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SUMMARY
Many gene products exhibit great structural heterogeneity because of an array of modifications. These mod-
ifications are not directly encoded in the genomic template but often affect the functionality of proteins. Pro-
tein glycosylation plays a vital role in proper protein functions. However, the analysis of glycoproteins has
been challenging compared with other protein modifications, such as phosphorylation. Here, we perform
an integrated proteomic and glycoproteomic analysis of 83 prospectively collected high-grade serous
ovarian carcinoma (HGSC) and 23 non-tumor tissues. Integration of the expression data from global prote-
omics and glycoproteomics reveals tumor-specific glycosylation, uncovers different glycosylation associ-
ated with three tumor clusters, and identifies glycosylation enzymes that were correlated with the altered
glycosylation. In addition to providing a valuable resource, these results provide insights into the potential
roles of glycosylation in the pathogenesis of HGSC, with the possibility of distinguishing pathological out-
comes of ovarian tumors from non-tumors, as well as classifying tumor clusters.
INTRODUCTION

Ovarian cancer is the fifth leading cause of cancer death among

women in the United States (Siegel et al., 2018; Torre et al.,

2018). High-grade serous ovarian carcinomas (HGSCs) are the

most common and lethal type of ovarian carcinoma responsible

for the majority of ovarian cancer-related deaths (Siegel et al.,

2018; Torre et al., 2018). The current standard of care is to perform

an aggressive debulking surgery followed by platinum-taxane

chemotherapy. However, the therapeutic approach is effective

for only a small number of patients (Miller et al., 2009), and the

5-year survival rate is approximately 30% (Siegel et al., 2018; Torre

et al., 2018). Results from the recent Prostate, Lung, Colorectal,

and Ovarian (PLCO) Cancer Screening Trial, which combined

transvaginal ultrasound and serum cancer antigen 125 (CA 125)

levels for early detection, did not indicate a reduction in ovarian

cancer mortality after 19 years of follow-up (Pinsky et al., 2016).

Therefore, understanding the molecular mechanisms of ovarian

cancer development, progression, and treatment susceptibility

represents critical steps to further improve patient survival.

The molecular analysis of clinically annotated HGSCs using

genomic, proteomic, and phosphoproteomic approaches
This is an open access article und
highlighted by The Cancer Genome Atlas (TCGA; Cancer

Genome Atlas Research Network, 2011) and Clinical Proteo-

mic Tumor Analysis Consortium (CPTAC; Zhang et al., 2016)

have provided an enhanced understanding of the impact of

genomic alterations of HGSCs on protein networks and

signaling pathways. TCGA identified a remarkable degree of

genomic disarray in HGSC, including TP53 mutations in 96%

of tumors and focal DNA copy number aberrations in 36% of

cases; promoter methylation events involving 168 genes; and

NF1, BRCA1, BRCA2, RB1, and CDK12 somatic mutations

(Cancer Genome Atlas Research Network, 2011). CPTAC

investigated the impact of genomic alterations on cancer

biology at a functional level by comprehensively analyzing

169 HGSCs previously characterized by TCGA for proteomics

and phosphoproteomics (Zhang et al., 2016). The study pro-

vided a number of important findings, such as the impact of

copy number alterations on expression of proteins associated

with chromosomal instability, protein acetylation associated

with homologous recombination deficiency, and protein and

phosphoprotein signaling pathways associated with cell sur-

vival (Coscia et al., 2018; Zhang et al., 2016). Although tumor

tissues were extensively analyzed in these large-scale ‘‘omics’’
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studies, strategies for the diagnosis and targeted therapy of

HGSCs still need to be addressed.

In addition to genomic regulation, protein abundance and

functions are further regulated by several factors, particularly

proteinost-translational modifications (PTMs) (Vogel and Mar-

cotte, 2012). Apart fromphosphorylation, other proteinmodifica-

tions have not been investigated in large-scale proteomic

studies (Mertins et al., 2016; Zhang et al., 2014). It is well-known

that glycosylation plays a crucial role in cancer development pro-

cesses, such as cell-cell adhesion, cell growth, ligand-receptor

binding, and tumor metastasis (Hart and Copeland, 2010; Varki,

2017). Compared with other protein modifications, the analysis

of glycoproteins has been limited because of the enormous

complexity and heterogeneity of glycoprotein structures. Recent

advances in glycoproteomic technologies have enabled the

comprehensive analysis of complex glycoproteins (Narimatsu

et al., 2018; Zielinska et al., 2010).

Here, we present the systematic proteomic and glycoproteo-

mic analyses of 83 prospectively collected HGSC tissues and

23 relevant non-tumor tissues. The analysis allowed us to identify

and quantify sites of N-linked glycosylation using a Solid-Phase

Extraction of Glycosite-containing peptides (SPEG) approach

(Zhang et al., 2003), as well as identification of the glycans occu-

pying those N-linked sites using intact glycopeptides (IGPs)

analysis (Khatri et al., 2016; Parker et al., 2013; Scott et al.,

2011; Sun et al., 2016). This integrated approach provides a

comprehensive look at the N-glycosylated proteins, their N-gly-

cosylated sites, and the glycans occupying these sites in one

study (Figure 1A). This is the first-of-its-kind large-scale omics

analysis in clinical specimens with annotated clinical metadata.

We found that glycoproteins in tumors compared with non-tu-

mors and tumor clusters were regulated on multiple levels,

including glycoprotein abundance, overall extent of glycosyla-

tion at specific glycosites identified, and type of glycosylation

at the glycosites. Furthermore, using the integrated data from

proteomics and glycoproteomics, we discovered that although

the overall extent of glycosylation of each glycoprotein was

strongly associated with its expression, glycans that modified

glycoproteins had unique expression patterns that were corre-

lated with glycosylation enzymes expressed in the tumors.

These findings revealed the potential functions of protein glyco-

sylation in ovarian cancer that have never been studied previ-

ously. Furthermore, altered glycoproteins from the extracellular

space could provide a foundation for the development of diag-

nostic and/or therapeutic targets of HGSC.

RESULTS

The Landscape of Proteomic and Glycoproteomic Data
Proteins from tumors, non-tumors, andaquality control (QC) sam-

ple (separated into nine aliquots) were extracted, digested by

trypsin, and labeled with tandem mass tags (TMTs) (Figure 1A).

CPTACprospectively collected 83 treatment-naive HGSC tumors

and 23 relevant non-tumor tissues from normal fallopian tubes

(FTs), including13pairedFTs from the 83HGSCpatients. Theme-

dian tumor cellularity of tumor samples is 75% (Table S1). The

associated clinical data and metadata are provided in Table S1

and summarized in Figure 1B. The TMT-labeled peptides were
2 Cell Reports 33, 108276, October 20, 2020
divided into three aliquots: one aliquot for global proteomics

(GLOBAL dataset) using liquid chromatography-tandem mass

spectrometry (LC-MS/MS), one aliquot for N-linked glycosites

identified by SPEG method (SPEG dataset), and one aliquot for

enrichment of IGPs (IGP dataset) (Figure 1A). The global or non-

modifiedproteomicmeasurements usedTMT labeling in conjunc-

tion with offline basic reverse-phase liquid chromatography

(bRPLC) fractionation and online LC-MS/MS to provide a broad

coverage for peptide identification and quantification (STAR

Methods; Figure 1A). The normalized relative abundance mea-

surements (Figure S1A) were used to assess the analytical perfor-

mance of each protein in all of the samples. We determined the

reproducibility of the proteomic analysis using sample-sample

correlation of the nineQCsamples based on the absolute intensity

measurements and the coefficient of variation (CV). As shown in

Figure S1B, the median correlation of the quantified proteins in

nine QC analyses was 0.90. The median CV of the quantified pro-

teins in the nine QC analyses was 14% (Figure S1C). A total of

8,144 protein groups were identified with high confidence (pro-

tein-level false discovery rate [FDR] < 1%) in all of the tumor and

non-tumor samples from the GLOBAL proteomic experiment as

shown in Figure 1B, while there were 5,916 proteins identified

crossing all the samples. The raw absolute intensity abundances

of each protein in each tumor and non-tumor sample are given

in Table S2.

The N-linked glycoproteomes of the two remaining aliquots of

TMT-labeled peptides were analyzed for glycosites after

releasing N-linked glycans using PNGase F (using SPEG

methods; Zhang et al., 2003) and the enriched IGPs with associ-

ated glycans on specific glycosites (Sun et al., 2016; Zhang et al.,

2003). Of the 8,144 protein groups identified from global prote-

omics, 1,690 N-linked glycosite-containing peptides and 3,202

intact N-linked glycopeptides were identified in the SPEG and

IGP experiments, respectively, in which 5,916 protein groups,

490 glycosite-containing peptides, and 365 IGPs were identified

from all samples (Tables S3 and S4; Figure 1B). Similar to the

quality assessment for global proteomic data, we evaluated

the reproducibility of the technical replicates from nine QC ana-

lyses in SPEG and IGP. The normalized data of all the samples

were shown in Figures S1D and S1G. The median correlation

of nine QC samples in the SPEG dataset was 0.88 (Figure S1E),

while the median correlation value of the IGP QC samples was

approximately 0.74 (Figure S1H). The median CV values were

22% for glycosites (Figure S1F) and 15% for IGP (Figure S1I).

According to the monosaccharide composition of N-linked

glycans associated on the identified IGPs, three glycan types

were defined and investigated in this study: oligomannose/high

mannose (HM), sialylated glycans (Sia), and fucosylated glycans

(Fuc). The HM glycans represent glycans containing two N-ace-

tylhexosamine (N) and hexose (H) without additional N, fucose

(F), or sialic acid (S). The Sia glycans represent any glycans con-

taining S. The Fuc glycans represent any identified glycans con-

taining F.

Proteomic and Glycoproteomic Tumor Sample Clusters
To investigate the cancer heterogeneity of HGSC, we used the Z

score transformed log2 ratio expression of the top 50%most var-

iable proteins, N-linked glycosite-containing peptides, and intact
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Figure 1. The Workflow of the Integrated Glycoproteomic Strategy to Analyze HGSCs and Non-tumor Tissues
(A) Proteins from 83 HGSC tumor tissues, 23 non-tumor tissues, pooled reference sample, and technical replicates of quality control sample were digested by

trypsin to peptides, which were labeled by TMT and analyzed by global proteomic analysis (GLOBAL), as well as glycosite-containing peptides (SPEG), and intact

glycopeptides (IGPs) analysis using LC-MS/MS.

(B) The clinical phenotypes and data profiling of proteomic (GLOBAL) and glycoproteomic (SPEG and IGP) data of 83 tumor and 23 non-tumor tissues.

See also Tables S1, S2, S3, and S4 and Figure S1.
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N-linked glycopeptides for GLOBAL, SPEG, and IGP tumor sam-

ple clustering analysis, respectively. The consensus clustering

result illustrated that three tumor clusters could be distinguished

(see Figure 2A; Table S5). The three clusters were conservative

for GLOBAL, SPEG, and IGP clusters, especially for cluster 3

(Figure 2A). Using the correlation to compare the three clustering

results from IGP with GLOBAL and SPEG showed that IGP clus-

ter 3 was the most conserved (Figures 2B and 2C).

