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Abstract: As new biomarkers, circular RNAs (circRNAs) have been largely unexplored in prostate 

cancer (PCa). Using an integrative approach, we aimed to evaluate the potential of circRNAs and 

their linear transcripts (linRNAs) to act as (i) diagnostic biomarkers for differentiation between 

normal and tumor tissue and (ii) prognostic biomarkers for the prediction of biochemical recurrence 

(BCR) after radical prostatectomy. In a first step, eight circRNAs (circATXN10, circCRIM1, 

circCSNK1G3, circGUCY1A2, circLPP, circNEAT1, circRHOBTB3, and circSTIL) were identified as 

differentially expressed via a genome-wide circRNA-based microarray analysis of six PCa samples. 

Additional bioinformatics and literature data were applied for this selection process. In total, 115 

malignant PCa and 79 adjacent normal tissue samples were examined using robust RT-qPCR assays 

specifically established for the circRNAs and their linear counterparts. Their diagnostic and 

prognostic potential was evaluated using receiver operating characteristic curves, Cox regressions, 

decision curve analyses, and C-statistic calculations of prognostic indices. The combination of 

circATXN10 and linSTIL showed a high discriminative ability between malignant and adjacent 

normal tissue PCa. The combination of linGUCY1A2, linNEAT1, and linSTIL proved to be the best 

predictive RNA-signature for BCR. The combination of this RNA signature with five established 

reference models based on only clinicopathological factors resulted in an improved predictive 

accuracy for BCR in these models. This is an encouraging study for PCa to evaluate circRNAs and 

their linRNAs in an integrative approach, and the results showed their clinical potential in 

combination with standard clinicopathological variables. 
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1. Introduction 

Prostate cancer (PCa) is the second most common cancer type among men [1]. Following radical 

prostatectomy, which is used as a therapeutic curative option for patients suffering from PCa, 

biochemical recurrence (BCR), defined as a re-increased serum concentration of prostate-specific 

antigen (PSA) of >0.2 µg/L [2,3], is clinically considered to be the first sign of disease recurrence [4,5]. 

An evaluation of six recent studies with more than 1000 patients in each showed that approximately 

15–34% of surgically treated patients suffered from BCR within 5 to 10 years after surgery [6]. 

Following BCR without secondary therapy, distant metastasis manifests in approximately 30% of 

patients and 19–27% will die within 10 years [7,8]. These data clearly show that early and reliable 

prediction of patients with a high risk of BCR is necessary to optimize the frequency of follow-up and 

thus the decision to undergo adjuvant therapy. 

For BCR risk prediction, numerous scoring systems based on clinicopathological factors such as 

the Gleason score or the respective International Society of Urological Pathology (ISUP) grade, 

pathological tumor stage (pT stage), and preoperative PSA level are currently applied. Among these 

tools are the Cancer of the Prostate Risk Assessment Postsurgical Score (CAPRAS) [9] and those 

developed by D’Amico et al. [10], Stephenson et al. [7], and the National Comprehensive Cancer 

Network (NCCN) [11]. Although all clinicopathological factors are, to some extent, associated with 

patient outcome, the prognostic accuracy of these nomograms is generally unsatisfactory [12–16]. In 

this context, prognostic molecular biomarkers could significantly improve the predictive accuracy of 

tools based only on clinicopathological factors [17–21]. We recently elaborated a five-microRNA 

signature that outperforms the BCR scoring systems mentioned above [6]. In addition, the combined 

use of clinicopathological factors and molecular markers was found to significantly improve the 

predictive accuracy compared to the separately calculated predictive value [6]. Based on this 

experience using molecular markers in BCR prediction, we decided to extend this approach to 

circular RNAs (circRNA), which we successfully introduced as prognostic biomarkers in clear cell 

renal cell carcinoma [22]. 

Recently, circRNAs have the subject of increasing interest in medicine. These RNAs consist of a 

single strand of RNA in a closed loop [23,24], and are formed by alternative splicing of mostly exonic 

sequences. One host gene can form several different circRNAs [25,26]. The functions of circRNAs are 

still being investigated. Their ability to sponge microRNAs (miRNAs), a process in which circRNAs 

prevent the inhibitory properties of miRNA and therefore promote the expression of target mRNAs, 

is relatively well known [23,24,27]. Furthermore, circRNAs may regulate the expression of their 

parenteral genes by interacting with RNA polymerase II [28], but they can also interact with RNA-

binding proteins and are therefore involved in the regulation of gene expression [29]. Some circRNAs 

may even be able to encode proteins [30]. CircRNAs have expression patterns that are specific to 

different cells or tissues and have been shown to play roles in cell regulation, including physiological 

as well as pathological processes [24,31–35]. It has been shown that circRNAs can act as oncogenes 

and tumor suppressors in the initiation and progression of different cancers, e.g., hepatocellular 

carcinoma, gastric carcinoma, colorectal cancer, and renal cell carcinoma [22,36–39]. All of these 

aspects justify a particular interest in using circRNAs as biomarkers in diagnosis, prognosis, and 

prediction, as well as for therapeutic targets [33,40–43]. 

CircRNAs in PCa are also a subject of present research. Last year, Chen et al. [44] identified a 

broad signature of PCa-specific circRNAs via ultra-deep rRNA-depleted RNA sequencing of 

localized PCa tissue samples. Moreover, specific circRNA functions were shown. CircCSNK1G3, for 

example, seems to promote cell proliferation in PCa [44]. Furthermore, Zhang et al. [45] applied a 

bioinformatics approach using various PCa cells to identify numerous circRNAs, including 
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circGUCY1A2, as potential candidates for PCa progression. Other working groups using microarray 

platforms have reported lists of the top up- and downregulated circRNAs in PCa tissue compared 

with adjacent normal tissue [46,47]. Recent studies have particularly analyzed functional features and 

underlying molecular mechanisms of individual circRNAs [48–53]. Several publications particularly 

focused on androgen receptor pathway related circRNAs [54–57]. Correlations between the 

expression of circRNAs and relevant clinicopathological factors or survival Kaplan-Meier analyses 

have been reported [44,51,58–62]. However, it is astonishing that the potential of circRNAs as 

diagnostic and prognostic tissue biomarkers has so far only been evaluated in isolated cases 

[47,58,61]. As far as we know, only one study has ever conducted multivariate analyses of circRNAs 

in connection with clinicopathological factors [61]. Studies on the clinical validity of circRNAs in 

relation to BCR are still lacking. 

Thus, in this study, we aimed to (i) identify differentially expressed circRNAs in six paired 

samples of PCa tissue and adjacent normal tissue using microarray analysis, (ii) validate the 

differential expression of eight chosen circRNAs and their linear counterparts via reverse-

transcription quantitative real-time polymerase chain reaction (RT-qPCR), (iii) examine the 

differentiating potential between malignant and non-malignant prostate tissue in 194 samples of 115 

PCa patients including 79 paired samples, and (iv) evaluate the potential of the chosen circRNAs and 

their linear counterparts as biomarkers in combination with the clinicopathological factors of PCa 

patients after radical prostatectomy to predict BCR. 

2. Results 

2.1. Patient Characteristics and Study Design 

One hundred and fifteen untreated PCa patients who underwent radical prostatectomy between 

2007 and 2014 with follow-up data until November 2019 were included in this study. Follow-up data 

were based on medical records and telephone contacts with the patients, their physicians, and their 

family members. In total, 194 tissue samples with 79 pairs of adjacent normal and malignant samples, 

and 36 with malignant characteristics only were investigated (Table 1). The sample size was 

determined using a power-adapted calculation (α = 5%, power = 80%; Supplementary Information S1 

(Supplementary Materials)). A two-to-one selection of available samples, based on patients with BCR, 

was retrospectively performed with 76 patients without BCR and 39 with BCR. BCR was defined as 

a postoperative PSA increase above 0.2 µg/L after radical prostatectomy, as confirmed by consecutive 

increased values [2,3]. The workflow diagram presented in Figure 1 outlines the design of this study, 

which involved three phases based on the above postulated objectives for this investigation: (i) the 

discovery phase of identifying differentially expressed circRNAs using a microarray screening 

approach and the selection of circRNAs for further evaluation; (ii) analytical confirmation of the 

circular nature of selected circRNAs and elaboration of “fit-for-purpose” RT-qPCR assays for 

circRNAs and their linear transcripts; and (iii) initial clinical evaluations regarding their validity as 

discriminative tissue classifiers and the predictive value of these biomarkers when applied alone and 

in combination with conventional clinicopathological factors. 

Table 1. Clinicopathological characteristics of the study group. 

