start

High-Fidelity 2X Master Mix (New England Biolabs M0494) using the following cycling conditions: 1 cycle at 72
�
C for 5 min; 1 cycle

at 98
�
C for 30 sec; and 12 cycles at 98

�
C for 10 sec, 63

�
C for 30 sec and 72

�
C for 1 min. Libraries were purified using DNA Clean &

Concentrator-25 columns to remove remaining primers, and amplicon size distributions measured using high sensitivity D5000

screentape (Agilent Technologies 5067-5592). Libraries were then quantified using the Qubit dsDNA High Sensitivity Assay Kit (Ther-

moFisher Scientific Q32851) and sequenced on the NextSeq550 platform (Illumina) using the NextSeq 500/550 high output kit v2 and

following sequencing conditions: 42 cycles for Read 1, 8 cycles for Index 1, 42 cycles for Read 2.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of Flow Cytometry Data on T Cell Proliferation
The ultimate goal of our analysis is to test whether the effects of single and pairwise microbial inputs (i.e., ligands for pattern-recog-

nition receptors) can help to explain the effects of higher-order combinations (i.e., triplets of ligands). We describe below all of the

main steps of our analysis and the full code is publicly available in the following repository: https://github.com/chevrierlab/

combos-paper.

CFSE Data Processing

We analyzed raw flow cytometric data using the FlowJo software to calculate live and dead CD4+ T cells. Representative plots for our

gating strategy are shown in Figure S1. Next, we manually drew gates for each CFSE peak in a given profile to calculate the numbers

of T cells per division (referred to as cell generation).
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Computing Statistics of CFSE Profiles

To characterize the cellular proliferation profiles, we computed commonly used statistics for CFSE measurements (Roederer, 2011).

The percent of T cells in the final population that have divided (proportion of divided T cells) was calculated by dividing the number of

cells present in all the peaks below the undivided peak (i.e., cell generation 0) by the total number of live cells. Next, we calculated the

following metrics:

(i) the number of cells present at the start of the coculture (starting cells), given by
Pn

i
peaki
2i

,

(ii) the number of activated cells (cells that went into division) is the number of cells present at the start (i) minus the number of cells

which did not divide (i.e., cells in peak zero),

(iii) the total number of divisions, given by
Pn

i
i�peaki

2i
,

(iv) the total number of cells, given by
Pn

i peaki, and

(v) the total number of cells which divided at least once is the total number of cells (iv) minus the number of cells which did not

divide (i.e., cells in peak zero).

Using the metrics listed above, we calculated the following six metrics that are commonly used to characterize CFSE proliferation

profiles32:

(a) The proliferation index (Pi) is the total number of divisions (iii) divided by the number of activated cells (ii), which provides the

average number of divisions undergone per activated cell

(b) The division index (Di) is the total number of divisions (iii) divided by the number of starting cells (i), which provides the average

number of divisions per starting cell.

(c) The precursor frequency (Pf) is the number of activated cells (ii) divided by the number of starting cells (i), which is the prob-

ability that a cell will divide at least once.

(d) The expansion index (Ei) is the total number of cells in the culture (iv) divided by the number of cells at the start (i), which is the

fold expansion over the culture time.

(e) The replication index (Ri) is the total number of divided cells (v) divided by the number of activated cells (ii), which is the fold

expansion for activated cells.

(f) The fraction diluted (Dil) is the total number of divided cells (v) divided by the total number of cells (iv), which is the fraction of

cells in the final culture which divided at least once

In addition, we normalized experimental Pi, Di, Pf, Ei, Ri, and Dil values across all singles (7), pairs (21), and triplets (35) by dividing

each value by the maximum value measured within each technical replicate of each experiment. Resulting normalized indices were

used for computations of interaction scores and Isserlis calculations as delineated below.

