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Abstract
Hypoxia describes limited oxygen availability at the cellular level. Myeloid cells are exposed to

hypoxia at various bodily sites and even contribute to hypoxia by consuming large amounts of

oxygen during respiratory burst. Hypoxia-inducible factors (HIFs) are ubiquitously expressed het-

erodimeric transcription factors, composed of an oxygen-dependent 𝛼 and a constitutive 𝛽 sub-

unit. The stability ofHIF-1𝛼 andHIF-2𝛼 is regulatedbyoxygen-sensing prolyl-hydroxylases (PHD).

HIF-1𝛼 andHIF-2𝛼modify the innate immune response and are context dependent.We provide a

historic perspective of HIF discovery, discuss the molecular components of the HIF pathway, and

howHIF-dependent mechanisms modify myeloid cell functions. HIFs enable myeloid-cell adapta-

tion to hypoxia by up-regulating anaerobic glycolysis. In addition to effects on metabolism, HIFs

control chemotaxis, phagocytosis, degranulation, oxidative burst, and apoptosis. HIF-1𝛼 enables

efficient infection defense bymyeloid cells. HIF-2𝛼 delays inflammation resolution and decreases

antitumor effects by promoting tumor-associated myeloid-cell hibernation. PHDs not only con-

trol HIF degradation, but also regulate the crosstalk between innate and adaptive immune cells

thereby suppressing autoimmunity. HIF-modifying pharmacologic compounds are entering clini-

cal practice. Current indications include renal anemia and certain cancers. Beneficial and adverse

effects on myeloid cells should be considered and could possibly lead to drug repurposing for

inflammatory disorders.
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1 INTRODUCTION

Myeloid cells consist of granulocytes, mostly neutrophils, and mono-

cytes. Once released from the bone marrow, these cells circulate in

the blood and are recruited to inflammatory sites where they execute

functions that protect the host from infectious and noninfectious chal-

lenges.Myeloid cells perform efficiently even under hostile conditions,

such as extreme temperatures, mechanical and osmotic stress, and
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low oxygen concentration. Hypoxia describes low oxygen availability

at the tissue level that is further categorized into hypoxemic, anemic,

circulatory, and histotoxic hypoxia.1 During their life span, myeloid

cells encounter awide range of oxygen partial pressures. Bonemarrow

is a rather hypoxic niche with 13 mm Hg mean oxygen tension.2

Measurements in healthy humans indicate a large variation in partial

oxygen pressures with 100 mm Hg in arterial blood and 8 mm Hg in

the epidermis (reviewed in Ortiz-Prado et al.3). Kidneys exhibit a large
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gradient with>70mmHg in the cortex and 10mmHg in the medulla.4

Importantly, hypoxia is also characteristic of inflamed tissues,5,6 where

activatedmyeloid cells migrate against a low oxygen supply.7

With reduced oxygen supply, mitochondrial oxidative phosphoryla-

tion is strongly decreased, andmost ATP is provided by the conversion

of pyruvate into lactate.7 Hypoxia-inducible factors (HIFs) are ubiqui-

tous transcriptional regulators of gene expression in response to low

oxygen availability. HIFs help myeloid cells to cope with low oxygen

conditions by modifying several metabolic and inflammatory aspects.

Currently, drugs that either activate or inhibit HIF-mediated effects

are being explored in clinical studies. We discuss the HIF system with

its implications for myeloid cell functions together with the potential

effects of HIF-directed treatments.

2 HISTORIC PERSPECTIVE OF HIF

DISCOVERY

The scientific interest in hypoxia dates back to Paul Bert, who identi-

fied hypoxemic hypoxia as the cause of altitude sickness in the second

half of the 19th century.8,9 Over decades, hypoxia-mediated effects

on erythropoiesis became a main research focus that more recently

extended to inflammation. However, it took more than a century

until molecular hypoxia mechanisms were characterized, the termHIF

was introduced10 and pharmacologic HIF modulators were developed

along a timeline outlined in Fig. 1.

In 1906, Carnot reported a serum factor extracted from anemic

rabbits that stimulated erythropoiesis in recipient animal bone mar-

row and termed this putative factor “hémopoïétine.”11,12 Yet, the

nature of this factor remained elusive for several decades. In the

1950s, Jacobson suggested that erythropoietin (EPO) was secreted

by the kidneys.13 The investigators observed that bilateral nephrec-

tomy abrogated the erythropoietic effect of CoCl2 in rats and

rabbits.14 Later, the liver was identified as an additional extrarenal

EPOsource.15–22 Most clinical observations supported the importance

of the kidneys for erythropoiesis with complete erythroblastopenia

in anuric renal failure patients23 and after nephrectomy,24 and poly-

cythemia in patients with renal pathologies, such as renal cysts, hyper-

nephroma, or hydronephrosis.25–33 In the 1970s, EPO was isolated

from the urine of anemic patients34–36 followed by cloning and recom-

binant expression a decade later.37–42 Allan Erslev and his research led

to the discovery of EPO.43 The hormone causes the body tomakemore

red blood cells and is now the pivotal drug to treat anemia caused by

cancer therapy, dialysis, and kidney disease. Erslev made rabbits ane-

mic.Whenhe injected their anemic plasma intonormal rabbits, the rab-

bits increased production of red blood cells and as the number of red

blood cells increased so hematocrit increased. In contrast, injection of

normal plasma into normal rabbits did not lead to an increase in red

blood cells. Erslev concluded that a hormone (EPO) was responsible

for the increase in red blood cells. Yet, the molecular mechanisms of

hypoxia-regulated EPO transcription and, as it later turned out, many

additional genes were still unknown.

In the late 1980s, Goldberg et al. suggested a ferroprotein as

the oxygen sensor.44 The investigators used metals (i.e., manganese,

nickel,45–48 and cobalt as CoCl2) that interact with protoporphyrin

structures and compete with iron in heme prosthetic groups to induce

EPO.44,49 Locking heme-bearing proteins in a deoxy conformation

with these metals induced EPO mRNA and protein. Hypoxia was not

synergistic with this deoxy state, whereas carbon monoxide, which

created an oxy state of hemoglobin, reduced the EPO-enhancing effect

of hypoxia. Together, these experiments led to the reasonable assump-

tion that the cellular oxygen sensor is a heme protein. However, as it

turned out later, the free iron was bound to a nonheme protein that

was yet to be discovered.

