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A highly recurrent somatic L265P mutation in the TIR domain of the signaling adapter
MYD88 constitutively activates NF-kB. It occurs in nearly all human patients with
Waldenström’s macroglobulinemia (WM), a B cell malignancy caused by IgM-
expressing cells. Here, we introduced an inducible leucine to proline point mutation into
the mouse Myd88 locus, at the orthologous position L252P. When the mutation was
introduced early during B cell development, B cells developed normally. However, IgM-
expressing plasma cells accumulated with age in spleen and bone, leading to more than
20-fold elevated serum IgM titers. When introduced into germinal center B cells in the
context of an immunization, the Myd88L252P mutation caused prolonged persistence of
antigen-specific serum IgM and elevated numbers of antigen-specific IgM plasma cells.
Myd88L252P-expressing B cells switched normally, but plasma cells expressing other
immunoglobulin isotypes did not increase in numbers, implying that IgM expression may
be required for the observed cellular expansion. In order to test whether the Myd88L252P

mutation can cause clonal expansions, we introduced it into a small fraction of CD19-
positive B cells. In this scenario, five out of five mice developed monoclonal IgM serum
paraproteins accompanied by an expansion of clonally related plasma cells that
expressed mostly hypermutated VDJ regions. Taken together, our data suggest that
the Myd88L252P mutation is sufficient to promote aberrant survival and expansion of IgM-
expressing plasma cells which in turn can cause IgM monoclonal gammopathy of
undetermined significance (MGUS), the premalignant condition that precedes WM.

Keywords: monoclonal gammopathy of unknown significance, IgMMGUS, MYD88 L265P mutation, Waldenström’s
macroglobulinemia, B cell abnormalities, B cell lymphoma, lymphomagenesis, IgM paraprotein
INTRODUCTION

Waldenström’s macroglobulinemia (WM) is an incurable low-grade lymphoplasmacytic
lymphoma, characterized by bone marrow (BM) infiltration of small, IgM-positive lymphocytes
with varying degrees of plasmacytoid or plasma cell differentiation and the presence of monoclonal
immunoglobulin M (IgM) paraproteins (M-spikes) in the serum (1–5). The great majority of
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malignant WM cells are monoclonal and carry somatically
mutated antibody V region rearrangements, suggesting that
transformation occurs at a mature, antigen-experienced B cell
stage (6–11).

More than 90% of WM patients harbor a T794C gain-of-
function mutation in the myeloid differentiation primary
response gene 88 (MYD88), which results in an L265P amino
acid substitution in the MYD88 TIR domain (12), promoting an
increased propensity for Myd88 oligomerization (13). MYD88 is
the canonical adaptor protein for inflammatory signaling
pathways downstream of various toll-like receptor (TLR) and
interleukin (IL)-1 receptor family members (14). First described
in activated B-cell (ABC)-like subtype of diffuse large B-cell
lymphoma (DLBCL) [where it occurs in 21% of patients (15)],
the MYD88L265P mutation constitutively activates NF-kB and
JAK kinase signaling through TLR9, IRAK1 and IRAK4 (16, 17),
and independently through BTK (18), conferring a pro-survival
advantage to mutated B cells. In line with these findings, an
earlier attempt to model the Myd88L265P mutation in mice in
vivo produced fulminant B lymphoproliferative disease and
occasional ABC-DLBCL-type lymphoma (19), while a more
recent study reported low-grade lymphoproliferative disease
with certain pathological features of WM (20). However, in
both mouse models the observed lymphoproliferation
was polyclonal.

WM is diagnosed late in life at a median age of 73 years in
Caucasians (21). Symptomatic WM is preceded by prolonged
asymptomatic phases classified as smoldering (or asymptomatic)
WM and IgM monoclonal gammopathy of unknown
significance (MGUS) (22–26). With increasingly sensitive
methods Myd88L265P mutation could be detected in up to 87%
of IgMMGUS patients, suggesting that it is an early event inWM
pathogenesis (27–33). A second somatic, highly recurrent genetic
event in WM consists of activating C-terminal mutations in the
CXCR4 gene, which appear to enhance tumor cell dissemination
and survival (34–37) and mostly occur in the context of a
mutated Myd88 allele (36, 38, 39). CXCR4 mutations are less
frequent (25–40% of WM patients) and probably acquired later
during disease progression (36, 38–41).

