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The transcriptome dynamics of single cells during
the cell cycle
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Abstract

The cell cycle is among the most basic phenomena in biology.
Despite advances in single-cell analysis, dynamics and topology of
the cell cycle in high-dimensional gene expression space remain
largely unknown. We developed a linear analysis of transcriptome
data which reveals that cells move along a planar circular trajec-
tory in transcriptome space during the cycle. Non-cycling gene
expression adds a third dimension causing helical motion on a
cylinder. We find in immortalized cell lines that cell cycle tran-
scriptome dynamics occur largely independently from other cellu-
lar processes. We offer a simple method (“Revelio”) to order
unsynchronized cells in time. Precise removal of cell cycle effects
from the data becomes a straightforward operation. The shape of
the trajectory implies that each gene is upregulated only once
during the cycle, and only two dynamic components represented
by groups of genes drive transcriptome dynamics. It indicates that
the cell cycle has evolved to minimize changes of transcriptional
activity and the related regulatory effort. This design principle of
the cell cycle may be of relevance to many other cellular differenti-
ation processes.
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Introduction

The cell cycle is a shared and general principle of life. Core aspects

of the cell cycle are conserved across eukaryotes (Morgan, 2006;

Alberts et al, 2015). However, as cell division rates vary massively

across species and cell types, the cell cycle also needs to be plastic

and coupled to cellular physiology. The active components of cell

cycle dynamics in gene expression space are groups of genes.

Despite a multitude of mechanistic studies and insights into the

oscillatory nature of gene expression caused by the cell cycle (Alter

et al, 2000; Buettner et al, 2015; Liu et al, 2017b), the topology (or

shape) of the cell cycle within gene expression space, as well as its

degree of coupling to transcriptome dynamics of other cellular

processes, remains largely unclear (Tanay & Regev, 2017; Liu et al,

2017a). Neither is it known, whether a two-component oscillator is

sufficient to describe the complete cell cycle, whether additional

components are needed, or whether optimality principles govern

gene expression changes along the cell cycle.

The progression of a cell through the cell cycle can be repre-

sented as a trajectory in transcriptome space. In recent years,

pseudo-temporal ordering of single-cell transcriptomes has emerged

as a powerful method for reconstruction of low-dimensional cell dif-

ferentiation trajectories from high-dimensional single-cell RNA-seq

data (Kester & van Oudenaarden, 2018). We examine transcriptomic

snapshots of populations of asynchronous cycling cells in order to

reconstruct, quantify, and interpret the cell cycle as a dynamical

system, to define its trajectory and to seek for underlying design

principles. The analysis is limited to information on transcriptional

regulation along the cell cycle. The data do not hold information on

other well-known cell cycle mechanisms such as regulation by phos-

phatases and kinases.

We expect the trajectory in transcriptome space to describe a

periodic motion, completed once each time a cell divides. We antici-

pate the trajectory to be constrained to a subspace with much lower

dimension than the transcriptome space (~20,000 dimensions)

because only a subset of genes is involved in the cell cycle and

genes are known to interact in a highly coordinated manner (Mor-

gan, 2006; Alberts et al, 2015), i.e., groups of genes controlled by

transcription factors and chromatin state are up- or downregulated
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together during the cycle (Voss & Hager, 2013). A priori, the tran-

scriptomic trajectory describing the cell cycle might be a simple

circle embedded in a plane, it might be wound up on a donut-like

structure (torus), twisted, and looped like a roller coaster in three

dimensions or be even more complex in higher dimensions (Box

Fig 1). The number of dimensions required to embed the cell cycle

trajectory is an upper bound for the number of independent compo-

nents driving its dynamics (Arnold, 1992). The regulatory effort

required to complete the cell cycle is closely related to the shape of

the trajectory in transcriptome space (as explained in Box 1). In

general, the simpler the geometric shape the less regulatory effort is

required.

Due to cell-to-cell variability, cell cycle trajectories of individual

cells of the same cell type will not be identical and aligned. The

collection of trajectories from a population of cells can be imagined

as a tube in transcriptome space encompassing all trajectories. This

tube is called a manifold, and the volume of this manifold contains

information on cell variability. We first set out to formally define

the cell cycle manifold and then to identify trajectories within it with

an RNA velocity analysis.

Results

A HeLaS3 cell line was grown asynchronously and single-cell RNA

sequenced deeply using an in-house optimized version of the Drop-

seq protocol (Macosko et al, 2015; Alles et al, 2017; Materials and

Methods). The data set contains single-cell data of 1477 cells with a

mean depth of roughly 11,000 unique molecular identifiers (UMIs)

per cell (Appendix Table S1). We computationally inferred a cell

cycle phase for each single cell by correlating its transcriptome data

to known marker genes for different parts of the cell cycle (in partic-

ular G1.S, S, G2, G2.M, and M.G1; Whitfield et al, 2002; Macosko

et al, 2015; Materials and Methods). We restricted the data to 1031

detected highly variable genes. Furthermore, we transformed the

data by calculating concentrations, multiplying by a scaling factor,

log-transforming it, and normalizing it across all genes and all cells

(Butler et al, 2018; Materials and Methods). While there is a large

number of tools for pseudo-temporal ordering of single-cell tran-

scriptomes [e.g. reCAT (Liu et al, 2017b), Oscope (Leng et al, 2015),

Monocle (Trapnell et al, 2014), Wanderlust (Bendall et al, 2014),

Wishbone (Setty et al, 2016), and PAGA (Wolf et al, 2019)], these

mostly specialize in non-linear manifold learning approaches. We

show that a linear approach is sufficient to isolate the cell cycle,

which substantially facilitates downstream analysis and interpreta-

tion by preserving the geometric structure of the trajectory.

After applying principal component analysis (PCA) to our data,

we observed that the first three principal components (PCs) exhibit

cell clustering according to the computationally inferred cell cycle

phases (Fig 1A). Additional PCs do not reflect the cell cycle (Fig

1D). None of the lines of view on the data parallel to the PC axes

shown in Fig 1A exhibit a clear periodic trajectory, suggesting that

PC axes are not the line of view revealing the cycle and that at least

three PC dimensions are necessary to define the cell cycle manifold.

Rotating our line of view revealed the data cloud to form a cylin-

der which is slanted with respect to PC axes. Viewing it from the

top or base yielded an annular shape in two dimensions that

provides a surprisingly good representation of the cell cycle

(Fig 1B). Most notably, we obtained clear clustering and progression

of cell cycle phases, which displays the expected order G1-S-G2-M.

Additionally, we observed an area around the origin that is much

less populated with data points, in agreement with the principle that

cells cannot skip phases. When viewed from the appropriate angle,

the cell cycle is in fact contained in a two-dimensional plane.

The change of angle of view is achieved by a basic linear rotation

of the PC space (imagine rotating a cube and viewing it from dif-

ferent angles, see Materials and Methods). The newly found axes

after rotation—which we refer to as dynamical components (DCs)—
are linear combinations of the PCs involved in the rotation (Materi-

als and Methods). The general steps of our algorithm Revelio

(REVEaling the cell cycle with a LInear Operator) from raw data to

the two-dimensional cell cycle are outlined in Fig EV1.

We were able to reproduce the results with other cell lines,

including an additional HeLaS3, a HEK293, and a 3T3 data set

where the form of the cell cycle varies from an annulus to a disc

(Appendix Fig S1–S3). We also managed to isolate the cell cycle into

an annulus in just two dimensions even when utilizing all genes

detected during sequencing (~10,000 genes) instead of only the

highly variable genes (Appendix Fig S4). Hence, inclusion of addi-

tional genes into this specific analysis, which typically increases

noise levels, does not alter the characteristics of the outcome. The

limiting factor appears to be rather the sequencing depth because

the less deeply sequenced a data set is, the more noise is incorpo-

rated due to, e.g., increased amounts of dropouts. As a rule of

thumb, we estimate that either at least 600 cells with an average

depth of 4,500 UMIs or at least 1,000 cells with an average depth of

3,000 UMIs are required for the cell cycle pattern to reveal itself (Fig

EV2, Materials and Methods).

Conversely, we ruled out that cells near the origin in our deeply

sequenced data sets are simply dead cells by considering mitochon-

drial amount and apoptotic markers (Appendix Fig S5). We attribute

their placement to various sources of technical noise. In any case,

the amount of cells near the origin is reasonably small in an experi-

mental data setting as can been seen in Appendix Fig S6.

In summary, these results suggest that the cycling of each indi-

vidual cell describes a circular motion in transcriptome space, and

due to cell-to-cell variability, the collection of all trajectories

describes an annulus-shaped manifold in two dimensions, or a

hollow cylinder when considering three dimensions. That suggests

two design principles: (a) low dimensionality—only two dimensions

of the high-dimensional gene expression space are used for the cell

cycle (in fact the lowest number possible) and (b) circularity—the

trajectory is close to the simplest and smoothest possible shape.

Verifying that the circle represents the cell cycle

To verify that the two-dimensional annulus does in fact represent

the cell cycle from a functional point of view, we investigated a

number of characteristics starting with Gene Ontology (GO) terms

relating genes to function (Eden et al, 2007; Eden et al, 2009). We

found that a GO term analysis shows clear dominance of the cell

cycle in the first three PCs (Appendix Table S2). However, only the

two dynamical components DC1 and DC2 that create the annulus

are heavily involved in the cell cycle (Appendix Table S2), while the

third dimension (DC3, parallel to the cylinder axis) does not contain

any cell cycle-related GO terms (Appendix Table S2). This supports
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the conclusion that we isolated the cell cycle into two dimensions

by a simple rotation. In agreement with this result, we found that

DC3 is almost devoid of clustering with respect to the cell cycle

phases (cluster score in Fig 1D), as is also the case for all additional

dimensions of PC and DC space.

Due to the simplicity of the shape of the cell cycle trajectories,

ordering the cells by their angle in a clockwise motion around the

origin of the DC1-DC2 plane corresponds to the temporal order of

the cell’s progression through the cell cycle. This pseudotime order

is obtained at no extra cost and represents a simplification of previ-

ous methods aiming to extract pseudotime of the cell cycle from

asynchronous scRNA-seq data (Leng et al, 2015; Liu et al, 2017b).