Characteristics All Patients 

Patients with 

Biochemical 

Recurrence 

Patients without 

Biochemical 

Recurrence 

p-Value a 

Patients, no. (%) 115 (100) 39 (34) 76 (66)  

Age, median years, (IQR) 67 (62–70) 66 (59–71) 67 (64–70) 0.339 

PSA, µg/L (IQR) 7.7 (5.4–12.2) 9.7 (6.1–19.5) 7.0 (5.4–9.5) 0.011 

Prostate volume, cm3 (IQR) 32 (25–45) 30 (23–39) 33 (26–45) 0.264 

DRE, no. (%)    0.067 

Non-suspicious 67 (58) 17 (44) 50 (66)  

Suspicious 32 (28) 14 (36) 18 (24)  

Unclassified 16 (14) 8 (20) 8 (10)  
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pT status, no. (%)    0.005 

pT1c 1 (1) 0 1 (1)  

pT2a 2 (2) 0 2 (3)  

pT2b 1 (1) 0 1 (1)  

pT2c 61 (53) 13 (33) 48 (63)  

pT3a 27 (23) 11 (28)  16 (21)  

pT3b 23 (20) 15 (39) 8 (11)  

ISUP Grade groups, no. (%)    0.0001 

1 26 (23) 2 (5) 24 (31)  

2 47 (41) 13 (33) 34 (45)  

3 30 (26) 14 (36) 16 (21)  

4 4 (3 4 (11) 0 (0)  

5 8 (7) 6 (15) 2 (3)  

pN status, no. (%)    0.017 

pN0/Nx 109 (95) 34 (87) 75 (99)  

pN1 6 (5) 5 (13) 1 (1)  

Surgical margin, no. (%)     

Negative 64 (56) 16 (41) 48 (63) 0.030 

Positive 51 (44) 23 (59) 28 (37)  

Follow-up after surgery    < 0.0001 

Median months (IQR) 41 (26–72) 19.9 (9.8–41) 52 (38–80)  

Abbreviations: CI, confidence interval; DRE, digital rectal examination; IQR, interquartile range; ISUP 

Grade groups, histopathological grade system based on Gleason score according to the International 

Society of Urologic Pathology; pN, lymph node status; PSA, total prostate specific antigen before 

surgery; pT, pathological tumor classification. a p-Values (Mann-Whitney U test; Chi-square or 

Fisher’s exact test) indicate the association of the clinicopathological variables with patients with and 

without biochemical recurrence. 
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Figure 1. Workflow of the study in three phases. Abbreviations: circRNA, circular RNA; PCa, prostate 

cancer; RT-qPCR, reverse-transcription quantitative real-time polymerase chain reaction. 

2.2. Discovery of circRNAs in Prostate Cancer Tissue Using Microarray Analysis 

2.2.1. Identification of Differentially Expressed circRNAs 

Six matched PCa tissue samples were examined using ArrayStar microarray experiment. A total 

of 9599 circRNAs out of 13,617 distinct probes on the array were detected (Supplementary Microarray 

Data File.xlsx (Supplementary Materials)). This number of circRNAs derived from 4838 host genes, 

since numerous host genes can form multiple circRNA isoforms [26]. Approximately 26% of all 

detected circRNAs were found to be from ~50% of the host genes that form only one circRNA, while 

the other 41% of circRNAs were found from the ~35% of the host genes that can form two or three 

circRNAs. Approximately 3.2% of the circRNAs were derived from only 0.6% of the host genes able 

to form 10 or more circRNAs (Figure 2A). Different genomic regions can be the origin of circRNAs. 

In this PCa microarray screening, approximately 90% of circRNAs were of exonic origin, but intronic, 

sense-overlapping, anti-sense, and intergenic circRNA types were also detected (Figure 2B). These 

data correspond with our own results in renal cell carcinoma [22] and data from studies on other 

tissues [25]. Regarding the differential expression between adjacent normal and malignant tissue, the 

array data identified 43 upregulated and 134 downregulated circRNAs with a higher than absolute 

1.5-fold change (p < 0.05) in malignant tissue samples (Figure 2C). Using a threshold of 2-fold change, 

only six upregulated and 18 downregulated circRNAs were identified. Based on a principal 

component analysis of the microarray expression data, two separate clusters with malignant and 

adjacent normal tissue characteristics were ascertained (Figure 2D). 
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Figure 2. Microarray analysis results of six matched prostate cancer (PCa) tissue samples. (A) The 

number of circular RNAs (circRNAs) expressed per host gene in the malignant tissue samples and 

their matched adjacent normal tissue samples from PCa specimens after prostatectomy. (B) Genomic 

origin of the detected circRNAs on the microarray. (C) Volcano plot with the up- and downregulated 

circRNAs in malignant vs. adjacent normal tissue samples. The dashed lines indicate the thresholds: 

absolute 1.5-fold changes and p-values of 0.05 in the t-test. The eight circRNAs that were selected for 

further evaluation in this study are marked. (D) Results of the principal component analysis with the 

left cluster of tumor samples (PCa1–PCa6, marked in blue) and the right cluster with the paired 

adjacent normal tissue samples (N1–N6, marked in brown). 

2.2.2. Selection of circRNAs for Further Evaluation 

In addition to the microarray-based expression results (absolute fold-change >1.5 with unadjusted 

p < 0.05 and sufficiently raw intensity on the microarray), we used interest-specific criteria to select 

circRNAs for further investigation. We selected six circRNAs (Table 2), for which no information on 

prostate carcinoma was available. Their host genes had been described in individual studies with 

regard to their roles in either PCa progression (e.g., CRIM1, NEAT1, and STIL [63–65]) or other 

cancers (e.g., LPP and RHOBTB3 [66,67]). Some of the selected circRNAs had been partly identified 

in other cancers (e.g., circCRIM1 and circRHOBTB3 [22,68]). Finally, an in silico analysis of miRNA 

interaction with these circRNAs was performed using the algorithm provided by the CircInteractome 

tool and the miRDB and TargetScan databases [69–71]. In all cases, the circRNAs were found to be 

crucial points for potentially relevant miRNA–gene interactions (Figure S1). This also fulfilled a 

selection criterion for further investigations to be planned. NEAT1 was identified as a special case 

because it already has miRNA-sponging functions as a long non-coding RNA (lncRNA) [65]. Thus, 

the relationship between the circRNA and the lncRNA transcript was of particular interest. In this 

circRNA panel, two additional circRNAs from the genes CSNK1G3 and GUCY1A2 were included as 

these circRNAs were recently identified in PCa tissue samples and PCa cell lines as mentioned in the 

introduction [44,45]. Collectively, the microarray analysis of the six paired samples in the discovery 

phase (Figure 1) must be considered an exploratory study for ranking deregulated circRNAs using 

the unadjusted p-values supported by the mentioned additional selection criteria. Under these 
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conditions, an exploratory study should be preferably analyzed without p-value adjustment, but 

needs a technical replication by a different assay technique and biological validation using other 

clinical samples [72–74]. This was done in the two subsequent workflow phases B and C (Figure 1). 

Data on the selected circRNAs are given in Table 2. Currently, there is no standardized 

nomenclature for circRNAs [22], and the designations of the database circBase are mainly used as a 

reference [75]. In order to facilitate the readability of the manuscript, official gene symbols with the 

prefixes “circ” and “lin” are used herein to characterize our selected circRNAs and the corresponding 

linear transcripts from the same host gene (Table 2). 

Table 2. List of circular RNAs (circRNAs) seleceted for further evaluation in this study based on their 

differential expression between malignant and adjacent normal tissue samples data in the microarray 

discovery study phase and literature search. 

circRNA in 

Manuscript 

circRNA ID in 

circBase a,b 

Absolute Fold 

Change on 

Microarray 

(p-Value) 

Best Transcript 
Official Gene Symbol 

(Official Gene Name) 

Upregulated circRNAs 

circLPP circ_0003759 1.94 (0.025) NM_005578.5 

LPP 

(LIM domain containing preferred translocation 

partner in lipoma) 

circNEAT1 circ_0000324 2.73 (0.0235) NR_131012.1 
NEAT1 

(Nuclear paraspeckle assembly transcript 1) 

circSTIL circ_0000069 1.75 (0.007) NM_001282936.1 
STIL 

(STIL centriolar assembly protein) 

Downregulated circRNAs 

circATXN10 circ_0001246 2.48 (0.001)) NM_013236.4 
ATXN10 

(Ataxin 10) 

circCRIM1 circ_0007386 2.17 (0.006)) NM_016441.3 
CRIM1 

(Cysteine rich transmembrane BMP regulator 1) 

circRHOBTB3 circ_0007444 2.14 (0.0003) NM_014899.4 
RHOBTB3 

(Rho related BTB domain containing 3) 

circRNAs from Literature c 

circCSNK1G3 circ_0001522 −1.31 (0.003) NM_001044723.2 
CSNK1G3 

(Casein kinase 1 gamma 3) 

circGUCY1A2 circ_0008602 −1.02 (0.305) NM_000855.3 
GUCY1A2 

(Guanylate cyclase 1 soluble subunit alpha 2) 

a The obligatory prefix hsa_ was omitted to facilitate the readability. b In the separate Supplementary 

Microarray Data File.xlsx as part of the Supplementary Materials, detailed information is given for all 

detected circRNAs including source, chromosome localization, strand, circRNA type, sequences, and 

the circRNA IDs specific for ArrayStar Microarrays and the database circBase [75]. c Chen et al. [44] 

for circCSNK1G3 and Zhang et al. [45] for circGUCY1A2. 

2.3. Analytical Confirmation Phase of the Selected circRNAs 

2.3.1. Experimental Proof of the Circular Nature of Transcripts 

RT-qPCR assays using SYBRGreen I were established for the eight selected circRNAs and their 

linear counterparts, taking into account the MIQE guidelines “Minimum Information for Publication 

of Quantitative Real-Time PCR Experiments” [76] (Supplementary Information S3 (Supplementary 

Materials) with the Tables S1–S7 in addition to Section 4 of this paper). Experimental confirmation of 

the circular nature of the identified circRNAs via microarray and sequencing technologies was 

achieved using different tests to confirm the characteristics of the circRNA-specific backsplice 

junction [24,77,78]. Figure 3 shows that circRNAs are resitant to RNase R digestion (Figure 3A), 

distinctly decreased complementary DNA (cDNA) synthesis occurred when oligo(dT)18 primers were 

used compared with when random hexamer primers (Figure 3B) were used, and the backsplice 

junction was confirmed by Sanger sequencing (Figure 3C). Melting curve analysis and 
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electrophoresis of the amplicons were applied in order to validate the analytical specificity of the RT-

qPCR products in all assays (Figures S2, S3, and Table S7). 