Consistent with such a scenario, we here present evidence that
targeting endogenous expression of the dominant Myd88L265P

mutation to a small number of cells in the mouse B cell
compartment (at the orthologous position L252P in mouse
Myd88) is—by itself—sufficient to cause IgM MGUS, the
premalignant condition which precedes WM.
MATERIAL AND METHODS

Gene Targeting
The gene targeting strategy was based on the NCBI mouse
transcript NM_010851.2, where wildtype exons 5 and 6 were
flanked with loxP sites (4.3kb region). Exons 5 and 6 were
duplicated and inserted downstream of the distal loxP site
followed by an IRES-GFP reporter. The L252P mutation was
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introduced into the duplicated Exon 5 and a NeoR marker
(flanked by frt sites) inserted between wildtype Exon 6 and
mutated Exon 5. The targeting vector was generated by
amplifying the genomic region of Myd88 using BAC clones
from the C57BL/6J RPCIB-731 BAC library and subsequent
introduction of the point mutation. The linearized targeting
vector was co-transfected with sgRNA and a Cas-9-expression
vector into the Artemis B6/3 C57BL/6 ES cell line. Targeted
clones were isolated using positive (NeoR) selection and correct
integration was verified by Southern blotting. The conditional
Myd88L252P allele was obtained in a germline-transmitting
transgenic animal after in vivo Flp-mediated removal of the
selection markers.

Cell Culture of B Cells Ex Vivo
Splenic B cells were enriched by depletion of CD43+ cells with
magnetic anti-mouse-CD43 microbeads (Miltenyi Biotech Cat#
130-049-801, RRID: AB_2861373), transduced with in-house
generated TAT-Cre recombinase (42, 43), cultured in the
absence or presence of LPS (20 mg/ml, Escherichia coli 055:B5;
Sigma Cat# L2880) or F(ab’)2 fragment anti-IgM (1.2 mg/ml;
Jackson ImmunoResearch Labs Cat# 115-006-020; RRID:
AB_2338469) and 1 µM BrdU or cultured with LPS plus
recombinant mouse IL-4 (10–20 units/ml; Peprotech Cat#
214-14).

Flow Cytometry, Cell Sorting, and
Detection of In Vivo Proliferation
Red blood cells were lysed with Gey’s solution and single-cell
suspensions (in PBS pH7.2 supplemented with 1% FCS and 1 mM
EDTA) from spleen or femur-derived bone marrow were stained
with antibody conjugates (Supplementary Table 1) and analyzed
using FlowJo software (BD FlowJo, RRID : SCR_008520) on an
LSRFortessa (BD Biosciences) or sorted on a FACSAria
(BD Biosciences). NIP-BSA-APC: 4-Hydroxy-3-iodo-5-
nitrophenylacetyl hapten (NIP) conjugated to Bovine Serum
Albumin (BSA) was generated in-house from BSA fraction V
(Roth Cat# 8076.3) and NIP-OSu (Biosearch Technologies Cat#
N-1080-100) and then labeled with Allophycocyanin (APC) using
the Allophycocyanin labeling kit-SH (Dojindo Cat# LK24). For 5-
Bromo-2’-deoxyuridine (BrdU) labeling, we used BrdU Kits (BD
Biosciences Cat# 552598, RRID: AB_2861367). Mice were injected
intraperitoneally with 2 mg BrdU and analyzed by flow cytometry.

Laboratory Mice and Immunizations
Cg1-Cre (44), R26StopFLeYFP (45), CD19-Cre (46), and CD19-
CreERT2 alleles (47) have been described. Mice were bred and
maintained under specific pathogen-free conditions. Unless
specifically indicated (Supplementary Figures 1B, C), mice
used in this study were heterozygous for the Cre and
Myd88L252P alleles (designated Cre;Myd88L252P). To activate
CreERT2, four mg of tamoxifen (Sigma Cat# T5648), dissolved
in sunflower oil (Sigma Cat# S5007), was fed by oral gavage (47).
Eight to 12 weeks old mice were immunized intraperitoneally
with 100 µg alum-precipitated 4-Hydroxy-3-nitrophenylacetyl
December 2020 | Volume 11 | Article 602868
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hapten conjugated to Chicken Gamma Globulin (NP-CGG,
Ratio 10-19) (LGC Biosearch Technologies Cat# N-5055B-5)
followed by secondary immunization intravenously with 100 µg
soluble NP-CGG.

Immunohistochemistry
Tissues were embedded in Tissue-Tek O.C.T. Compound
(Sakura Cat# 4583), stored at -80°C and cryosectioned (7 µm
thickness). Sections were fixed in 100% acetone and stained with
DAPI (eBioScience Cat# D1306), and the antibody conjugates
and reagents listed in Supplementary Table 1.