Since mathematical models of the cell cycle have contributed

significantly to our mechanistic understanding (Csikász-Nagy et al,

2006; G�erard & Goldbeter, 2009), we investigated whether known

phase relationships are reflected in our resulting time courses of

individual genes. In Fig 1C, we show genes considered to be part of

the “backbone” of the cell cycle (G�erard & Goldbeter, 2011). The cell

Box 1. The transcriptome as a dynamical system

In the context of our considerations, the state of the transcriptome is completely described by the molecule copy number of all species of transcripts in
the cell. We can represent the state of the transcriptome of a single cell in a coordinate system with as many axes as there are species of transcripts. The
state of the transcriptome is a point in this high-dimensional space. The cell changes its transcriptomic state again and again over time. Hence, among its
many other aspects, the transcriptome is also a dynamic system. Change of state is motion along a trajectory in transcriptome space.
We recollect two general results of dynamic systems theory here. Firstly, the trajectory of a deterministic dynamical system cannot intersect with itself
(Arnold, 1992). Secondly, the minimum number of dimensions required to embed a trajectory (in conforming with the first point) is a lower bound for the
number of ordinary differential equations required to describe the dynamics (Arnold, 1992; Kuznetsov, 1998), or in other words a lower bound for the num-
ber of independent players shaping the trajectory.
Trajectories of a periodic process are closed trajectories. In Box Fig 1, we show examples of such trajectories in a two-dimensional transcriptome space
and a three-dimensional space—two respectively three genes participate in these toy dynamics. We consider first the example Box Fig 1A. Completing it
implies regulating gene X up and down once, and the same for gene Y. Box Fig 1B is a cartoon of an extreme case (a star). It requires partial up- and
down-regulation of both genes 6 times for completing the cycle—many more up- and down regulations than the number of participating genes.
The first three-dimensional example (Box Fig 1C) is more complicated than a circle. It is a type of trajectory found in many dynamical systems and requires
at least three dimensions to embed it. The trajectory consists of two loops distinguished mainly by the value of Z. Completing this trajectory once requires
more regulation of gene expression than with a circle. It implies regulating gene Z up and down once. Genes X and Y are regulated up and down twice—
one time in the "lower" loop and one time in the "upper" loop. Thus, completing this trajectory requires more transcriptional activation and termination
than a simple circle.
Box Fig 1D is called a torus, and again a common type of trajectory requiring three dimensions to embed it. It also implies more transcription initiations
and terminations per cycle than the number of participating genes. The last example (Box Fig 1E) is an extreme cartoon again, but given the high dimen-
sionality of the transcriptome space, it is a reasonable possibility.
These considerations clearly show there is a relation between the shape of the trajectory in transcriptome space and the regulatory effort—the number of
up- and down regulations of a given gene—required to complete the cycle.
If the trajectory in a high-dimensional space runs on a circle in the side of a cylinder, the trajectory entails only as many up- and down regulations as
there are participating genes. Such a trajectory can also be embedded in a two-dimensional state space. However, the axes do not have the meaning of
the number of transcripts of a single gene anymore but describe the amplitude of a group of genes like a principal component or a dynamical component
resulting from our analysis (see main text). The genes within one group are regulated in a highly coordinated way but not necessarily synchronously.
We find the cell cycle trajectory in a plane in transcriptome space, i.e., it takes two dimensions to embed it (see main text). This is the minimal number of
dimensions required for periodic motion. Hence, essentially two groups of genes interact to drive the cell cycle. The composition of our dynamical compo-
nents DC1 and DC2 represents a suggestion for these groups (Fig EV3). Together, they comprise 266 genes with significant weights for the HeLa data set
1.1 (Appendix Table S1), 39 of them are found across all three cell types investigated (HeLa, HEK, 3T3). Positive weights in DC1 correspond to M phase
genes, whereas negative weights in DC1 are strongly associated with S phase genes. Simultaneously, genes with positive weights in DC2 are highly corre-
lated to G2 phase, while negative weights are mostly absent in evidence of little cyclic activity at the middle of G1 phase. Consequently, only DC1 contains
transcripts for cyclin B (a well-known M phase protein) with positive weights and cyclin E (activated during G1-S transition) in antiphase with negative
weight. DC1 also contains transcripts of cyclin A, which is highly expressed during M phase as well as G2 phase. The latter causes it to also have a signifi-
cant contribution to DC2. The feedbacks between the cyclins mediated by cyclin-dependent kinases and other factors represent one of the interactions
between DC1 and DC2. Cyclin B1 or B1 and B2 have been shown to be essential for the cell cycle (Brandeis et al, 1998; Soni et al, 2008; Strauss et al, 2018),
suggesting that the cyclin network is the only mechanism able to drive cells completely through the cycle. That is in line with the simplicity of the cell
cycle trajectory observed in this study.

Box Figure 1. Toy examples of possible shapes of the cell cycle trajectories in transcriptome space.

A A circle in two dimensions.

B A star.

C A cyclic trajectory requiring three dimensions with an upper and a lower loop.

D A torus.

E A three-dimensional motion comparable to a roller coaster.

A B C D E
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cycle oscillation is driven by the four main cyclin/CDK complexes:

cyclin D/CDK4-6, cyclin E/CDK2, cyclin A/CDK2, and cyclin B/

CDK1. In the skeleton model of G�erard and Goldbeter (2011),

constant levels of the cyclin D/CDK4-6 complex are observed

whereas we observe an expression maximum of CCND3 and CDK4

at the beginning/middle of S phase. However, the amplitude of the

oscillation of these two genes is noticeably smaller than the one of

other genes shown. Adding to this is the observation that the

A C

B

D E F

Figure 1. The cell cycle forms an annulus in two dimensions and a cylinder in three dimensions of transcriptome space.

A Two-dimensional representations of the first three PC scores of all individual cells (HeLaS3 cell line, 1,477 cells) exhibit clustering with regard to their computationally
inferred cell cycle phases. A clear cyclic structure is absent.

B In three dimensions, the data form a slanted cylinder. A clear cell cycle structure becomes visible if we rotate the cylinder and view it from the top or base. The
rotated PCs are simple linear combinations of the original PCs and are the dynamical components (DCs). DC1 and DC2 span the cell cycle.

C The angular coordinate of cells around the cell cycle provides the order in time. We show time courses for eight genes that are known to form the backbone of the
cell cycle.

D We measure the amount of cell cycle within each principal (top) and dynamical (bottom) component by a marker score and a cluster score (see Materials and
Methods). Both scores indicate three components to be involved in cell cycle in PC space, while only two components are marked as significant in DC space.

E The variation of the data within each principal (top) and dynamical (bottom) component is decomposed into different sources (see Materials and Methods). The
portion of unexplained variation in DC1 and DC2 is much lower than for PC1, PC2, and PC3. Variation in DC3 is almost not at all explained by cell cycle genes.

F Summing up all UMIs according to the pseudotime of cells yields a clear drop by factor 1/2 at the end of the cycle (transition from the G2.M to M.G1 cluster). This is
where cell division is assumed to happen.
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complex does peak during the start of S phase in the extended

model by G�erard and Goldbeter (2009). The second complex acti-

vated is associated with the two genes CCNE2 and CDK2, responsi-

ble for progression through the G1-S checkpoint (Morgan, 2006). As

expected, we observe that both genes have their peak expression

right after the point where we suspect the G1-S transition to happen.

Similar to G�erard and Goldbeter, the next cyclin-associated gene to

peak in our data is CCNA2 during the S-G2 transition, confirming

our expectations from literature as its role is to guide the cell

through this checkpoint (Morgan, 2006). Lastly, CCNB1, which is

part of the mitosis-promoting factor and responsible for pushing the

cell into and through mitosis (Morgan, 2006), has its highest expres-

sion at the G2-M transition just as modeled by G�erard and Gold-

beter. Interestingly, we observe that the associated cyclin-dependent

kinase CDK1 is already expressed at the S-G2 transition.

Overall, the characteristic phase relationships defined in mathe-

matical models are confirmed by our experimental data and analy-

sis. Time courses for other highly variable genes in our dataset also

strongly overlap with Cyclebase (Santos et al, 2015), further con-

firming that the annulus and the implied temporal order of cells

correspond to the cell cycle.

We gauged to what degree principal components and dynamical

components are associated with the cell cycle in Fig 1D and E. The

marker score (Materials and Methods) in Fig 1D measures the

amount which cell cycle-related genes contribute to particular

components. A large cluster score (Materials and Methods) indicates

that a particular component strongly separates cells according to

their cell cycle phase, which suggests that this component plays a

role in the cell cycle. Both scores show that in PC space the cell

cycle is heavily influencing the first three components, while in DC

space the third component is indistinguishable from higher dimen-

sions. Only the first two DCs are dominated by cell cycle effects.

We took the marker score further and decomposed the variation

of the data within each component into different sources (Materials

and Methods). Choosing a specific set of genes (such as cell cycle

markers), we can distinguish between variations caused by this speci-

fic gene set, variations caused by the set of remaining genes and

effects caused by the interaction of these two sets. The cell cycle

marker genes cause changes in the remaining genes by this interac-

tion, which we quantify by the implied variance. In Fig 1E, we

observe that variation of the cell cycle marker gene set (red) and the

implied variance (green) accounts for the majority of data variation

in the first two DCs. The portion of unexplained variation (not caused

by the cell cycle marker gene set) is roughly 80% for DC3. This again

clearly indicates that DC3 is not cell cycle dependent, while variation

in PC3 is dominated by cell cycle marker effects. Additionally, the

portion of unexplained variation in all first three PCs is around 40%

suggesting that there are noticeable other effects contained in these

components apart from the cell cycle. In summary, the rotation in PC

space substantially improves cell cycle identification and separation

compared to just taking the first two PCs.

The UMI count per cell should drop to one half upon cell divi-

sion. Observing such a drop during M phase would be an additional

confirmation for our data and the temporal order established by the

algorithm when averaged over cells. We divided the cycle into bins

with equal cell numbers in order to investigate the development of

total UMI counts per cell. A sharp drop of average total UMI counts

per cell by approximately a factor 1/2 occurs between the last and

first bin of the cycle, at the overlap of G2.M and M.G1 cells (Fig 1F),

where cell division happens. That confirms our algorithm and data.

Measurements with other cell populations (Appendix Fig S1–S4D)
and other choices of bin sizes exhibit a similar drop of total UMI

counts.

The fact that we find the cell cycle in a two-dimensional annulus

in transcriptome space suggests that there are essentially two inde-

pendent groups of genes, the interaction of which drives the cell

cycle (Arnold, 1992). Due to the linearity of our algorithm, the

dynamical components DC1 and DC2 are one of several possible

representations of the sets of genes for these two groups (Fig EV3).

Together, they comprise 266 genes with significant weights. 39 of

these genes are found across all three cell types investigated (HeLa,

HEK, 3T3), most of which are well known to be cell cycle-related.

The number of joint cell cycle genes is in good agreement with other

studies comparing multiple cell types (Dominguez et al, 2016; Giotti

et al, 2017). The well-known cyclin network provides one of the

interactions between DC1 and DC2. The representation of the

cyclins in DC1 and DC2 is in agreement with their biological func-

tion (described in more detail in Box 1). Hence, our methods

provide a basis for extended mechanistic studies.