 

Figure 3. Experimental proof of the circular nature of the circRNAs selected in this study. (A) 

Resistance of circRNAs to RNase R digestion compared with linear RNAs. Data for triplicates (mean 

± standard deviation) normalized to controls without RNase treatment are presented. (B) Decreased 

cDNA synthesis of circRNAs with oligo(dT)18 vs. random hexamer primers. Data are given as the 

relative expression normalized to hexamer-primers-based cDNA synthesis. The relative expression 

was markedly decreased in all circRNAs (at least n = 3 of tissue pools) when using oligo(dT)18 primers 

in comparison to random hexamer primers, indicating that the circRNAs lacked a poly(A) tail. (C) 

Base sequence of circRNA backsplice junction pictured by Sanger sequencing. CircLPP, circNEAT1, 

and circSTIL were only sequenced in one direction as one of the primers was junction-spanning (Table 
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S3). The sequencing result of circRHOBTB3 corresponded to that in kidney carcinoma [22]. 

Methodical details for all experiments listed here are described in Section 4 and Supplementary 

Information S4 (Supplementary Materials). 

2.3.2. Analytical Performance of RT-qPCR Assays 

According to the MIQE guidelines [76] and also to the “Standards for Reporting of Diagnostic 

Accuracy Studies” (STARD) [79], the repeatability (intra-assay variation) and reproducibility (inter-

assay variation) of the measurements should be used decisive criteria for the performance and 

robustness of RT-qPCR tests. Supported by the analytical specificity of the established assays (Figures 

S2 and S3) and the characteristics of the PCR standard curves (Table S7), the data shown in Table 3 

proved that the assays were suitable for “fit-for-purpose” RT-qPCR measurements in clinical studies 

[80]. An exception was circNEAT1, which had rather poor repeatability and reproducibility due to its 

very low expression. 

Table 3. Repeatability and reproducibility of RT-qPCR measurements. 

RNA 

Repeatability a Reproducibility b 

Cq Value 

Mean (%RSD) 

Relative Quantities 

Mean (%RSD) 

Cq Value 

Mean ± SD (%RSD) 

Relative Quantities 

Mean ± SD (%RSD) 

circATXN10 24.49 (0.595) 1.345 (10.4) 24.31 ± 0.144 (0.591) 1.004 ± 0.100 (9.98) 

circCRIM1 24.61 (0.455) 1.299 (7.59) 24.39 ± 0.115 (0.472) 1.003 ± 0.078 (7.79) 

circCSNK1G3 21.47 (0.289) 1.164 (4.28) 21.34 ± 0.131 (0.613) 1.003 ± 0.093 (9.22) 

circGUCY1A2 24.68 (0.516) 1.461 (8.81) 24.68 ± 0.134 (0.541) 1.003 ± 0.092 (9.18) 

circLPP 25.71 (0.314) 1.177 (5.71) 25.76 ± 0.104 (0.406) 1.002 ± 0.070 (7.00) 

circNEAT1 35.56 (0.680) 1.285 (16.4) 36.80 ± 0.309 (0.838) 1.017 ± 0.214 (21.1) 

circRHOBTB3 23.91 (0.241) 1.055 (3.95) 24.02 ± 0.178 (0.739) 1.006 ± 0.121 (12.1) 

circSTIL 28.51 (0.542) 1.261 (10.9) 28.47 ± 0.105 (0.369) 1.002 ± 0.0.72 (7.18) 

linATXN10 20.23 (0.341) 1.250 (5.07) 20.21 ± 0.106 (0.525) 1.002 ± 0.072 (7.14) 

linCRIM1 21.67 (0.257) 1.305 (3.85) 21.49 ± 0.145(0.673) 1.004 ± 0.102 (10.1) 

linCSNK1G3 21.73 (0.275) 1.052 (4.13) 22.23 ± 0.152 (0.683) 1.003 ± 0.091 (9.08) 

linGUCY1A2 23.55 (0.480) 1.458 (8.22) 22.51 ± 0.134 (0.596) 1.004 ± 0.096 (9.57) 

linLPP 19.27 (0.472) 1.193 (6.64) 19.06 ± 0.121 (0.633) 1.003 ± 0.085 (8.46) 

linNEAT1 18.79 (0.231) 1.641 (2.96) 19.80 ± 0.079 (0.401) 1.001 ± 0.054 (5.38) 

linRHOBTB3 21.23 (0.259) 1.147 (3.73) 21.34 ± 0.170 (0.796) 1.006 ± 0.120 (11.9) 

linSTIL 25.88 (0.411) 1.381 (5.22) 26.22 ± 0.131 (0.500) 1.003 ± 0.089 (8.94) 

ALAS1 23.04 (0.305) 1.113 (4.86) 23.32 ± 0.064 (0.275) 1.001 ± 0.043 (4.33) 

HPRT1 25.32 (0.411) 1.192 (7.09) 25.97 ± 0.112 (0.432) 1.002 ± 0.077 (7.75) 

Abbreviations: Cq, quantification cycle; %RSD, percent relative standard deviation; SD, standard 

deviation; ALAS1, 5′-aminolevulinate synthase 1; HPRT1, hypoxanthine phosphoribosyltransferase 1. 

ALAS1 and HPRT1 were used as reference genes [81]. a n = 20; %RSD was calculated from duplicate 

measurements using the root mean square method based on Cq values and relative quantities, 

respectively. b n = 5 inter-assay measurements; %RSD (Cq) corresponds to the percent relative 

standard deviation using the Cq values. %RSD (Relative quantities) corresponds to the percent 

relative standard deviation using the relative quantities within the inter-assay measurements of the 

respective RNA variable. 

2.4. Clinical Assessment 

2.4.1. Differential Expression of circRNAs in Relation to Clinicopathological Variables 

In the first step, we compared the circRNA expression data obtained from the six paired tumor 

and adjacent normal tissue samples using microarray analysis and the established RT-qPCR assays 

(Table 4). The expression results were in good agreement between both measurement methods for 

the circRNAs, with the exceptions of circLPP and circSTIL. CircLPP and circSTIL were found to be 

upregulated in the microarray analysis but downregulated in RT-qPCR measurements. Despite this 
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clear discrepancy, we decided to include these two circRNAs together with their linear transcripts in 

further analyses. 

Table 4. Comparison of the circRNA expression data of the six paired tumor and adjacent normal 

tissue samples used in the microarray and RT-qPCR analyses. 

circRNA 

Microarray Expression Data a RT-qPCR Expression Data b 

Ratio of Tumor to Normal 

Tissue (p-Value) 

Ratio of Tumor to Normal 

Tissue (p-Value) 

circATXN10 −2.48 (0.001) −2.09 (0.020) 

circCRIM1 −2.17 (0.006) −2.45 (0.027) 

circCSNK1G3 −1.31 (0.003) −1.84 (0.027) 

circGUCY1A2 −1.02 (0.305) −1.07 (0.781) 

circLPP +1.94 (0.025) −2.01 (0.004) 

circNEAT1 +2.73 (0.024) +4.33 (0.061) 

circRHOBTB3 −2.14 (0.0003) −2.05 (0.041) 

circSTIL +1.75 (0.007) −1.35 (0.086) 
a Expression data correspond to the data shown in Table 2 (t-test of the six paired tissue samples used 

in microarray analyses). b Expression data of the paired samples used in the microarray analyses 

measured by the established circRNA assays in this study and normalized to the reference genes 

ALAS1 and HPRT1 (t-test of paired data). 

The expression levels of the circRNAs and their linear transcripts were measured and evaluated 

in all samples of the studied cohort (n = 194). To examine the differential expression between adjacent 

normal and malignant tissue samples, only the expression results of the paired samples of adjacent 

normal and malignant tissue samples were compared, in order to avoid bias due to biological 

variations between patients (Figure 4). Significant differential expression was observed between 

tumor and normal tissue samples, as indicated by T/N indices (Figure 4), for both circRNAs and their 

corresponding linear transcripts (Figure 4 and detailed in Table S8). The expression levels of all 

circRNAs except circNEAT1 and circGUCY1A2 were downregulated in tumor samples; circNEAT1 

was upregulated and the expression level of circGUCY1A2 did not differ between the two tissue 

samples. In contrast, only the linear transcripts linCRIM1 and linLPP were downregulated in the 

tumor samples, while linSTIL and linNEAT1 were upregulated, and linATXN10, linCSNK1G3, 

linGUCY1A2, and linRHOBTB3 showed no significant differences in expression between the normal 

and tumor tissue samples. 
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Figure 4. Expression levels of circular RNAs (circRNAs) and the linear transcripts of their host genes 

in tissue samples from prostate cancer (PCa) patients. The expression data of all eight circRNAs (A, 

C, E, G, I, K, M, O) and their corresponding linear transcripts (B, D, F, H, J, L, N, P) are shown in the 

matched pairs of adjacent normal tissue samples and malignant samples from PCa specimens 

collected by radical prostatectomy (n = 79, only 45 for circNEAT1 and linNEAT1). ALAS1 

(5′-aminolevulinate synthase 1) and HPRT1 (hypoxanthine phosphoribosyltransferase 1) mRNAs 

were used as stable expression normalizers of prostatic cancer [81]. Complete violin plots with the 
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entire expression ranges, the lower and upper quartiles (dashed lines), and the medians (bold lines) 

are presented. Statistically significant expression differences of the malignant tissue samples 

compared with the adjacent normal tissue samples are given as the T/N (tumor/normal) index. To 

facilitate a direct comparison of the expression results of each circRNA and its corresponding linear 

transcript in the tumor to normal tissue, we used the term T/N index. A positive number indicates a 

higher expression in tumor tissue (numerator in the index) in relation to normal tissue (denominator 

in the index) and a negative number shows a higher expression in the normal tissue (denominator in 

the index) in relation to tumor tissue (numerator in the index). 