Enzyme-Linked Immuno Assays, Serum
Protein Electrophoresis, and
Immunofixation
Enzyme-linked immunosorbent assays (ELISAs) were done as
described (48) with addition of 0.05% Tween 20 in block and
wash buffers. 4-Hydroxy-3-nitrophenylacetyl hapten (NP)
conjugated to BSA (NP-BSA, Ratio 28) was generated in-house
with BSA fraction V (Roth Cat# 8076.3) and NP-OSu (Biosearch
Technologies Cat# N1010-100). Plates were coated with 2 µg/ml
NP-BSA or 1 µg/ml anti-light chain antibodies and developed
with 1 µg/ml anti-isotype antibodies and the standards listed in
Supplementary Table 1. For enzyme-linked immuno spot
(ELISPOT) assays MultiScreenHTS IP Filter Plates (Merck Cat#
MSIPS4510) were coated and developed as described above for
the ELISA plates, incubated with cells overnight, washed with
0.1% Tween 20 and processed according to the manufacturer’s
instructions. For serum protein electrophoresis or
immunofixation 10 µl serum was run on buffered agarose gels,
pH8.6 Hydragel PROTEIN(E) (Sebia Cat# PN4100) or pH9.2
DOUBLE IF K20 (Sebia Cat# PN3036), and processed according
to the manufacturer’s instructions. For proteomics, serum
samples were run on multiple lanes of pH8.6 agarose gels and
stained with InstantBlue Ultrafast Protein Stain (Sigma Cat#
ISB1L). Excised bands were processed and analyzed by tandem
mass spectrometry as described below.

Sequence Analysis of IgH V Gene
Rearrangements
IgH V gene rearrangements were PCR-amplified (40 cycles)
from genomic DNA (isolated from sorted, GFP-reporter-
positive TACI+CD138+ plasma cells) using the Expand High
Fidelity PCR System (Roche Cat# 03310256103) with a forward
primer for J558/VH1 family genes [pos. 37–57 (IMTG) ARG CCT
GGG RCT TCA GTG AAG] and a reverse primer for the IgH
intronic enhancer (CTCCACCAGACCTCTCTAGACAGC). A 0.9
kb fragment corresponding to JH4 rearrangements was gel-purified,
cloned (Zero Blunt TOPO PCR Cloning Kit, Invitrogen Cat#
450031) and subclones sequenced on one strand. VDJ sequences
were aligned with IgBLAST (49) software (IgBLAST, RRID :
SCR_002873) against V, D, J genes in the IMGT (50) database
(IMGT—the international ImMunoGeneTics information system,
RRID : SCR_012780) and analysed for clonality (identical or related
CDR3) and somatic mutations. The mixed C57BL/6 and 129
background of the Cg1-Cre allele (44) was taken into account.
Frontiers in Immunology | www.frontiersin.org 3
Ig Isotype Quantification by Tandem Mass
Spectrometry
Excised gel pieces were subjected to tryptic in-gel digest (51)
followed by purification on C18 stage-tips (52). Samples were
measured on a Q Exactive HF-x orbitrap mass spectrometer
(ThermoFisher Scientific) connected to an EASY-nLC system
(ThermoFisher Scientific). HPLC-separation occurred on an in‐
house prepared nano‐LC column (0.074 × 250 mm, 3 mm
Reprosil C18, Dr. Maisch GmbH) using a flow rate of 250 nl/
min on a 45 min gradient with an acetonitrile concentration
ramp from 4.7 to 46.5% (v/v) in 0.1% (v/v) formic acid. MS
acquisition was performed at a resolution of 60,000 in the scan
range from 350 to 1,800 m/z. MS2 scans were carried out at a
resolution of 15,000 with the isolation window of 1.3 m/z and a
maximum injection time of 100 ms. Dynamic exclusion was set
to 20 s and the normalized collision energy was specified to 26.

For analysis, the MaxQuant software package (RRID :
SCR_014485) version 1.6.3.4 was used (53, 54). An FDR of
0.01 was applied for peptides and proteins, and the andromeda
search was performed using Uniprot (Universal Protein Resource,
RRID : SCR_002380) (mouse database release July 2018, including
isoforms). For protein identification a minimum of one unique
peptide was required. Further analysis was done using R (R Project
for Statistical Computing, RRID : SCR_001905). Proteins of non-
mouse origin were considered contaminants and filtered out. All
protein groups belonging to one immunoglobulin isotype were
collapsed into one group by summing their individual intensities
and were compared against the total intensity per sample.