DC1 and DC2 are only one of many possible partitions of the

variable genes into the two groups driving the cycle dynamics. Rota-

tion of the DC-coordinate system around DC3 yields other possible

partitions in terms of dimensions of the DC space. In general, DC1

and DC2 are not disjoint sets of genes, but rather genes may be an

element of both of them. Mechanistic studies might suggest other

distributions of genes on the two groups, which are compatible with

the trajectories in gene expression space, and provide insight into

the function and role of specific genes.

The cell’s response to perturbations is described by the stability

of the annular manifold—the more stable the manifold is, the faster

the cell returns to the unperturbed state. A manifold that is dynami-

cally stable is called an attractor. Mojtahedi et al (2016) have shown

that the ratio of average gene-to-gene correlation to average cell-to-

cell correlation increases with decreasing stability of attractors in

transcriptome space. Based on this measure, we found that the

stability of the attractor throughout the cell cycle does not change

significantly (Appendix Fig S7), i.e., the cell types we investigated

(HeLa, HEK, 3T3) do not display time points where they are more

vulnerable to perturbations.

Inferring trajectories with RNA velocity

Our analysis so far has mapped out the sub-volume of the transcrip-

tome space within which cell cycle dynamics happen as a cloud of

data points each from a different cell. This analysis does not reveal

the shape of the individual trajectories from which these data points

are sampled. Within the data cloud, cells might run on a simple

circle or follow a more complicated trajectory (i.e. spiraling around

a torus; Box Fig 1). Identifying trajectories requires not only the

position of individual cells but also information on the direction of

their motion. Since sequencing data contain information about

nascent and mature mRNA, transcriptome changes of single cells

can be approximately calculated. This has been termed RNA veloc-

ity (La Manno et al, 2018).

RNA velocity plotted onto the cell cycle reflects the expected

order of cell cycle phase clusters and suggests that the attractor is
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Figure 2. RNA velocity confirms a cyclic motion of the cells and indicates a drift in the third dimension.

A RNA velocity for each cell is calculated (La Manno et al, 2018). We overlay the DC plot with a 50 × 50 grid and assign a weighted average of velocities of surrounding
cells with the help of a Gaussian kernel to each grid point (La Manno et al, 2018). The velocity arrow is attached to the position for which the velocity has been
calculated. The arrowhead points to the future state. Arrows shorter than 0.1 are not shown.

B (top) The clusters of cell cycle phases follow the known order G1-S-G2-M-G1 according to their distribution along pseudotime. (middle) The angular velocity is
negative throughout the cycle, indicating continuous clockwise motion. (bottom) We calculate the standard deviation of neighboring velocity arrows. Larger standard
deviation indicates more variability in movement direction while lower values suggest more uniform motion.

C A spline (purple) is placed along the cell cycle approximating an average cell trajectory through the data. We divide the trajectory into 10 angle intervals, each
containing the same amount of cells. For each interval, the average RNA velocity is calculated and plotted onto the average trajectory as a black arrow. The velocities
are approximately tangential to the average trajectory.

D We calculate the angular difference between the average RNA velocity and the actual tangent to the trajectory in panel (C). A difference of 0° means perfect
alignment of tangent and RNA velocity.

E RNA velocities in the side of the cylinder. The cylinder has been cut open at the angular coordinate of the M-G1 transition. The third rotated principal component
(DC3) is parallel to the cylinder axis. We do not observe an oscillating motion in the cylinder side. Arrows shorter than 0.4 are not shown.

F The undulating motion seen in this surface corresponds to a net downward drift with each completion of the cell cycle but not a periodic motion. This indicates that
the third dimension does not play a part in the description of the cell cycle.
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formed by many circles (Fig 2A). More complicated motion is not

supported by the data. The motion of cells is most coherent during

G2 and M phase and least directed during S phase (Fig 2B). This

points toward a tighter regulation of gene expression during M

phase forcing cells through a gene expression tunnel. Cells appear

to be more variable in their gene expression when progressing

through S phase (Fig 2B).

The arrows in Fig 2A represent the direction of motion of individ-

ual cells but do not outline a complete trajectory. We can obtain a

complete trajectory not for individual cells but as an average posi-

tion in each angle bin. If our cell state data and RNA velocity data

are consistent, the average RNA velocity should be tangential to the

average trajectory. In Fig 2C and D, we observe that the average

RNA velocities are indeed mostly tangential when plotted onto the

average trajectory (see also Appendix Fig S1–S4F). This strongly

suggests that within the two-dimensional projection of the attractor,

single cells do in fact move on a simple circle, and that the direction

of motion is determined by transcription.

We also characterized the motion of cells in the direction of the

cylinder axis. During G2 and M phase, there is a clear downward

motion in the direction of the cylinder axis (Fig 2E). There is motion

in the opposite direction during G1 phase, but with smaller speed

than the G2 and M phase motion (Fig 2F). Hence, each time cells

pass through the cycle, they on average move a little downward but

do not return. This motion is a drift parallel to the cylinder axis,

which is not periodic and much slower than the motion on the

cycle.

An inspection of the GO terms associated with the cylinder axis

suggests that response to environmental changes (e.g. change of

nutrients) and changes of the epigenetic state dominate the processes

that cause the motion parallel to the cylinder axis

(Appendix Table S2). The quality of the separation of cell state

dynamics into cell cycle (DC1, DC2) and slower processes (DC3)

depends on the depths of the sequencing data. Data sets with lower

depths (i.e. data set 2, data set 3—see Appendix Table S1) do not

always show the slow net drift parallel to the cylinder axis but

rather some periodic undulations in this direction are seen as well.

In those cases, the data sets also exhibit some remaining cell cycle

GO terms in the cylinder axis direction, suggesting that the

complete functional isolation of the cell cycle requires sufficient

sequencing depth.

In summary, the RNA velocity confirms our assumption that the

cell cycle of individual cells is well approximated by a circle and

demonstrates that our analysis can separate fast cyclic motion from

slow drift, if a sufficient level of detail is achieved in the data. A

simultaneous downward motion in the direction of the cylinder axis

transforms the trajectories from circular to helical motion on a

hollow cylinder in transcriptome space (Fig 3).

Based on the distribution of cells along the cylinder axis, we

divided the cylinder into three parts and analyzed the cycle sepa-

rately in the bottom, middle, and top range of the cylinder height.

The average trajectories in all three ranges are very similar

(Appendix Fig S8). We also did not observe clustering of cells with

respect to cell cycle phases in the direction of the cylinder axis.

Independent component analysis (ICA) aims to separate mixed

signals into statistically independent or maximally independent

sources. We performed an ICA on our data and found that two of

the independent components (ICs) span a plane portraying the cell

cycle (Fig EV4, Materials and Methods). It turns out that DC1 and

DC2 are each highly correlated with one of these ICs but not signif-

icantly to any of the others and vice versa (Fig EV4). Hence, the

ICA suggests that DC1 and DC2 are very close to being statistically

independent from all other sources (components). Thus, cells

appear to be capable of progressing through the cycle independent

of influences from gene expression of cellular processes not repre-

sented in DC1 and DC2, such as environmental conditions and

epigenetic state, which are represented by the direction of the

cylinder axis.

Removal of cell cycle effects from the data

Since the cell cycle is known to convolute other biological signals of

interest, multiple methods (Buettner et al, 2015; Barron & Li, 2016;

Butler et al, 2018) for the removal of cell cycle effects from scRNA-

seq data have been developed. The removal of the cell cycle from

data sets is a straightforward operation with our approach, since we

have distilled the cycle into DC1 and DC2 already.

The transformation from normalized gene expression space to

DC space is done by a linear operator—the rotation matrix R. Rota-

tion matrices can be easily inverted by transposing them (Materials

and Methods). This enables us to isolate the contribution of an indi-

vidual dynamical component on the normalized gene expression

data. Fig 4B explains that simple products of RT and the DCs quan-

tify it. Since DC1 and DC2 represent the cell cycle, we simply need

to subtract the contributions of these two components from the

normalized gene expression data to obtain data without cell cycle

effects.

In Fig 4C, we observe that the oscillatory behavior of the genes

associated with cyclins E, A, and B is removed after processing

with Revelio. Using some of the measures introduced in Fig 1, we

see that none of the principal components of the data processed

with Revelio suggest any involvement in the cell cycle (Fig 4D).

Similarly, the variation decomposition of the new components

with respect to cell cycle marker genes (Fig 4E) is almost indistin-

guishable from a decomposition with respect to a random gene

set of the same size (Fig 4F). A noticeable advantage of our

ΔzT

Φ(t1) Φ(t1+T)

processes 
not related 

to cell 
cycle

cell 
cycle

such as 
epigenetics 

and 
environmental 

changes

Figure 3. Helical motion of a single cell in transcriptome space.
Gene expression changes due to cell cycle can be simplified to a two-
dimensional circle by viewing the cylinder from the front or back. Additional
cellular processes, suggested by GO terms to correspond to epigenetics and
environmental changes, cause a helical motion around a hollow cylinder in
transcriptome space. During one cell cycle period of time T, the cell moves
parallel to the cylinder axis by ΔzT .
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approach is the fact that additional biological information in the

rest of the data is accurately preserved as seen in Fig 4G. Each

newly determined principal component of the data without cell

cycle can be clearly correlated with exactly one dynamical

component of the original data. This is in contrast to previous

methods aiming at removing cell cycle effects from the data

(Appendix Fig S9).

Hence, the processing of the data with Revelio leads to the

precise removal of specifically those biological functions which were

isolated into the first two dynamical components. Information about
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Figure 4. Removing the cell cycle from the data via the Revelio method eliminates known cell cycle signals and keeps additional data intact.

A The three main matrices involved in the removal of cell cycle from the data: The normalized gene expression data N (left), the transformation matrix U (middle)
and the data representation with respect to dynamical components DC (right). These matrices are related via the equation DC¼U �N,N¼UT �DC (since U is an
orthogonal matrix, see Materials and Methods). UTð Þi denotes the ith column of UT .

B The normalized data are a sum of the contributions of the dynamical components (illustrated for a toy example with three components). By a simple subtraction
of the contributions from DC1 and DC2, we remove the cell cycle from the data N and obtain ~N.