Computing Interaction Scores for Pairs and Triplets

To characterize the interactions that emerge when two ligands are combined (i.e., two PRR pathways being activated), we compute a

pairwise interaction score IAB for two ligands A and B and given by

IAB = PiAB - PiAPiB

where Pi values are the proliferation indices computed as described above for both singles a and b and the pair ab. If Iab is close to

zero, then PiAB = PiAPiB, which is equivalent to Bliss independence, a common phenomenological model used in pharmacology to

describe non-interacting drug pairs (Bliss, 1939, 1956). To define regions of approximately additive behavior between two ligands, we

computed the mean of the standard errors of all 21 PiAB values obtained, which reflects the compounded measurement error for our

experimental assay. We used the mean of the standard errors m, shown as a dotted line in Figures 2B and S4D, as a threshold to

define ligand pairs with synergistic (IAB > +m), antagonistic (IAB < -m), and additive (-m < IAB < +m) behaviors.

The starting hypothesis of this analysis implies that the net effect of a ligand triplet combination arises from the cumulative effect of

the pairwise interactions (Wood et al., 2012). To assess this, we calculated a triplet interaction score IABC for three ligands A,B, andC

and given by

IABC = PiABC - PiAPiBPiC

where Pi values are the proliferation indices computed as described above for the singles A, B, and C and for the triplet ABC. IABC
provides a metric to measure the level of net pairwise and triplet interactions by subtracting single ligand effects from the triplet pro-

liferation index. First, similar to above for pair interaction scores, we used the IABC score to classify the interaction between three pairs

as synergistic, antagonistic or additive, using the same thresholding approach based on the mean of the standard errors for IABC
values. Second, we compared IABC values obtained through experimental measurements to those obtained by a statistical approach

that uses only information from singles and pairs and is defined below by an Isserlis formula.

Statistical Modeling of Triplet Effects from Single and Pair Effects

Following up on the work ofWood and colleagues (Wood et al., 2012), we hypothesized from the outset that an equation derived from

the Isserlis theorem (Isserlis, 1918), originally used to describe moment relationships, could serve as a statistical model to computer

triplet effects using data from singles and pairs only. To test this, we used the following Isserlis formula:
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Piisserlis = PiAPiBC + PiBPiAC + PiCPiAB - 2PiAPiBPiC

where Pi values are computed and normalized as explained above from experimental values. Piisserlis values were computed from

normalized Pi values for each of the 35 triplets and averaged across technical and biological replicate experiments. The correlation

between average Piisserlis values and experimentally observed triplet Pi values (PiABC) was measured by calculating an R-squared

statistic using the lm() function in R (https://www.r-project.org/).

Bootstrap Analysis

We used bootstrapping to estimate the statistical significance of the correlation observed between averaged experimental (PiABC)

and calculated (Piisserlis) proliferation indices for triplets. We randomized normalized, experimental Pi values for singles and pairs

across all experimental replicates generated in this study. Piisserlis values were then computed from these randomized Pi data

sets and compared to experimental PiABC values by calculating an R-squared statistic as above. We plotted the distribution of boot-

strapped R-squared values from 500,000-1,000,000 randomizations. Lastly, we computed a p-value by calculating the fraction of

bootstrapped R-squared values higher than the observed R-squared value.

RNA Sequencing Data Analysis
Sequencing read files were processed to generate raw (1) read and (2) UMI count matrices. For (1), we used the RNA-seq pipeline in

the bcbio-nextgen project version 1.1.5 (https://bcbio-nextgen.readthedocs.io/en/latest/). Reads were aligned to the human hg19

genome or the mouse mm10 genome augmented with transcripts from Ensembl release 78 with STAR version 2.6.1d (Dobin

et al., 2013). Quality control metrics were compiled with a combination of FastQC (http://www.bioinformatics.babraham.ac.uk/

projects/fastqc/), Qualimap (Garcı́a-Alcalde et al., 2012), MultiQC (https://github.com/ewels/MultiQC) (Ewels et al., 2016) and

custom metrics (3 million mapped reads were obtained on an average per sample). Expression quantification was performed using

both featureCounts version 1.4.4 (Liao et al., 2014) with multi-mapping reads excluded and Sailfish version 0.9.2 (Patro et al., 2014)

with a kmer size of 31 with 30 bootstrap samples. For (2), we used custom scripts to map Read 2 sequences onto RefSeq mRNAs

using BWA version 0.7.15 (Li and Durbin, 2009), demultiplex the output based on barcodes stored in Read 1 (first 6 bp), and

computed gene expression using UMIs stored in Read 1 (base 7 to 16) to produce raw UMI count matrices.