In the 1990s, reporter assays unmasked cis-acting elements

responsive to hypoxia.50,51 Transgenic mice carrying the human EPO

gene produced nuclear factors selectively binding to 3′ flanking

sequences of the human EPO transgene.10 Consecutive mutational

analysis of a 50 nt 3′ flanking sequence of the human EPO gene

revealed a proteinaceous DNA binding that the authors termed

HIF-1.10 HIF-1 was characterized as a protein complex generated

in hypoxic cells that binds to a DNA sequence crucial for hypoxic

activation of EPO transcription.52,53 More than 10 yr passed until

prolyl-hydroxylase domain containing enzymes (PHD) were finally

identified as the long-assumed sensor of cellular oxygen tension that

regulate HIF abundance. Although the earlier suggested iron-binding

domain was confirmed, the implied heme-involving mechanism was

not.54–57 In 2019,WilliamG. Kaelin Jr., Sir Peter J. Ratcliffe, and Gregg

L. Semenza received the Nobel Prize for explaining how cells sense

and adapt to different oxygen concentrations.

3 MOLECULAR HIF PATHWAY

COMPONENTS

3.1 HIF𝜶 subunit isoforms and dimerization

with aryl hydrocarbon receptor nuclear

translocator (ARNT)

HIFs are transcription factors with an N-terminal basic helix-loop-

helix (bHLH) followed by a Per-ARNT-Sim (PAS) domain58 and

C-terminal transcription activation domains. HIFs function mostly as

heterodimers consisting of HIF𝛽 , formerly named ARNT58,59 and one

of three HIF𝛼 subunits.53,60,61 Similar to other members of bHLH-

PAS transactivators,62 the basic domain is indispensable for DNA

binding63,64 by recognizing the consensus core sequence of hypoxia-

response elements (HRE): 5′-TACGTG-3,65,66 whereas the HLH and

PAS domains promote 𝛼 and 𝛽 heterodimerization.58,64 However, the

PAS-A domain also enhances DNA binding of the HIF heterodimer

illustrating the synergistic interplay of elements from the entire bHLH-

PAS region.64 Studying fusionandchimeric proteinsofHIF𝛼monomers

revealed additional domains, namely two oxygen-dependent degrada-

tiondomains (ODD)67–69 aswell as two transactivationdomains,N ter-

minal transactivation domain (N-TAD) and C terminal transactivation

domain (C-TAD).64,70–72 HIF structure details are illustrated in Fig. 2.
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F IGURE 1 Timeline andmilestones of hypoxia-inducible factors (HIFs) discovery

3.2 Oxygen-dependent HIF regulation by

proteasomal degradation

The HIF𝛼 isoforms and HIF-1𝛽 are all constitutively transcribed and

translated. The cellular abundance of the former, but not the latter, is

controlled by oxygen concentration. Under normoxic conditions, the

HIF𝛼 proteins reside in the cytoplasm where they interact with heat

shock protein (Hsp)90 through the bHLH-PAS domain.73–75 However,

under normoxia, HIF𝛼 proteins are continuously degraded in the

proteasome mediated by the von-Hippel-Lindau (pVHL) protein.76

pVHL serves as a substrate-recognizing subunit of an E3 ubiquitin

ligase complex54,77,78 and forms a ternary complex with elongins

B and C79 thereby recruiting Cul-2 and Rbx-1.80–82 The resulting

multimeric complex acquires E3 ligase activity and, in concert with

the E1 ligase Uba and the E2 ligases Ubc5a, Ubc5b, and Ubc5c,83

leads to oxygen- and iron-dependent ubiquitination and subse-

quent proteasomal degradation of the HIF𝛼 subunits.57,84,85 Mass

spectrometry established that hydroxylation of proline residues

within the HIF ODD was indispensable for pVHL recognition of

degradation-designated HIF𝛼 subunits under normoxic conditions.

Subsequently, new dioxygenase isoforms were identified that

were responsible for posttranslational oxygen-dependent HIF𝛼

hydroxylation.55 Thus, the cellular oxygen sensor was finally charac-

terized as PHD. C. elegans expresses a HIF system that is homologous
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F IGURE 2 Schematic of hypoxia-inducible factor (HIF)-1𝜶 and HIF-2𝜶 protein structure and hydroxylation sites at proline and asparagine
residues. The basic submotif and the helix-loop-helix domain (bHLH) are located close to the N terminus, followed by the Per-ARNT-Sim (PAS)
domain. The PAS domain comprises repetitive amino acid sequences PAS-A and -B. The oxygen-dependent degradation domain (ODD) overlaps
with theN terminal transactivation domain (N-TAD), followed by the C terminal transactivation domain (C-TAD). Hydroxylation of proline residues
within theODDandof asparagine residueswithin theC-TADofHIF-1𝛼 andHIF-2𝛼 are highlighted. Thenonequilibriumhydroxylationby theprolyl-
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ylate HIF𝛼 subunits, thus enabling von-Hippel-Lindau gene product (pVHL) binding to HIF𝛼 subunits and subsequent proteasomal degradation.
Factor inhibiting HIF-1 (FIH-1)-mediated HIF𝛼 hydroxylation under normoxia prevents HIF𝛼 association with indispensable co-transactivators
for target gene transcriptional enhancement. Phosphorylated receptor of activated protein kinase C (RACK1) induces HIF𝛼 proteasomal degra-
dation, which is inhibited by endothelin-receptor-dependent calcineurin activation. NO inhibits PHD activity. Hypoxia, infectious (gram-positive
bacteria as blue circles, gram-negative bacteria in red) and noninfectious (endothelin in violet and ET receptor) stimuli activate the HIF pathway in
myeloid cells