Moreover, the following characteristics of the expression data were striking: (i) the upregulation 

of circLPP and circSTIL found in the microarray analysis could not be confirmed, as both circRNAs 

were shown to be downregulated in the RT-qPCR measurements, similarly to what was shown by 

the comparison of the paired samples used in the microarray analysis; (ii) all linear transcripts except 

circCSNK1G3 had significantly higher expression than their circRNAs. This can be seen on the x-axes 

of the corresponding panels and by the different ratios between the two tissue samples and the RNA 

types, as summarized in Tables S9 and S10. This was particularly remarkable for circNEAT1, which 

showed a low expression rate, with only 45 of the 79 examined pairs having detectable expression. 

Although the high number of biological replicates confirmed the increased expression of this 

circRNA in tumor tissue, circNEAT1 was not included in the further multivariable prognostic BCR 

analysis. This was also compatible with the less reliable analytical performance data of circNEAT1 

measurements in its low expression range, as mentioned above (Table 3), and the number of samples 

above the upper limit of the standard curve of this circRNA (Table S7). 

The expression data of all examined circRNAs and their linear transcripts in the tumor samples 

were not associated with age, preoperative PSA, prostate volume, digital rectal examination, tumor 

stage, and surgical margin status (Table S11). However, significant associations between the ISUP 

grade and all circRNAs except circNEAT1 and circRHOBTB3 were found, while only linGUCY1A2 

and linLPP showed such associations for the linRNAs. 

Close correlations between the expression levels of all circRNAs in both the adjacent normal and 

malignant tissue samples were observed, except for circNEAT1 and partly for circRHOBTB3 (Tables 

S12 and S13). However, these close correlations were mainly lost if data in matched normal tissue 

and malignant tissue samples were correlated (Table S14). Furthermore, there were several different 

correlation coefficients between circRNAs and the linear transcripts in malignant tissue samples in 

comparison to the matched adjacent normal tissue samples (Table S15). 

2.4.2. CircRNAs and linRNAs as Biomarkers for Discrimination between Normal and Cancerous 

Tissue 

The differences between the circRNAs and their linear transcripts described here support the 

idea, postulated in the introduction, that it makes sense to investigate circRNAs as cancer biomarkers 

in an integrative approach together with their linear transcripts, due to their potential differential 

influences in normal and cancerous tissue. From this point of view, the expression data of the 

circRNAs and linear transcripts were used to differentiate between adjacent normal and malignant 

tissue (Table 5). Data from the performed receiver operating characteristic (ROC) curve analysis 

revealed that circATXN10 and linSTIL were found to be the best individual markers for this purpose, 

with areas under the curves (AUCs) of 0.801 and 0.841, respectively. Using a backward elimination 

approach of binary logistic regression with all RNAs, a combined tool using these two markers 

resulted (Table 5). It is of particular interest that both RNAs were differentially expressed. 

CircATXN10 was downregulated in tumor samples, whereas linSTIL was upregulated. When 

applying the markers combined, the AUC value increased to 0.892. Both the ROC curve and the 

decision curve of this combination were found to run above the curves of the two individual markers 

(Figure 5). Thus, at least a “stabilizing” discriminative ability was achieved with the marker 

combination of circATXN10 + linSTIL. 
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Table 5. Receiver operating characteristic (ROC) curve analyses of circRNAs and their linear 

transcripts for discrimination between adjacent normal (n = 79) and malignant (n = 115) tissue samples 

from prostate cancer specimens. For circNEAT1, only 118 samples could be analyzed. 

RNAs 
AUC 

(95% CI) 

p-Value 

Different to 

AUC = 0.5 

Differentiating Ability at the 

Youden Index a 
Overall Correct 

Classification 

(%) 
Sensitivity 

(95% CI) 

Specificity (95% 

CI) 

Single variable       

circATXN10 
0.801 

(0.719–0.851) 
< 0.0001 

77 

(68–84) 

72 

(61–82) 
74.2 

linATXN10 

 (p < 0.0001) b 

0.525 

(0.442–0.606) 
0.534 

45 

(36–55) 

65 

(53–75) 
59.3 

circCRIM1 
0.743 

(0.660–0.808) 
< 0.0001 

74 

(66–82) 

66 

(54–76) 
67.0 

linCRIM1 

 (p = 0.143) b 

0.778 

(0.697–0.836) 
< 0.0001 

76 

(67–83) 

76 

(65–85) 
71.7 

circCSNK1G3 
0.780 

(0.715–0.836) 
< 0.0001 

69 

(59–77) 

77 

(66–86) 
72.7 

linCSNK1G3 

 (p < 0.0001) b 

0.518 

(0.436–0.602) 
0.661 

49 

(40–59) 

59 

(48–70) 
59.3 

circGUCY1A2 
0.545 

(0.459–0.624) 
0.285 

65 

(56–74) 

48 

(37–60) 
58.8 

linGUCY1A2 

 (p = 0.208) b 

0.583 

(0.493–0.665) 
0.051 

70 

(60–78) 

49 

(40–61) 
58.3 

circLPP 

 

0.773 

(0.708–0.830) 
< 0.0001 

71 

(62–79) 

75 

(64–84) 
72.2 

linLPP 

 (p = 0.321) b 

0.762 

(0.696–0.820) 
< 0.0001 

70 

(61–79) 

76 

(65–85) 
71.6 

circNEAT1 
0.634 

(0.552–0.733) 
< 0.013 

72 

(60–82) 

51 

(36–67) 
62.5 

linNEAT1 

 (p = 0.371) b 

0.690 

(0.608–0.760) 
< 0.0001 

63 

(53–72) 

72 

(61–82) 
63.4 

circRHOBTB3 
0.684 

(0.613–0.749) 
< 0.0001 

73 

(64–81) 

61 

(49–72) 
66.0 

linRHOBTB3 

 (p = 0.013) b 

0.520 

(0.438–0.605) 
0.629 

45 

(36–55) 

67 

(56–77) 
59.3 

circSTIL 
0.645 

(0.556–0.719) 
< 0.003 

53 

(44–62) 

72 

(61–82) 
62.9 

linSTIL 

(p < 0.0001) b 

0.841 

(0.804–0.912) 
< 0.0001 

78 

(70–85) 

86 

(77–93) 
80.4 

Optimized combination     

circATXN10 +  

linSTIL c 

0.892 

(0.834–0.925) 
< 0.0001 

79 

(71–86) 

87 

(78–94) 
81.4 

Abbreviations: AUC, area under the receiver operating characteristic curve; CI, confidence interval. a 

The Youden index as a measure of overall diagnostic effectiveness is calculated by (sensitivity + 

specificity) - 1. b Significances between the AUC values of individual circRNAs and their linear 

counterparts. c Calculated by binary logistic regression using all RNAs in a backward elimination 

approach. Results are based on bias-corrected and accelerated bootstrap calculation with 2000 

iterations. 
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Figure 5. Receiver operating characteristic (ROC) curve and decision curve analyses of circATXN10 

and linSTIL as individual markers and in combination for discrimination between adjacent normal 

and malignant tissue samples. The data reflect the results shown in Table 5 for circATXN10, linSTIL, 

and their combination. 

2.4.3. CircRNAs and Linear Transcripts as Potential Markers for Predicting BCR 

BCR, as the selected clinical outcome endpoint, was defined as the time from the radical 

prostatectomy until the time of the corresponding event or the last follow-up. Detailed data for the 

patients with and without BCR at the time of follow-up after surgery are shown in Table 1. 

According to the Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK) 

[82], we used continuous data of the normalized relative expression quantities of the RNAs in the 

subsequently described Cox regression analyses. This procedure of using continuous data, if possible, 

is strongly recommended to avoid loss of information in detecting associations between cancer 

markers and time-dependent events [82]. The results of the univariable Cox regression analyses in 

this first step, which was done to evaluate the potential predictive validity of the total RNA panel, 



Int. J. Mol. Sci. 2020, 21, 7812 15 of 32 

 

are shown in Table 6. Those five circRNAs and three linear transcripts with p-values < 0.25 were 

selected for subsequent multivariable Cox regression analyses to avoid type II errors. So-called “full 

models”, including the respective circular and linear RNAs, and “reduced models” after a backward 

elimination (entry: p < 0.05, removal: p > 0.100) were separately constructed for the circRNAs and 

linRNAs (Table 6). 

Table 6. Construction of separate tools for prediction of biochemical recurrence using circRNAs and 

their linear counterparts. 