C Comparison of the time courses of three genes associated with cyclin E, A, and B for original data (left) and data processed with Revelio (right).
D–G Characteristics of the data processed with Revelio. (D) Marker and cluster scores exhibit small values (scale is the same as in Fig 1D). (E) The variation

decomposition with respect to cell cycle genes is not distinguishable from the variation decomposition with respect to a random gene set (shown in panel F). (F)
The variation decomposition with respect to a random gene set. (G) The pairwise correlations between the DCs from original data and the PCs obtained from the
data processed with Revelio show a clear one-to-one relation. The diagonal with correlation 1 is shifted by 2 dimensions which corresponds to the removal of DC1
and DC2. The high correlation shows that Revelio does not modify components not related to the cell cycle.
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gene expression of additional processes is not lost. However, the

quality and precision of the removal are highly correlated with the

quality of cell cycle isolation.

Discussion

Our results offer a characterization of the transcriptome dynamics

of the cell cycle, including a simple method to order unsynchro-

nized cells in time and the ability to accurately remove cell cycle

effects from the data. Our analysis benefits from the relatively

high depth of our Drop-seq data. Interestingly, recent data based

on sequential single-molecule FISH (which has much higher RNA

detection efficiency than single-cell RNA-seq) produced data that

are in accordance with our findings (Xia et al, 2019).

Our analysis of cell cycle topology is based on analytical

methods that are linear and therefore preserve the geometry of

the trajectory in gene expression space. These geometric proper-

ties of the trajectory are directly linked to transcriptional regula-

tion. The circular shape of the cell cycle trajectory effectively

minimizes curvature. High curvature of the trajectory in tran-

scriptome space would indicate large acceleration of gene

expression, achieved by starting or terminating transcription of

genes. Such changes generally entail a large regulatory effort for

the cell: Signaling pathways have to be activated, chromatin

rearranged, transcription factors, cofactors and activators

recruited, enhancers and promoters must interact properly, and

RNA polymerases bound (Voss & Hager, 2013). Due to this large

regulatory effort, switches in transcriptional programs are error-

prone which can be disadvantageous for the cell. The shape of

the trajectory shows that the cell cycle has evolved to avoid

these efforts for many genes at the same time and thus mini-

mizes the likelihood of errors due to gradual rather than rapid

changes. The distribution of transcription initiation time points

of the variable genes further supports this conclusion (Fig EV5).

The existence of checkpoints and different cell cycle phases

supports the expectation of the concurrent onset of expression

of large groups of genes at the beginning of phases. However,

the time points of transcription initiation are uniformly distrib-

uted both between middle of G2 and early G1 and in the other

part of the cycle (Fig EV5). Additionally, the simple cycle is the

shape of the trajectory guaranteeing that each gene is up- and

downregulated only once during the cell cycle. Since we obtain

this shape in different cell types, it suggests a universal design

principle of the cell cycle.

The linearity of our algorithm is in contrast to non-linear anal-

ysis and visualization methods (k-nearest neighbors, UMAP,

t-SNE), which can be used to flatten more complex manifolds

onto a two-dimensional space. It is generally accepted that single-

cell transcriptomic profiles characterize an expression manifold

embedded in the expression space of all genes. Our work shows

that, in our setting, the cell cycle is an independent, two-dimen-

sional manifold within the expression manifold. This begs the

question whether the remaining expression manifold can be

reduced into further independent submanifolds. Finally, we note

that if cells have evolved optimality principles to traverse the cell

cycle (as we have shown here) it is tempting to speculate that

similar optimality principles of gene expression trajectories may

have evolved for a large variety of biological systems—in essence

for any developmental or cellular differentiation process. Our

method and conceptual framework may be useful to discover

these principles.

Materials and Methods

Filtering and cell cycle phase assignment

We use computational methods to identify the phase of the cell

cycle a specific cell was in at the moment of measurement. The

analysis is based on the principles described in Macosko et al

(2015) where marker genes for different time points throughout

the cell cycle are utilized to assign cells to their cell cycle time

point.

We first filter the m-by-n (genes-by-cells) digital gene expression

matrix S to ensure every gene is expressed in at least 5 cells and

every cell included in the analysis expresses at least 500 genes. We

then normalize each column of S by the total amount of UMIs θ j

within the j-th cell and scale by a factor κ where κ¼median j θ j
� �

(the median of all total UMI counts) to obtain scaled counts (Butler

et al, 2018). This, we call scaled fraction matrix SF:

SF :¼ κ �S �T (1)

where

T¼

1

θ1
0 ⋯ 0

0
1

θ2
..
.

..

.
⋱ 0

0 ⋯ 0
1

θn

0
BBBBBBBBBB@

1
CCCCCCCCCCA

and θ j ¼ ∑
m

i¼1

sij: (2)

The entries in SF are referred to as scaled counts. They are

displayed in Fig 1C for specific genes. Next, we take the logarithm

of SF (Butler et al, 2018). This, we refer to as the logarithmic frac-

tion matrix LF:

LF :¼ loge SFþ1ð Þ (3)

According to Whitfield et al (2002), five different cell cycle time

points (G1.S, S, G2, G2.M, and M.G1) are each characterized by

specific lists of genes, which are typically highly expressed at the

corresponding cell cycle phase. These are our five marker gene lists,

gη1, . . .,g
η
mη

n o
¼: bη for η∈ 1,2,3,4,5f g¼̂ G1:S,S,G2,G2:M,M:G1f g,

specifying five buckets bη. Genes not appearing in our data set are

discarded from this gene list.

The average expression pattern ξη of each cell j w.r.t. each bucket

is defined as the vector whose j-th entry is given by

ξη
� �

j
:¼ 1

mη
∑

gη
i
∈bη

LFð Þgη
i
,j (4)

For each row of LF that corresponds to a gene gηi contained in

bucket bη, we now calculate
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cηi :¼ cor LFð Þgη
i
,,ξη

� �
, (5)

providing information on how well the expression of a single

marker gene corresponds to the average expression of its bucket

(Macosko et al, 2015). We discard all genes gηi from our buckets

for which cηi<0:2 as they are deemed to behave differently than

other genes within the bucket and thus do not contribute to infer-

ring cell cycle phases (Macosko et al, 2015). This yields the buck-

ets ~b for η∈ 1,2,3,4,5f g.
The phase assignment score for cell j for phase η is given by

aη,j :¼ 1

~mη
∑

gη
i
∈ ~b

η
LFð Þgη

i
,j, (6)

yielding the 5-by-n matrix A¼ aη,j
� �

(Macosko et al, 2015). A is

normalized w.r.t. rows and columns which transforms A into a matrix

of z-scores (Macosko et al, 2015). For each cell j, we calculate

qj :¼ max
η

aη,j
� �

and we declare phase η, for which qj ¼ aη,j holds, to

be the cell cycle phase η j in which cell j is currently located.

We apply two filtering steps. Firstly, we define

~qj :¼ max
η s:t: aη,j<qj

aη,j
� �

which gives us the second highest phase assign-

ment score for each cell and the associated phase ~η j. We discard cells

for which 4> η j�~η j
�� ��>1 and ~qj>0:3. The first condition indicates that

the associated phases η j and ~η j are not neighboring phases while the

second condition states that the second highest phase assignment

score is significant. These types of cells are suspected doublets as

their gene expression peaks in two distant cell cycle phases.

Secondly, we discard cells for which qj<0:75 as these cells

appear to not exhibit sufficient information for a cell cycle phase

assignment.

The data are then again cleaned making sure every gene is

expressed in at least 5 cells and every cell expresses at least 500 genes.

In case of data from multiple experiments, the cell cycle phase

assignment is done for each experiment individually to avoid domi-

nance of batch effects on the z-scores of the cell cycle phase assignment.

Variable genes

In order to investigate variability within our data set without incor-

porating information on oscillating genes during the cell cycle from

the literature, we obtain variable genes according to the principles

from the R package Seurat (Butler et al, 2018):

We calculate (Butler et al, 2018) the mean expression ζi of each

gene i via

ζi :¼ loge
1

n
∑
n

j¼1

exp LFð Þij
� � !

: (7)

The dispersion di of a gene i is calculated (Butler et al, 2018) by

taking

di :¼ loge

1
n∑

n
j¼1 exp LFð Þij

� �
�1� 1

n∑
n
l¼1 exp LFð Þil

� ��1
� �h i2

1
n∑

n
j¼1 exp LFð Þij

� �
�1

h i
2
64

3
75:
(8)

We then compute cmin,ζ :¼ min
i

ζi, cmax,ζ :¼ max
i

ζi and the step

size Δx :¼ cmax,ζ�cmin,ζ

20 . Next, we define 20 buckets b̂
δ
for δ∈ 1, :::,20f g

such that the i-th gene gi∈ b̂
δ
iff

cmin,ζ þ δ�1ð Þ �Δx≤ζi<cmin,ζ þδ �Δx (Butler et al, 2018).

For a specific gi∈ b̂
δ
, we normalize the dispersion (Butler et al,

2018) di according to all genes within the same bucket b̂
δ
:

~di :¼
di� 1

#b̂
δ∑ j s:t: g j∈ b̂

δdjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

#b̂
δ∑ j s:t: g j∈ b̂

δ dj� 1

#b̂
δ∑l s:t: gl∈ b̂

δdl

h i2r : (9)

Lastly, we define a gene i to be variable iff 0:2<ζi<4 and

0:5<~di<10. The collection of these genes is denoted by VG.

Similar to the cell cycle phase assignment algorithm, we analyze

variable genes for each experiment dsl individually in case the data

contains L>1 data sets. There are multiple ways of combining the

resulting variable genes of each batch VGdsl into one set of variable

genes VGall. We have chosen:

VGall :¼ gij# VGdsl∋gi
� �

≥Q, l∈ 1, :::,Lf g, i∈ 1, :::,mf g� �
, (10)

Where

Q :¼ L� L�1

3


 �
: (11)

As an example: For L¼ 2, this yields Q¼ 1 and thus

VGall ¼VGds1∪VGds2 : (12)

Cell cycle marker gene set within variable genes

It will later on be of interest to investigate the effect of cell cycle

marker genes on the data. We therefore define one additional gene

set VGcc⊂Gall to be the set of known cell cycle genes in our variable

gene set. For VGcc, we take the union of known cyclic genes from

Cyclebase (Santos et al, 2015) and Whitfield et al (2002) which

yields 880 genes. 691 of these are contained in the HeLa data set 1

and 182 of those are part of the variable gene set. So VGcc consists

of these 182 genes.

Principal component analysis

In order to apply principal component analysis (PCA), we

normalize LF (equation 3) row-wise so that genes are normalized

across all cells. Additionally, we reduce the data set to the vari-

able genes VGall (equation 10) giving us the normalized data

matrix N.

We can write the covariance matrix Cov NT
� �

of the transposed

normalized data matrix NT as.