to humans and was instrumental in PHD characterization. The egl-9

gene, so named because of a presumed egg-laying defect of the gene-

deficient worm, encodes an oxygen-dependent prolyl-hydroxylase

and egl-9-deficient mutants up-regulated the human HIF homolog

constitutively.56 Subsequently, three human PHD isoforms were iden-

tified, encoded by the genes EGLN1 (egg-laying defective nine homolog

1), EGLN2, and EGLN3, respectively.86 A conserved 2-histidine-1-

carboxylate motif serves as iron-binding structure.56 The catalyzed

proline-4-hydroxylation requires dioxygen, divalent iron (Fe2+), and

the co-substrates 2-oxoglutarate and ascorbate.55,87 PHDs catalyze

HIF-1𝛼 hydroxylation at Pro40267 and Pro564,57 whereas HIF-2𝛼 is

hydroxylated at Pro405 and Pro531.67 Site-specific proline hydroxyla-

tion by PHDs is controlled by both an LXXLAP amino acid motif of the

target protein and cellular oxygen availability.56,67 PHD activities are

inhibited by co-substrate competitors such as dimethyloxalylglycine57

and roxadustat88,89 as well as products of the nonequilibrium reaction

such as succinate.87,90 PHD inhibition is of particular interest in

inflammation as reactive oxygen species (ROS) that are produced

in this process induced HIF stabilization irrespective of normoxia.91

ROS-dependent 2-oxoglutarate decarboxylation to succinate,91 pros-

thetic Fe2+ oxidation,92 and disulfide-bond PHD dimerization93 were

discussed as underlying PHD inhibitionmechanisms.

Despite cellular hypoxic adaptation by the HIF pathway, HIF

abundancy and target gene expression are also under the control of

oxygen-independent mechanisms. HSC70, LAMP2a, and Cezanne94

concertHIF-1𝛼 lysosomal degradationby cyclin-dependent kinase reg-

ulated chaperone-mediated autophagy.95,96 The HIF subunit specific

E3 ubiquitin ligases hypoxia-associated factor97 and mammary tumor

integration site 6 (Int6)98 initiate HIF-1𝛼, and HIF-2𝛼 proteasomal

degradation irrespective of oxygen tension and pVHL, respectively.

3.3 Oxygen-dependent HIF regulation by

transcriptional inhibition

In addition to directing HIF degradation, oxygen controls the trans-

activation efficacy of HIF heterodimers by factor inhibiting HIF-1

(FIH-1).99 FIH-1 is an asparaginyl-hydroxylase belonging to the same

oxygen- and 2-oxoglutarate-dependent dioxygenase superfamily as

the PHDs.100 However, FIH-1 activity persists even under hypoxic

conditions of 1% oxygen when PHD2 activity is abolished.101 Under

normoxic oxygen tensions, FIH-1 hydroxylates Asn803 of HIF-1𝛼,

and Asn851 of HIF-2𝛼, respectively.102 These hydroxylation sites are

located within the C-TAD. Their hydroxylation prevents indispensable
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co-transactivator recruitment that initiate target gene transcription.

Fig. 3 depicts important components of the HIF pathway.

3.4 HIF-regulated target genes and signaling

pathways

CREB-binding protein (CBP) and p300 bind to HIF𝛼/𝛽 heterodimers

with nonhydroxylated asparagine residues in the C-TAD.101,103,104

All HIF𝛼 isoforms recognize the same HRE 5′-TACGTG-3′ motif, but

result in unique differential target gene expression105 with the N-TAD

determining target gene selectivity.106,107 Nonetheless, comparison of

cell-specific target gene regulation highlighted the importance of the

cell type for the HIF-controlled transcriptome.106,107

HIF-1𝛼 primarily controlsmetabolic pathways, including adaptation

to anaerobic energy supply by up-regulating glycolysis and the hexose

monophosphate pathway.108–110 These effects facilitate cell survival

in low-oxygen conditions. In addition, HIF-1𝛼 regulates apoptosis-

related genes, for example, members of the B-cell lymphoma 2 (BCL-2)

family,111 and proinflammatory genes including IL-1𝛽 ,112 IL-6,113 and

IL-8.114 HIF-1𝛼 also prevents excessive cellular reactions to hypoxia

by up-regulating PHD transcription.115,116

In contrast, HIF-2𝛼 fine-tunes embryonic development and cellular

differentiation.105 Despite the initial discovery of HIF-1 in the context

of EPO expression, we and others have shown predominant EPO tran-

scriptional control by HIF-2.117,118

4 HIF-CONTROLLED MYELOID CELL

FUNCTIONS IN HUMANS

Human neutrophils express all PHD isoforms119 and do not express

HIF-1𝛼 protein under normoxia.120 However, neutrophil HIF-1𝛼

protein is induced at low oxygen tensions.120 Some,120 but not all

studies121 described HIF-2𝛼 expression in human granulocytes under

normoxia with preserved response to hypoxia. Possibly, differences

are explained by the use of different culture media as for example the

presence of the NO donor GEA3162120 inhibits PHD activity.122,123 In

human monocytes, hypoxic induction of the HIF-1𝛼 natural antisense

transcript ahif contributes to a negative feedback mechanism on

HIF-1𝛼 activity.124

Evolutionary adaptation of high-altitude populations, as well as

monogenetic mutations affecting the HIF pathway, provide insight

in HIF-controlled mechanisms that help myeloid cells to cope with

low oxygen concentrations and to maintain their functions. Additional

information comes from human individuals or isolated myeloid cells

exposed to hypoxia.

4.1 Adaptive genetic variations in HIF pathway

components provide an opportunity to study

consequences formyeloid cell functions

Despite living above 4000 m, Tibetan communities, in contrast to

communities residing at similar altitudes in the Andes, have mostly

normal red-blood-cell and hemoglobin values. A missense mutation

in the EGLN1 gene results in a PHD2 variant with a lower Km and

higher Vmax value for oxygen.
125,126 Consequently, HIF hydroxylation

is facilitated even under hypoxia. Other studies in Tibetans correlated

SNPs in EPAS1 (HIF-2𝛼) with hemoglobin levels127–129 and SNPs in

the EGLN3 (PHD3) and PPP1R2P1 (protein phosphatase 1 regulatory

inhibitor subunit 2) genes with altitude polycythemia.130 However,

these Tibetan adaptations of the HIF pathway provide an interesting

opportunity to study myeloid cell functions, immunity, and inflamma-

tory disorders.