Statistical Analysis
Prism software (GraphPad Prism, RRID : SCR_002798) version 7
was used for pair-wise comparisons between mutant and control
samples using non-parametric, unpaired, two-tailed Mann-
Whitney U tests. Asterisks indicate statistical significance for p-
values ≤0.05 (single), ≤0.01 (double), ≤0.001 (triple), ≤0.0001
(quadruple). Data are represented as individual points or means
(bar graphs or horizontal lines) and error bars represent SD.
RESULTS

Myd88L252P Leads to NF-kB Activation and
Short-Term Proliferation of Primary B
Cells Ex Vivo
In order to investigate and track the consequences of the human
MYD88L265P mutation in mouse B cells, we generated a
conditional Myd88 allele which expresses the mutation at the
orthologous position L252P (as well as GFP) upon Cre-mediated
recombination from the endogenous mouse Myd88 locus
(Figure 1A and Supplementary Figures 1A–D). Endogenous
Myd88L252P expression induced a transient expansion of
transgenic B cells in the absence or presence of added
mitogens (Supplementary Figure 1E) consistent with the effect
of retroviral overexpression of Myd88L252P in mouse B cells ex
vivo as previously reported (55). Myd88L252P caused this effect at
least partially by enhancing proliferation (Supplementary
December 2020 | Volume 11 | Article 602868
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Figure 1F). As shown previously, these effects are likely due to
Myd88L252P activated NF-kB signaling (16–19, 55), concomitant
with increased NF-kB negative regulatory feedback — through
A20 (TNFAIP3) (55) and NF-kB p65 phosphorylation (56).

B-Cell-Specific Myd88L252P Expression In
Vivo Leads to an Increase in IgM+ Plasma
Cells and Serum IgM
In order to address whether B cell-specific expression of
Myd88L252P influences B cell development or homeostasis, we
used the CD19-Cre allele (46) which is expressed from an early B
cell stage on, and monitored mice until 90 weeks of age (Figure
1B). In this and all following experiments, mice heterozygous for
the Cre and mutant Myd88 alleles were used, designated Cre;
Myd88L252P. B cell development in the bone marrow appeared
unchanged (Supplementary Figure 2), as indicated by the
fractions of precursor, immature and mature B cells over time,
absence of selection of AA4.1-positive Myd88L252P-expressing B
Frontiers in Immunology | www.frontiersin.org 4
lineage cells over YFP reporter expressing control cells and
normal bone marrow histology. Two of thirteen mice
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FIGURE 1 | B-cell-specific Myd88L252P expression causes increased IgM plasma cell and serum IgM levels. (A) Gene targeting strategy: Myd88L252P-IRES-GFP was
targeted into the endogenous Myd88 locus by homologous recombination. The wildtype exons 5 and 6 were flanked by loxP sites that can be recombined by Cre
recombinase, leading to expression of the mutant version. (B) Outline of the experiments shown in C–E and Table 1. Mice of the indicated genotypes were observed for
90 weeks. (C) FACS analysis of spleen and bone marrow. Left: TACI+CD138+ plasma cell numbers increase over time. Right panels: Plasma cells expressed mostly IgM
(30 weeks of age). (D) ELISPOT analysis in spleen and bone marrow at 30 weeks of age. IgM secreting antibody forming cells (AFCs) were elevated. (E) Serum
immunoglobulin levels measured by ELISA. IgM titers increased over time while IgG1 titers decreased slightly. Results are representative of three independent
experiments. (C–E) Each symbol represents one mouse. **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001, n.s. = not significant. (See also Supplementary Figures 1–4).
TABLE 1 | Myd88L252P does not promote B lymphomagenesis.

Genotype Number of
animals

Age
(weeks)

Phenotype at endpoint
(90 weeks)

CD19-Cre 1 74 T cell tumor (TCRb+)
10 90 Healthy, end of experiment

CD19-Cre;
Myd88L252P

1 70 T cell tumor (TCRb+GFP-)
1 74 GC B cell tumor (reporter-positive)

(B220+CD19+CD38lowFAShighGFP+)
1 78 GC B cell tumor (reporter-negative)

(B220+CD19+CD38lowFAShighGFP-)
1 90 T cell tumor (TCRb+GFP-)
9 90 Healthy, end of experiment
December
CD19-Cre and CD19-Cre;Myd88L252P mice were observed for 90 weeks and monitored
for the appearance of tumors. Tumors were analyzed and characterized by flow cytometry.
Tumor incidence appeared comparable to control animals and likely was due to the
genetic C57BL/6 background (57).
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developed a B cell lymphoma (at 70 and 74 weeks of age; Table 1
and Supplementary Figure 3A). However, only one of these
tumors expressed the Myd88L252P reporter, indicating that these
tumors arose spontaneously due to the C57BL/6 genetic
background (57).