Cov NT
� �

:¼ 1

n�1
N �NT : (13)

Since Cov NT
� �

is a real, symmetric, square matrix, we know

there exists a matrix W such that
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Cov NT
� �¼WT �D �W (14)

holds, where D is a diagonal matrix with the eigenvalues λ1, . . .,λm
of Cov NT

� �
as its diagonal elements and where the rows of WT are

the eigenvectors of Cov NT
� �

. WT is orthogonal and even orthonor-

mal. An entry wT
ij of W

T is called weight (or loading) i for gene j.

According to PCA, we obtain a representation P of our data N

with respect to principal components (PCs) by defining

P :¼WT �N, (15)

where the rows of P are now uncorrelated to one another. A row vector

pk, of P contains the PC scores (or amplitudes) of all cells with respect

to PC k for k∈ 1, :::,#VGf g¼:K. The pairwise combinations of the first

three PC scores for each cell are depicted in (Fig 1A). The representa-

tion P of the data N according to PCs will be referred to as PC space.

Explained variation and significance of principal components

The total variation of the data P in PC space is given by the sum of

the eigenvalues λ1, . . .,λm and it is known that ∑
m

i¼1

λi ¼m. The varia-

tion explained by each PC i is then given by λi
m. We note that this is a

property of PCA and that normally the variance explained by an

individual dimension/component i of a centered data matrix A is

given by the sample variance:

Var Aið Þ¼ 1

n�1
� ∑

n

j¼1

a2ij (16)

where Ai is the i-th row or i-th dimension of matrix A. For PCA, it

can be shown that Var Pið Þ¼ λi.

By considering the size of the eigenvalues and corresponding GO

term analyses, we suspect that components past PC6 do not

correspond to coordinated biological processes but various degrees of

noise (both technical and biological such as cell–cell variability). Statis-
tically, we infer this by finding outliers among the eigenvalues with the

interquartile range approach: We have quantile Q1≈0:224, quantile

Q3≈1:381, and the interquartile range IQR¼Q3�Q1¼ 1:157. λi is

called a major outlier if λi>Q3þ3:5 � IQR. With this approach, we find

the first 6 eigenvalues to be outliers and call them significant. The vari-

ance explained per principal component i∈ 1, .. .,6f g is then given by

VarExplðPCiÞ¼ λi
∑6

j¼1λ j
.

Cell cycle cluster score

We define a cluster score to judge to what extent a specific PC k for

k∈ 1, :::,#VGf g is influenced by the cell cycle. Let pkj be the k-th PC

score for cell j. We divide all cells j for j∈ 1, :::,nf g into five clusters

b
η
, η∈ 1,2,3,4,5f g according to their computationally inferred cell

cycle phase η j. For a given PC k, we then calculate the mean μkη of

the PC score for each individual cluster of cells b
η
:

μkη :¼
1

#b
η ∑
j∈b

η
pkj: (17)

We thus obtain for each PC k five different mean values μkη .

Our idea is now that in case PC k is not influenced by the cell cycle,

we should find that these five mean PC scores μkη attain similar values

since the clustering b
η
(which is done w.r.t. cell cycle phases) should

have a negligible impact on the mean PC scores of the clusters. If on the

other hand a PC k is influenced by the cell cycle, we expect this to be

reflected by differing mean values μkη . This behavior can be measured by

investigating the standard deviation σk of the five mean values μkη

σk :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

5
∑
5

η¼1
μkη �

1

5
∑
5

~η¼1

μk~η

� �" #2vuut : (18)

We define σk to be our cell cycle score. We note that according to

our previous assumptions σk is small for a PC k that is not influenced

by the cell cycle. The least cell cycle influence we would expect for any

PC k with σk ¼ 0. If we assume that the cell cycle does in fact manifest

itself within M≪#VG PCs, then any PC k that is influenced by the cell

cycle, should exhibit a significantly higher σk than the majority of PCs.

This is a relative score meaning that we are not assigning mean-

ing to the absolute values σk of the score. Only if we see signifi-

cantly higher values in some components than the majority can we

hypothesize that these components are influenced by the cell cycle.

Cell cycle marker score

We have investigated a second measure of the cell cycle variance

contained in principal components. This time, we consider the

weight matrix WT responsible for transforming the normalized data

N into the PC space. We note that WT is an orthogonal matrix,

meaning W �WT ¼ I, where I is the identity matrix. It also holds that

∑
m

j¼1

WT
� �2

ij
¼ 1, for all i. Each row i in WT defines the representation

of the data N in PCi through the formula P¼WT �N. An analysis of

these weights (or loadings) therefore holds valuable information

about which genes (as each weight corresponds to a gene) play the

biggest role in the data distribution within each PCi.

If there existed a PCi for which all genes would be of equal

importance, then WT
� �

ij

��� ���¼ WT
� �

ik

�� �� for all j,k. Thus, WT
� �2

ij
¼ 1

m for

all j which we call the expected average weight. We will therefore

consider all genes j corresponding to weights for which WT
� �2

ij
> 1

m

(larger than expected average weight) to be of importance for PCi.

The known cyclic genes are contained in VGcc. The degree to

which known cyclic genes are responsible for the representation of

the data in PCi can be estimated by the score.

Si :¼ ∑
j∈Gcc

WT
� �2

ij
, (19)

which sums up all squared weights corresponding to known cyclic

genes. For a component not involved in the cell cycle, we would

expect a score Si≤ #VGcc

#VGall (where the right-hand side is the summed

expected average weight).

Rotation of three-dimensional space

We want to rotate the PC space spanned by the first three principal

components in order to find a two-dimensional plane that contains the
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cell cycle. A rotation of three-dimensional space may be executed by a

series of two-dimensional rotations with matrices taking the form

Rx αð Þ¼
1 0 0

0 cos αð Þ �sin αð Þ
0 sin αð Þ cos αð Þ

0
BB@

1
CCA, Ry βð Þ¼

cos βð Þ 0 sin βð Þ
0 1 0

�sin βð Þ 0 cos βð Þ

0
BB@

1
CCA,

Rz γð Þ¼
cos γð Þ �sin γð Þ 0

sin γð Þ cos γð Þ 0

0 0 1

0
BB@

1
CCA:

(20)

for some angles α, β, γ. The resulting rotation is then given by

R α,β,γð Þ¼Rz γð Þ �Ry βð Þ �Rx αð Þ. Without loss of generality, we can

dismiss one of these rotation matrices as all necessary rotations of

the space can be achieved by a combination of two angles. We

choose γ¼ 0, yielding Rz ¼ I3.

More generally, we can rotate a three-dimensional subspace of a

larger vector space (with dimension > 3) by filling out all other

dimensions not involved in the rotation by the identity matrix. An

example of a ration matrix R of the three-dimensional subspace

spanned by dimension 1, 4, 6 in a 6-dimensional space:

r11 0 0 r12 0 r13

0 1 0 0 0 0

0 0 1 0 0 0

r21 0 0 r22 0 r23

0 0 0 0 1 0

r31 0 0 r32 0 r33

0
BBBBBBBB@

1
CCCCCCCCA
: (21)

Our goal is to find appropriate angles α, β such that the direction

vector ω of the axis of the cylinder forming the manifold is in the

direction of the third rotated component.

R α,βð Þ �ω¼
0

0

1

0
B@

1
CA: (22)

Given ω, the entries of the rotation matrices system can be deter-

mined like.

sin αð Þ¼ ω2

ω2
2þω2

3

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ω2

1

q
, (23)

cos αð Þ¼ ω3

ω2
2þω2

3

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ω2

1

q
,

sin βð Þ¼�ω1,

cos βð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ω2

1

q

Finding the optimal rotation

We want to rotate the PC space in an unsupervised manner. Our

optimization is that after rotation of a three-dimensional subspace

spanned by components k1, k2, k3 for ki∈ 1, :::,#VGall
� �

the cell

cycle score σ ~k3
(equation 18) is minimal in the new third component

~k3. This condition derives from considering a triplet of mean PC

scores (μk1η ,μk2η ,μk3η Þ (equation 17) as a point γη within our three-

dimensional subspace for η∈ 1,2,3,4,5f g. Each of the five cell cycle

time points (G1.S, S, G2, G2.M, and M.G1) yields one such point γη.

We now attempt to place all of these five points γη into a single

plane. Minimizing the distance of the five points γη to that plane is

equivalent to minimizing the cell cycle score for the vector orthogo-

nal to the plane. The fact that such a plane exists is non-trivial. We

will refer to the orthogonal vector corresponding to the plane as the

viewing axis.

The pair (α,β) defines a solid angle. We do a two-step optimiza-

tion. First, we divide the total solid angle of 4π into 10,000 bins of

equal size. Utilizing the golden spiral algorithm (also referred to as

spherical Fibonacci grid) (Vogel, 1979; Swinbank & Purser, 2006),

we generate 10,000 approximately equidistantly spaced points on a

unit sphere. Each of these points is a potential viewing axis. For

each of them, we calculate the corresponding cell cycle score. The

axis ωi, i∈ 1, . . .,10,000f g associated with the lowest cell cycle score

is chosen to be optimal.

As a second step, we refine the grid of potential viewing axes in

a small neighborhood of ωi by roughly the factor 1
1000. Again, we find

the viewing axis ~ω~t associated with the lowest cell cycle score and

choose this ~ω~t to be the viewing axis that becomes the vector

0

0

1

0
B@

1
CA

after rotation of the three-dimensional subspace.

Generalization to sequence of rotations and selection of cell
cycle significant components

So far, we have always assumed that PCA manages to place the cell

cycle drivers within the first three dimensions. This is unfortunately

only true for sufficiently deep sequenced data sets. We have investi-

gated multiple Drop-seq data sets from HeLa, HEK, and 3T3 cells

where we find significant cell cycle scores for more than three PCs.

Therefore, it is necessary that we advance from a single rotation of

a three-dimensional subspace to a sequence of three-dimensional

rotations. We note that combining two rotation matrices R1,R2 again

yields a rotation matrix R¼R2 �R1.

We consider the cell cycle score for the first 100 principal compo-

nents. We need to judge which of these components are significantly

influenced by the cell cycle. This comes down to an outlier detection

problem. We would in general expect to obtain most cell cycle scores

close to zero with only a handful significantly higher scores, implying

cell cycle influence for those few components. We detect outliers via

the sample mean and sample standard deviation, restricted to the first

100 components. For the vector σ
!
K :¼ σ1, :::,σ100ð Þ (see equation 18),

K :¼ 1, :::,100f g⊂ 1, . . .,#VGf g¼K, we consider the sample standard

deviation (SD).

SD σ
!
K

� �¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

#K�1
� ∑
j∈K

σ j�meanðσ!KÞ
� �s

(24)

and define σ
k
for k∈K to be an outlier iff

σ
k
�mean σ

!
K

� ��� ��>2 �SD σ
!
K

� �
: (25)
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Let Ǩ be the collection of k for which σ
k
is an outlier. Then, any

PC ǩ∈ Ǩ⊂K is considered to be a PC on which the cell cycle has

significant influence.