 Univariable Cox Regression a Multivariable Cox Regression 

RNA   Full Model b 
Reduced Model after 

Backward Elimination c 

 HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value 

Circular RNAs      

circATXN10 0.39 (0.10–1.88) 0.239 0.27 (0.08–0.89) 0.032 0.31 (0.13–0.76) 0.011 

circCRIM1 0.69 (0.22–2.16) 0.521 - - - - 

circCSNK1G3 2.32 (0.51–10.6) 0.240 1.96 (0.50–7.68) 0.336 - - 

circGUCY1A2 1.31 (0.98–1.75) 0.065 1.32 (0.99–1.75) 0.051 1.33 (1.02–1.74) 0.037 

circLPP 1.86 (0.84–4.12) 0.125 1.76 (0.78–3.96) 0.169 1.89 (0.91–3.95) 0.092 

circRHOBTB3 0.86 (0.38–1.93) 0.705 - - - - 

circSTIL 0.53 (0.18–1.53) 0.238 0.57 (0.21–1.62) 0.293 - - 

Linear mRNAs     - 

linATXN10 1.23 (0.15–10.2) 0.846 - - -- - 

linCRIM1 0.90 (0.22–3.76) 0.887 - - - - 

linCSNK1G3 0.47 (0.09–2.60) 0.399 - - - - 

linGUCY1A2 1.52 (0.99–2.32) 0.050 1.47 (1.09–2.00) 0.012 1.47 (1.09–2.00) 0.012 

linLPP 1.06 (0.23–4.76) 0.941     

linNEAT1 1.41 (1.15–1.72) 0.001 1.39 (1.16–1.66) 0.0003 1.39 (1.16–1.66) 0.0003 

linRHOBTB3 0.78 (0.20–3.11) 0.727     

linSTIL 0.59 (0.32–1.08) 0.086 0.54 (0.30–0.96) 0.037 0.54 (0.30–0.96) 0.037 

Abbreviations: HR, hazard ratio; CI, confidence interval. a As explained in chapter 2.4.1, circNEAT1 

was excluded from Cox regression analyses. b The full model included all variables of the univariable 

Cox regression with hazard ratios of p-values < 0.250. c Reduced model after backward elimination 

with entry p < 0.05 and removal p > 0.100. All data of the univariable and final multivariable Cox 

regression models are calculated by the bias-corrected and accelerated bootstrap method with 2000 

resamples. 

For the circRNAs, only circATXN10, circGUCY1A2, and circLPP remained in the reduced model, 

while for the linRNA-based model (linGUCY1A2, linNEAT1, and linSTIL), no further variables were 

eliminated by the backward approach. To estimate the capacity of these models to predict BCR, the 

C-statistic values were compared. The C-statistic results, given as the AUC ± SE of the prognostic 

indices calculated in the Cox regression analyses, did not differ between the full and reduced models 

for the circRNA-based BCR prediction (0.676 ± 0.055 vs. 0.649 ± 0.056, p = 0.219; details given in Table 

S16). The linRNA-based C-statistic value was found to be 0.722 ± 0.053, but it was also not statistically 

significant compared with the circRNA-based model (p = 0.141; details given in Table S16). However, 

a Cox regression analysis with eight RNA variables from the circRNA-based and linRNA-based “full 

models” or the six RNAs of the “reduced models” (Table 6) and a subsequent backward elimination 

showed that all circRNAs were excluded from the model (Table 7). Only three linRNAs—

linGUCY1A2, linNEAT1, and linSTIL—remained as independent variables in the model. This clearly 

shows that, compared to these linear RNAs, the circRNAs did not contribute to the BCR prediction. 

Thus, the model with linGUCY1A2, linNEAT1, and linSTIL, termed the “RNA signature” in the 

following text, was used as an additional tool for BCR prediction, together with clinicopathological 

factors. 
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Table 7. Construction of a predictive RNA signature for biochemical recurrence based on Cox 

regression analysis, using a combination of the separate prediction tools for circRNAs and their linear 

counterparts. 

 Multivariable Cox Regression of the Combined Separate RNA Classifiers 

RNA Prediction 

Tool 

Full Model with all Separate 

Classifiers a 

Reduced Model after Backward 

Elimination b 

 HR (95% CI) p-Value HR (95% CI) p-Value 

circRNA prediction tool   

circATXN10 0.45 (0.18–1.12) 0.086 not included - 

circGUCY1A2 0.95 (0.55–1.64) 0.850 not included - 

circLPP 1.37 (0.66–2.82) 0.399 not included - 

linear RNA prediction tool  

linGUCY1A2 1.77 (0.80–3.89) 0.153 1.47 (1.09–2.00) 0.012 

linNEAT1 1.33 (1.11–1.60) 0.002 1.39 (1.16–1.66) 0.0003 

linSTIL 0.52 (0.29–0.94) 0.030 0.54 (0.30–0.96) 0.037 

Abbreviations: HR, hazard ratio; CI, confidence interval. a This model included all six RNA variables 

indicated in Table 6 as the “Reduced model after backward elimination” of the separate circRNA and 

linear RNA based prediction tools. b Reduced model after backward elimination with entry p < 0.05 

and removal p > 0.100. All data of the univariable and final multivariable Cox regression models are 

calculated by the bias-corrected and accelerated bootstrap method with 2000 resamples. 

To assess the validity of our linear transcript data regarding the BCR prediction, we used The 

Cancer Genome Atlas Prostate Cancer (TCGA-PRAD) dataset, a publicly available dataset (Table 

S17). This dataset contains information from 427 patients and includes 89 cases of BCR, defined as a 

re-increase of PSA > 0.2 µg/L after prostatectomy, as in our study cohort. Univariable Cox regression 

analyses of the linear transcripts showed that increased expression of linSTIL was closely associated 

with BCR, as in our study, whereas statistically significant relationships of the other transcripts with 

BCR were not observed (Table S17). 

2.4.4. BCR Prediction Models Based on Clinicopathological Variables in Combination with the RNA 

Signature 

As briefly outlined in the introduction, different tools for predicting BCR based on the 

clinicopathological variables have been introduced in clinical practice. It was therefore of interest to 

(i) compare the predictive potential of the RNA signature elaborated above with the results of such 

clinical models and (ii) evaluate whether a combination of both approaches could improve the 

prognostic accuracy of single tools. 

For this purpose, based on univariable and multivariable Cox regression analyses of the 

clinicopathological variables in our study cohort, we constructed full and reduced models to predict 

the occurrence of BCR (Table 8). 

Table 8. Construction of a predictive classifier for biochemical recurrence using Cox regression 

analyses with clinicopathological variables in 115 patients. 

Variable a 

Univariable Cox Regression Multivariable Cox Regression 

  Full Model b 
Reduced Model after 

Backward Elimination c 

 HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value 

Age 0.97 (0.93–1.02) 0.280     

PSA (> 10 <) 2.24 (1.18–4.18) 0.0130 1.59 (0.83–3.07) 0.162   

DRE 1.24 (0.83–1.95) 0.286     

Margin 2.37(1.24–4.52) 0.009 1.91 (0.98–3.72) 0.056 1.99 (1.03–3.84) 0.041 

pN status 2.60 (0.92–7.35) 0.071 0.58 (0.19–1.81) 0.352   

pT stage 2.16 (1.51–3.09) <0.0001 1.55 (1.03–2.33) 0.037 1.58 (1.05–2.40) 0.030 

ISUP Group 1.66 (1.31–2.11 <0.0001 1.55 (1.14–2.10) 0.005 1.43 (1.07–1.91) 0.016 
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a Abbreviations and stratifications of the variables as indicated in Table 1; CI, confidence interval; HR, 

hazard ratio. b The full model included all variables of the univariable Cox regression with hazard 

ratios of p < 0.250. c Reduced model after backward elimination with entry p < 0.05 and removal p > 

0.100. All data of the univariable and final multivariable Cox regression models are calculated by the 

bias-corrected and accelerated bootstrap method with 2000 resamples. 

In addition, the established predictive BCR reference models CAPRAS [9] and NCCN [11] as 

well as those according to D’Amico et al. [10] and Stephenson et al. [7] were used. In all cases, the C-

statistic values of the obtained prognostic indices were calculated using purely clinicopathological-

based tools combined with the RNA signature (Table 9). As mentioned above, the C-statistic value of 

the RNA signature with linGUCY1A2, linNEAT1, and linSTIL was 0.722 ± 0.053 (95% CI: 0.631–0.801), 

which was only significantly higher than D’Amico et al.’s reference model value of 0.513 (95% CI: 

0.418–0.607; p = 0.003). There were no statistical differences compared with the other 

clinicopathological tools listed in Table 9 (p-values between 0.128 and 0.640). However, the 

combination of the RNA signature with individual clinicopathological-based prediction tools 

increased the C-statistics values of all clinicopathological-based tools (Table 9). This was especially 

statistically significant for the tools presented by D’Amico et al. [10], CAPRAS [9], and NCCN [11]. 

In addition, decision curve analyses of our elaborated full model and the other four 

clinicopathological-based reference models were performed in combination with the RNA signature 

(Figure S4). The improved prediction of BCR by this inclusion of the RNA signature was confirmed, 

as the corresponding curves generally ran above the individual curves of the clinicopathological-

based tools (Figure S4). 

Table 9. Improved prediction of biochemical recurrence after radical prostatectomy using 

clinicopathological-based tools in combination with the RNA signature. 

Prediction Tool 
Clinicopathological-Based 

Tool 

Clinicopathological-Based 

Tool Combined with RNA 

Signature 

p-Value 

 AUC (95% CI) AUC (95% CI)  

Present study 

Full model 0.810 (0.726–0.877) 0.841 (0.761–0.902) 0.073 

Reduced model 0.804 (0.720–0.872) 0.827 (0.746–0.891) 0.104 

Reference models 

D’Amico et al. [10] 0.513 (0.418–0.607) 0.718 (0.627–0.798) 0.004 

CAPRAS [9] 0.750 (0.660–0.826) 0.799 (0.714–0.868) 0.034 

NCCN [11] 0.733 (0.643–0.811) 0.800 (0.715–0.869) 0.035 

Stephenson et al. [7] 0.785 (0.699–0.856) 0.821 (0.738–0.886) 0.107 

Abbreviations: AUC, area under the receiver operating characteristic curve as C-statistics calculated 

from the prognostic indices of the Cox regression analyses; CI, confidence interval; CAPRAS, Cancer 

of the Prostate Risk Assessment Postsurgical Score; NCCN, National Comprehensive Cancer 

Network; Full model, according to the Cox regression model described in Table 8 with all 

clinicopathological factors except of age and digital rectal examination; Reduced model, according to 

the Cox regression model described in Table 8 after backward elimination and finally including only 

the variables of pT stage, ISUP Group grade, and surgical margin status. Results are based on bias-

corrected and accelerated bootstrap calculation with 2000 iterations. 