Chuvash polycythemia, named after the Chuvash republic in

Russia, is another endemic genetic variation of the HIF pathway

accompanied by elevated EPO and VEGF plasma levels.131 The C598T

base exchange in the third VHL exon causes a missense mutation

(R200W)132 that stabilizes predominantly HIF-2𝛼 over HIF-1𝛼.133

Th1 (IL-2, IL-12, IFN𝛾 , TNF𝛼, GM-CSF) and Th2 cytokine (IL-4, IL-5,

IL-10, IL-13) plasma levels in affected individuals were found to be

elevated together with decreased CD4+ T-cell frequency and reduced

CD4/CD8 ratio.132 Transcriptome analysis in PBMCs from Chuvash

polycythemia patients showed up-regulatedHIF target genes involved

in the inflammatory response (TNF𝛼, IL-1𝛽 , TLR4) as well as in myeloid

cell differentiation, phagocytosis, and bacterial defense (FCGR2A,

HCK, GAB2, ITGB).131 Pro-apoptotic genes (CASP8, CASP2) and TCR

elements were down-regulated.131 The reasons for the apparent

discrepancy between TCR down-regulation found in this131 and

increased Th1 and Th2 cytokines in the other study132 are not clear.

Myeloid cell functions in the Chuvash polycythemia cohort have not

been investigated.

4.2 Genetic diseases highlight the interplay of

metabolism andHIF pathway components

Patients with VHL syndrome harbor heterozygous germline VHL

mutations predisposing to hemangiomas, paragangliomas, and renal

carcinomas. Neutrophils from these patients showed decreased

spontaneous apoptosis as well as increased phagocytic activity against

bacteria.134X Hypoxia further enhanced these functions in both VHL

neutrophils and cells from healthy controls.134 Thus, VHL neutrophils

showed a partial hypoxic phenotype under normoxic conditions

indicating that HIF indeed regulates neutrophil functions. However,

whether or not enhanced neutrophil function contributes to the

clinical phenotype of patientswith theVHL syndrome remains unclear.

Glycogen storage disease Ib (GSD1b) is characterized by a nonfunc-

tional glucose-6-phosphate transporter, neutropenia, and recurrent

infections. Myeloid cells135 fromGSD1b patients comprise a defective

energy metabolism leading to endoplasmic reticulum stress with Hsp

induction and elevated ROS.136 In some of the GSD1b patients, con-

stitutive neutrophil HIF-1𝛼 stabilization, attributed to the Hsp90 and

ROS increase, was observed.137 Nevertheless, the metabolic impair-

ment in GSD1b neutrophils led to accelerated constitutive apoptosis,

reduced respiratory burst, phagocytosis, and chemotaxis despite

stabilized HIF-1𝛼.135,136 As expected, HIF stabilization improves

cellular energy supply that is indispensable for neutrophil survival and
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functioning. In fact, HIF-1𝛼 target genes, including peroxisome

proliferator-activated receptor 𝛾 (PPAR𝛾), were up-regulated in

GSD1b neutrophils. PPAR𝛾 up-regulation contributed to neutrophil

dysfunction because PPAR𝛾 inhibition improved chemotaxis and

the respiratory burst.137 Accordingly, neutrophils isolated from

healthy controls mimicked GSD1b-associated neutrophil dysfunc-

tion upon pharmacologic HIF stabilization and PPAR𝛾 activation by

rosiglitazone.137 These data suggest that HIFs control myeloid cell

functions not only by providing cellular energy supply but also through

PPAR𝛾 activation.

Succinate is a powerful PHD inhibitor inasmuch as it is an end

product of the hydroxylation reactions mediated by PHDs.90 Patients

with heterozygous germline mutations of succinate dehydrogenase B

(SDHB) had elevated succinate levels in neutrophils and their effects

on the HIF pathway were analyzed.138 Neutrophil glycolytic activ-

ity and HIF-1𝛼 protein expression did not differ from healthy con-

trols under normoxic culture conditions but were increased with

hypoxia. However, neutrophils from patients with SDHB deficiency

demonstrated a reduced apoptotic rate and a lower intracellular ROS

stress under both normoxia and hypoxia that could be mimicked in

control neutrophils by selective inhibition of SDHB.138 These obser-

vations suggest that the neutrophil phenotype was caused by the

metabolic consequences of the SDHB mutation and not by HIF path-

way activation. Theobservations obtained in neutrophils frompatients

with these Mendelian diseases underscore the importance of HIF-

dependent effects on neutrophil survival and functions. However,

these studies reveal additional HIF-independent metabolic pathways

that modify HIF-dependent actions.

4.3 Exposure of human individuals to hypoxia

enhancesmyeloid cell performance

Several studies investigated myeloid cells isolated from healthy vol-

unteers who were exposed to hypoxic conditions before blood

donation. Following hypoxic donor exposure neutrophil phagocytosis

increased139–142 and decreased with normoxia.143–147 More mech-

anistically, low oxygen tension increased cytokine-induced expres-

sion of phagocytosis receptors on the neutrophil surface, including Fc
receptors CD32w, CD16, CD64, and complement receptor CD35.146

Other phagocytic receptors (C5aR, CD16b) and adhesion molecules

(LFA-1, L-selectin) were also up-regulated.139,140,142

Blood donor hypoxia increased stimulated respiratory

burst,140,148,149 chemotactic motility,139 and degranulation in isolated

neutrophils.149 However, plasma neutrophil elastase (NE), IL-1, IL-6,

and IL-8,149 and ROS concentration in resting blood neutrophils150

were not increased.

Together, these experiments indicate that hypoxia exposure of

humans, which leads to HIF stabilization, enhances inflammatory

myeloid cell functions. However, these observations cannot estab-

lish that HIFs play a causal role in this process. Another caveat

is that although the blood donors were exposed to hypoxia, iso-

lated myeloid cells were studied under normoxia. Conceivably,

normoxia led to rapid HIF degradation of in vivo stabilized HIFs,

whereas HIF-induced effects on transcription and metabolism may

have persisted.