Our goal is to place the cell cycle influence into the first two

components. Therefore, the first two components always span the

first two dimensions of the three-dimensional subspace we rotate.

The third dimension is spanned by a PC ǩ∈ Ǩn 1,2f g.
As an example, we assume our outlier detection found that PC1,

PC2, PC3, PC5, and PC8 have significant cell cycle scores. This yields

Ǩn 1,2f g¼ 3,5,8f g and implies that we require three subsequent

three-dimensional rotations. The first step is the same as described

previously: We select the three-dimensional space spanned by PC1,

PC2, and PC3, we find the optimal viewing axis for this subspace

and rotate the data set accordingly by a matrix R1. This yields

rotated-PC1, rotated-PC2, and rotated-PC3 where the cell cycle score

of rotated-PC3 was minimized and the cell cycle effects exhibited by

PC3 previously were ideally included into rotated-PC1 and rotated-

PC2. In the next step, we select the three-dimensional subspace

spanned by rotated-PC1, rotated-PC2, and rotated-PC5 and find the

optimal viewing axis such that the cell cycle score is minimal in

rotated-PC5. We obtain R2. Finally, this is repeated with the newly

rotated-PC1, newly rotated-PC2 and rotated-PC8 yielding R3. In total,

we have a sequence of three three-dimensional rotations R1, R2, R3

which when combined are in fact realized by a single rotation matrix

R¼R3 �R2 �R1.

We find that with this method, we are able to isolate cell cycle

effects into just two dimensions for all data sets investigated (visual-

ized in Fig 1, Appendix Fig S1–S4). The algorithm is not influenced

by batch effects and will ignore such effects as long as the relevant

cell cycle information is present and contained within the first 100

PCs. We have set the boundary of 100 PCs as we have not yet found

any data set that had significant cell cycle scores past the 100th PC.

The algorithm can be extended to include as many PCs as desired.

Only the detection of outliers has to then be adjusted to account for

additional data points influencing the outlier detection algorithm.

In the end, we find a new representation DC of the data N by

multiplying a rotation matrix R from the left onto the representation

P (equation 15) via.

DC :¼R �P¼R �WT �N ¼U �N (26)

where R is a sparse orthogonal matrix which causes cell cycle

effects to be maximized in the first two dimensions and U :¼R �WT

is again an orthogonal matrix. The representation DC of the data N

according to rotated PCs will be referred to as dynamical compo-

nent space (DC space), and the new components (rotated PCs in

the above example) will be referred to as dynamical components

(DCs).

Dynamic components

The dynamics of the cell cycle is the dynamics of the mRNA and

protein concentrations of the cell. We restrict our analysis to the

mRNA concentrations. Neglecting noise, it can be described by a

large system of ordinary differential equations

dX

dt
¼ F X,pð Þ: (27)

Here, X denotes the vector of the mRNA concentrations, p a vector

of parameter values and t denotes the time variable. The depen-

dence on p captures also cell variability. In general, the time course

of X on the manifold can be described by a system of differential

equations for abstract variables A¼ a1, :::,aMð Þ with fewer compo-

nents ai than the large number m of mRNAs:

dA

dt
¼H A,pð Þ (28)

The original data are related to the abstract variables by algebraic

functions G

X tð Þ¼G a1 t,pð Þ, . . .,aM t,pð Þð Þ: (29)

Such a description is useful, if very few ai provide a good

approximation of the time course, i.e., M≪m. M is an upper limit

for the dimension of the manifold. There is a variety of methods of

finding the abstract variables (Haken, 1983; Kuznetsov, 1998). Our

results show that the cell cycle dynamics (motion on the manifold)

can be represented in good approximation with M¼ 2, described by

differential equations for a1 and a2:

da1
dt

¼H1 a1,a2,pð Þ, da2
dt

¼H2 a1,a2,pð Þ, (30)

and a particularly simple function G:

X tð Þ¼ ∑
2

i¼1

ai t,pð Þ �Ei pð Þ: (31)

E1 and E2 are sums of principal components and are called

dynamical components (DCs). The rotated PC1 and rotated PC2 are

one of several possible choices of E1 and E2. We therefore denote

rotated PC1 and rotated PC2 by DC1 and DC2, respectively. Addi-

tional dimensions (rotated PC m) are denoted analogously by DC m.

Other possible choices for DC1 and DC2 follow from rotated PC1 and

rotated PC2 by rotation around the cylinder axis (DC3 direction).

Cell cycle cluster and marker score for dynamical components

The definitions of the cell cycle cluster and marker scores (see

sections “Cell cycle cluster score” and “Cell cycle marker score”) for

the dynamical components are completely analogue to the calcula-

tions for principal components. The only difference is that instead

of the PC scores in P, we consider the scores in DC and instead of

the weight matrix W, we consider the weight matrix U :¼R �WT

responsible for transforming the normalized data N into DC in DC

space. The matrix U is again an orthogonal matrix.

Variation decomposition

We want to assess the cell cycle variance contained in each of the

principal and dynamical components. In Buettner et al (2015), this

was estimated by calculating the variance caused by a gold-standard

set of cell cycle genes and comparing it to the overall variance. We

have VGall the set of variable genes and VGcc⊂Gall the set of cell cycle

genes (see sections “variable genes” and “Cell cycle marker gene set
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within variable genes”). We take a similar approach as in Buettner

et al (2015) and split the data representation P and DC along the cell

cycle genes into two representations:

P¼ PVG
cc þPVG

allnVGcc

andDC¼DCVGcc þDCVGallnVGcc

which states that the representations P and DC can be divided into

a sum where the first source is determined by cyclic genes and the

second by all other genes. This is made possible by considering the

following “picture”:

N ¼
NVGcc

. . .. . . . . .. . . ⋯⋯
NVGallnVGcc

0
B@

1
CA andW¼

..

.

WVGcc ..
.
WVGallnVGcc

..

.

0
BBB@

1
CCCA:

In this representation, we split N and W along the known cyclic

genes in the set VGcc. NVGcc

contains all cells but only the cell cycle

gene set, while WVGcc

is the part of the rotation matrix affecting all

genes in the set VGcc. Then, we define:

PVG
cc ¼WVGcc �NVGcc

,

PVG
allnVGcc¼WVGallnVGcc �NVGallnVGcc

,

DCVGcc ¼R �WVGcc �NVGcc

,

DCVGallnVGcc¼R �WVGallnVGcc �NVGallnVGcc

:

By basic considerations about calculation rules of matrix

multiplication, we can conclude that the equations

P¼ PVG
cc þPVG

allnVGcc

andDC¼DCVGcc þ DCVGallnVGcc

hold.

Without loss of generality, we only consider the matrix P and its

decomposition from now on. All considerations also apply to DC.

With the help of basic calculation rules of variances, we can decom-

pose the variance into

Var Pið Þ¼Var PVG
cc

i

� �þVar P
VGallnVGcc

i

� �
þ2 �Cov PVG

cc

i ,P
VGallnVGcc

i

� �
¼Var PVG

cc

i

� �þVar P
VGallnVGcc

i

� �
þ2 �PVGcc

i � P
VGallnVGcc

i

� �T
,

for any component i. We now consider Var PVG
cc

i

� �
to be the vari-

ance directly explained by the cell cycle as we defined VGcc to

contain only known cell cycle genes, Var P
VGallnVGcc

i

� �
is the unex-

plained variance and the last term describes the confounding

effects between the two gene sets VGcc and VGallnVGcc. We would

expect the last term to be zero if both gene sets were completely

independent. This is of course not the case as VGallnVGcc will

undoubtedly contain genes that are not marked as clear cyclic

genes but nevertheless play an indirect role during the cell cycle.

We call this “implied cell cycle variance”. If the implied cell cycle

variance is positive, we can define portions of variances:

cell cycle variance¼Var PVG
cc

i

� �
Var Pið Þ ,

implied cell cycle variance¼ 2 �PVGcc

i � ðPVGallnVGcc

i Þ
T

Var Pið Þ ,

unexplained variance¼
Var P

VGallnVGcc

i

� �
Var Pið Þ :

These considerations hold true analogously for the representa-

tion DC. We have investigated the data for the first 10 components

in the PC and DC space (Fig 1E). We observe that the PCs with the

biggest proportion of cell cycle variation are the ones that Revelio

selects for rotation (first three). In the DC space, we observe that we

only have 14% and 17%, respectively, of unexplained variation

present in DC1 and DC2, whereas in the other components the unex-

plained variation ranges from 70% to 82%.

As a control, we have randomly sampled 182 genes from the

1031 variable genes and redone the analysis in Appendix Fig S10.

We observe in all components a similar distribution as seen for

DC3-DC10 in Fig 1E. Additionally, we note that 1� 182
1031≈0:823

(VGcc contains 182 genes, VGall contains 1,031 genes).

Considering all components i, we observe that

unexplained varianceþ implied random set variance
2

� �
∼N 0:823, 0:00031ð Þ,

meaning the decomposition of variation of a random gene set likely

only depends on the number of genes in each set for a random selec-

tion of genes. This suggests that a component exhibiting a similar

distribution in its variation decomposition is suggested to be only

randomly influenced by the chosen gene set. Hence, DC3-DC10 are

implicated to contain no coordinated effect from known cyclic

genes.

Synchronizing cell cycle to cell division

In order to compare different data sets, we want to find a way to

synchronize the obtained cell cycle to a known time point that exists

in all data sets. Cell division is present in all cell types we are inves-

tigating. Furthermore, we can approximate the moment of cell divi-

sion by investigating the amount of mRNA transcripts contained

within cells along the cell cycle which makes cell division an ideal

candidate to align our data sets to.

More specifically, we consider the cell cycle displayed by DC1

and DC2 and divide the data into ~n bins containing 30 cells each.

For each bin, the average total UMI count is calculated providing us

with a time course Uið Þ, i∈ 1, :::, ~nf g of average total UMI counts

along the cell cycle. We take the minimum and maximum of ðUiÞ
and construct a linear function h xð Þ such that h 1ð Þ¼ min iUi and

h ~nð Þ¼ max iUi. We now consider all permutations πl, l∈ 1, :::, ~nf g of

the set 1, :::, ~nf g which periodically shift every element by l�1.