To investigate whether clinical phenotypes were associated

with tumor clusters, we calculated the correlation of IGP clusters

to clinical phenotypes, and the result showed that the IGP cluster

3 reversely correlated with tumor cellularity and correlated with

anatomic site of omentum (�0.45 and 0.45 for IGP cluster 3,

respectively), but did not significantly correlate with other clinical

phenotypes, such as tumor origin site of FT (Figure 2D). Most of

the samples in cluster 3 were from omentum and have relatively

lower tumor cellularity (Figure 2A).
The IGP clustering showed three IGP groups (IGs; Figure 2A).

The Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway (Kanehisa, 2019; Kanehisa and Goto, 2000; Kanehisa

et al., 2019) analysis using DAVID 6.8 (Huang et al., 2009a,

2009b) indicated that different pathways were significantly en-

riched in each IG. Lysosome was enriched in the IG1; the phos-

phatidylinositol 3-kinase (PI3K)-Akt signaling pathway, focal

adhesion, and extracellular matrix (ECM)-receptor interaction

were enriched in IG2; and complement and coagulation cas-

cades were enriched in IG3 (Table S5).

The result also showed the three IG-associated glycans, HM

glycans in IG1, HM and Fuc glycans in IG2, and Fuc and Sia gly-

cans in IG3 (Figure 2A). The relationship of the tumor clusters and

IGs was revealed using glycans determined by IPGs from each

tumor cluster. As shown in Figure 2E, the relative abundance

of IG2 was observed to be decreased in tumor cluster IGP2

but increased in cluster IGP3 (Figure 2E). IG3 was decreased
Cell Reports 33, 108276, October 20, 2020 3
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Figure 2. The Proteomic and Glycoproteomic Investigation in Tumor Clusters

(A) Hierarchical clustering of tumor samples based on their Z score transformed abundance of IGPs from the IGP dataset. The clinical phenotypes of all 83 tumor

samples, including tumor cellularity, tumor grade, tumor stage, participant race, participant age, anatomic site, origin site, and the labeled tumor clusters

classified fromGLOBAL, SPEG, and IGP datasets, were shown in the top rows of the clustered heatmap. The left columns showed the overrepresented pathways

in the three IGP groups (IGs) and the associated glycan types on the IGPs. HM, high-mannose glycans; Fuc, fucosylated glycans; Sia, sialylated glycans.

(B) The pairwise correlation values between the three tumor clusters based on GLOBAL and IGP datasets, respectively.

(C) The pairwise correlation values between the three tumor clusters based on SPEG and IGP datasets, respectively.

(D) The pairwise correlation values between the three clinical phenotypes (tumor cellularity, anatomic site, and origin site) and the three tumor clusters in the IGP

dataset.

(E) The abundance comparison of three IGP groups (IGs) grouped by three tumor clusters in the IGP dataset.

Fuc, fucose; HM, high mannose; Sia, Sialic acid. See also Table S5 and Figure S2.
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in tumor cluster IGP1 but increased in cluster IGP2. There is no

significant difference for IG1 levels among the three tumor

clusters.

To determine the relationship of IGP tumor clusters with tumor

subtypes, the identified 44 GLOBAL protein expression out of

100 subtype signature genes derived by Verhaak et al. (2013)

were used to associate with the IGP tumor clusters and showed

that the tumor clustering result from the IGP dataset was relevant

to the four historical subtypes: differentiated, immunoreactive,

mesenchymal, and proliferative (Figure S2A). The signature pro-

teins of immunoreactive subtype were elevated in IGP cluster 1,

while the signature proteins of mesenchymal were decreased in

IGP2 and elevated in IGP3 (Figure S2B). According to the signa-

ture comparison, this observation indicated that IGP cluster 1 is

relevant to immunoreactive subtype and IGP cluster 3 is relevant

to mesenchymal subtype. We also applied ESTIMATE (Yoshi-

hara et al., 2013) on the protein expression of 5,916 proteins

identified crossing all tumor samples in the GLOBAL dataset to

estimate the stromal cell and immune cell influence on the clus-

tering result (Figures S2C–S2E). The IGP1 cluster seemed not to

be influenced by the tumor purity or stromal score. IGP2 had

relatively higher tumor purity and lower stromal and immune

scores. IGP3 had lower tumor purity and higher stromal and im-

mune scores.

Proteomic and Glycoproteomic Analyses of HGSC
Tumor and Non-tumor Tissues
In the previous retrospective study (Zhang et al., 2016), only tu-

mor samples were considered. Here, we included relevant ‘‘non-

tumor’’ samples to investigate HGSC in a more comprehensive

approach. The ‘‘non-tumor’’ samples were from normal FT

(STAR Methods), which is an adjacent critical organ considered

as the start point of genetic alterations in HGSC development

(Labidi-Galy et al., 2017; Ducie et al., 2017). The comparison be-

tween the tumor and non-tumor tissues could lead to the discov-

ery of specific protein changes for HGSC. The relative abun-

dance of each protein, glycosite-containing peptide, or IGP

was determined by the log2 ratio of each protein level to the

abundance of the reference sample from each TMT-10 plex (Ta-

bles S2, S3, and S4). The reference sample was pooled from all

samples and serves as a common denominator for normalization

of each sample for quantification in several multiplexed proteo-

mic experiments.

In the IGP dataset, the principal-component analysis (PCA)

of log2 ratio of tumors and non-tumors illustrated the formation

of distinct clusters of the tumors and non-tumors (Figure 3A).
Figure 3. Proteomic and Glycoproteomic Analyses of 83 Ovarian Tum

proteins in Ovarian Tumors

(A) Principal-component analysis (PCA) based on the abundance of IGPs from t

samples.

(B) Volcano plot of IGPs of 83 tumor and 23 non-tumor samples to reveal the sig

(C) Receiver operating characteristic (ROC) curves of selected IGPs: HYOU1

PSAP_80_N2H3F1S0G0 (DNATEEEILVYLEK), and PPT1_212_N2H7 (GINESYK).T

the glycan composition, N = HexNAc and H = Hex.

(D) Overrepresentation analysis (ORA) of significantly upregulated and downregu

(E) The relative abundances of IGPs in tumor and non-tumor samples.

(F) The enriched pathways from the gene sets obtained from the identified IGPs

See also Table S6 and Figure S3.
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All 83 tumors were assembled and basically differentiated

from the non-tumor samples. To determine the differential pro-

tein expression in the tumor and non-tumor samples, we

applied a t test to the 365 intact N-linked glycopeptides ex-

pressed in all of the samples (Figure 3B). Filtering by permuta-

tion corrected FDR = 0.01 using Perseus (Tyanova and Cox,

2018; Tyanova et al., 2016), we identified 142 differentially

expressed IGPs. Among them, 48 IGPs were significantly

upregulated in tumors compared with non-tumor samples,

while 94 IGPs were significantly downregulated (Figure 3B;

Table S6).

Two-sample t tests were also applied to the proteins (5,916

proteins) expressed in all of the samples, as well as glycosite-

containing peptides (490 peptides), to determine the differen-

tially expressed proteins and N-linked glycosite-containing pep-

tides in the tumor and non-tumor samples. Similar to the IGP

result, the PCA of log2 relative abundance of glycosite-contain-

ing peptides and proteins illustrated the formation of distinct

clusters of the tumors and non-tumors (Figures S3A and S3B).

Filtering by permutation corrected FDR = 0.01 using Perseus

(Tyanova and Cox, 2018; Tyanova et al., 2016), we identi-

fied 1,232 proteins and 173 glycosite-containing peptides

differentially expressed in tumors compared with non-tumors

(Table S6). Among them, 645 proteins and 59 glycosite-contain-

ing peptides were significantly upregulated, while 587 proteins

and 114 glycosite-containing peptides were significantly down-

regulated (Figures S3C and S3D).

The significantly altered proteins or glycoproteins between tu-

mor and non-tumor samples could be potentially useful for the

diagnosis of ovarian cancer. We used CombiROC (Mazzara

et al., 2017) to select signatures of IGPs to distinguish tumor

and non-tumor samples (STARMethods). As shown in Figure 3C,

receiver operating characteristic (ROC) curves were presented

for four selected IGPs from HYOU1, FKBP10, PSAP, and PPT1

to classify tumor and non-tumor tissues.

The KEGG pathway using DAVID 6.8 (Huang et al., 2009a,

2009b) was applied on the significantly positive and negative

regulated proteins, glycosite-containing peptides, and IGPs in

tumors based on their corresponding genes. The KEGGpathway

analysis on IGPs revealed that lysosome was the overrepre-

sented pathway (Benjamini-adjusted p < 0.05) for the signifi-

cantly upregulated IGPs in the tumor samples, while comple-

ment and coagulation cascades pathways, ECM-receptor

interaction, PI3K-Akt signaling pathway, focal adhesion, and

protein digestion and absorption were the top overrepresented

(Benjamini-adjusted p < 0.05) pathways among the significantly
ors and 23 Non-tumors Revealed Alterations of Proteins and Glyco-

he IGP dataset to reveal the difference between 83 tumor and 23 non-tumor

nificantly upregulated and downregulated IGPs.

_931_N2H8 (AEPPLNASASDQGEK), FKBP10 _70_N2H8 (YHYNGTFEDGK),

he format is GeneName_Glycosite_GlycanComposition (PeptideSequence). In

lated IGPs using DAVID 6.8 referring to the KEGG pathway database.

under three different glycosylation types (HM, Fuc, and Sia).
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Figure 4. Proteomic and Glycoproteomic Analyses of 83 Ovarian Tumors and 23 Non-tumors Reveal Alterations of Proteins and Glyco-

proteins in Ovarian Tumors

(A) A comparative analysis of the differential abundance changes of glycosite-containing peptides and their corresponding proteins in tumors comparing with

non-tumor samples from SPEG glycoproteomic data and GLOBAL proteomic data, respectively.

(B) A comparative analysis of the differential abundance changes of IGPs and glycosite-containing peptides in tumors comparing with non-tumors from intact

glycoproteomic data and SPEG glycoproteomic data, respectively. The attached glycans were classified and highlighted by three groups (HM, Fuc, and Sia)

according to their identified glycan compositions.

(C) The abundance changes of global protein expression of CA125 (MUC16), an ovarian cancer biomarker, in the tumor and non-tumor samples.

(D) The abundance changes of glycosite-containing peptides NTSVGPLYSGCR of protein CA125 (MUC16) in the comparison between tumors and non-tumors.

The identifier of each glycosite-containing peptide was presented using the specific format: MUC16(gene name)_12272(start position of the peptide)

_NTSVGPLYSGCR(peptide sequence)_1(number of glycosites)_12272(glycosite position(s)).

(legend continued on next page)
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downregulated IGPs in the tumor samples (Table S6; Figure 3D).

Some pathways such as focal adhesion, ECM-receptor interac-

tion, complement and coagulation cascades, and PI3K-Akt

signaling pathway showed consistent overrepresented results

from all GLOBAL, SPEG, and IGP datasets (Figures S3E and

S3F).