4.4 Myeloid-cell exposure to hypoxia in vitro

prolongs survival and increases activation responses

Several studies analyzed neutrophils thatwere isolated fromnormoxic

donors and exposed to hypoxia in vitro. McGovern and coworkers

found that hypoxic culture of human neutrophils did not affect the

secretion of IL-6, IL-8, TNF𝛼, or IL-10,151 whereas ROS-dependent

bactericidal activity was reduced. Limited molecular oxygen lead-

ing to reduced NADPH oxidase-dependent respiratory burst was the

possible explanation for the latter observation. In contrast, ROS-

independent killing by hypoxic neutrophils was increased.151

Hypoxia augmented the release of granule proteins from activated

neutrophils as shown for NE,151 myeloperoxidase, lactoferrin, and

matrix metalloproteinase-9 (MMP-9).152 Consequently, supernatants

from activated hypoxic neutrophils caused more epithelial cell dam-

age compared to normoxic neutrophils.152 The hypoxic degranulation

increasewas reduced by a selective PI3K𝛾 inhibitor that abrogated the

hypoxic degranulation augmentation.152 The fact that pharmacologic

HIF stabilization by PHD inhibitors did notmimic augmented degranu-

lationand increasedepithelial cell injury seenwithhypoxic neutrophils,

questions a causal role for HIF but does not exclude involvement of

components upstream fromHIFmediated by PHDs or FIH-1.

Hypoxic inhibition of constitutive neutrophil apoptosis in vitro was

reported by several investigators121,134,151,153,154 possibly via HIF-

1𝛼 mediated NF𝜅B activation.121 By contrast, other groups reported

HIF-1𝛼 stabilization to be downstream of NF𝜅B155 or mammalian

target of rapamycin activation.156–158 Anoxia also attenuated TNF𝛼-

accelerated neutrophil apoptosis in vitro. Moreover, hypoxic culture

conditions abrogated the pro-apoptotic effect of synovial fluid from

rheumatoid arthritis patients on healthy control neutrophils.159

Hypoxia also has effects on monocytes and macrophages that, sim-

ilar to neutrophils, express HIFs.124,160–162 Hypoxia up-regulated the

LPS163- and phytohemagglutinin-induced164 secretion of proinflam-

matory cytokines IL-8,163 IL-2, IL-4, IL-6, and IFN𝛾 , whereas anti-

inflammatory IL-10 was repressed.164 HIF-1𝛼-mediated 𝛽2-integrin

up-regulation enhanced monocyte adhesion to endothelial cells under

hypoxia.165

Hypoxia increasedefferocytosis, thephagocytosis of apoptotic neu-

trophils bymonocytes ormacrophages. This effect was, at least in part,

mediated by HIF-1𝛼-dependent induction of the class B scavenger

receptor CD36 and its ligand thrombospondin-1 conveying apoptotic

material.166 HIF-mediated CD36 induction is supported by the obser-

vation that CD36 and HIF-1𝛼 expressing macrophages correlated in

biopsies from patients with inflammatory bowel disease.166

Altogether, these studies support the notion that hypoxia exposure

in vitro prolongs myeloid cell survival and promotes proinflammatory

responses that are important for host defense. The exact role of HIFs

in these adaptiveprocesses remains unclear andneeds tobeaddressed

in animal studies that allowHIFmanipulations.
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5 HIF-CONTROLLED MYELOID CELL

FUNCTIONS—LESSONS FROM ANIMAL

EXPERIMENTS

5.1 Hypoxicmodulation ofmyeloid cells controls

inflammation in animals

Various animal models were employed to study oxygen-dependent

modifications ofmyeloid cell-driven inflammation. In rats, hypoxic pre-

conditioning protected the animals from gastrointestinal ischemia-

reperfusion injury, including bacterial translocation.167 Neutropenic

rats lacked the protective effect suggesting a neutrophil-dependent

mechanism.167 In agreement with this suggestion, neutrophils con-

sumed oxygen during respiratory burst thereby creating a hypoxic

environment for epithelial cells that promoted HIF stabilization and

induction of HIF target genes. As a result, the epithelial barrier

was increased.168 Neutrophils from NADPH oxidase gene-deficient

chronic granulomatous disease (CGD) mice are unable to produce

superoxide anions and therefore did not create a hypoxic environ-

ment. Consequently, CGD neutrophils did not increase the epithelial

barrier and CGD mice displayed a more severe phenotype of chemi-

cal colitis.168 Further evidence supportingHIF driven epithelial barrier

stabilization is provided by murine colitis models showing beneficial

effects of PHD inhibitors.168–172

5.2 Inflammatory andmechanical challenges

imitate oxygen-dependent HIF stabilization

Myeloid cell studies in animals elucidated HIF stabilizing mechanisms

above and beyond hypoxia. Bacterial antigens from gram-negative and

gram-positive species173,174 as well as TLR4 stimulation by LPS158

stabilized HIFs inmyeloid cells. Mechanistically, combined PHDdown-

regulation and up-regulation of HIF transcription were suggested to

increase HIF proteins.162,173,174 More recently, HIF induction by phys-

ical forces was reported in murine bone marrow-derived monocytes.