Then, we search for the permutation πl which attains the minimum

in squared residuals between the time course and the linear

function:

minπl ∑
~n

i¼1

Uπl ið Þ �h ið Þ� �2
 �
: (32)

This is a simple but efficient approximation for the bin l at the

start of which the cell division is most likely to take place due to the

fact that we expect a sudden drop in average total UMI counts

between cells about to divide and the ones that just divided. The

increase in average UMI counts per cell is in reality not linear but

we have seen during analysis of multiple data sets that this approxi-

mation is sufficient.
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Finally, let αx be the minimal angle a cell attains in polar coordi-

nates within bin l and let αx�1 be the maximum angle of all cells

from bin l�1. We rotate the two-dimensional cell cycle about an

angle α¼�αxþαx�1

2 , thereby placing the time point of cell division

onto the positive axis of DC1.

Phase space density and speed along trajectories

Cells were grown asynchronously in vitro. As no synchronization

of cell cycle phases was performed, it is reasonable to approxi-

mate cells to be uniformly distributed along the time axis of one

cell cycle during the experiment. Under this assumption, the time

variable in high-dimensional gene expression space is represented

by the phase space density (the density of cells along a trajec-

tory). In areas of significantly higher cell density, we can assume

that time passes slower than in areas along the trajectory of low

cell density. In case of uniform density, one can conclude that

time is progressing linearly when moving along a trajectory with

constant speed.

While we do not obtain perfect uniform distribution of our

cells (Appendix Fig S11A), the cells in our HeLa data 1 utilizing

1,031 genes during PCA are reasonably well distributed in phase

space (sample cumulative distribution in blue, ideal uniform

cumulative distribution function for U[0,1] in black). More inter-

estingly, if we consider the same HeLa data but 12,773 genes

during PCA, the distribution becomes even closer to uniform

(Appendix Fig S11B).

While both of these distribution are statistically not uniform,

they are reasonably close to conclude that an additional non-linear

transformation which evens out phase space density will not alter

the basic characteristics of the data clouds.

All time course analyses are done by uniformly distributing cells

along the cell cycle axis so that progression along time courses

shown in Figs 1, 2 and 4 is approximately linearly proportional to

progression through actual cell cycle time.

Incorporating cell cycle phase durations from literature into
phase space plots

There are multiple publications on measuring the lengths l of cell

cycle phases. For HeLa and 3T3 cell lines, we obtain values for

cell cycle phase lengths from Hahn et al (2009) and for HEK293

data sets from Cheng & Solomon (2008) These cell cycle phase

lengths and their location in our plots are to be understood as

rough estimates. We note that we specifically do not observe

discrete switches from one phase to another but rather continu-

ous transition between them. The notations of cell cycle phases

were created by scientists in order to group processes and facili-

tate description of such.

Since we have previously defined the time point of cell division

within our data, we equate this time point to the transition from M

to G1 phase. In the previous section, we have argued that we can

relate the density of data points along the cell cycle in transcriptome

space to information about actual cell cycle time. We order the cells

according to their angle in polar coordinates. From the first cell after

cell division, we define the transition G1-S to take place after x cells

where x can be computed from

x

#of total cells
¼ lG1
ltotal

: (33)

The mean angle of the cells x and xþ1 gives us an estimate of

where in our phase space the transition G1-S takes place. We repeat

this step for all remaining transitions analogously.

RNA velocity analysis

La Manno et al (2018) introduced RNA velocity as a concept of

distinguishing between unspliced and spliced RNA in order to

extrapolate cell states to a future time point. We implement the

approximation model I from the supplement of La Manno et al

(2018) into our analysis. Let sij tð Þ be the number of spliced tran-

scripts of a specific gene i present in a cell j dependent on time t.

The assumption under model I is that the time derivative of sij is

constant

dsij
dt

¼ vij ) sij tð Þ¼ sij
� �

0
þvij � t: (34)

The velocity matrix V is estimated as is shown in the supplement

of La Manno et al (2018). We set ðsijÞ0
� �

i∈ 1,...,mf g,j∈ 1,...,nf g ¼ S where

S is our raw data matrix (see Materials and Methods section "Filter-
ing and cell cycle phase assignment"). We choose t¼ 1 and we

obtain the extrapolated state matrix sex via

sex ¼ S �TþV (35)

(see equations 2, 34). Next, we transform the data to LFex (equa-

tion 3) similarly as before.

LFex ¼ loge 104 � sexþ1
� �

: (36)

We then normalize LFex for each gene across all cells according

to the mean and standard deviation of each gene in LFex and limit

ourselves to the variable genes found during our previous analysis

which yields the normalized extrapolated data matrix Nex. Lastly,

we transform the data points into the rotated PC space where the

first two dimensions represent the cell cycle:

DCex ¼R �WT �Nex (37)

(equations 15, 26).

Due to the high noise level in the unspliced data, we have to

incorporate a smoothing grid on top of the DC1-DC2 plot in order to

obtain relevant information about the direction of motion of the

cells. The calculation of the grid is again done as described in the

supplement of La Manno et al (2018), incorporating a Gaussian

kernel function

Kσ x1,x2ð Þ :¼ exp
�k x1�x22 k

2ϱ2

� 
(38)

and defining the displacement of a grid point xgridk via

Δxgridk :¼∑
j

Kσ xgridk ,xj
� � �Δxj: (39)

ª 2020 The Authors Molecular Systems Biology 16: e9946 | 2020 15 of 20

Daniel Schwabe et al. Molecular Systems Biology



The smoothing parameter ϱ (equation 38) can be chosen

freely (La Manno et al, 2018). We take care to find a balance

between smoothing enough to get a reasonable idea of the

general motion of the system but at the same time taking care

not to eliminate too much noise so that there is room for inter-

pretation of the strength of cyclic motion at different time points

during the cell cycle. In Fig 2A, we have chosen ϱ¼ 0:6 (equa-

tion 38).

RNA velocity in the side of the cylinder

In order to show that we isolated cell cycle into just two dimen-

sions, we investigate also the motion of the cells parallel to the

cylinder axis. A cylinder can be described by the angle φ and radius

r of its base and the height corresponding to the direction of DC3 in

our representation of the data.

State changes in φ-direction are calculated by calculating

polar coordinates for our data and the extrapolated data in the

DC1-DC2 plot. The changes in height direction are given by the

changes in DC3 between the data and the extrapolated state.

Due to high noise levels, we again apply a grid smoothing as

outlined before (La Manno et al, 2018; Fig 2E). The only dif-

ference is that we apply a scaling factor to φ in order to make

the Gaussian kernel approximately symmetrical. The scaling

factor we choose is the mean value of the radius of all data

points in the DC1-DC2 plot. The displacement value for grid

points can then be scaled back by the same factor so that we

can display the results in the φ-DC3 plane. Here, we choose

ϱ¼ 2 (equation 38).

State transition index of the attractor

If we compare the attractor (a stable manifold) to a water slide,

then a person going down the water slide corresponds to a cell

going through the cell cycle. The cell runs along the main path

at the bottom of the channel, but it also veers toward the

sides. The steepness of the walls, or the strength with which a

cell is pushed back toward the middle, is called the attractor

stability. The steeper the walls, the faster perturbations decay

and the faster cells return to the attractor, hence the more stable

it is.

The index for critical state transitions IC introduced in Mojtahedi

et al (2016) is defined via

IC :¼
R gi,g j

� ��� ��� �
R Sk,Sl
� �� � , (40)

where gi are gene vectors, Sk are cell states and R . . ., . . .h i is the

average of all pairwise correlations (we utilize Spearman correla-

tion in our analysis) (Mojtahedi et al, 2016). We only include pair-

wise correlation values with a p-value smaller than 0:05.

In polar coordinates, we divide the two-dimensional cell cycle

plot with respect to angle into 10 bins which contain the same

number of cells each. For each of these bins, we calculate the state

transition index IC as introduced by Mojtahedi et al (2016).

In general, the state transition index increases before a critical

state transition due to the fact that gene–gene correlation occurs

coordinately and therefore increases on average, while the average

cell–cell correlation decreases because cells are more variable

during transitions than in steady state. Both of these effects would

cause an increase in IC making the state transition index an appro-

priate measure for state transitions.

Our analysis of the behavior of IC throughout the cell cycle

implies that there is no critical state transition detected as the

progression observed in Appendix Fig S7A is homogeneous. Small

changes are attributed to noise rather than orchestrated behavior.

GO term analysis

Since the additional rotation R (equation 26), which we apply after

PCA, is a linear algorithm, the weights WT (equation 15) generated

by PCA can be transformed linearly as well by considering the

rotated weights U¼R �WT . We analyze the rotated weights from U

and the difference to original weights from WT in order to gain an

insight into the cyclic object we found in two dimensions.

A GO term analysis (Eden et al, 2007; Eden et al, 2009) of the

first three columns of WT , which are the weights generating the first

three PCs, shows that all three PCs are highly dominated by cell

cycle processes (see Appendix Table S2). We see highly significant

p-values suggesting that all three PCs are vital for the description of

the cell cycle.

On the other hand, for the weights in U we observe that while

DC1 and DC2 are still dominated by cell cycle effects with highly

significant p-values, DC3 is completely free of cell cycle GO terms

(see Appendix Table S2; Eden et al, 2007; Eden et al, 2009).

Furthermore, we have investigated additional rotated PCs of

lower order and have not found any GO terms (Eden et al, 2007;

Eden et al, 2009) related to the cell cycle with a P-value < 10−5. This

is another strong indication that we have succeeded in isolating cell

cycle effects into only two dimensions.

Independent component analysis

Statistical independence between the components cannot be suffi-

ciently concluded from our analysis of rotated principal compo-

nents. Independent component analysis (ICA) represents the data

by a linear combination of k factors where the k factors are chosen

such that they are statistically independent (their joint distribution

is equal to the product of their marginal distributions). The number

of factors k has to be chosen by the user. A drawback of ICA is that

there is no ordering of components with respect to "explained vari-

ance" as is the case with principal component analysis (PCA).

Therefore, all resulting components have to be considered, adding

importance to the choice of k. We have performed an ICA on the

HeLa data that was mainly presented in the manuscript for multiple

choices of k∈ 3, . . .,10f g.
We find that for any of these choices there are always two

components such that their 2-dimensional projection creates a circu-

lar data cloud. We illustrate this for the choice of k¼ 6 in (Fig

EV4A) as pairwise plots can still be visualized here and we find the

first 6 principal components (PCs) to be of main importance (section

“Explained variation and significance of principal components”).

The ICA was done with the "fastICA" function from the "fastICA"
package in R (Hyvarinen & Oja, 2000). This algorithm uses a

stochastic optimizer for finding the k components, meaning each

run of "fastICA" gives slightly different results. For example, the two
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components creating a circular data cloud as seen in Fig EV4A might

not be IC2 and IC4 on the next run but another pair out of 1, . . .,6f g.
However, we always find exactly two ICs whose pairwise projection

creates a circular data cloud.