Comparing the relative abundances of IGPs between tumor

and non-tumor samples, we observed that the IGPs with HM

type of glycan were in high abundance in tumors, while Fuc-

and Sia-containing IGPs were in low abundance in tumors

(Figure 3E). The pathways involved in the HM-, Fuc-, or Sia-con-

taining IGPs showed that the lysosome pathway was the top

enriched pathway in HM-containing IGPs. The ECM-receptor

interaction was enriched in Fuc-IGPs, and component and

coagulation cascades were enriched in Sia-IGPs (Figure 3F).

The clustering heatmap of all the abundances of IGPs and their

corresponding SPEG peptides and global proteins illustrated

that most of the upregulated IGPs were associated with HM-

containing IGPs, in which the lysosome pathway was overrepre-

sented (Figure S3G). Several lysosomal proteins were identified

as upregulated in both protein and IGP levels in tumor samples,

including proteases (CTSC, CTSD, CTSL, and LGMN), glycosi-

dases (GAA and HEXA), sulfatase (GNS), phosphatase (ACP2),

ceramidase (ASAH1), and other lysosomal enzymes and associ-

ated activators (PPT1 and PSAP).

Integrated Glycoproteomic Analyses Revealed Changes
in Glycosylation Sites and Glycans
Comparing differential expressed global proteins (GLOBAL), gly-

cosite-containing peptides, and IGPs in tumor and non-tumor

samples, we observed overlapping protein and glycoprotein

changes; however, the glycosite-containing peptides and IGPs

showed distinct levels of regulation in tumors (Figures 4A and

4B). The t test-based comparative analysis was performed on

the glycoproteins quantified by GLOBAL proteomic dataset

and SPEG dataset to investigate whether the tumor-specific

changes in glycosites were also present in global protein abun-

dance of the glycoproteins (Figure 4A). The correlation of the

two t tests’ statistical significance scores from proteins in

GLOBAL and glycosite-containing peptides in SPEG was 0.84

(R2 = 0.52), indicating that glycoproteins could be regulated by

glycosylation occupancy, as well as global protein expression.

Interestingly, although most of the differential abundance

changes of glycosite-containing peptides were still positively

correlated with the corresponding global protein expression,

the abundance changes of glycosites of certain glycoproteins

could exhibit distinguishable expression patterns from their

global levels (Figure 4A). MUC16 (also named as CA125), for

example, was previously reported as a tumor biomarker of

ovarian cancer (Bast et al., 1983, 2005). MUC16 showed no sig-

nificant abundance change in the global protein expression level

(p = 0.70; Figure 4C). However, this glycoprotein showed signif-

icantly differential levels in two glycosites, MUC16_12272 (p <
(E) The abundance changes of glycosite-containing peptides NTSVGLLYSGCR o

(F–H) Micro-heterogeneity of glycosylation expression on the same IGPs of tra

presented using the format: SSR2(gene name) IAPASNVSHTVVLRPK(peptide seq

the glycan composition of HexNAc/N:2, Hexose/H:8, Fucose/F:0, Neu5Ac/S:0, a
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0.05; Figure 4D) and MUC16_12586 (p < 0.05; Figure 4E), be-

tween the tumors and non-tumors. These results suggested

that simple measurement of protein abundance and subsequent

protein-based clustering might be insufficient in comprehen-

sively understanding tumor biology, and that clinical assays to

measure CA125 glycosylation levels in multiple glycosites could

be more informative than measuring only CA125 protein abun-

dance in diagnosis and monitoring of ovarian cancer.

To further investigate whether the alteration of glycosites was

also reflected in the IGP analysis, we used the similar approach

of t tests to compare the glycoproteins quantified by the SPEG

and IGP datasets (Figure 4B). The comparison of t test scores

from SPEG and IGP (correlation = 0.69, R2 = 0.56) and the anal-

ysis of associated glycan types on the IGPs indicated the abun-

dance changes of IPGs in tumors comparing with non-tumors

were not only regulated by the extent of glycosylation at each

glycosite but also influenced by glycans that modify the glyco-

site. As shown in Figure 4B, the IGPs containing HM glycans

were mostly overexpressed in tumors according to their quanti-

tative values in the SPEG and IGP experiments, while the

abundance changes of IGPs containing other types of glycans-

containing IGPswere various. The heterogeneity of glycosylation

on the same glycosite was also observed in the IGP analysis. An

example of differential regulation of glycosylation at the

same glycosite showed that glycosite-containing peptide,

IAPASNVSHTVVLRPLK from the signal sequence receptor

(SSR2), was modified by three different glycans, including Man

8 (N2H8), Man 9 (N2H9), and complex glycan (N4H7F1) (Figures

4F–4H). Peptides carrying the HM type of glycan were elevated

in tumors (Figures 4F and 4G), while glycopeptides with complex

glycan showed no significant difference between the tumor and

non-tumor samples (Figure 4H). SSR2 is a glycosylated endo-

plasmic reticulum (ER) membrane receptor that functions to

translocate proteins from the ribosome across the ERmembrane

(Wiedmann et al., 1987). Because the synthesized glycoproteins

are modified by HM in ER, the elevated levels of HM modified

SSR2 may represent the elevated levels of newly synthesized

SSR in ER and play the translocation function of signal se-

quences of newly synthesized proteins to ER. SSR2 was re-

ported to play a pro-survival role in human melanoma cells

(Garg et al., 2016).

Altered Glycosylation Biosynthesis in HGSC
To investigate the regulation of glycan expression, we correlated

the abundance of IGPs from each tumor and non-tumor sample

in the IGP dataset with the protein abundance of the glycosyla-

tion enzymes that were identified and quantified from the

GLOBAL proteomic dataset (Figure 5A). We found that the

IGPs with glycosylation of HM glycans were positively correlated

with the expression of Glucosidase 2 subunit beta (PRKCSH),

but negatively correlated with several other glycosylation en-

zymes, including the expression of Mannosyl-oligosaccharide

1, 2-alpha-mannosidase IA (MAN1A1). Among all of the
f protein CA125 (MUC16) in the comparison between tumors and non-tumors.

nslocon-associated protein subunit beta (SSR2). The identifier of IGPs was

uence)+N2H8F0S0G0(glycan composition), in which N2H8F0S0G0 represents

nd Neu5Gc/G:0.
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Figure 5. Association of IGP Abundance and Protein Levels of Glycosylation Enzymes in 83 Tumors and 23 Non-tumors

(A) The hierarchal-clustered correlation matrix of IGPs and glycosylation enzymes. The glycan types were highlighted in the top rows.

(B) The bar chart log2 fold change (FC) ratio values of glycosylation enzymes between tumor and non-tumor samples from the GLOBAL dataset.

(C) Correlation between FUT11 and IGPs with/without Fuc glycans (Fuc and non-Fuc).

(D) Correlation between PRKCSH and IGPs with/without HM (HM and non-HM).

(E) Correlation between MAN1A1 and IGPs with/without HM (HM and non-HM).

(F) The abundances of FUT11 in tumors and non-tumors.

(G) The abundances of PRKCSH in tumors and non-tumors.

(H) The abundances of MAN1A1 in tumors and non-tumors.
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identified glycosylation enzymes, only PRKCSH was found to be

significantly upregulated in tumors, while most of the other

glycosylation enzymes were downregulated in tumors (Fig-

ure 5B). The correlations of the expression of IGPs and protein
expression of Alpha-(1, 3)-fucosyltransferase 11 (FUT11),

PRKCSH, and MAN1A1 in the 83 tumor and 23 non-tumor sam-

ples were shown in Figures 5C–5E, respectively. We observed

statistical significantly positive correlations of FUT11 with IGPs
Cell Reports 33, 108276, October 20, 2020 9



Resource
ll

OPEN ACCESS
modified by Fuc glycans (Figure 5C), as well as PRKCSH with

IGPs modified by HM glycans (Figure 5D), but a negative corre-

lation of MAN1A1 with IGPs modified by HM (Figure 5E). The

quantitative measurement of FUT11, PRKCSH, and MAN1A1

showed no significant differential expression of FUT11, but a

significantly increased level of PRKCSH and decreased level of

MAN1A1 in the tumor samples comparing with non-tumors (Fig-

ures 5F–5H). These results were consistent with the observation

that the IGPs modified by HM glycans were increased in the tu-

mor samples (Figure 3E).

To determine the potential roles of HMmodifications to glyco-

proteins, the partial glycosylation biosynthetic pathway was

analyzed for the synthesis of HMwith the functions of key glyco-

sylation enzymes (Figure 6A). The increased expression of

PRKCSH and decreased level of MAN1A1 in tumor cells could

result in elevated glycoproteins with HM glycosylation, thus pre-

venting further detailed complex carbohydrate synthesis. The

function of the HM in cancer is not clear. This increment of HM

glycan modifications could be critical for glycoproteins that are

synthesized in large quantities for tumor growth. Investigation

of the network of glycoproteins that are modified by HM in can-

cer cells might be helpful to identify the glycoproteins required

for fast cell growth; we applied protein-protein interaction anal-

ysis of STRING 10.5 (Szklarczyk et al., 2017) on the proteins

with HM IGPs upregulated in tumors, and we found that they

were involved in a network mainly related to lysosome, collagen

metabolic process, and endomembrane system (Figure 6B). Pre-

vious studies done by looking at only glycans found that HM gly-

cans were elevated in several cancer types, including breast

cancer (de Leoz et al., 2011), cholangiocarcinoma (Talabnin

et al., 2018), ovarian cancer (Chen et al., 2017), colorectal cancer

(Balog et al., 2012; Sethi et al., 2014), and prostate cancer (PCa)

sera (Tabarés et al., 2006). By analyzing the IGPsmodified byHM

glycans, this study identified the glycoproteins as the potential

targets required for cancer growth.

DISCUSSION

The integrated glycoproteomic analysis on the proteins, glyco-

site-containing peptides, and IGPs illustrated the reliable power

of the MS-based proteomic and glycoproteomic methods on the

molecular profiling of HGSCs and non-tumor tissues (Figure 1;

Figure S1). The statistics and evaluations demonstrated these

datasets (GLOBAL, SPEG, and IGP) provide an integrated prote-

omic and glycoproteomic data resource for HGSC study.

The hierarchical clustering method suggested that ovarian tu-

mors could be separated into three different clusters (Figure 2A).

The tumor clustering analysis at the IGP level showed apparent

consistency with the clustering results of GLOBAL andSPEGda-

tasets (Figures 2B and 2C), and further revealed that the clusters

could be correlated with the clinical phenotypes of tumor cellu-

larity and anatomic site (Figures 2A and 2D). Overall, glycans

are differentially presented in three tumor clusters. The tumor

cluster IGP1 has the lowest level of IG3, which is dominated by

the IGPs modified by complex glycans containing Fuc and/or

Sia types of glycans from complement and coagulation cas-

cades pathway. The tumor cluster IGP2 has the lowest level of

IG2, which contains the IGPs modified mainly by HM or Fuc
10 Cell Reports 33, 108276, October 20, 2020
type of glycans from the ECM-receptor interaction pathway.

Meanwhile, the tumor cluster IGP3 has the highest level of IG2

(Figure 2E). This result suggests that multi-omics data should

be considered to guide the classification of ovarian cancers

into molecular clusters, which is helpful to understand the rela-

tionship between the molecular alteration and the clinical

phenotypes.