Cyclical hydrostatic pressure, for example, due to in- and expiration,

activated the monocytic ion channel PIEZO1 leading to paracrine

endothelin-1 secretion. Subsequently, endothelin receptor stimulation

activated calcineurin that dephosphorylated receptor of activated

protein kinase C (RACK1).175 Phosphorylated RACK1 competes with

cytoplasmic Hsp90 for binding HIF𝛼 subunits and promotes their

proteasomal degradation.176,177 Finally, mechanotransduced RACK1

dephosphorylation contributed to HIF-1𝛼 protein accumulation.175

5.3 HIF-1𝜶 improvesmyeloid cell functions in

infectious and noninfectious inflammationmodels

Myeloid-specific HIF-1𝛼 gene deletion severely reduced intracellular

ATP concentrations in murine macrophages and neutrophils leading

to reduced intracellular bactericidal activity,173 adhesion, and motility

of monocytes.7 HIF-1𝛼 gene-deficient murine neutrophils displayed

decreased NE and cathepsin G activities that were restored by VHL

deletion, hence, by constitutive HIF-1𝛼 stabilization.173 Likewise,

pharmacologic HIF stabilization by PHD inhibition enhanced mono-

cyte bactericidal properties in murine skin abscesses by inducing

monocytic cathelicidin and IL-8 production.178 HIF-1𝛼 gene-deleted

myeloid cells demonstrated decreased killing of Helicobacter pylori

resulting in aggravated murine H. pylori gastritis.113 Biopsies from

patients with H. pylori gastritis showing local macrophage HIF-1𝛼

stabilization strengthened the clinical significance of myeloid HIF-1𝛼

for providing antibacterial defense.113

We demonstrated HIF-1𝛼 and HIF-2𝛼 up-regulation in human

psoriatic skin lesions.179 Compared to control mice, myeloid-specific

HIF-1𝛼 gene deficiency caused ameliorated leukocyte skin infiltra-

tion in bacterial173 and chemical7 skin inflammation, alleviated acute

pathologyof chemical colitiswith reducedmacrophage infiltration, and

reduced colonic TNF𝛼, IFN𝛾 , and IL-17 expression.180,181 Conflicting

results were reported in ARNTflox/flox: LysM-Cremice. Thesemice that

were not able to form HIF heterodimers showed prolonged myeloid

cell infiltration in a colitis model despite expected acceleratedmyeloid

cell apoptosis.182 Pronounced numbers of infiltrating cells were possi-

bly explained by colonic up-regulation of antiapoptotic factors serum

amyloid A3 and leukotriene B4 in the inflamed colon sections.182

LPS-induced HIF-1𝛼 up-regulated proinflammatory cytokines IL-1,

IL-4, IL-6, IL-12, and TNF𝛼 in macrophages resulting in increased

mortality in murine sepsis.174 Acute hypoxic HIF stabilization at

inflammation induction increased mortality in murine skin infection

and pneumonia models.183 Complementarily, myeloid-specific HIF-

1𝛼 gene-deletion reduced shock and hypothermia in murine sepsis

and decreased mortality,174,183 whereas hypoxia prior to infection

improved infection control.183 Hypoxic preconditioning for 1 wk

induced a myeloid cell memory effect as bone marrow from these

hypoxic mice reduced sepsis morbidity in normoxic recipients.183

Together, these results imply a temporal component of HIF activation

that determines the outcome of infection and systemic inflammation.

Hypoxic preconditioning prior to the infection reduced inflamma-

tion, whereas HIF activation at the onset of inflammation induced

collateral damage.

In addition to infection, reparative healing processes after physical

trauma also depend on the HIF pathway in myeloid cells. Myeloid

HIF-1𝛼 gene deletion delayed macrophage-driven resorption of mus-

cle necrosis leading to reduced revascularization of the regenerated

muscle tissue.184 In contrast, myeloid-specific HIF𝛼 subunit stabi-

lization in VHLflox/flox: LysM-Cre mice preserved myocardial muscle

integrity in fullyMHC-mismatchedmurine cardiac allotransplantation,

at least in part, by myeloid HIF𝛼 stabilization-dependent production

of anti-inflammatory IL-10. In addition, myeloid-derived suppressor

cells reduced T-cell proliferation. Ultimately, HIF signaling reduced

acute rejection and ischemia-reperfusion injury leading to prolonged

allograft survival.185

Synovial tissue from rheumatoid arthritis patients161,186 and exper-

imental arthritis mice5 both up-regulated HIFs and myeloid-specific

HIF-1𝛼 andHIF-2𝛼 genedeficiency alleviated inflammation in amurine

rheumatoid arthritismodel.7,186 Neutrophils isolated fromrheumatoid

arthritis patients showed enhanced PHD2 and PHD3 mRNA expres-

sion in line with induction of proinflammatory HIF target genes.119
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However, myeloid HIF pathway activation as well as myeloid HIF defi-

ciency did not affect the rheumatoid arthritis-associated uveitis phe-

notype in an intravitreal LPS-induced mouse model.187 Conceivably,

this discrepancy is due to the divergent inflammatory stimuli under-

scoring the importance of the inflammatory context.

5.4 HIF-2𝜶mitigatesmyeloid cell destructive

capacity, but prolongs inflammation

In contrast toHIF-1𝛼 deletion,myeloid-specificHIF-2𝛼 genedeficiency

in mice did not affect ATP generation in macrophages.188 However,

macrophage motility and tissue infiltration were significantly dimin-

ished accompanied by down-regulation of chemokine receptor CXCR4

and fibronectin-1.188 Secretion of proinflammatory cytokines IL-1𝛽 ,

IL-6, IL-12, TNF𝛼, and CXCL2 following stimulation with IFN𝛾 or LPS

was significantly decreased, whereas these mice up-regulated anti-

inflammatory IL-10 upon LPS injection.188

Studies in a murine LPS-induced acute lung injury model revealed

differential effects of the HIF𝛼 subunits during neutrophil-mediated

inflammation. A HIF-2𝛼 gain-of-function mutation did not affect

neutrophil effector functions such as oxidative burst and phago-

cytosis but decreased constitutive apoptosis similar to what was

aforementioned for HIF-1𝛼.120 Acute pulmonary inflammation pre-

dominantly induced neutrophil HIF-1𝛼 at an early stage, whereas

HIF-2𝛼 induction was prominent during the resolution phase. Myeloid

HIF-2𝛼 gene deficiency shortened and alleviated pulmonary inflam-

mation, particularly in later stages of acute lung injury, presumably by

increased neutrophil apoptosis.120 Inflammation models in zebrafish

with HIF-2𝛼 gain-of-function mutation and myeloid-specific HIF-2𝛼

gene-deficientmice further underscored the fact thatHIF-2𝛼 prolongs

inflammation.120,182,188

We previously demonstrated that HIF-2𝛼 controls EPO

transcription.117 In addition to its role in erythropoiesis, EPO

was proposed to have anti-inflammatory effects. In a murine peri-

tonitis model, hypoxia induced EPO as well as EPO receptors (EPOR)

on infiltrating macrophages.189 Macrophage EPOR signaling led to

PPAR𝛾 activation thereby inducing anti-inflammatory cytokines,

down-regulating proinflammatory cytokines, enhancing macrophage

efferocytosis and phagocytosis. CGD mice that were unable to mount

a respiratory burst and therefore did not consume oxygen failed to

develop peritoneal hypoxia. Consequently, endogenous EPO was not

induced.189 Exogenous EPO therapy restricted peritoneal inflamma-

tion. The authors discuss this observation as a consequence of HIF-1𝛼,

despite the fact that EPO is rather a HIF-2𝛼 target gene.