Starting at 30 weeks of age CD19-Cre;Myd88L252P animals
developed a mildly enlarged spleen with more than 95% of
splenic B cells expressing the GFP reporter (Supplementary
Figures 3B, C). While the percentage of follicular and marginal
zone B cells appeared unchanged, germinal center (CG) B cells
increased in frequency and number over time (Supplementary
Figures 3D–F).

The most prominent phenotype in CD19-Cre;Myd88L252P

mice was an enlarged plasma cell compartment in the spleen,
and to a lesser extent, in the bone marrow: Both the frequency
and the absolute numbers of the TACI+CD138+ plasma cells
from 50 weeks old CD19-Cre;Myd88L252P mice were increased
compared to CD19‑Cre control mice (Figure 1C and
Supplementary Figure 4A). The majority of these expanded
plasma cells expressed the Myd88L252P reporter GFP, indicating
that the plasma cell expansion was driven by the Myd88L252P

mutation (Supplementary Figure 3C). Strikingly, the majority of
the expanded plasma cells also expressed and secreted IgM
(Figures 1C, D; Supplementary Figure 4B). Correspondingly,
serum IgM titers increased as early as ten weeks after birth and
continued to increase over time up to twenty-fold, while other Ig
isotypes were unchanged or slightly decreased (Figure 1E).

Taken together, our results suggest that the Myd88L252P

mutation causes elevated serum IgM levels and confers a subtle
survival or growth advantage on IgM-expressing B cells that
encompass a spectrum of differentiation states, including GC B
cells and plasma cells.

Ig Class Switching Is Unchanged in
Myd88L252P-Expressing B Cells
It has remained unclear whether the malignant B cells inWM are
unable to switch Ig isotype from IgM to another class or whether
switched WM cells might disappear over time in vivo (7, 8, 58–
61). In order to gain insight into whether the Myd88L252P

mutation inhibits class switching, we crossed the Myd88L252P

mice with Cg1-Cre mice which express Cre in early GCs at a
mature, activated B cell stage just prior to class switching (44).
Cg1-Cre;Myd88L252P animals were immunized with hapten-
carrier conjugate as shown in Figure 2A. Antigen-specific
GFP-reporter-positive and negative B cells did not differ in
their ability to switch to IgG1 in vivo, neither after primary
nor secondary immunization (Figures 2B, C). Supporting this
result, ex vivo B cells transduced with TAT-Cre recombinase
showed comparable Ig class switching efficiency in cell culture,
irrespective of Myd88L252P expression (Supplementary Figure
5A). We also assessed class switch in CD19-Cre mice (in which
>95% of B cells are GFP-reporter-positive), and could not detect
any change in the frequency of switched cells in either the spleen
(IgG1), mesenteric lymph nodes (IgG1) or Peyer’s Patches (IgA)
(Supplementary Figure 5B).
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December 2020 | Volume 11 | Article 602868

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Schmidt et al. Myd88 L252P Mutation Causes IgM MGUS
Collectively, these results indicate that the Myd88L252P

mutation does not interfere with Ig class switching. They
rather suggest that the mutation specifically impacts the fitness
of B cells expressing an IgM B cell receptor (BCR).

Myd88L252P Causes Prolonged Persistence
of IgM+ Antigen-Specific Plasma Cells and
Serum IgM
In order to test directly whether IgM-expressing Myd88L252P-
mutated B cells can persist for prolonged times in vivo, we
followed reporter-positive antigen-specific B cells in Cg1-Cre;
Myd88L252P animals until 50 weeks after primary immunization
with hapten-carrier conjugate NP-CGG (Figure 3A). As shown
in Figure 3B, hapten-specific IgM-producing cells in spleen and
bone marrow remained elevated up to 50 weeks after
immunization. Consistent with this finding, NP-specific serum
IgM titers remained elevated, while the NP-specific IgG1 titers
decreased as in the controls (Figure 3C).

The same mice also showed an overall increase in the number
of plasma cells (>80% reporter-positive) and elevated total serum
IgM, similar to the CD19-Cre;Myd88L252P mice described above,
albeit to a lesser extent (Supplementary Figures 6A, B). BrdU-
labeling over 16 h revealed an increased number of labeled
splenic GC B cells and plasma cells compared to controls
(Supplementary Figure 6C). Histology of the spleen suggested
that this proliferation occurred mostly in plasma cell precursors,
since CD138-positive plasma cells showed little active
proliferation and were mostly Ki67-negative (Supplementary
Figure 6D). Reminiscent of malignant Waldenström B cells,
Myd88L252P reporter-positive, IgM+ plasma cells carried
increased numbers of somatic mutations compared to IgM+

plasma cells from controls (Supplementary Figures 4C, 6E).
Our results thus suggest that the Myd88L252P mutation

confers a survival and proliferation advantage to IgM-
expressing B cells and plasma cell progenitors. Taking into
account the capacity of these cells to switch isotype normally,
Frontiers in Immunology | www.frontiersin.org 6
these findings imply that surface IgM expression is required for
the observed cellular expansion.