The integrated glycoproteomic analysis of HGSCs and non-tu-

mor samples demonstrated that there was a distinct expression

pattern of proteins and glycoproteins in the tumors and non-tu-

mors (Figures 3A and 3B), which can potentially be used as tar-

gets for the diagnosis and/or treatment of HGSCs, especially

those glycoproteins or glycopeptides that are preferentially ex-

pressed on the cell surface or secreted in extracellular space

with the likelihood of releasing into body fluids (Figure 3C). Using

DAVID 6.8 on the significantly upregulated and downregulated

gene names of identified proteins, glycosite-containing pep-

tides, and IGPs compared with the KEGG pathway database,

we observed lysosome was an enriched pathway in upregulated

glycopeptides and focal adhesion, PI3-Akt signaling pathway,

ECM-receptor interaction, and complement and coagulation

cascades in downregulated glycopeptides (Figure 3D). The up-

regulation of proteins in the ECM-receptor interaction pathway

was observed in a clear cell renal cell carcinoma (ccRCC) study

(Clark et al., 2019), but the expression of proteins in the ECM-re-

ceptor interaction pathway was significantly downregulated in

HSGC tumors in protein, glycosite-containing peptides, and

IGPs. The significant changed abundance of the relevant pro-

teins and glycosylation could be also regarded as informative in-

dicators of the development of HGSC. Another interesting find is

that the significantly upregulated IGPs in the lysosome pathway

were dominantly occupied by HM type of glycans (Figure 3E),

which was further confirmed by the enriched pathway compari-

son in tumor and non-tumor tissues shown in Figure 3F. The ly-

sosomes are the recycling centers in cells, where organelles and

proteins are degraded during autophagy and micropinocytosis

(Towers and Thorburn, 2017), which are also critical components

for tumor cell resistance to stress and to survival and growth. On

the other hand, the exocytosis of acid hydrolases inside lyso-

somes could cause the ECM degradation (Kallunki et al.,

2013), which has been reported as important in invasion and

metastasis of tumor cells (Guan, 2015; Jiang et al., 2015). The in-

hibition of multiple lysosomal activities is one of the important di-

rections of cancer therapy methods, but rarely considered is the

inhibition of glycosylation on lysosomes, which could be a new

direction for future investigation.

Although our integrated glycoproteomic analysis of global pro-

teins, glycosite-containing peptides, and IGPs illustrated the for-

mation of distinct clusters of the tumors and non-tumors, and

that the trends of changes in proteins, glycosite-containing pep-

tides, and IGPs (T scores) of the tumors compared with the non-

tumors were mainly positively correlated, some glycosites were

differentially regulated as compared with their global expression

levels (Figure 4A). This finding was also observed in the compar-

ative analysis of the IGPs and glycosite-containing peptides from

IGP and SPEG datasets (Figure 4B). CA125 (MUC16) was devel-

oped for monitoring treatment response of ovarian cancer, dis-

tinguishing malignant from benign pelvic masses, assessment
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of prognosis, prediction of response to drugs, and detection of

primary cancer at its early stage (Bast et al., 2005). An elevated

serum CA125 level (>35 U/mL) by a monoclonal antibody

CA125 assay was found in patients with a variety of cancers,

particularly in ovarian cancer (Fedele et al., 2010). However,

elevated serum CA125 levels were also found in patients with

benign conditions, such as endometriosis, menstruation, and

pregnancy, as well as in patients with non-ovarian malignancy.

Furthermore, CA125 is not detected in 20% of ovarian tumor tis-

sue sections (Bast et al., 2005; Ooms et al., 2015). The limitation

of a lack of sensitivity and specificity of current CA125 testing in

clinical practice precipitates the urgency for the development of

an alternative testing strategy. Our proteomic and glycoproteo-

mic analysis showed that there was no evidence indicating that

CA125 was differentially expressed between the tumor and

non-tumor samples according to its global expression measure-

ment (Figure 4C). However, as shown in Figures 4D and 4E, the
glycosite-containing peptides of CA125 detected in all ovarian

tumors demonstrated differential expression between the tumor

and non-tumor samples. Our unique findings indicated that the

analysis of glycosites of CA125 protein could be used for the

detection of ovarian tumors. Although the protein expression of

CA125 was not different in the tumors and non-tumors, the de-

gree of protein glycosylation at specific glycosites could be influ-

enced by the pathological status of the tissues. This observation

suggests that glycosylation changes may occur independently

of protein expression. Thus, both the measurement of protein

expression and the glycosylation are critical to characterize tu-

mor-specific changes. Several studies have employed MS to

independently verify antibody-based CA125 detection (Swiatly

et al., 2018; Weiland et al., 2012). However, currently published

mass spectrometric data based on global proteomic experi-

ments may be insufficient to satisfy complete profiling of

CA125 and identify alterations on glycosylation level. Our finding
Cell Reports 33, 108276, October 20, 2020 11
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highlights the need for high-quality mass spectrometric data to

enable comprehensive CA125 analysis at each glycosite. Ulti-

mately, the improved knowledge about the nature of CA125

may lead to the development of assays for quantification of

CA125 glycosites specific to ovarian tumors, which can poten-

tially increase current specificities of CA125 for ovarian cancer

diagnosis and monitoring.

Differential protein expression was observed not only on the

global proteins or glycosites but also on the specific N-linked

glycans that modified the glycoproteins in the tumors. As shown

in Figure 4B, elevated levels of HM IGPs could be observed be-

tween tumors and non-tumors. The elevated HM type of glycans

was previously observed in breast cancer progression (de Leoz

et al., 2011) and also observed by glycomics analysis in epithelial

ovarian cancer progression (Chen et al., 2017). HM glycans are

not commonly detected in normal serum or presented as cell

surface proteins because of extensive glycan processing within

theGolgi, which yields highly processed complex and hybrid gly-

cans on the mature proteins. The presence of increased levels of

HM glycans in cancer represents an aberrant biosynthetic

pathway of protein glycosylation in cancer cells. Indeed, HM-

reactive antibodies have been isolated from patients with late-

stage PCa (Wang et al., 2013), suggesting that glycan biosyn-

thesis is dysregulated at theHM stagewithin the glycan process-

ing pathway.

The expression levels of glycosylation-related enzymes are

known to be disrupted during tumorigenesis (Meany and Chan,

2011; Stowell et al., 2015). Indeed, aberrant glycosylation in can-

cer progression can be used to distinguish cancerous cells from

healthy cells and is one of the few distinctive details that can be

used to distinguish between self-derived antigens (Gilgunn et al.,

2013; Padler-Karavani, 2014). As a non-template-mediated

PTM, glycans are not regulated by the genetic code; however,

the pattern of glycosylation is controlled by the expression levels

of glycosyltransferase and exo-/endo-glycosidase enzymes. In

addition, glycosylation-related enzymes have been demon-

strated to be pleiotropic drivers of the epithelial-mesenchymal

transition (EMT) process, particularly the influential and onco-

genic fucosylation modification (Chen et al., 2013; Wang et al.,

2014). Given the importance of aberrant glycosylation in cancer

progression, a number of glycogenes have been analyzed to

discover their cancer-associated functions. The ability of glyco-

sylation-related enzymes to alter cancer-associated processes

like migration demonstrates the multifaceted role of glycosyla-

tion enzymes (Wang et al., 2014). The observation that HM

glycan abundance is increased in ovarian tumors compared

with non-tumors suggests that there is dysregulation of the

enzymes responsible for trimming mannose during glycan

biosynthesis. The pathological dysregulation of oligomannose-

trimming enzymes could be related to the enhancement of

tumorigenesis. Most of the glycosyltransferases were identified

at lower expression levels in tumor tissues compared with non-

tumors, except FUT11 and PRKCSH (Figure 5A). PRKCSH is a

critical component of the glycan biosynthesis pathway and a

positive regulator of Wnt/beta-catenin signaling and autophagy

and apoptosis (Khaodee et al., 2017; Rauscher et al., 2018).

PRKCSH was found to play an important role in tumorigenesis

by selectively boosting the IRE1 signaling pathway (Shin et al.,
12 Cell Reports 33, 108276, October 20, 2020
2019). The upregulation of PRKCSH and the downregulation of

most of the downstream glycosylation enzymes, such as

MAN1A1 in tumors, actively promote the expression of the

N-linked glycoproteins carrying HM glycans (Figure 6A). The

HM type of glycans might occupy more glycosylation sites asso-

ciated with the peptides in the tumors. As shown in Figures 3E

and 4B, most of the HM type of glycan were upregulated in the

tumor tissues, while the downstream hybrid or complex glycans

were downregulated in the tumors. According to the observa-

tions above, we hypothesize that the glycosylation biosynthesis

pathway may be partially disabled in tumor tissues because of

the downregulation of a series of glycosylation enzymes starting

after the truncation of glucose in the ER (Figure 6A). Many protein

glycosylation events could be terminated after exiting the ER

with a premature glycosylation without further decoration on

glycan structures in Golgi. This could be an energy-savingmech-

anism in tumor to more efficiently manufacture glycoproteins or

adapt to environmental stress. Moreover, the overactivation of

the lysosome pathway might release overexpressed HM glyco-

sylated acid hydrolases via exocytosis to cause ECM degrada-

tion, including changes of stiffness, elasticity, and remodeling

of ECM, and consequently contribute to tissue fibrosis and tu-

mormetastasis. Due to the HM type of glycan’s protection, these

acid hydrolases could be more difficult to degrade and result in

more tissue damage.

In this study, the integrated multi-omics analysis, including

proteomics and glycoproteomics analysis of HGSC, demon-

strated the linkageof glycosylation toovarian cancer. Byapplying

the differential expression of multi-omics data between tumors

and non-tumors, we identified several potential tumor-specific

proteins, glycoproteins, and glycans. Further investigation

showed that the differential glycoprotein expression in tumors

could be shown as differential extent of glycosylation at glyco-

sites, as well as types of glycan on the glycosites. The glycosyla-

tion biosynthetic pathways of tumors differ from those of non-tu-

mors. Due to the upregulation of PRKCSH and the

downregulation of MAN1A1, the N-linked glycoproteins could

carry more HM glycans but fewer hybrid or less complex glycans

in tumors as compared with non-tumors. This could be a com-

mon mechanism regulated by PRKCSH in tumors for efficient

glycoprotein production, resistance to environmental stress,

andoveractivation of lysosomes. Finally, the comprehensive pro-

teomic and glycoproteomic measurements for the HGSC tumor

samples provide a valuable public resource. The glycoproteomic

data linking glycoproteins with their extent of glycosylation,

glycanmodifications, and theglycosylation enzymeswill improve

our understanding of the molecular basis of ovarian cancer.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead Contact

B Materials Availability

B Data and Code Availability



Resource
ll

OPEN ACCESS
d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Specimen acquisition

B Clinical data annotation

d METHOD DETAILS

B Protein extraction and tryptic digestion

B TMT labeling of peptides

B Peptide fractionation by basic reversed-phase liquid

chromatography (bRPLC)

B Enrichment of intact glycopeptides by Retain AX car-

tridges (RAX)

B Solid phase extraction of N-linked glycosite-containing

peptides (SPEG)

B LC-MS/MS for global proteomic analysis

B LC-MS/MS for glycoproteomic analysis

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Identification and quantification of global proteins

B Identification and quantification of glycosite-contain-

ing peptides isolated with SPEG

B Identification and quantification of intact N-linked gly-

copeptides

B Quality control assessment

B Proteomic and glycoproteomic clustering analysis

B Correlation between tumor clusters and clinical pheno-

type associations

B Principal component analysis of tumor and non-tumor

samples

B Tumor and non-tumor differential expression

B Integrated proteomic and glycoproteomic analysis

B Glycosylation biosynthetic pathway analysis
SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

celrep.2020.108276.
CONSORTIA

The members of the National Cancer Institute Clinical Proteomic Tumor Anal-

ysis Consortium are Yingwei Hu, Jianbo Pan, Punit Shah, Minghui Ao, Stefani

N. Thomas, Yang Liu, Lijun Chen, Michael Schnaubelt, David J. Clark, Qing

Kay Li, Jiang Qian, Matthew J.C. Ellis, Zhiao Shi, Bing Zhang, Jasmin Bavarva,

Melissa Borucki, Kimberly Elburn, Linda Hannick, Mathangi Thiagarajan, Ne-

gin Vatanian, Samuel H. Payne, Steven A. Carr, Karl R. Clauser, Michael A. Gil-

lette, Eric Kuhn, D.R. Mani, Shuang Cai, Karen A. Ketchum, Ratna R. Than-

gudu, Gordon A. Whiteley, Amanda Paulovich, Jeffrey Whiteaker, Nathan J.