Tumor-associated macrophages and neutrophils (TAM and TAN)

contribute to the progression of solid tumors. We showed previ-

ously that these cells also promoted chronic lymphatic leukemia in a

murine disease model and that selective depletion of myeloid subpop-

ulations retarded leukemia progression.190 TAM express HIF-2𝛼160

and several observations suggest that HIF-2𝛼 restrains their anti-

cancer effects. Thus, HIF-2𝛼flox/flox: LysM-Cre mice developed fewer

chemically induced colon carcinomas.188 In contrast, the number

and size of chemically induced hepatocellular carcinomas were not

reduced in HIF-2𝛼-deficient mice, but both tumor entities demon-

strated lower grading, delayed tumor progression, and decreased

mitotic indices compared to wild-type (WT) mice.188 Moreover,

tumor histology showed a significant reduction of TAM numbers in

HIF-2𝛼-deficient mice, in line with HIF-2𝛼-dependent macrophage

invasiveness mentioned earlier.188 Conceivably, HIF-2𝛼-dependent

macrophage cytokine secretion possibly accounts for the observed

tumor cell proliferation reduction and lower grading in HIF-2𝛼-

deficient mice. More recently, a murine endometrial cancer model

established the importance of the hypoxic tumor microenvironment

for controlling TAN tumoricidal properties. Tumor hypoxia prevented

neutrophil NADPH-oxidase-dependent ROS production and MMP-9

secretion, which both promoted tumor cell sloughing by detachment

from the basement membrane.191 Hyperoxia reduced HIF in tumors

and increased neutrophil antitumor actions. Mechanistically, ROS and

MMP-9 were increased, whereas NE secretion was reduced result-

ing in diminished tumor cell proliferation.191 Thus, hyperoxia reversed

neutrophil hibernation in hypoxic tumors enhancing myeloid cell anti-

tumor effects independent of adaptive immune cells.191

5.5 Genetic PHD deletion controls myeloid cell

metabolism survival, andmyeloid cell-mediated

inflammation

Myeloid-specific gene-deletion of PHD enzymes facilitated the inves-

tigation of the HIF pathway in innate immunity in vivo. PHD2 is the

most critical regulator of HIFs.192 Deciphering PHD2 involvement in

myeloid cell-mediated inflammation and immunity in vivo is compli-

cated by the fact that homozygous PHD2 gene-deletion (PHD2−/−)

is embryonically lethal.193 Myeloid-specific PHD2 deletion using

PHD2flox/flox: LysM-Cre mice highlighted that PHD2 controls both

neutrophil metabolism and inflammatory neutrophil responses.194

PHD2 gene-deleted neutrophils up-regulated HIF-1𝛼 protein, but not

HIF-2𝛼, delayed constitutive apoptosis, and increased chemotactic

motility while phagocytic activity was unaltered. Absence of PHD2

enhanced typical HIF-1𝛼 target genes that increase glucose uptake,

glycogen storage, and glycolytic flux, culminating in an augmented

extracellular acidification rate by lactate generation and increased

intracellular ATP levels. Pharmacologic glycolysis inhibition reduced

neutrophil chemotaxis and survival, suggesting a mechanistic link

between these metabolic changes and the neutrophil effector

functions.194 Myeloid-specific PHD2 gene deficiency resulted in ear-

lier and faster pulmonary neutrophil recruitment in acute lung injury

models compared to WT controls. In addition, pulmonary inflamma-

tion persisted longer because of delayed neutrophil apoptosis rather

than reduced efferocytosis.194 Prolonged neutrophil persistence due

to HIF stabilization was also demonstrated in chemical colitis induced

in heterozygous PHD2+/− mice.194 It was suggested that the delayed

apoptosis in PHD2 gene-deficient neutrophils is mediated by IL-4

and the neutrophil IL-4 receptor. In WT mice, but presumably not

in PHD2 gene-deficient mice, IL-4 treatment reverses hypoxia- and

HIF-1𝛼-mediated neutrophil apoptosis delay by PPAR𝛾-dependent

PHD2 up-regulation. Thus, IL-4-dependent PHD2 expression limited
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inflammation and promoted its resolution.195 In another study,

inducible PHD2 knock-down in mice, stabilizing both HIF-1𝛼 and

HIF-2𝛼, resulted in a lupus-like phenotypewith antinuclear antibodies,

leukocytosis, spontaneous weight loss, dermal lymphohistiocytic

infiltration, splenomegaly, and lymphadenopathy. The phenotype

depended largely on intact HIF-2𝛼 as combined PHD2 and HIF-2𝛼

shRNA-induced knockdown completely prevented the pathology.

Hematopoietic cells were the main contributors to the phenotype

as shown by bone marrow chimeric mice. Mechanistically, defective

suppressive functionality of regulatory T cells (Treg) explained the

autoimmune phenomena.196 By contrast, others reported that den-

dritic cell HIF-1𝛼 was indispensable for Treg induction and Treg tissue

recruitment by HIF-1𝛼-controlled homing receptor expression.197

These observations suggest that a postnatal inducible model, but

not constitutive myeloid-specific PHD2 gene-deletion resulted in a

spontaneous autoimmune phenotype that was linked to HIF-2𝛼 con-

trolling interactions of innate and adaptive immune cells. PHD1−/−

micewere also protected from chemical colitis.198 In human ulcerative

colitis tissue intestinal PHD1 expression correlated with the degree

of inflammation,198,199 which is also consistent with a protective role

of HIF.