Differential expression (DE) analysis was done using custom scripts in R (https://www.r-project.org/). Raw count matrices were

normalized across samples using the calcNormFactor function in edgeR (Robinson et al., 2010) and subsequently filtered to keep

genes with at least 50 counts per million (cpm) in 2 samples. We identified DE genes using the following cutoffs: a 1.5-fold change

with a Benjamini and Hochberg FDR adjusted p-value < 0.01 by comparing cells stimulated with each ligand combination to un-

treated, control cells using limma (http://bioinf.wehi.edu.au/limma/) (Ritchie et al., 2015).

To ask if a gene x found to be differentially regulated upon stimulation with a given triplet ABC is also regulated in any of the com-

posite conditions of that triplet (i.e., singles A, B, C and pairs AB, AC, BC), we used the following criteria: (1) gene x is regulated in

condition ABC compared to control cells using the same thresholds as above (fold-change > 1.5 with FDR < 0.01); (2) gene x is not

regulated in the composite conditions of triplet ABC (i.e., A,B,C, AB, AC, orBC) compared to control using the same thresholds as in

(1); and (3) the level of gene x is significantly different between condition abc and all of its composite treatments (i.e.,A,B,C,AB,AC or

BC) using as a threshold a Benjamini and Hochberg FDR adjusted p-value < 0.1. The number of genes which followed these three

criteria were counted for each triplet, and the proportion of newly regulated genes for each of the 35 triplets (i.e., genes regulated by

triplet stimulation but not bymatching single and pairwise stimulations) was calculated as the ratio between the number of new and all

regulated genes.

To ask if a gene displayed a change in expression that is lower or higher upon triplet stimulation than that of the change observed in

all matching stimuli singles and pairs, we computed an expression divergencemetric for each gene regulated by a triplet by subtract-

ing the log-fold change values of composite singles or pairs from the log-fold change of the corresponding triplet. The smallest value

obtained between a given triplet and its matching composite singles and pairs was used as expression divergence.

ATAC-seq Data Analysis
Sequencing reads were aligned to the mouse mm10 genome using bowtie2 version 2.2.9 (http://bowtie-bio.sourceforge.net/

bowtie2/index.shtml) (Langmead and Salzberg, 2012) with the a maximum fragment length of 2000, and were sorted using samtools

version 1.4.1 (http://samtools.sourceforge.net/) (Li et al., 2009). Peaks were called using MACS2 version 1.4 (Zhang et al., 2008) with

a q-value threshold of 0.01 and a fixed background lambda using the following command:

parameters callpeak –gsize 1.87e9 –nomodel -t out/${name}/${name}_sorted.bam -n out/${name}/${name} –nolambda –slocal

10000 -q .01

Peaks found in each sample weremerged into a joint set of all peaks using themerge function in bedtools version 2.26 (Quinlan and

Hall, 2010). Reads for each peak were counted across experimental conditions using featureCounts() from the Rsubread package

(Liao et al., 2019).

To identify differentially accessible peaks across conditions and newly regulated peaks in triplets compared to matching compos-

ite treatments, we used the same procedure as the one described above for RNA-seq. Peaks were considered differentially acces-

sible in treatment if they were different from the control by a fold-change greater than 1.5 and an FDR < 0.01.
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Principal Component Analysis of Gene Expression and Chromatin Accessibility Data
Log2 fold change values between treated groups and the control group were obtained for each gene using limma, scaled to unit vari-

ance and centered by subtracting the mean before applying the prcomp() function in R. For human RNA-seq data analysis, PCA was

performed on all three donors together and results were displayed for each donor individually.