Edwards, Subha Madhavan, Peter B. McGarvey, Daniel W. Chan, Ie-Ming

Shih, Hui Zhang, Zhen Zhang, Heng Zhu, Steven J. Skates, Forest M. White,

Philip Mertins, Akhilesh Pandey, Robert J.C. Slebos, Emily S. Boja, Tara Hiltke,

Christopher R. Kinsinger, Mehdi Mesri, Robert C. Rivers, Henry Rodriguez,

Stephen E. Stein, David Fenyo, Kelly Ruggles, Douglas A. Levine, Mauricio

Oberti, Tao Liu, Jason E. McDermott, Karin D. Rodland, Richard D. Smith,

Lisa J. Zimmerman, Paul A. Rudnick, Michael Snyder, David L. Tabb, Yingming

Zhao, Xian Chen, David F. Ransohoff, Andrew Hoofnagle, Daniel C. Liebler,

Melinda E. Sanders, Yue Wang, Sherri R. Davies, Li Ding, R. Reid Townsend,

Mark Watson, and Ana I. Robles.
ACKNOWLEDGMENTS

This work was supported by the National Cancer Institute (NCI) Clinical Prote-

omic Tumor Analysis Consortium (CPTAC; grants U24CA160036 and

U24CA210985).
AUTHOR CONTRIBUTIONS

Y.H., J.P., M.A., M.S., and J.Q. performed the computational analyses; P.S.,

S.N.T., Y.L., L.C., and D.J.C. performed the sample preparation and/or

mass spectrometric analyses; H.R., E.S.B., T.H., C.R.K., K.D.R., Q.K.L.,

Z.Z., D.W.C., and H.Z. conceived the study and interpreted the experiment

data; Y.H., and J.P. revised the results and wrote the response for revision;

and H.Z. supervised the participants. All authors prepared the manuscript

and contributed to the study.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: March 1, 2019

Revised: June 18, 2020

Accepted: September 23, 2020

Published: October 20, 2020

REFERENCES

Balog, C.I., Stavenhagen, K., Fung, W.L., Koeleman, C.A., McDonnell, L.A.,

Verhoeven, A., Mesker, W.E., Tollenaar, R.A., Deelder, A.M., and Wuhrer, M.

(2012). N-glycosylation of colorectal cancer tissues: a liquid chromatography

and mass spectrometry-based investigation. Mol. Cell. Proteomics 11,

571–585.

Bantscheff, M., Boesche, M., Eberhard, D., Matthieson, T., Sweetman, G., and

Kuster, B. (2008). Robust and Sensitive iTRAQ Quantification on an LTQ Orbi-

trap Mass Spectrometer. Mol. Cell Proteomics 7, 1702–1713.

Bast, R.C., Jr., Klug, T.L., St John, E., Jenison, E., Niloff, J.M., Lazarus, H., Ber-

kowitz, R.S., Leavitt, T., Griffiths, C.T., Parker, L., et al. (1983). A radioimmuno-

assay using a monoclonal antibody to monitor the course of epithelial ovarian

cancer. N. Engl. J. Med. 309, 883–887.

Bast, R.C., Jr., Badgwell, D., Lu, Z., Marquez, R., Rosen, D., Liu, J., Baggerly,

K.A., Atkinson, E.N., Skates, S., Zhang, Z., et al. (2005). New tumor markers:

CA125 and beyond. Int. J. Gynecol. Cancer 15 (Suppl 3), 274–281.

Cancer Genome Atlas Research Network (2011). Integrated genomic analyses

of ovarian carcinoma. Nature 474, 609–615.

Chambers, M.C., Maclean, B., Burke, R., Amodei, D., Ruderman, D.L., Neu-

mann, S., Gatto, L., Fischer, B., Pratt, B., Egertson, J., et al. (2012). A cross-

platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30,

918–920.

Chen, C.Y., Jan, Y.H., Juan, Y.H., Yang, C.J., Huang, M.S., Yu, C.J., Yang,

P.C., Hsiao, M., Hsu, T.L., and Wong, C.H. (2013). Fucosyltransferase 8 as a

functional regulator of nonsmall cell lung cancer. Proc. Natl. Acad. Sci. USA

110, 630–635.

Chen, H., Deng, Z., Huang, C., Wu, H., Zhao, X., and Li, Y. (2017). Mass spec-

trometric profiling reveals association of N-glycan patterns with epithelial

ovarian cancer progression. Tumour Biol. 39, 1010428317716249.

Chen, L., Zhang, B., Schnaubelt, M., Shah, P., Aiyetan, P., Chan, D., Zhang, H.,

and Zhang, Z. (2018). MS-PyCloud: an open-source, cloud computing-based

pipeline for LC-MS/MS data analysis. bioRxiv. https://doi.org/10.1101/

320887.

Clark, D.J., Dhanasekaran, S.M., Petralia, F., Pan, J., Song, X., Hu, Y., da Veiga

Leprevost, F., Reva, B., Lih, T.M., Chang, H.Y., et al.; Clinical Proteomic Tumor

Analysis Consortium (2019). Integrated Proteogenomic Characterization of

Clear Cell Renal Cell Carcinoma. Cell 179, 964–983.e31.

Coscia, F., Lengyel, E., Duraiswamy, J., Ashcroft, B., Bassani-Sternberg, M.,

Wierer, M., Johnson, A., Wroblewski, K., Montag, A., Yamada, S.D., et al.

(2018). Multi-level proteomics identifies CT45 as a chemosensitivity mediator

and immunotherapy target in ovarian cancer. Cell 175, 159–170.e16.

de Leoz, M.L., Young, L.J., An, H.J., Kronewitter, S.R., Kim, J., Miyamoto, S.,

Borowsky, A.D., Chew, H.K., and Lebrilla, C.B. (2011). High-mannose glycans
Cell Reports 33, 108276, October 20, 2020 13

https://doi.org/10.1016/j.celrep.2020.108276
https://doi.org/10.1016/j.celrep.2020.108276
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref1
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref1
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref1
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref1
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref1
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref2
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref2
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref2
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref3
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref3
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref3
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref3
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref4
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref4
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref4
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref5
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref5
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref6
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref6
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref6
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref6
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref7
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref7
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref7
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref7
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref8
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref8
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref8
https://doi.org/10.1101/320887
https://doi.org/10.1101/320887
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref10
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref10
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref10
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref10
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref11
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref11
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref11
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref11
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref12
http://refhub.elsevier.com/S2211-1247(20)31265-1/sref12


Resource
ll

OPEN ACCESS
are elevated during breast cancer progression. Mol. Cell. Proteomics 10,

M110.002717.

Ducie, J., Dao, F., Considine, M., Olvera, N., Shaw, P.A., Kurman, R.J., Shih, I.-

M., Soslow, R.A., Cope, L., and Levine, D.A. (2017). Molecular analysis of high-

grade serous ovarian carcinoma with and without associated serous tubal

intra-epithelial carcinoma. Nat. Commun 8, 990.

Fedele, C.G., Ooms, L.M., Ho,M., Vieusseux, J., O’Toole, S.A., Millar, E.K., Lo-

pez-Knowles, E., Sriratana, A., Gurung, R., Baglietto, L., et al. (2010). Inositol

polyphosphate 4-phosphatase II regulates PI3K/Akt signaling and is lost in hu-

man basal-like breast cancers. Proc. Natl. Acad. Sci. USA 107, 22231–22236.

Garg, B., Pathria, G., Wagner, C., Maurer, M., and Wagner, S.N. (2016). Signal

Sequence Receptor 2 is required for survival of human melanoma cells as part

of an unfolded protein response to endoplasmic reticulum stress. Mutagenesis

31, 573–582.

Gilgunn, S., Conroy, P.J., Saldova, R., Rudd, P.M., and O’Kennedy, R.J.

(2013). Aberrant PSA glycosylation—a sweet predictor of prostate cancer.

Nat. Rev. Urol. 10, 99–107.

Guan, X. (2015). Cancer metastases: challenges and opportunities. Acta

Pharm. Sin. B 5, 402–418.

Hart, G.W., and Copeland, R.J. (2010). Glycomics hits the big time. Cell 143,

672–676.

Hu, Y., Shah, P., Clark, D.J., Ao,M., and Zhang, H. (2018). Reanalysis of Global

Proteomic and Phosphoproteomic Data Identified a Large Number of Glyco-

peptides. Anal. Chem. 90, 8065–8071.

Hu, Y., Ao, M., and Zhang, H. (2019). OmicsOne: Associate Omics Data with

Phenotypes in One-Click. bioRxiv. https://doi.org/10.1101/756544.

Huang, D.W., Sherman, B.T., and Lempicki, R.A. (2009a). Bioinformatics

enrichment tools: paths toward the comprehensive functional analysis of large

gene lists. Nucleic Acids Res. 37, 1–13.

Huang, D.W., Sherman, B.T., and Lempicki, R.A. (2009b). Systematic and inte-

grative analysis of large gene lists using DAVID bioinformatics resources. Nat.

Protoc. 4, 44–57.

Jiang, W.G., Sanders, A.J., Katoh, M., Ungefroren, H., Gieseler, F., Prince, M.,

Thompson, S.K., Zollo, M., Spano, D., Dhawan, P., et al. (2015). Tissue inva-

sion and metastasis: Molecular, biological and clinical perspectives. Semin.