However, several murine genetic PHD3 deletion models revealed

opposite effects with increased intestinal inflammation and decreased

mucosal integrity. PHD3 inhibits the E3 ubiquitin-ligase Itch that

orchestrates occludin-proteasomal degradation. Enterocyte-specific

PHD3 gene-deleted (PHD3IEC-KO) mice developed spontaneous

colitis without intestinal up-regulation of HIF𝛼 subunits, suggesting

compensation by PHD2 or PHD1.87,200 PHD3 contributes to the

mucosal barrier by securing epithelial occludin expression in the bowel

independent of HIF stabilization.200 PHD3-dependent intestinal

inflammation is further suggested by colonic biopsies from ulcerative

colitis patients showing inverse correlation of local inflammation with

PHD3 expression.199,200

Under normoxic conditions, neutrophil inflammation was unaf-

fected in PHD3−/− mice in LPS-induced acute lung injury or chemical

colitis.119,198 Hypoxic conditions significantly reduced neutrophil

lung and colon infiltration, possibly by hypoxia-induced PHD1 and 2

expression with subsequent HIF hydroxylation and degradation.119

PHD3−/− mice demonstrated normal white blood cell count and

granulocyte functioning, but neutrophil apoptosis was increased due

to up-regulated pro-apoptotic SIVA1 and suppressed antiapoptotic

BCL-XL, thereby contributing to decreased numbers of infiltrating

neutrophils.119 The role of HIFs was not explicitly established. In

contrast to neutrophils, PHD3 gene deficiency severely affected

murine monocyte functionality by enhancing migration and phagocy-

tosis in zymosan-induced peritonitis also under normoxia.201 PHD3

gene-deficient macrophages demonstrated pronounced HIF-1𝛼

and NF𝜅B activation polarizing macrophages toward a proinflam-

matory M1 phenotype. PHD3−/− mice as well as mice with PHD3

gene deficiency in hematopoietic cells only, were more susceptible

to sepsis by LPS injection or cecal ligation with higher mortal-

ity rate compared to WT, PHD1−/−, and PHD2+/− haplodeficient

mice. Moreover, monocytic tissue infiltration and peripheral blood

cytokines (TNF𝛼, IL-1𝛽) were increasedwhereas neutrophil infiltration

remained unaffected.201

Together, these studies indicate that PHD2 links innate and adap-

tive immunity. PHD2-dependent HIF-regulation is indispensable for

limiting inflammation and autoimmunity. PHD1 and PHD3 reduce

inflammation by preserving mucosal barriers with some of these

effects being possibly HIF independent. PHD3 keeps specifically

monocytes in check. Reasons for differential PHD effects remain ill-

defined but could be related to cell type, HIF𝛼 subunit, and HIF-

independent effects on additional pathways.

6 PHARMACOLOGIC HIF MODIFIERS

Strategies to either stabilize or reduce HIFs are of major clinical

interest and are currently explored in clinical studies. Given the

profound HIF effects on myeloid cells, it will be important to carefully

observe the effect of these pharmacologic substances on inflammation

and immunity.

6.1 HIF stabilization

HIF stabilization is a new strategy currently tested in renal anemia

patients. Various compoundsweredeveloped to inhibit PHD-mediated

HIF𝛼 hydroxylation and subsequent degradation. PHD inhibitors that

compete with the indispensable PHD co-substrates, including iron and

2-oxoglutarate are now available. These substances comprise roxadu-

stat (FG-4592),88,89 vadadustat (AKB-6548),202 molidustat (Bay85-

3934),203 daprodustat (GSK1278863),204 desidustat (ZYAN1),205

AKB-4924,171 and JNJ1935.206 Most of these compounds are cur-

rently investigated in phase 2 and phase 3 clinical trial programs for

renal anemia treatment. Of note, roxadustat treatment was associ-

ated with an increased rate of upper respiratory infections compared

to standard therapy with recombinant human EPO in phase 3 study in

dialysis-dependent patients with kidney disease (18.1% vs. 11.0%).89

Beyond the correction of renal anemia, preclinical evidence

suggests that PHD inhibition offers novel opportunities for organ

protection, an area of unmet clinical need. We showed potent

PHD inhibition by 2-(1-chloro-4-hydroxyisoquinoline-3-carbox-

amido)acetate (ICA) with beneficial effects in murinemodels of kidney

ischemia-reperfusion injury, allotransplantation, and chronic kidney

disease.207–210 Tissue and organ protective effects of PHD inhibition

have also been demonstrated in models of myocardial injury,211 brain

injury,212 lung injury,213 and—as mentioned earlier—inflammatory

bowel disease.169,172 AKB-4924 is evaluated for the treatment of

inflammatory bowel disease (NCT02914262).

6.2 HIF inhibition

Cancer research incentivized the development of HIF inhibitors.

Agents that inhibit HIF heterodimerization, DNA binding, or trans-

activation are classified as direct HIF inhibitors, whereas indirect

HIF inhibitors reduce HIF de novo synthesis or increase proteasomal
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degradation.214,215 Various compounds were reported in the litera-

ture (as reviewed in Bhattarai et al. and Ban et al.214,215), but only

a few substances are currently available for clinical applications. PT-

2385 is a direct HIF-2𝛼 inhibitor interfering with the HIF-2𝛼-ARNT

heterodimerization that is currently under investigation for treatment

of renal cell carcinoma (NCT02293980, NCT03108066) and glioblas-

toma (NCT03216499).216 Furthermore, in vitro testing of the HIF

inhibitor PX-478 in prostate carcinoma cells217 and a phase I clini-

cal trial enrolling lymphoma and solid cancer patients (NCT00522652)

were reported.

7 CONCLUDING REMARKS

Human and animal data implicate HIFs as important regulators of

myeloid cell metabolism, survival, and functioning. HIFs modify both

the magnitude and the duration of the inflammation response. PHDs

regulate HIF activity, preserve epithelial barrier function, and provide

a bridge between innate and adaptive immunity thereby controlling

autoimmunity. HIF pathway-modifying drugs are entering clinical

medicine. Given the emerging evidence for the role of theHIF pathway

in inflammation, patients should be monitored for inflammatory com-

plications. At the same time, the opportunity may arise to repurpose

HIF-modifying drugs for the treatment of inflammatory disorders.
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