3. Discussion 

In this retrospective study with three working phases (Figure 1), we identified differentially 

expressed circRNAs in PCa tissue samples using microarray analysis, performed an analytical 

validation of eight selected circRNAs and their linear counterparts via RT-qPCR measurements, and 

successfully elaborated RNA-signatures as discriminative biomarkers to differentiate between 

normal and cancerous PCa tissue and as predictive BCR biomarkers. This information was combined 

with clinicopathological variables to improve the prediction of BCR. 
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For the genome-wide identification of circRNAs in PCa tissue, we used six paired PCa tissue 

samples in the discovery phase in a microarray approach. Generally, microarray analysis is 

considered a strong and reliable tool for predicting circRNA profiles in clinically relevant tissue 

samples [83]. However, compared with high-throughput circRNA sequencing analysis with its 

discovery potential for new cirRNAs, microarray platforms have the drawback of only including a 

limited number of already validated circRNAs [84]. The microarray analysis identified 43 

upregulated and 134 downregulated circRNAs with a higher than absolute 1.5-fold change in 

malignant tissue samples (Figure 2C). For further evaluation, we chose three upregulated (circLPP, 

circSTIL, and circNEAT1) and three downregulated (circATXN10, circCRIM1, and circRHOBTB3) 

circRNAs based on their differential expression levels identified in the microarray analysis and in an 

in silico circRNA-miRNA-gene interaction analysis (Supplementary Information S2 (Supplementary 

Materials) with Figure S1). In addition, circCSNK1G3 and circGUCY1A2 were included in this panel 

for control purposes, since they had already been investigated by other working groups at the start 

of our study [44,45]. Furthermore, in order to correlate our results with the linear products of the 

circRNA host genes in an integrative approach, we included the linRNA counterparts of the 

circRNAs in this study. 

After successful experimental validation of the circular feature of the selected circRNAs and the 

establishment of their fit-for-purpose RT-qPCR assays (Section 2.3), a comparison of the microarray 

and RT-qPCR data of the eight circRNAs showed discrepant results for circSTIL and circLPP (Table 

4). For the other examined circRNAs, the results of the RT-qPCR and microarray analyses were found 

to be congruent. The downregulation of circSTIL and circLPP in the malignant vs. adjacent normal 

PCa tissue samples was confirmed via RT-qPCR measurements of the 79 paired samples (Figure 4). 

Inconsistent differential expression of circRNAs in microarray or sequencing vs. in the RT-qPCR 

analyses has also been observed in previous studies of PCa and other cancers. Shan et al. [85] 

identified consistent expression between microarray and RT-qPCR analyses in four of five selected 

circRNAs using 90 PCa and paired non-cancerous tissue samples. Yan et al. [86] reported that three 

of four selected circRNAs in PCa cells analyzed by RT-qPCR showed consistent high-throughput 

sequencing results. Qui et al. [87] found an upregulation of circCASP8AP2 in hepatocellular 

carcinoma compared to adjacent normal tissue by sequencing, but in RT-qPCR analyses, this circRNA 

was downregulated. The reason for these discrepancies between microarray/sequencing data and 

RT-qPCR results is not clear. Since the same samples were used for the different analytical techniques, 

it can be assumed that there can only be analytical or post-analytical reasons for these results [31]. 

The use of different normalization approaches, dependence on the digestion effect of RNase R on 

circRNAs and linear mRNAs, and method-dependent effect of RNA integrity on the measurement 

results might be the reasons for these discrepancies [88–91]. Considering these aspects, the expression 

evaluation of circRNAs in isolated total RNA samples using RT-qPCR measurements combined with 

validated cancer-specific reference genes, as done in the present study, might be a practical way to 

minimize such discrepancies [88]. Further research is needed in this respect, but this was beyond the 

scope of this study. Furthermore, regarding these discrepancies, the inconsistent results reported for 

the same circRNAs when examined in different studies should be mentioned. For example, Kong et 

al. [92] found that hsa_circ_0006404 was upregulated in 53 paired PCa samples. In contrast, Shen et 

al. [48] showed that the same circRNA was downregulated in 22 low-grade and 22 high-grade PCa 

tissue samples in comparison with 18 normal prostate tissue samples. In addition to the above-

mentioned possible analytical and post-analytical reasons, different clinicopathological 

characteristics of the investigated study cohorts, but also pre-analytical interferences due to the 

different “quality” of the tissue samples used in different studies may be responsible for these 

differences [88]. 

The comparison of the expression levels of circRNAs and linRNAs in the 79 paired PCa tissue 

samples revealed interesting relationships (Figure 4). Here, we found that all linRNAs except for 

linCSNK1G3 had significantly higher expression levels than the circular RNAs. This observation was 

concordant with results shown in earlier circRNA studies [23,24,93]. Additionally, circSTIL showed 

significantly lower expression in tumor samples than in normal tissue samples, while linSTIL was 
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significantly higher expressed in tumor samples. Moreover, the normalized expression of linNEAT1 

was nearly 17,000-fold higher than the expression level of circNEAT1 (Figure 4 and Table S10), while 

the ratio between tumor and normal tissue was equal for both RNAs (circNEAT1: +1.70 vs. linNEAT1: 

+1.75). A possible explanation for the high linRNA expression could be the similarly abundant 

expression of the lncRNA NEAT1 (lncNEAT1) in PCa, which may be an indicator of the independent 

expression of circRNAs and linRNAs/lncRNAs [94,95]. However, because of the limited performance 

data from the circNEAT1 RT-qPCR analyses and the incomplete detection of this analyte in all 

samples, we did not include this circRNAs in the multivariable analyses. Nevertheless, more 

analytically sensitive quantification techniques like the droplet digital polymerase chain reaction 

should be used to allow this circRNA to be included in future studies. 

The differential expression of the malignant and adjacent normal tissue samples identified 

circATXN10 and linSTIL as strong biomarkers in terms of differentiating between tumor and normal 

tissue. The AUC value for these two markers combined was 0.892 (95% CI: 0.834–0.925). The decision 

curve analysis also showed a higher discriminative ability when combining circATXN10 and linSTIL, 

compared with applying them alone (Figure 5). Xia et al. [47] evaluated the diagnostic potential of 

the two circRNAs circ_0057558 and circ_0062019 in PCa. When applying these two circRNAs in 

combination, an AUC value of 0.861 was achieved. Another working group identified 

hsa_circ_0001633, hsa_circ_0001206, and hsa_circ_0009061 as possible discriminative tissue 

biomarkers with respective AUCs of 0.809, 0.774, and 0.711 [58]. Although these results are 

promising, the ability of circRNAs to differentiate between malignant and non-malignant tissue in 

other cancer types is much higher. In a recent study on circRNAs in clear cell renal cell carcinoma, 

we identified circEGLN3 (hsa_circ_0101692) as a strong marker for differentiation between normal 

and cancerous tissue, with an AUC of 0.98 when used alone and an AUC of 0.99 when combined with 

its linear counterpart [22]. Nevertheless, in the future, circRNAs might be used as components of a 

molecular pattern to improve diagnostic accuracy in the pathological evaluation of cancerous tissue 

and to provide possible helpful information on the development processes of cancer. 

The associations of circRNAs and linRNAs with each other and with standard 

clinicopathological variables is of special interest. The following distinctive features were 

noteworthy: (i) the expressions of all circRNAs were found to be strongly correlated in both the 

adjacent normal and malignant tissue samples, except for circNEAT1 and partly for circRHOBTB3, 

while this correlation feature was mainly lost between paired samples (Tables S12–S14); (ii) different 

correlation coefficients between circRNAs and the linear transcripts were observed in paired 

malignant and normal tissue samples (Table S15); and (iii) all circRNAs except circNEAT1 and 

circRHOBTB3 were significantly correlated with the ISUP grade but not with other relevant 

clinicopathological variables such as preoperative PSA, the tumor stage, and the surgical margin 

(Table S11). Thus, in comparison with other studies that examined other circRNAs [44,51,58–62], few 

associations with generally relevant clinicopathological PCa variables were identified. This is by no 

means a primary disadvantage with regard to their potential clinical validity as prognostic/predictive 

markers. In contrast, this expression of RNAs mostly independent from clinicopathological variables 

and the other mentioned particular correlations is a key characteristic of orthogonal biomarkers [96]. 

Biomarkers of this kind are a real prerequisite for gaining information additional to that derived from 

established variables and for improving, for example, the prediction accuracy of a clinical outcome 

endpoint [97]. 

In the introduction, we described the aim of this study as being to evaluate the clinical validity 

of circRNAs and their linear transcripts with regard to BCR after radical prostatectomy. The essential 

problems in this respect were explained and need not be repeated, but it should be stressed that data 

on circRNAs and BCR are lacking. It was therefore particularly important to follow the REMARK 

guidelines, which recommend the use of continuous expression data in Cox regression analyses as 

predictive variables of an endpoint and the rejection of primary dichotomized data applications [82]. 