Cancer Biol. 35 (Suppl), S244–S275.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Primary tumor and normal

tissue samples

CPATC Biospecimen

Core Resource

See Experimental Model and Subject Details

Critical commercial assays

Sequencing grade modified trypsin Promega Cat#V517

Tandem mass tags-10plex Thermo Scientific Cat#90110

Retain AX Cartridges (RAX) Thermo Scientific Cat#60107-419

PNGase F New England Biolabs Inc Cat#P0704S

Deposited data

Proteomic data Original data have been deposited

to CPTAC data portal

https://cptac-data-portal.georgetown.edu/

study-summary/S038

Software and Algorithms

ProteoWizard 3.0 (Chambers et al., 2012) http://proteowizard.sourceforge.net/

MS-PyCloud (Chen et al., 2018) https://bitbucket.org/mschnau/MS-PyCloud/

downloads/

MS-GF+ (Kim and Pevzner, 2014) https://github.com/MSGFPlus/msgfplus/

GPQuest 2.1 (Hu et al., 2018) https://github.com/huizhanglab-jhu/GPQuest

CancerSubtypes (Xu et al., 2017) http://bioconductor.org/packages/release/bioc/

html/CancerSubtypes.html

Perseus (Tyanova et al., 2016) https://maxquant.net/perseus/

KEGG database (Kanehisa and Goto, 2000) https://www.genome.jp/kegg/

OmicsOne (Hu et al., 2019) https://github.com/huizhanglab-jhu/OmicsOne

DAVID 6.8 Huang et al., 2009a, 2009b https://david.ncifcrf.gov/

STRING 10.5 (Szklarczyk et al., 2017) https://string-db.org/

CombiROC (Mazzara et al., 2017) http://combiroc.eu/

ESTIMATE (Yoshihara et al., 2013) https://bioinformatics.mdanderson.org/

public-software/estimate/
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Hui Zhang

(huizhang@jhu.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The datasets generated during this study are available at CPTAC data portal and publicly available (https://cptac-data-portal.

georgetown.edu/study-summary/S038). The codes supporting the current study are publicly available and listed in the Key

Resources Table.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Specimen acquisition
The ovarian tumor and non-tumor tissue samples used in this study were acquired from the prospective project of Clinical Proteomic

Tumor Analysis Consortium (CPTAC). Biospecimens were collected from 83 patients who were recently diagnosed with high-grade

serous ovarian adenocarcinoma, underwent surgical resection and did not receive any prior treatment for their disease, including
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chemotherapy or radiotherapy. For each patient, up to 3 individual fimbria from each normal FT were collected as non-tumor tissue

control. Twenty-three relevant non-tumor tissues from FTs included 13 paired non-tumor samples from the 83 patients. Ten patients

provided FTs only as the matched tumor tissues from these 10 cases failed molecular qualification (McDermott et al., 2020). There

were 83 tumor and 23 non-tumor tissue samples were applied in this study. All caseswere required to be of serous histology but were

collected regardless of surgical stage or histologic grade. Cases were staged according to the 1988 International Federation of

Gynecology and Obstetrics (FIGO) staging system.

Each specimen endured cold ischemia for% 30minutes prior to freezing in liquid nitrogen. The specimens were used for the global

proteomics (Global) and glycoproteomics studies including solid phase extraction of N-linked glycosite-containing peptide (SPEG)

and intact N-linked glycopeptide (IGP) analyses. Each specimen was embedded in optimal cutting temperature (OCT) medium, and

histologic sections were obtained from the top and bottom portions for pathology review. Each case was reviewed by a board-certi-

fied pathologist to confirm the assigned pathology. For inclusion in this study, the top and bottom sections were required to contain

60% tumor cell nuclei with < 20% necrosis. The specimens were serially curled at the Biospecimen Core Resource, and the curled

sections were then transferred into pre-cooled cryovials (Corning).

Specimens were shipped overnight from the Tissue Source Sites to the Proteome Characterization Center located at Johns Hop-

kins University (JHU) in Baltimore, MD using a cryoport that maintained an average temperature of < �150�C. All procedures were

carried out on dry ice to maintain the tissue in a frozen state and processed for mass spectrometric (MS) analysis at JHU.

Clinical data annotation
Clinical data were obtained from Tissue Source Sites and aggregated by the Biospecimen Core Resource. Data formswere stored as

Microsoft Excel files (.xlsx). Clinical data can be accessed and downloaded from the CPTAC Data Portal (https://cptac-data-portal.

georgetown.edu/cptac/documents/CPTAC_S038_ovarian_cancer_clinical_data_r1.xlsx). Demographics, histopathologic informa-

tion, and treatment details were collected. Supplemental clinical data were collected directly from the original file, and the updated

clinical data are provided in Table S1. As shown in Table S1, the characteristics of the CPTAC Prospective specimens reflect the

general population of women with advanced ovarian cancer. The average age at diagnosis was 59.94 years, all cases were of serous

histology. Most cases were at late stage, with 76% (63 of 83) of cases at FIGO stage III and 18% (15 of 83) at FIGO stage IV. The ‘SPL’

column was used to indicate the internal sample index for simplifying the sample name.

METHOD DETAILS

Protein extraction and tryptic digestion
The experimental design is shown in Figure 1A. Approximately 30-200 mg of each of the sectioned ovarian tumor tissues or non-tu-

mor tissues were homogenized separately in lysis buffer (8 M urea, 1.0MNH4HCO3, pH 8.0) by sonication (Branson Sonifier 250, 15 s

cycles with 1 min cool down, 4 times, 20% output). Lysates were precleared by centrifugation at 16,500 g for 15 min at 4�C and pro-

tein concentrations were determined by BCA assay (Pierce). Proteins (2mg/mL) were reduced with 10mM tris (2-carboxyethyl) phos-

phine (TCEP) for 1 h at 37�C, and subsequently alkylated with 15mM iodoacetamide for 1 h at room temperature (RT) in the dark.

Samples were diluted 1:5 with deionized water and digested with sequencing grade modified trypsin (Promega) at a 1:50

enzyme-to-substrate ratio. After overnight digestion at 37�C, another aliquot of the same amount of trypsin was added to the samples

and further incubated at 37�C overnight. The digested samples were then acidified with 50% trifluoroacetic acid (TFA, Sigma) to�pH

2. Tryptic peptides were desalted on reversed phase C18 SPE columns (Waters) and dried using a Speed-Vac (Thermo Scientific).

TMT labeling of peptides
Desalted peptides from each sample were labeled with 10-plex TMT (Tandem Mass Tag) reagents (Thermo Fisher Scientific). Pep-

tides (300 mg) from each of the prospective ovarian samples were dissolved in 55 mL of 0.5 M triethylammonium bicarbonate (TEAB),

pH 8.5 solution, and mixed with 3 units of TMT reagent that was freshly dissolved in 130 mL of ethanol. After 1h incubation at RT, the

reaction was quenched by acidification with 50% TFA to pH < 3. A reference sample was created by pooling an aliquot of peptides

from each individual tumor and non-tumor sample, and TMT Channel 126 was used to label the pooled reference sample throughout

the proteomic analysis. A single HGSOC tumor sample previously used as an internal quality control (QC) for the analysis of the pro-

spectively-collected tumors (Zhang et al., 2016) was prepared and repeatedly analyzed in the same manner in the current study. A

total of 83 prospectively-collected tumors and 23 non-tumor samples together with 9 QC aliquots were co-randomized to 13 TMT

sets. The sample-to-TMT channel mapping is shown in the ‘‘Experiment Design’’ sheet of Table S1. After labeling, in each TMT

set, peptides labeled by different TMT reagents were mixed and desalted on C18 SPE columns. After desalting, the peptides

from each sample (3 mg) were divided to 4 groups: 200 mg for proteomic analysis, 400 mg for SPEG analysis, 1.1 mg for intact glyco-

peptide analysis, and 1.3 mg for additional analysis, if needed.

Peptide fractionation by basic reversed-phase liquid chromatography (bRPLC)
Extensive fractionation was performed by bRPLC to reduce sample complexity and thus reduce the likelihood of peptides being co-

isolated and co-fragmented. This approach has been well-documented to reduce isobaric (i.e., iTRAQ, TMT) reporter ion ratio distor-

tion effects (Bantscheff et al., 2008) and it was applied in this study.
Cell Reports 33, 108276, October 20, 2020 e2

https://cptac-data-portal.georgetown.edu/cptac/documents/CPTAC_S038_ovarian_cancer_clinical_data_r1.xlsx
https://cptac-data-portal.georgetown.edu/cptac/documents/CPTAC_S038_ovarian_cancer_clinical_data_r1.xlsx


Resource
ll

OPEN ACCESS
The samples were fractionated using bRPLC. Approximately 200 mg of 10-plex TMT labeled sample was first purified on strong

cation exchange columns (Glygen), and then separated on a reversed phase Zorbax extend-C-18 column (4.6 3 100 mm column

containing 1.8-um particles; Agilent) using an Agilent 1200 Infinity HPLC System. The solvent A consisted of 10 mM ammonium

formate, pH 10.0. Solvent B consisted of 10 mM ammonium formate, pH 10, 90% acetonitrile as mobile phase. The separation

gradient was set as follows: 2% B for 10 min, from 2 to 15% B for 5 min, from 15 to 45% B for 85 min, from 45 to 95% B for

5 min, and 95% B for 15 min. A total of 96 fractions were collected into a 96 well plate in a time-based mode. These fractions

were then concatenated into 24 fractions by combining 4 fractions that are 24 fractions apart (i.e., combining fractions #1, #25,

#49, and #73; #2, #26, #50, and #74; and so on). Each concatenated fraction was dried down in a Speed-Vac and re-suspended

in 2% acetonitrile, 0.1% formic acid for LC-MS/MS analysis.

Enrichment of intact glycopeptides by Retain AX cartridges (RAX)
A total of 1.1 mg TMT labeled peptides from each set were adjusted to 95% ACN (v/v), 1% TFA (v/v) for intact glycopeptide enrich-

ment using Retain AX Cartridges (RAX) (particle size 30–50 mm, 30 mg sorbent per cartridge, Thermo Fisher Scientific) (Yang et al.,

2017). The RAX columns were equilibrated three times with 1 mL of ACN, three times with 100 mM triethylammonium acetate, three

times with water, and finally three times with 95%ACN (v/v), 1% TFA (v/v). The samples were loaded on to RAX columns and washed

four times with 1 mL of 95%ACN, 1% TFA. Finally, bound intact glycopeptides were eluted in 400 mL of 50% ACN (v/v), 0.1% TFA (v/

v). The intact glycopeptides were then dried in a Speed-Vac and stored in �80�C prior to LC–MS/MS analysis.

Solid phase extraction of N-linked glycosite-containing peptides (SPEG)
N-linked glycopeptides were captured by solid phase extraction of N-linked glycosite-containing peptides (SPEG) as described pre-

viously (Zhang et al., 2003). Briefly, 400 mg TMT-labeled peptides (in C18 elution buffer: 60% ACN, 0.1%TFA) of each TMT set were

oxidized by 10 mM of sodium periodate at room temperature for 1 h in the dark. After oxidation, samples were desalted on C18 SPE

columns to remove sodium periodate. Then the sample was conjugated to 40ml hydrazide resin (Bio-Rad) in the presence of 1% An-

iline at room temperature overnight by gentle shaking. Non-glycopeptides were removed by centrifugation at 6000 rpm for 1 min.