Even though ICA does not produce an orthogonal transformation

as PCA does, the algorithm still provides a weight matrix providing

us information of how the original components in the data (individ-

ual species of mRNA) are weighted to create the projections. In Fig

EV4B, we correlated the weight vectors corresponding to the 6 ICs to

the weight vectors corresponding to the first 6 dynamical compo-

nents (DCs) from our analysis (right-hand plot). We observe that the

two dynamical components DC1 and DC2 responsible for the cell

cycle are highly correlated to exactly one independent component—
IC4 and IC2, respectively. This suggests that there is a close corre-

spondence between the two statistically independent components

that create a cyclic data cloud which was identified by ICA and the

two dynamical components we find to be responsible for cell cycle.

Analogously, the plot correlating the weights corresponding to

the first principal components to the independent components can

be viewed in Fig EV4B (left-hand plot). We see that the correlation

of PCs to IC2 and IC4 is much more broadly distributed and values

> 0.9 are absent. This suggests that the additional step of rotation

we introduced is in fact beneficial for identifying statistically inde-

pendent sources of variation related to the cell cycle.

Downsampling analysis

Since there are apparent differences in the quality of the cell cycle

pattern in different data sets, we want to investigate the associated

parameters and conditions for obtaining the pattern. We believe that

there are two main parameters responsible for the pattern to reveal

itself: the sequencing depth and the number of cells. The more

deeply a cell population is sequenced, the fewer cells are required

and vice versa. Due to the idiosyncrasies of single-cell data sets, we

believe there is no gold-standard threshold for either of these param-

eters, but we attempt to estimate a range for them.

Firstly, we have performed a downsampling analysis on the HeLa

data to investigate the emergence of a two-dimensional cyclic

structure with dependence on the sequencing depth. We downsam-

ple with the function "downsampleMatrix" from the R package

"DropletUtils" (Griffiths et al, 2018; Lun et al, 2019). We set the

parameter bycol = TRUE and provide different coefficients k for

downsampling. The coefficient k determines what fraction of reads

of an original cell will be preserved on average. We choose

k∈ 0:05,0:1,0:15, . . .,0:95f g and rerun our algorithm for each new

data set. The resulting cell cycle for k∈ 0:1,0:2, . . .,0:9f g illustrates

the slow collapse of the cell cycle to the center with decreasing

sequencing depth (decreasing k) (Fig EV2A). We kept the plot

boundaries constant to emphasize this collapse.

In order to characterize the cyclic data cloud, we consider the

mean, standard deviation, and confidence interval of the radii for

each cell cycle corresponding to its downsampling coefficient k (Fig

EV2B). The black lines represent linear regressions and their slope,

p-value and R2 are displayed in the lower right-hand corner. We

observe surprisingly clear linear relationships between the down-

sampling coefficent k and the mean of the radius, the standard devi-

ation, and the lower bound of the confidence interval of the radius,

respectively.

The HeLa data presented have been sequenced exceptionally

deep. At 20% sequencing depth and after usual filtering, we main-

tain on average 3,000 UMIs per cell. While we did not perform a

data mining analysis to determine the average sequencing depth of

published single-cell sequencing data, we feel that 3:000 UMIs per

cell is still on the upper end of the distribution. We observe though

that at 20% sequencing depth, the lower confidence interval bound

has a radius of 0:32 which visually makes it appear rather as a disk

than an annulus. For 10% sequencing depth, the cell cycle signal

appears to mostly break down.

It is unfortunately difficult to determine a single measure by

which one can judge whether the cyclic transcriptome pattern

appears or not. It is rather a combination of characteristics which is

why we emphasized the verification of the two-dimensional cell

cycle in the manuscript. The most important characteristics are the

DC1-DC2-plot, the time course of total UMI counts, the cell cycle

cluster and marker score and the variation decomposition. If all five

of these characteristics imply that the cell cycle signal has been

isolated into two dimensions, we conclude that the data set is suit-

able for our approach.

The second aspect influencing the emergence of the cyclic tran-

scriptome pattern is the number of cells. We randomly sampled dif-

ferent amounts of cells from our HeLa data and reran the algorithm

similar to the previous analysis. In Fig EV2C, we, interestingly, do

not observe a collapsing cell cycle in the origin, but rather a thin-

ning of the cell cycle due to fewer cells present. Again, investigating

the characteristics of the radii, we do not observe a similar linear

relationship as before but rather a breaking point (Fig EV2D).

This suggests that the characteristics of the data cloud shift

noticeably after fewer than 25% of the cells are used for the analy-

sis. Considering our additional measures (time course of total UMI

counts, marker and cluster score and variation decomposition)

suggests that at around 40% of the sampled cells we get a clear

separation of the cell cycle into two dimensions which corresponds

to approximately 600 cells.

We repeated the downsampling analysis for the data set contain-

ing only 40% of the cells and observed that the required sequencing

depth is slightly higher at around 4,500 UMIs per cell (roughly 30%

of the original sequencing depth).

We conclude that for the two-dimensional transcriptome pattern

to emerge, a certain number of cells are required. This threshold

itself most likely depends on the sequencing depth. On the other

hand, the sequencing depth and characteristics (mean of the radius,

standard deviation of the radius, and the resulting confidence inter-

val) of the two-dimensional data cloud appear to have a linear

dependency. We suggest a data set to contain around 600 cells to

obtain reasonable coverage of the entire cell cycle in transcriptome

space. Such a data set should then contain a mean UMI count of

roughly 4,500 UMIs. If a data set contains significantly more cells,

the mean UMI count can be lower but should for most cases still

exceed around 3,000 UMIs per cell.

Single-cell sequencing for data set 1: Drop-seq procedure,
single-cell library generation, and sequencing

The Drop-seq runs and library preparation were performed as

described in Alles et al (2017) on a self-built Drop-seq setup

(Macosko et al, 2015).
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HeLaS3 cells and HeLaS3 AGO2KO cells were grown to the logarith-

mic phase, pelleted by centrifugation (300 g, 5 min), fixed with 80%

cold methanol while mildly vortexing and kept on ice until the run.

Fixed cells were prepared for the Drop-seq run by centrifugation

(1,000 g, 5 min) and resuspension in 1 ml of PBS-BSA 0.01% + Ribo-

Lock (Thermo Fisher) (0.8 U/µl), followed by another centrifugation

(1,000 g, 5 min) and resuspension in 0.5 ml of PBS-BSA

0.01% + RiboLock (Thermo Fisher) (0.8 U/µl). Then, cells were passed

through a cell strainer (35 µm), counted, diluted with PBS-BSA 0.01%

to a concentration of 100 cells/µl, and transferred into a syringe to be

loaded on the Drop-seq apparatus. After mixing with lysis buffer, this

corresponds to a final concentration of 50 cells/µl in the droplets.

The two single-cell libraries from the HeLaS3 and HeLaS3

AGO2KO cells (1.8 pM, final insert sizes 700 bp) were sequenced in

paired end mode on Illumina Nextseq 500, together with two other

libraries, yielding ~ 49 × 106 read pairs for the HeLaS3 library and

~ 45 × 106 read pairs for the HeLa AGO2KO library.

A second sequencing run was performed with two multiplexed

libraries prepared from a subpool of cells (50%) in order to obtain

deeper sequencing data from less cells (1.8 pM, final insert sizes

645 and 628 bp). This yielded ~ 168 × 106 read pairs for the HeLaS3

library and ~ 186 × 106 read pairs for the HeLa AGO2KO library.

Read 1: 20 bp (bases 1–12 cell barcode, bases 13–20 UMI; Drop-

seq custom primer 1 “Read1CustSeqB”), index read: 8 bp, read 2

(paired end): 64 bp).

Single-cell sequencing for data set 2: Drop-seq procedure,
single-cell library generation, and sequencing

The Drop-seq runs and library preparation were performed as

described in Alles et al (2017) on a self-built Drop-seq set-up

(Macosko et al, 2015).

HeLaS3 cells were grown to the logarithmic phase, pelleted by

centrifugation (300 g, 5 min), fixed with 80% cold methanol while

mildly vortexing and kept on ice until the run. Fixed cells were

prepared for the Drop-seq run by centrifugation (1,000 g, 5 min)

and resuspension in 1 ml of PBS-BSA 0.01% + RiboLock (Thermo

Fisher) (0.8 U/µl), followed by another centrifugation (1,000 g,

5 min) and resuspension in 0.5 ml of PBS-BSA 0.01% + RiboLock

(Thermo Fisher) (0.8 U/µl). Then, cells were passed through a cell

strainer (35 µm), counted, diluted with PBS-BSA 0.01% to a concen-

tration of 100 cells/µl, and transferred into a syringe to be loaded on

the Drop-seq apparatus. After mixing with lysis buffer, this corre-

sponds to a final concentration of 50 cells/µl in the droplets.

The single-cell final library (1.8 pM, final insert sizes 532 bp)

was sequenced in paired end mode on Illumina Nextseq 500 75

cycles high output, together with three other libraries, yielding

~ 100 × 106 read pairs for the HeLaS3 library.

Read 1: 20 bp (bases 1–12 cell barcode, bases 13–20 UMI; Drop-

seq custom primer 1 “Read1CustSeqB”), index read: 8 bp, read 2

(paired end): 64 bp).

Processing of raw sequencing data sets

The sequencing quality was assessed by FastQC v.0.11.2

(Andrews, 2010). We used the Drop-seq tools v.2.0.0 (Macosko

et al, 2015) to tag the sequences with their corresponding cell

and molecular barcodes, to trim poly(A) stretches and potential

SMART adapter contaminants and to filter out barcodes with low-

quality bases. The reads were then aligned to a GRCh38 reference

genome (Schneider et al, 2017), using STAR v.2.6.0c (Dobin

et al, 2013) with default parameters and sorted using samtools

v.1.9 (Li et al, 2009).

The Drop-seq tool was further exploited to add gene annotation

tags to the aligned reads and to identify and correct some of the bead

synthesis errors. The number of cells was determined by extracting the

number of reads per cell, then plotting the cumulative distribution of

reads against the cell barcodes ordered by descending number of reads

and selecting the inflection knee point of the distribution using drop-

bead v.0.25 (Alles et al, 2017). Finally, the DigitalExpression tool

(Macosko et al, 2015) was used to obtain the digital gene expression

(DGE) matrix for each sample. DGE matrix with only intronic reads

was created by specifying the list of functional annotations.

Data availability

The datasets and computer code produced in this study are available

in the following databases:

• RNA-Seq data: Gene Expression Omnibus GSE142277 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE142277).

• RNA-Seq data: Gene Expression Omnibus GSE142356 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE142356).

• Computational analysis scripts: GitHub (https://github.com/da

nielschw188/Revelio).

Expanded View for this article is available online.
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