Myd88L252P Expression in a Small Number
of B Cells Leads to Serum IgM
Paraproteins (M-Spikes)
In WM patients, the MYD88L265P mutation presumably arises as
a rare event in a tumor progenitor cell. Therefore, to mimic the
disease etiology more closely, we restricted mouse Myd88L252P

expression to a small fraction of B cells by a tamoxifen-inducible
Cre allele (CD19-CreERT2) (47) which induces Cre-mediated
recombination in only a few percent of B cells (Figure 4,
Supplementary Figure 7). Ten days after a single dose of
tamoxifen expression of Myd88L252P led to a 15-fold increase
in the reporter-positive plasma cell population in the spleen, an
effect not observed in tamoxifen-treated YFP reporter control
mice (Supplementary Figure 7). Importantly, 70 weeks after a
single tamoxifen injection IgM-secreting plasma cells still
persisted in spleen and bone marrow (Figures 4A, B).
Correspondingly, serum IgM levels were also increased in the
mutant animals (Figure 4C), all of which displayed discrete
paraprotein bands in the g-globulin zone upon serum protein
electrophoresis. Such paraproteins are indicative of clonally
restricted plasma cell expansions and occur in IgM MGUS, the
precursor condition of WM (Figure 4D and Supplementary
Figure 8A). Immunofixation confirmed that five out of five mice
had developed a paraprotein of IgM isotype (Figure 4D).

IgM paraprotein bands occasionally also appeared in Cg1-
Cre;Myd88L252P mice, whereas we never observed paraprotein
bands in sera of CD19-Cre;Myd88L252P mice (Supplementary
Figure 8B). Both in aged Cg1-Cre;Myd88L252P and CD19-
CreERT2;Myd88L252P mice 70 weeks after tamoxifen injection,
Myd88L252P-reporter-positive cells—while detectable only in low
in numbers—consisted of B220+ B cells and varying proportions
of differentiated, mostly IgM-posit ive plasma cel ls
(B220lowTACI+CD138+) (Supplementary Figures 8C, D).
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Thus, our data show that chronic activation of Myd88 in a
small fraction of B cells can lead to the development of IgM M-
spikes in the serum of aged, but otherwise healthy mice. They
suggest a causal link between the Myd88L252P mutation and IgM
MGUS, the premalignant condition that precedes WM (23–26).

Myd88L252P Expression in a Small Number
of B Cells Leads to Clonal Expansions of
Plasma Cells
In order to determine the extent of clonal expansions in the
plasma cell compartment in the five aged CD19-CreERT2;
Myd88L252P mice, we analyzed rearranged VH-region
sequences in sorted plasma cells isolated from bone marrow
and spleen. As read-out we examined the J558 family V genes
which constitute about half of the expressed VH gene repertoire
in C57BL/6 mice (62–64). Amplification with a primer in the
downstream JH intron produced bands for all four JH
rearrangements in controls. By contrast, for four out of five
CD19-CreERT2;Myd88L252P mice, we only detected a single PCR
band with JH4 being used in each case (Figure 5A). Since only a
limiting amount of sorted plasma cells was available for this
analysis, we cannot exclude that the JH4 bias may stem from
preferential amplification of short VDJ rearrangements. (For the
fifth mouse, we failed to obtain a PCR product.)

Subcloning and sequencing revealed that each of the four
mice carried a different predominant JH4 rearrangement
involving a J558 family member and that this predominant
Frontiers in Immunology | www.frontiersin.org 7
clonotype was overrepresented in plasma cells from both, bone
marrow and spleen (Figure 5B). Plasma cells from age-matched
control and CD19-Cre;Myd88L252P and Cg1-Cre;Myd88L252P

mice also exhibited predominant clonotypes, but at a much
lower frequency (12–25 versus 44–74% in mutants) and
different ones in bone marrow and spleen (Figure 5B and
Supplementary Figure 9A).