Then the resin was intensively washed sequentially with 1) 50% ACN/50% deionized water (v/v), 2) 1.5M NaCl, 3) deionized water

and 4) 25mM NH4HCO3, three times for each wash step, by vortexing and centrifugation. After the last wash, the hydrazide resin

was reconstituted in 200mL 25mM NH4HCO3. The N-linked glycopeptides were released from the resin by incubation with 2mL

PNGase F (New England Biolabs Inc) at 37�C overnight with gentle shaking. The released de-glycopeptides were dried and stored

in �80�C prior to LC-MS/MS analysis.

LC-MS/MS for global proteomic analysis
The global proteome fractions were separated on a Dionex Ultimate 3000 RSLC nano system (Thermo Scientific) with a 75 mm x

50 cmPepMap RSLCC18 Easy-Spray column (Thermo Scientific) protected by a 100 mmx 2 cm Acclaim PepMap 100 guard column

(Thermo Scientific). The mobile phase flow rate was 450 nL/min and consisted of 0.1% formic acid in water (A) and 0.1% formic acid/

95% acetonitrile (B). The sample injected (6 mL) was trapped using 100%mobile phase A for 13 min at a flow rate of 5 mL/min before

being placed in-line with the analytical column and subjected to a gradient profile whichwas set as follows: 2%–4%B for 10min, 4%–

24% B for 80 min, 24%–33% B for 22 min, 33%–95% B for 3 min, 95% B for 10 min at a flow rate of 320 nL/min. MS analysis was

performed using a Q-Exactive mass spectrometer (Thermo Scientific). The Q-Exactive mass spectrometer parameters were as fol-

lows: electrospray voltage was 2.2 kV; following a 20 min delay from the end of sample trapping, Orbitrap precursor spectra (AGC

3x106) were collected from 400-1800 m/z for 110 minutes at a resolution of 70K along with the top 12 data dependent Orbitrap HCD

MS/MS spectra at a resolution of 35K (AGC 2x105) andmax ion time of 120msec; ions selected forMS/MSwere isolated at a width of

1.4 m/z and fragmented using a normalized collision energy of 31%; peptide match was set to ‘Preferred’; exclude isotopes was set

to ‘on’; and charge state screening was enabled to reject unassigned 1+, and > 8+ ions with a dynamic exclusion time of 30 s to

discriminate against previously analyzed ions.

LC-MS/MS for glycoproteomic analysis
The de-glycosylated glycosite-containing peptides isolated by SPEG were separated on a Dionex Ultimate 3000 RSLC nano system

(Thermo Scientific) with a 75 um x 50 cmAcclaim PepMap RSLCC18 Easy-Spray column (Thermo Scientific) protected by a 100um x

2 cmAcclaim PepMap 100 guard column (ThermoScientific). Themobile phase flow rate in the analytical columnwas 320 nL/min and

consisted of 0.1% formic acid in water (A) and 0.1% formic acid/95% acetonitrile (B). The sample injected (6 mL) was trapped using

100%mobile phase A for 13 min at a flow rate of 5 mL/min before being placed in-line with the analytical column and subjected to the

gradient profile which was set as follows: 2%–7%B for 10min, 7%–27%B for 80min, 27%–34%B for 22min, 34%–95%B for 3min,

95% B for 10 min. MS analysis was performed using a Q-Exactive mass spectrometer (Thermo Scientific). The Q-Exactive mass

spectrometer parameters were as follows: electrospray voltage was 2.2 kV; following a 20min delay from the end of sample trapping,

Orbitrap precursor spectra (AGC3x106) were collected from 400-1800m/z for 110minutes at a resolution of 70K alongwith the top 12

data dependent Orbitrap HCD MS/MS spectra at a resolution of 35K (AGC 2x105) and max ion time of 120 msec; ions selected for

MS/MS were isolated at a width of 1.4 m/z and fragmented using a normalized collision energy of 31%; peptide match was set to

‘Preferred’; exclude isotopes was set to ‘on’; and charge state screening was enabled to reject unassigned 1+, and > 8+ ions
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with a dynamic exclusion time of 30 s to discriminate against previously analyzed ions. Each sample was analyzed by LC-MS/MS in

triplicate.

The intact glycopeptides were analyzed on the Orbitrap Fusion Lumos system (Thermo Scientific). The intact glycopeptides were

separated using an Easy nLC 1200 UPLC system (Thermo Scientific) on an in-house packed 20 cm x 75 mm diameter C18 column

(1.9 mm Reprosil-Pur C18-AQ beads, Dr. Maisch GmbH); Picofrit 10 mm opening (New Objective). The column was heated to 50�C
using a column heater (Phoenix-ST). The flow rate was 200 nL/min with 0.1% formic acid and 2% acetonitrile in water (A) and 0.1%

formic acid/90% acetonitrile (B). Injected peptides were subjected to the following gradient: 2%–6% B for 1 min, 6%–30% B for

84 min, 30%–60% B for 9 min, 60%–90% B for 1 min, 90% B for 5 min and then back to 50% B for 10 min. The Fusion Lumos

mass spectrometer parameters were as follows: electrospray voltage was 1.8 kV; the ion transfer tube temperature was at

250�C; Orbitrap precursor spectra (AGC 4x105) were collected from 350-1800 m/z for 110 min at a resolution of 60K along with

data dependent Orbitrap HCD MS/MS spectra (centroided) at a resolution of 50K (AGC 2x105) and max ion time of 105 msec for

a total duty cycle of 2 s; masses selected for MS/MS were isolated (quadrupole) at a width of 0.7 m/z and fragmented using a

high energy collision dissociation of 38%; peptide charge state screening was enabled to reject unassigned 1+, 7+, 8+, and > 8+

ions with a dynamic exclusion time of 45 s to discriminate against previously analyzed ions between ± 10 ppm. Each sample was

analyzed by LC-MS/MS in triplicate.

QUANTIFICATION AND STATISTICAL ANALYSIS

Identification and quantification of global proteins
LC-MS/MS analysis of the TMT-labeled, bRPLC fractionated samples generated a total of 312 global proteomics data files. The

Thermo RAW files were processed with ProteoWizard 3.0(Chambers et al., 2012) using ‘peak-picking’ for MS1 and MS2 spectra

and converted to ‘.mzML’ format, and protein identification was conducted using MS-PyCloud (Chen et al., 2018). MS-GF+

v9881 (Kim et al., 2008; Kim and Pevzner, 2014) was the default search engine in MS-PyCloud applied to match against the RefSeq

human protein sequence database, released onMay 02, 2016 (101,661 proteins). The partially tryptic search used a ± 10 ppm parent

ion tolerance, 0.5 m/z fragment ion tolerance, allowed for isotopic error in precursor ion selection [-1,2], and searched a decoy data-

base composed of the forward and reversed protein sequences. MS-GF+ settings included static carbamidomethylation (+57.0215

Da) on Cys residues, TMTmodification (+229.1629 Da) on the peptide N terminus and Lys residues, and dynamic oxidation (+15.9949

Da) on Met residues for searching the global proteome data. Peptide identification stringency was tuned to not exceed a false dis-

covery rate (FDR) of 1% at the peptide-spectrum match (PSM) level. In the protein inference conducted by MS-PyCloud, a minimum

of 3 PSMs per peptide and 2 unique peptides per protein were required for achieving FDR < 1% at the protein level within the full

dataset. Inference of parsimonious protein set resulted in a total of 8,144 common protein groups among all the tumor, non-tumor,

pooled reference, and QC samples (Table S2).

The intensities of all ten TMT reporter ions in eachMS/MS spectrumwere extracted usingMS-PyCloud. Next, PSMswere linked to

the extracted reporter ion intensities by scan number. The relative protein abundance was calculated using the ‘log2-median-me-

dian’ strategy. The pooled reference sample was labeled with TMT 126 reagent, allowing comparison of relative abundances across

the normalized intensity values of the remaining 9 channels of the TMT 10-plexes on the PSM level. The median value of the log2-

transformed relative abundances from different scans and different bRPLC fractions corresponding to the same peptide were

used as the relative abundance of the peptide. The final relative protein abundance was calculated as the median value of the

log2-transformed relative abundance from each protein’s constituent peptides. Small differences in sample handling can result in

detectable systematic, sample-specific bias in the quantification of protein levels. In order to mitigate these effects, we computed

the median, log2 relative protein abundance over all identified proteins for each sample followed by re-centering to achieve a com-

mon median of 0 (see Figure S1A).

Identification and quantification of glycosite-containing peptides isolated with SPEG
The glycosite-containing peptide identification for the 39 SPEG data files (each set has 3 replicated runs) were performed as

described above (e.g., peptide level FDR < 1%), with an additional dynamic deamidation (+0.984016 Da) modification on Asn and

Gln residues. For SPEG datasets, the TMT-10 quantitative data was summarized at the glycosite-containing peptide level (Table

S3). All the peptides (glycosite-containing peptides and global peptides) were labeled with TMT-10 reagent simultaneously. SPEG

and intact glycopeptide analyses were performed after the TMT labeling. Thus, all the biases upstream of labeling are assumed

to be identical between the global proteomics and glycoproteomics samples isolated by SPEG and intact glycopeptide enrichment.

Therefore, to account for sample-specific biases in the glycosite-containing peptide analysis we normalized the relative abundance

of the glycosite-containing peptides by subtracting the median values of log2-transformated relative abundance of glycoproteins in

each sample (see Figure S1D).

Identification and quantification of intact N-linked glycopeptides
The intactN-linked glycopeptides were identified using GPQuest 2.1 software (Hu et al., 2018; Mertins et al., 2018). Prior to database

search, ProteoWizard 3.0 was used to convert the .RAW files to .mzML files with the ‘‘centroid all scans’’ option selected. GPQuest

2.1 was applied to identify intact glycopeptides toMS/MS spectra using two approaches: searching spectra containing oxonium ions
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(‘oxo-spectra’) and identifying intact N-linked glycopeptides. The oxonium ions were used as the signature features of the glycopep-

tides from the MS/MS spectra, which were caused by the fragmentation of glycans attached to intact glycopeptides in the mass

spectrometer. In this study, the MS/MS spectra containing the oxonium ions (m/z 204.0966) in the top 10 abundant peaks after

removing TMT reporter ions were considered as the potential glycopeptide candidates. The intactN-linked glycopeptides were iden-

tified by using GPQuest 2.1 to search against the database of unique deglycosylated peptide sequences identified from the SPEG

method and a database containing 178 N-linked glycan compositions. The glycan database was collected from the public database

of GlycomeDB (Ranzinger et al., 2011) (http://www.glycome-db.org). Each tandemmass spectrum was first processed in a series of

preprocessing procedures, including removing reporter ions, spectrum de-noising, intensity square root transformation (Liu et al.,

2007), oxonium ions evaluation and glycan type prediction (Toghi Eshghi et al., 2016). The top 100 peaks in each preprocessed spec-

trum were matched to the fragment ion index generated from a peptide sequence database to identify all the candidate peptides. All

the qualified (> 6 fragment ions matchings) candidate peptides were compared with the spectrum again to calculate the Morpheus

scores (Wenger and Coon, 2013) by considering all the peptide fragments, glycopeptide fragments, and their isotope peaks. The

peptide having the highest Morpheus score was then assigned to the spectrum. The mass gap between the assigned peptide

and the precursor mass was searched in the glycan database to find the associated glycan. The best hits of all ‘oxo-spectra’

were ranked by the Morpheus score in descending order, in which those with FDR < 1% and covering > 10% total intensity of

each tandem spectrumwere reserved as qualified identifications. The precursor mass tolerance was set as 10ppm, and the fragment

mass tolerance was 20 ppm.