This study investigated the ability of the circRNAs and linear transcripts to predict BCR occurrence 

alone and in combination with clinicopathological variables in a step-by-step process. CircATXN10, 

circGUCY1A, and circLPP remained after a multivariable Cox regression analysis of the examined 
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circRNAs with backward elimination in a model of BCR prediction (Table 6). On the other hand, in 

combination with the linear RNAs, these circRNAs were eliminated in the multivariable Cox 

regression analysis and thus were found to have no role in BCR prediction in comparison to the 

linRNAs. Only linGUCY1A2, linNEAT1, and linSTIL were identified as relevant BCR predictor 

variables, and these were subsequently termed the “RNA signature” (Table 7). This result is by no 

means surprising. By comparing circRNA expression with the expression of linear counterparts, the 

independent clinical value of circRNAs and linear transcripts has already been reported in other 

studies [44,98]. Therefore, it makes sense to take this functional aspect into account in an integrative 

approach by simultaneously determining circRNAs and their linear transcripts. Loss of information 

could thus be avoided. However, this requires that RT-qPCR determinations, as in our study, are 

performed on isolated total RNA without RNase R pretreatment and that validated reference genes 

are used to normalize relative expression quantities. This problem was also recently highlighted 

when the database MiOncoCirc was introduced [39]. The authors recommended the use of a special 

capture exome RNA-sequencing protocol without RNase R pretreatment [99] in order to determine 

the actual relationship between circRNA and linRNA in the tissue [39]. 

Furthermore, the linRNAs were evaluated as BCR predictors in a univariable Cox regression 

analysis with the TCGA dataset (Table S17). Especially noteworthy was linSTIL, which was found to 

be significantly associated with the risk of BCR. In contrast, circCSNK1G3, which was selected by 

Chen et al. [44] as an example for demonstration of its functional mechanisms, was not found to be a 

relevant BCR predictor in our study (Table 6) or in the TCGA dataset (Table S17). 

To assess the clinical validity of this final RNA signature, we compared the C-statistic data of 

the prognostic indices of the RNA signature with those of four established models frequently used in 

clinical practice and our developed model based on using only clinicopathological variables. The C-

statistic data of the RNA signature did not differ from those of established clinical models, except for 

the model developed by D’Amico et al. [10], which showed statistically significantly lower values. 

However, most importantly, when the clinical models were combined with the RNA signature, 

statistically significant improvements in the BCR predictive accuracy or at least corresponding 

tendencies were evident (Table 9). This improved predictive accuracy was confirmed by decision 

curve analyses (Figure S4). Decision curve analysis has been postulated as the most informative 

metric for an incremental predictive benefit [100]. These results support the view that there is 

considerable potential for improvement of the current prognostic models based only on 

clinicopathological factors by including molecular RNA markers [17–21]. Recently, the NCCN 

Prostate Cancer Guideline Panel suggested that tissue-based tests like Decipher, OncoType, Dx 

Prostate, Prolaris, and ProMark could be considered for initial PCa risk assessment [101]. 

Of the 16 RNAs examined, a total of six RNAs were represented in the combined models after 

ROC and multivariable Cox regression analyses (Tables 5 and 6). These were circATXN10 and linSTIL 

as tissue differentiation markers and BCR predictors (Table 5 and Table 6), and circGUCY1A2 and its 

linear counterpart, circLPP, and linNEAT1 for BCR prediction. As explained above, ultimately only 

linGUCY1A2, linNEAT1, and linSTIL remained in the final model as the RNA signature for BCR 

prediction. So far, there are few data on the listed RNAs in the context of PCa and other cancers. 

Expression data that could be used for the differentiation of tissue samples as well as BCR markers 

are missing. Reference to possible biological functions has only been made in few cases, and the 

validity as a biomarker has only been considered for linNEAT1 [95]. Since our intention in this study 

was primarily to investigate the clinical validity of the selected RNAs as possible biomarkers, we 

deliberately refrained from undertaking functional investigations. Furthermore, the clinical validity 

of a marker and thus its applicability in a clinical setting is not primarily linked to its functional 

significance [102]. The development of an applicable biomarker should focus on demonstrating a 

benefit in comparison to the methods used to date [79]. To formulate this opinion in exaggerated 

terms, only proof of the meaningful use of a biomarker for a specific clinical problem should be a 

justified reason to characterize its possible biological background experimentally. Thus, a brief 

summary of the current state regarding the biological backgrounds of the relevant RNAs identified 

herein as potential biomarkers is given to provide directions for future work. 
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In detail, this is as follows: 

CircATXN10 has not yet been discussed in connection with cancer. Our data here represent the 

first results in this area. 

CircGUCY1A2 was found to be of particular importance in PCa pathogenesis in an investigation 

of various PCa cells based on differential expression and bioinformatics information [45]. 

Experimental findings and data on human PCa tissue samples, as well as on linGUCY1A2, are not yet 

available. In this respect, our data represent the first information in this area. 

For linSTIL, Wu et al. [63] found increased expression in PCa tissue, similar to the results of our 

study. In cell experiments, these linSTIL changes were shown to be responsible for stimulating the 

proliferation of PCa cells and suppressing apoptosis through interactions with various signaling 

pathways. An investigation on gastric cancer confirmed these effects of upregulated linSTIL [103]. 

CircLPP has not yet been investigated in PCa or other cancers regarding to its biological 

functions or its potential as a biomarker. Reduced expression of the host gene has been described in 

lung cancer, similar to the results of the present PCa study [66]. Cell culture experiments on myeloma 

cells showed that a loss of LPP leads to the upregulation of N-cadherin, subsequently promoting 

tumor cell invasion and metastasis through epithelial-mesenchymal transition. 

LinNEAT1 has been described in some studies as upregulated mRNA with different oncogenic 

effects on PCa cells. In PCa, it promotes the expression of the oncogene HMGA2 through the sponging 

of miR-98-5p, as well as leading to docetaxel resistance by sponging miR-34a-5p and miR-204-5p 

[65,104]. Furthermore, NEAT1 promotes the proliferation of PCa cells in connection with the steroid 

receptor co-activator (SCRC3) through the insulin-like growth factor 1 receptor/AKT serine/threonine 

kinase 1 (IGF1R/AKT) signaling pathway [105]. As shown in the present study using BCR as the 

clinical endpoint, Bai et al. [95] reported increased expression of NEAT1 mRNA as being an 

independent prognostic factor for overall patient survival. 

Despite our efforts to make this study as comprehensive and bias-free as possible, particularly 

taking into account the REMARK, MIQE, and STARD guidelines, it had inherent limitations. These 

include the retrospective nature of this study, the lack of external validation, and the choice of BCR 

as an endpoint without consideration of alternative clinical endpoints such as metastasis-free survival 

or cancer-specific survival. On the other hand it should be emphasized that our data calculated with 

the bootstrapping method as preferable approach for internal validation [106] confirmed the 

reliability of results obtained with the constructed models in this study. 

4. Materials and Methods 

4.1. Patients and Tissue Samples 

The Ethics Committee of the Charité-University Medicine Berlin approved the study 

(EA1/134/12; approval date: 22 June 2012). Informed consent was obtained from all patients. The 

study was performed in accordance with the Declaration of Helsinki. Corresponding study 

guidelines (Minimum Information for Publication of Quantitative Real-Time PCR Experiments 

(MIQE), Updated List of Essential Items for Reporting Diagnostic Accuracy Studies (STARD 2015), 

and Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK)) were taken into 

account [76,79,82]. 

Tissue samples from PCa patients undergoing radical prostatectomy were snap-frozen in liquid 

nitrogen immediately after surgery and stored at −80 °C or were immediately transferred into 

RNAlater stabilization reagent (Qiagen, Hilden, Germany) and stored at −20 °C until RNA isolation 

as described previously [81,107,108]. Tumor staging and grading (Table 1) was reviewed by two 

experienced uropathologists (E.K., S.E.) according to the criteria of the International Union against 

Cancer (UICC TNM, 8th edition) and the World Health Organization/International Society of 

Urological Pathology (WHO/ISUP) [109,110], respectively. 
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4.2. Analytical Methods 

4.2.1. Total RNA Samples and Their Characteristics 

Total RNA was isolated from tissue pieces of 31 mg (median value, 95% CI: 30–32) collected from 

the abovementioned preserved tissue specimens using a special punch-bioptic technique as reported 

in our previous publications [108,111,112]. This procedure allows to obtain tumor tissue (>90%) and 

matched normal tissue completely free of tumor filtrates and without inflammation or atrophy. 

Prominent inflammatory infiltrates, lack of epithelium due to stromal hyperplasia, and prostatic 

intraepithelial neoplasia were used as exclusion criteria. Taking into account these criteria, a largely 

bias-free comparison of the expression data between the adjacent normal and malignant tissue 

samples can be considered. The miRNeasy Mini Kit (Qiagen, Hilden, Germany) with an on-column 

DNA digestion step, according to the producer’s instructions, was used for total RNA isolation 

[107,108,112]. Spectrophotometric quantification and quality assessment of the total RNA samples 

were performed using the NanoDrop 1000 Spectrophotometer (NanoDrop Technologies, 

Wilmington, DE, USA) and the Bioanalyzer 2100 with the Agilent RNA 6000 Nano Chip Kit (Agilent 

Technologies, Santa Clara, CA, USA), as detailed reported in our previous publications [81,107,108]. 