Secretome Data Analysis
For preprocessing of the data from peptide and TMT 10 experiments, peptide identification and quantification were performed using

MaxQuant (version 1.6.0.1) (Cox and Mann, 2008). For the quantification at the MS/MS level, ’Reporter ion MS2’ was enabled and

’10plexTMT’ isobaric labels were selected. Tandem mass spectra were searched against the mouse reference proteome (mouse

uniprot fasta) supplemented with common contaminants. For all searches, carbamidomethylated cysteine was set as fixed modifi-

cation and oxidation of methionine and N-terminal protein acetylation as variable modifications. Trypsin/P was specified as the pro-

teolytic enzyme with up to 2 missed cleavage sites allowed. Results were adjusted to a 1% false discovery rate (FDR). The reporter-

ion intensities were corrected for isotopic impurities before using the reporter-ion signals in each MS/MS spectrum for quantitative

calculations.

For differential expression analysis, the corrected reporter ion intensities obtained from the mass-spectrometric measurements

were divided by the internal standard mix reporter ion intensities and log2-transformed using custom scripts in R. The internal stan-

dard was hereby an equal mix of all analyzed samples. The log2 fold change for the treated vs. control samples were calculated, me-

dian-MAD normalized, and analyzed for significant differences by a one-samplemoderated T test. All identifications were considered

significant with a Benjamini-Hochberg adj.p < 0.1.

For batch correction between experiment 1 (P-S-G triplet and composite ligand singles and pairs) and 2 (Z-S-G and P-L-H triplets

and composite ligand singles and pairs), log2 fold change values calculated above were corrected using the ComBat() function from

the sva package in R (http://bioconductor.org/packages/release/bioc/html/sva.html) (Leek et al., 2012). Batch corrected log2 fold

change values were averaged across replicates, then scaled to unit variance and centered by subtracting the mean before applying

the prcomp() function in R for principal component analysis.

To benchmark the data obtained by our secretome analysis, we compared it to cytokine concentration values obtained by a bead-

based immunoassay performed on supernatants from BMDC cultures and focusing on the following cytokines: CXCL1, TNF-a,

CCL2, CCL5, CXCL10 and IL-6, which were detected by mass spectrometry and could be measured using a commercially available

kit (LEGENDplex mouse anti-virus response panel; BioLegend 740622). Average log2 fold changes were computed between each

treated group and the untreated control group. A linear model for the relationship between the log2 fold change values from secre-

tome and immunoassay measurements was calculated using the lm() function in R.

Generation of Heatmaps
Heatmaps for RNA-seq, ATAC-seq, and secretome data display the indicated numbers of transcripts, loci and proteins, respectively.

Color intensities are determined by log2 fold change values for each heatmap. The rows of each heatmap were ordered by hierar-

chical clustering of log2 fold change values using oneminus Pearson’s correlation as a distancemetric. All heatmaps were generated

using the Morpheus software (https://software.broadinstitute.org/morpheus/).

Analysis of Lymph Node Cell Restimulation Data
For principal component analysis, cytokine concentration values obtained by bead-based immunoassays were averaged within

treatment and control groups, then scaled to unit variance and centered by subtracting the mean before applying the prcomp() func-

tion in R.

For statistical modeling of triplet effects from single and pair effects, IL-17A concentration valueswere averagedwithin each exper-

iment, treatment group, andOVA concentration. Average values were normalized by dividing each value by twice themaximum value

within a given experiment. Normalized IL-17A concentration values were averaged across experiments for each treatment and OVA

concentration group. We hypothesized that the same Isserlis statistical approach used above to calculate the proliferation index of

T cells in vitro could be used to calculate IL-17A values, which serve as a proxy for the effect of the T cell response on tumor growth.

To do so, we subtracted normalized, averaged IL-17A concentration values, referred to as Il, from one and used the following formula:

Ilisserlis = IlAIlBC + IlBIlAC + IlCIlAB - 2IlAIlBIlC.

Next, to compare IL-17A values obtained experimentally for a given triplet (IlABC) to those obtained with the Isserlis formula (Ilisserlis),

we plotted the distribution of the distances between these two values (Ilisserlis – IlABC).

To estimate the significance of our Isserlis calculations, we used bootstrapping similarly to what is described above for the analysis

of our in vitro coculture data. Here we randomized experimental IL-17A values (after averaging, normalization, and subtracting from

one) for singles and pairs across experiments prior to calculating Ilisserlis as above. The distribution of the Ilisserlis – IlABC valueswas then

plotted using bootstrap values from 1000 randomizations.
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