Similar to the process described for the analysis of glycosite-containing peptides in SPEG, the quantification of the intact glyco-

peptides was also conducted at the peptide level. The median log2 ratio value of all the PSMs of an identical intact glycopeptide was

used as the relative abundance of the intact glycopeptide. The relative abundances of intact glycopeptides of samples were also

normalized by subtracting the median value of glycoproteins in each corresponding sample expressed in the global datasets (See

Figure S1G and Table S4).

Quality control assessment
The sample correlation was the indicator of the similarity of the expression values of the samples. To eliminate the influence of the

pooled reference channel, the absolute intensity matrix was applied in the sample correlation procedure. Instead of using a ‘log2-

median-median’ strategy, the ‘sum-of-intensity’ approach was used to generate the intensity matrix of protein expression. The me-

dian (MD) strategy is 1) calculate median log2 value of the ith sample (mi =medianðyij; where j = 1.p; i = 1.nÞ: Here, p is the total

protein or peptide identification number, and n is the total sample number. 2) record m0 = medianðmi; where i = 1.nÞ. 3) center the
data of each sample by subtracting median from each value ðy0ij = yij �miÞ. The sum of intensity of all the reporter ions of the PSMs

from all the fractions assigned to the same peptide was used as the absolute abundance of the peptide. The sum of peptide intensity

values of the same protein was regarded as the absolute abundance of the protein. A Spearman’s rank correlation value was calcu-

lated between the two samples using their shared proteins (See Figure S1B). As the correlation is a rank-based correlation, no

normalization is required before the calculation. The sample correlation was also applied on the ‘sum-of-intensity’ peptide matrices

of all the quality control samples of the SPEG dataset and the intact N-linked glycopeptide dataset (See Figures S1E and S1H). The

coefficient of variation (CV) values of the relative abundance (ratio values) of proteins or peptides of the QC samples were also calcu-

lated to evaluate the stability of the reproducibility of proteins or peptides expressed in the 9 QC samples (See Figures S1C, S1F, and

S1I).

Proteomic and glycoproteomic clustering analysis
The top 50% of most variable global proteins (2,958) without missing values were analyzed by CancerSubtypes (Xu et al., 2017) for

consensus clustering (Monti et al., 2003) of tumor subtypes. For the glycosite-containing peptide and IGP data, an identical approach

was applied on the 50% most variable glycosite-containing peptides and IGPs. Specifically, 80% of the original sample pool was

randomly subsampled without replacement and partitioned into three major clusters using hierarchical clustering, which was

repeated 500 times (Wilkerson and Hayes, 2010). The expression values were transformed into Z scores using the built-in standard-

ization function of R. The sample clustering result was reported in Table S5. For the IGP clustering, the corresponding glycan types

were also listed on the left side of the heatmap of the clustered expressionmatrix to illustrate the possible relationship between tumor

clusters and the associated glycan types (Figure 2A). The preferential glycan types and enriched pathways of different intact glyco-

peptides were grouped and shown in the left side columns of Figure 2A. The Z-score transformed the abundance of intact glycopep-

tides were grouped by the IG types in each IGP cluster to show the preferential glycosylation in each tumor cluster (Figure 2E).

Correlation between tumor clusters and clinical phenotype associations
The abundance levels of GLOBAL, SPEG, and IGP were transformed to binary vectors. The spearman’s rank correlation coefficient

values of each pair of binary vectors were calculated by using Python SciPy package. The results were visualized in the Figures 2B

and 2C for GLOBAL and SPEG comparing to IGP respectively. The categorical clinical phenotypes, such as tumor grade, tumor

stage, participant race, anatomic site, origin site were also transformed to binary vectors for each class of the corresponding clinical
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phenotype and then correlated with the tumor clusters of IGP datasets. The numeric clinical phenotypes, such as tumor cellularity

and participant agewere directly correlated with the tumor clusters using spearman’s rank correlationmethod. The result was shown

in Figure 2D.

Principal component analysis of tumor and non-tumor samples
The principal component analysis (PCA) function under OmicsOne (Hu et al., 2019) using scikit-learn package (Pedregosa et al.,

2011) was implemented to conduct the unsupervised clustering analysis with the parameter ‘n_components = 20 on the expression

matrix of global proteomic data, in which there are 106 samples (observations) and 365 intact glycopeptides (features). The 95%con-

fidence coverage was represented by an ellipse for each group, which was calculated based on themean and covariance of points in

that group (see Figure 3A). A similar approach was also applied on the GLOBAL proteomic and SPEG glycoproteomic datasets (see

Figures S3A and S3B).

Tumor and non-tumor differential expression
To uncover discriminating features between tumors and non-tumors, we performed the t test analysis on the global proteomic data-

set of 5916 global proteins expressed on tumor and non-tumor samples. The permutation corrected p values were calculated using

Perseuswith setting the FDR= 0.01 to identify the significant alternations. A total of 645 significantly upregulated and 587 significantly

downregulated proteins were observed in the filtered results (see Figure S3C). A similar approach was also applied to the SPEG and

IGP glycoproteomic data (See Figures S3D and 3B and Table S6).

CombiROC is an interactive web tool for selecting accurate marker combinations of omics data (Mazzara et al., 2017). It was

applied to plot the Receiver operating characteristic (ROC) curves for the differential intact glycopeptides in tumor and non-tumor

samples, in which both signal cutoff and minimum features were set to 1 to plot the results. The result was shown in Figure 3C.

DAVID 6.8 was applied on the 48 significantly upregulated and 94 significantly downregulated intact glycopeptides to perform

gene-annotation enrichment analysis and shown in Figure 3D. The 365 identified glycopeptides were classified to HM, Fuc, and

Sia types based on their glycan compositions, and separately plotted according to their median log2 ratio values in tumor and

non-tumor sample groups as shown in Figure 3E. DAVID 6.8 was also applied on the gene name list of intact glycopeptides asso-

ciated with HM, Fuc, and Sia glycan types for enriched pathways (Figure 3F).

Integrated proteomic and glycoproteomic analysis
The t tests were applied to the common global proteins, glycosite-containing peptides, and intact glycopeptides respectively to

determine their differential expression in the tumor and non-tumor tissues (Figures 4A and 4B). The glycosylation sites of CA125

(MUC16) and its identified glycosite-containing peptides (SPEG) were highlighted in Figures 4C–4E to indicate the differential expres-

sion of global protein and the three glycosite-containing peptides. For further comparison, their corresponding expression values

across all samples are shown as four boxplots representing expression in tumors and non-tumors (Figures 4D and 4E). The heter-

ogenous glycosylation events on the identical glycosite of SSR2 were plotted in Figures 4F–4H.

Glycosylation biosynthetic pathway analysis
The intact glycopeptide expression was hypothesized to be influenced at least by the expression of substrate glycoproteins and

glycosylation enzymes. The log2 ratio values of intact glycopeptides were correlated with the 22 glycosylation enzymes identified

from the global proteomic data in this study. The correlation matrix was further arranged by hierarchical clustering on glycopeptides

(columns) and glycosylation enzymes (rows) and visualized in Figure 5A. The glycan compositions were linked to the intact glycopep-

tides. The intact glycopeptides were classified as different groups for two comparisons based on the glycan structure they carry: one

comparison is whether glycopeptides contained HM glycans (Figures 5D and 5E); the other is whether glycopeptides contained Fuc

glycans (Figure 5C). For each comparison, the correlations between the IPGs and specific glycosylation enzyme (FUT11, PRKCSH, or

MAN1A1) that correlated with the IGPs across all samples were calculated and shown in a boxplot. The hypothesis of tumor-specific

glycosylation mechanism was shown in Figure 6A.

The gene names of significantly elevated intact glycopeptides modified by HM glycans in tumors were submitted in STRING 10.5

(Szklarczyk et al., 2017). Theminimum required interaction scorewas set to 0.7. The protein-protein interaction networkwas shown in

Figure 6B by disabling structure previews inside network bubbles, hiding disconnected nodes and small groups in the network.
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Figure S1. Quality control measurements of global, SPEG, and IGP data sets. Related to Figure 1. 
A. Normalized log2 ratio of protein expression of all samples. 
B. Sample-wise comparison of 9 Quality Control (QC) Samples for GLOBAL proteomic data. 
C. Gene-wise comparison of genes expressed across all 9 QC samples. 
D. Normalized log2 ratio values of glycosite-containing peptide expression of all samples. 
E. Sample-wise comparison of 9 quality control (QC) samples for SPEG data. 
F. Glycopeptide-wise comparison of glycosites expressed across all 9 QC samples. 
G. Normalized log2 ratio values of intact glycopeptide expression of all samples. 
H. Sample-wise comparison of 9 quality control (QC) samples from intact glycopeptide data.  
I.  Intact glycopeptide-wise comparison of those expressed across all 9 QC samples.
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Figure S2. Tumor clustering analysis. Related to Figure 1 and 2.
A. The expression matrix of the signature protein sets of four historical subtypes (differentiated, 
 immunoreactive, mesenchymal, and proliferative) under the order of IGP clusters.
B. The box plot of z-score transformed log2 ratio of signature proteins in IGP clusters grouped by 4 
 historical subtypes (DIF: differentiated, IMR: immunoreactive, MES: mesenchymal, PRO: proliferative).
C. The scatter plot of Tumor Purity and Stromal Score of 83 tumor samples calculated by ESTIMATE.
D. The scatter plot of Tumor Purity and Immune Score of 83 tumor samples calculated by ESTIMATE.
E. The scatter plot of Tumor Purity and ESTIMATE Score of 83 tumor samples calculated by ESTIMATE.
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Figure S3. Proteomic and glycoproteomic analyses of ovarian tumors and non-tumors revealed alterations of proteins and glycoproteins 
in ovarian tumors. Related to Figure 3.
A. Principal Component Analysis (PCA) based on the abundance of proteins from GLOBAL dataset to reveal the difference between tumor 
 and non-tumor samples.
B. Principal Component Analysis (PCA) based on the abundance of glycosite-containing peptides from SPEG dataset to reveal the difference 
 between tumor and non-tumor samples.
C. Volcano plot of glycosite-containing peptides of tumor and non-tumor samples from GLOBAL dataset to reveal the significantly 
 up-regulated and down-regulated proteins.
D. Volcano plot of glycosite-containing peptides of tumor and non-tumor samples from SPEG dataset to reveal the significantly 
 up-regulated and down-regulated peptides.
E. The overrepresentation pathway analysis on up-regulated and down-regulated proteins in GLOBAL data set.
F. The overrepresentation pathway analysis on up-regulated and down-regulated proteins in SPEG data set.
G. The clustered heatmap of log2 ratio of fold changes (FC) of the median abundances of intact glycopeptides of tumors comparing to 
 non-tumors. The enriched KEGG lysosome pathway and the associated three glycan types (HM, Fuc, and Sia) were annotated on the 
 crytop rows. 
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