The RNA samples, isolated with 30 µL nuclease-free water, showed the following characteristics: a 

median absorbance ratio at 260 to 280 nm of 2.12 (95% CI: 2.12 to 2.13), a median absorbance ratio at 

260 to 230 nm of 1.99 (95% CI: 1.97 to 2.03), a median RNA integrity number (RIN) value of 7.00 (95% 

CI: 6.90 to 7.20), and a median RNA concentration of 1096 ng/µL (95% CI: 1001 to 1214). RNA samples 

were stored at −80 °C. Further details are listed in the checklist of the MIQE guidelines (Table S1). 

4.2.2. Microarray Detection of circRNAs 

Using isolated total RNA samples from six paired adjacent normal and malignant tissue samples 

of PCa specimens (1× pT3a with ISUP 2, 1× pT3b with ISUP 2, 2× pT3a with ISUP 3, 2× pT3b with 

ISUP 3), microarray analyses were performed as a custom order by ArrayStar Inc. (Rockville, MD, 

USA), as previously reported [22]. Briefly, RNA samples were digested with RNase R to destroy 

linear RNAs and enrich circular RNAs. Afterwards, the circRNAs were amplified, transcribed, 

fluorescently labeled, and hybridized on the ArrayStar Human Circular RNA Array. This array is 

designed to detect 13,617 circRNAs. The Agilent scanner (G2505C) and softwares (Agilent Feature 

Extraction software version 11.0.1.1 and Agilent GeneSpring GX) were used for imaging scanning 

and analysis. Quantile normalization was used to normalize the obtained probe intensities. The R 

Bioconductor “limma” package was applied to calculate the differential expression between the 

matched pairs. All data were compiled in the accompanying separate Excel file with all additional 

information and annotation details (Supplementary Microarray Data File.xlsx (Supplementary 

Materials)). 

4.2.3. RT-qPCR Methodology and circRNA Validation Methods 

RT-qPCR measurements were performed according to the recommendations in the MIQE 

guidelines [76]. The corresponding comments are listed in the abovementioned checklist of the MIQE 

guidelines and applied for all assays (Supplementary Information S3 with Table S1 and the additional 

Tables S2–S7). 

Detailed validation procedures based on the general characteristics of circRNAs regarding their 

resistance to RNase R digestion, their lack of a poly(A) tail using separate reverse transcription with 

random hexamer and oligo(dT)18 primers, and the proof of the backsplice junctions by Sanger 

sequencing, were described in our previous report on circRNAs in kidney cancer [22] and are briefly 

summarized in Supplementary Information S4 to explain the data in Figure 3. A melting curve 

analysis and gel electrophoresis were additionally carried out as confirmatory approaches to verify 

the analytical specificity of the RT-qPCR products of all circRNAs (Figures S2 and S3). 

The Maxima First Strand cDNA Synthesis Kit for RT-qPCR (Thermo Fisher Scientific, Waltham, 

MA, USA; Cat.No. K1642) was used for cDNA synthesis of circRNAs and their linear counterparts, 



Int. J. Mol. Sci. 2020, 21, 7812 23 of 32 

 

as this kit contains a ready-to use mixture of random hexamer and oligo(dT)18 primers (Table S2A). 

For the validation of circRNAs, we addressed the issue of reliability of reverse transcription using 

another cDNA synthesis kit (Transcriptor First Strand cDNA Synthesis Kit, Life Science Roche, 

Mannheim, Germany; Cat. No. 04379012001) that allows separate priming with either random 

hexamer or oligo(dT)18 primers (Table S2B). 

The LightCycler 480 Instrument (Roche Molecular Diagnostics, Mannheim, Germany) with 

white 96-well plates (Cat.No. 04729692001) and a reaction volume of 10 µL was used for all real-time 

qPCR runs. The Maxima SYBR Green qPCR Master Mix (Thermo Fisher Scientific; Cat.No. K0252) 

was used. Primers were designed using the blasting tool provided by Primer3 [113] and synthesized 

by TIB MOLBIOL GmbH (Berlin, Germany). The reaction conditions with the list of primers, 

measurement details, setup of the assays, and performance data for all eight circRNAs and their 

linear counterparts as well as the reference genes ALAS1 and HPRT1 as a combined pair for 

normalizing expression data in PCa samples [81] are compiled in Table S6 with the protocols A–I. 

No-template controls and no-reverse transcriptase controls were always included and showed 

negative results. All cDNA samples were measured at least in duplicate and the resulting mean 

values of the quantification cycles were used for further calculations. 

The software qBase+ version 3.2 (Biogazelle, Zwijnaarde, Belgium; www.qbaseplus.com) was 

used for Cq data evaluation [114,115]. This program is based on a generalized model of the 2-ΔΔCq 

approach with correction of the amplification efficiency. Cq values were converted into relative 

quantities (RQs) with respect to equal amounts of total RNA for all samples used for the cDNA 

synthesis, and they were converted into normalized relative quantities (NRQs) based on the 

expression of the two cancer-specific reference genes mentioned above, ALAS1 and HPRT1. 

4.3. Statistics and Data Analysis 

The statistical programs SPSS Version 25 (IBM Corp., Armonk, NY, USA) with the bootstrap 

module, GraphPad Prism version 8.4.3 (GraphPad Software, La Jolla, CA, USA), and MedCalc 

version 19.4. (MedCalc Software bvba, 8400 Ostend, Belgium) with bootstrapping C-statistics were 

used. p < 0.05 (two-sided) represented statistical significance. The Mann-Whitney U-test, Wilcoxon 

test, t-test, and Spearman rank correlation coefficients were used for continuous data and Chi-

squared or Fisher’s exact tests were used for categorical data. Univariable and multivariable Cox 

proportional hazard regression analyses were used for survival analysis of the endpoint BCR. C-

statistic values based on ROC analyses with AUC calculation of prognostic indices of Cox regression 

analyses and corresponding decision curve analyses were determined to characterize the 

discrimination/prediction capacity of the different variables and models [116–119]. Sample size and 

power calculations were performed using the programs GPower version 3.1.9.4 [120], GraphPad 

StatMate version 2.0 (GraphPad Software), and MedCalc version 19.4 (MedCalc Software bvba), and 

the results were used to design the study. The prediction tool CircInteractome [69] was used for the 

in silico analysis of circRNAs to identify potential miRNA-gene interactions using the miRDB and 

TargetScan databases [70,71]. TCGA-PRAD RNAseq data were downloaded and analyzed with R 

(version 3.6) using the “TCGA2stat” library and the “survival” library for univariable Cox regression 

analyses of the linear counterparts of the eight circRNAs. 

5. Conclusions 

This study investigated the value of circRNAs and their linear counterparts as potential 

diagnostic and prognostic biomarkers in PCa using a genome-wide, integrative, and exploratory 

approach. We showed that the combination of circATXN10 and linSTIL provides a strong marker 

pair that can be used to discriminate between normal and malignant PCa tissue samples. 

Furthermore, we identified linGUCY1A2, linNEAT1, and linSTIL as potentially useful prognostic 

biomarkers to increase the accuracy of BCR prediction in PCa patients in combination with standard 

risk prediction models based only on clinicopathological variables. These results support the thesis 

that there is considerable potential to improve the current clinical prognostic models by including 

molecular RNA markers. In future studies, it will be advantageous to include circRNAs into the 
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clinicogenomic models in addition to the established RNA classes such as miRNA, mRNA, piwiRNA 

or lncRNA. 
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%RSD percent relative standard deviation 

AKT AKT serine/threonine kinase 1 

ALAS1 5′-aminolevulinate synthase 1 

ATXN10 ataxin 10 
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AUC area under the ROC curve 

BCR biochemical recurrence 

CAPRAS Cancer of the Prostate Risk Assessment Postsurgical Score 

cDNA complementary DNA 

CI confidence interval 

circ circular (used in composition with gene symbols to define examined circRNAs) 

circRNA circular RNA 

Cq quantification cycle 

CRIM1 cysteine rich transmembrane BMP regulator 1 

CSNK1G3 casein kinase 1 gamma 3 

DRE digital rectal examination 

GUCY1A2 guanylate cyclase 1 soluble subunit alpha 2 

HPRT1 hypoxanthine phosphoribosyltransferase 1 

HR hazard ratio 

IGF1R insulin like growth factor 1 receptor 

IQR interquartile range 

ISUP International Society of Urologic Pathology 

lin lin (in composition with gene symbols to define examined linRNAs) 

linRNA linear RNA (mRNA) 

lnc long non-coding (used in composition with gene symbols) 

LPP LIM domain containing preferred translocation partner in lipoma 

MIQE 
The Minimum Information for Publication of Quantitative Real-Time PCR 

Experiments 

NCCN National Comprehensive Cancer Network 

NEAT1 nuclear paraspeckle assembly transcript 1 

NRQ normalized relative quantity 

PCa prostate cancer 

pN pathological lymph node status 

PSA prostate-specific antigen 

pT pathological tumor classification 

REMARK Reporting Recommendations for Tumor Marker Prognostic Studies 

RHOBTB3 rho related BTB domain containing 3 

RIN RNA integrity number 

ROC receiver operating characteristic 

RQ relative quantity 

RT-qPCR reverse-transcription quantitative real-time polymerase chain reaction 

SCRC3 steroid receptor co-activator 

STARD Standards for Reporting of Diagnostic Accuracy Studies 

STIL STIL centriolar assembly protein 

TCGA (PRAD) The Cancer Genome Atlas Prostate Cancer 

T/N expression index of circRNA or linRNA in tumor to adjacent normal tissue 

TNM Tumor, Node, Metastases 
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