In striking contrast to the controls, the majority of plasma
cells from CD19-CreERT2;Myd88L252P mice expressed IgM
(ranging from 68 and 88% in individual mice; Supplementary
Figure 9B). Still, the overall extent of somatic mutation in GFP+

bone marrow-derived plasma cells from CD19-CreERT2;
Myd88L252P mice was comparable to control plasma cells
which predominantly expressed IgG (Supplementary Figure
9B). In three mice the most frequently detected VDJ genes
showed a moderate number of somatic mutations of up to 5,
13, or 15, respectively, which allowed the reconstruction of
genealogical trees on the basis of intraclonal variation
(Supplementary Figure 9C). In one mouse (#4) the most
frequent VDJ gene was unmutated.

In order to find out whether the IgM M-spikes observed in
these four mice contained the same clonal VDJ rearrangements
that were predominantly detected in spleen and bone marrow of
the individual mice, we analyzed protein bands corresponding to
the individual M-spikes by tandem mass spectrometry
(Supplementary Figure 10). Proteomics confirmed in all cases
that the predominant isotype in the M-spike was IgM, but did
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not reveal clonotypic peptides corresponding to the VDJ regions
that were most frequently detected by sequencing.

Notwithstanding the absence of a clear molecular link
between the M-spikes and the most frequently detected plasma
cell clones in bone marrow and spleen of the four CD19-CreERT2;
Myd88L252P mice, our clonal analysis suggests that—in a genetic
scenario where introduction of Myd88L252P mutation into
CD19+ B cells is a rare event—Myd88L252P mutation confers a
survival and growth advantage to rare cells that over time
produce clonal expansions of IgM-positive plasma cell
progenitors (Supplementary Figure 9C).
DISCUSSION

IgM and non-IgM MGUS are different clinical entities that are
both thought to arise from B cells at late stages of differentiation
(23, 25, 65). While non-IgM MGUS mostly evolves to multiple
myeloma (25, 66–68), IgM MGUS has been increasingly
recognized as the premalignant precursor state for WM (23–
26, 65). However, to date it has remained challenging to clinically
or molecularly distinguish WM from smoldering WM and IgM
MGUS (23, 69–71). Premalignant IgM MGUS and malignant
WM cells were found to be phenotypically similar to each
other (70).

The MYD88L265P mutation is absent in multiple myeloma
patients (27), but highly prevalent in both, WM and IgM-MGUS
patients (27–33). It therefore may represent an early, unifying
genetic event in WM pathogenesis. Here, we provide evidence
Frontiers in Immunology | www.frontiersin.org 8
that B-cell-specific expression of the mouse homolog of the
human MYD88L265P mutation (Myd88L252P) is sufficient to
cause a phenotype that resembles IgM MGUS. We thus
establish a causal link between the Myd88L265P mutation and
the development of a phenotype resembling the WM precursor
condition and shed new light on the etiology of WM.

Based on three different genetic scenarios, our results indicate
that chronic activation of aberrant Myd88 signaling—by
conditional mutagenesis of the endogenous Myd88 locus—
confers a survival and low-grade proliferative advantage on
IgM-expressing B cells. This advantage can manifest in
different ways, depending on the number cells targeted by the
mutation and the time window for progression: In a first
scenario, activation of the mutation by CD19-Cre in early B
cells caused a polyclonal, low-grade lymphoproliferative disease
accompanied by polyclonal plasma cell expansion and
progressively increasing serum IgM titers (up to 20-fold). In a
second scenario, activation of the mutation at the initiation of the
GC stage by Cg1-Cre caused a similar, albeit weaker, phenotype,
consistent with a lower number of mutated B cells. In a third
scenario, a time-restricted activation of Myd88L252P by CD19-
CreERT2 in a small fraction of B cells led to clonal expansions of
IgM-expressing plasma cells and the appearance of IgM M-
spikes in the serum.

The latter scenario most closely mimics the in vivo situation
in human patients, where Myd88 mutation presumably occurs as
a rare event in a tumor progenitor B cell. It appears that IgM
expressing Myd88L252P mutated B cells can gain a competitive
advantage over normal B cells over time resulting in an
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outgrowth of clonally related, mutated cells and IgMM-spikes in
the blood when the mutation is restricted to few or single
progenitor B cells. Polyclonal activation of Myd88L252P (as in
the first and second scenario) may mask this effect, and indeed
resulted in overall strongly elevated IgM levels (Figure 1E and
Supplementary Figure 6B) (19). In support of this interpretation,
we never detected IgMM-spikes when the mutation was activated
by the CD19-Cre allele (causing recombination in most B cells)
and only occasionally when the mutation was activated by the
Cg1-Cre allele (which is active in fewer B cells) (44).

The presence of IgM M-spikes in the blood of aged CD19-
CreERT2;Myd88L252P mice was accompanied by clonal
expansions in the plasma cell compartment with the most
frequently detected clonotype being identical in spleen and
bone marrow. Clonally related plasma cells mostly carried
somatically mutated VDJ regions, reminiscent of a molecular
WM cell phenotype (6–11). We also observed intraclonal
diversity with respect to somatic mutations (Supplementary
Figures 9B, C), suggesting that the Myd88L252P mutation
drives IgM MGUS progenitors already at the GC stage,
consistent with our finding that GC B cells rather than plasma
cells are actively proliferating (Supplementary Figures 6C, D).
However, our results do not exclude that the pro-proliferative
activity of the Myd88L252P mutation extends into later stages of B
cell differentiation.

Our attempts to find a direct molecular link by proteomics
between the IgM M-spikes and the most frequently detected
clones were unsuccessful. This may be due to the low amount of
starting material combined with the complexity of serum
samples, the presence of multiple clonotypes in the isolated M-
spike, the locally restricted area of the bone marrow biopsy
(femur), or a combination of these factors. It is also possible that
in CD19-CreERT2;Myd88L252P mice the most frequently detected
plasma cell clones form part of an early, dynamic clonal
landscape in which several competing Myd88L252P B cell clones
are still present until secondary mutations help to establish
dominance and long-term persistence of a single major clone.

Our study is in line with the prevailing view that the
development of WM requires additional mutations besides
MYD88L265P (19, 20, 36, 39–41, 55). The observed B cell
phenotypes are consistent with earlier work that assessed the
effect of retroviral overexpression of mouse Myd88L252P in B cells
ex vivo (55) or B-cell-specific transgenic overexpression of
human MYD88L265P in vivo (20). Both approaches showed that
the Myd88 mutation by itself is not sufficient to immortalize or
neoplastically transform B cells. This appears plausible, because
activation of pro-survival signaling by NF‑kB entails negative
feedback that limits B cell expansion (55). The need to remove
negative feedback loops may explain the frequent occurrence of
mutations that affect negative regulators of NF-kB in human
WM or ABC-DLBCL patients (36, 37, 72–75). Our results (in
genetic scenarios one and two) are also in line with the
observation that human MYD88L265P promotes in the mouse
the development of a polyclonal , low-grade B cel l
lymphoproliferative disorder of lymphoplasmacytic appearance
with increased serum IgM (20).
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However, different from earlier studies, continuous activation
of an endogenous Myd88L252P mutation by CD19-Cre in our
mouse cohort did not cause fulminant lymphoproliferative
disease (19) or an increased transformation to B lymphoma or
increased mortality (Table 1; Supplementary Figure 3A) (19,
20). Rather than owing to differences in the human and mouse
Myd88 proteins, as proposed recently by Sewastianik et al. (20),
these discrepancies may be caused by different external cues
(such as TLR signaling induced by different microbial or mouse
housing environments) (19) or the molecular effects of strong
transgene overexpression (20), or both.

Our results suggest that IgM expression is specifically
required for the pro-survival effect of the Myd88L252P

mutation, since mutated B cells showed normal Ig isotype
switching in a wide range of experimental conditions, but only
IgM-expressing, antigen-specific B cells were able to persist after
immunization. In line with these results, Young et al. (76)
proposed that cell surface IgM acts as an “initiator oncogene”
for B cell lymphomas, with the IgM-BCR potently promoting B
cell proliferation and IgG-BCRs preferentially promoting B-cell
differentiation programs. In this view, the IgM-BCR acts “as an
oncogene that initiates proto-malignant expansion of normal B
cells”, while the extended survival of pre-malignant cells would
require additional cooperating oncogenic events.

One such event may be the MYD88L265P mutation which
transforms normal IgM-expressing proliferating B cells into
premalignant cells that show prolonged survival and
plasmacytic differentiation. This effect may be driven by
external triggers through TLR signaling and be dependent on
BCR surface expression. Enforced overexpression of Myd88L525P

in B cells under the control of a strong constitutive viral
promoter (77) may overcome such a dependency on external
triggers (13) and manifest directly in a Waldenstöm-like B cell
lymphoma (77). In ABC-DLBCL cells, and in at least one WM-
derived cell line, the MYD88L265P mutation promotes the
formation of an oncogenic signaling complex comprising
Myd88, TLR9 and an IgM-BCR (My-T-BCR super complex)
which enforces cooperative survival signaling through the BCR
and TLR (16, 17, 76, 78, 79). It will be interesting to determine in
this context whether a My-T-BCR super complex already forms
in Myd88-mutated B or plasma cells expressing physiological
levels of mutated Myd88, or whether super complex formation
requires either additional oncogenic mutations or increased
expression of mutated Myd88, or both.
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