Multiplexed Quantification of Four Neuroblastoma DNA Targets in a Single Droplet Digital PCR Reaction

Constantin Peitz,† Annika Sprüssel,† Rasmus B. Linke,† Kathy Astrahantseff,† Maddalena Grimaldi,† Karin Schmelz,‡ Joern Toedling,† Johannes H. Schulte,∥ Matthias Fischer,∥ Clements Messerschmidt,‡ Dieter Beule,∥ Ulrich Keilholz,∥ Angelika Eggert,† Hedwig E. Deubzer,† and Marco Lodrini*†

From the Department of Pediatric Hematology and Oncology,† Charité—Universitätsmedizin Berlin, Berlin; the Neuroblastoma Research Group,† Experimental and Clinical Research Center, and the Core Unit Bioinformatics,∥ Charité—Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Boston Institute of Health,§ Berlin; the German Cancer Consortium, partner site Berlin, Berlin; the German Cancer Research Center,‡ Heidelberg; the Department of Experimental Pediatric Oncology,∥ University Children’s Hospital of Cologne, Cologne; the Center for Molecular Medicine Cologne,‡ Cologne; the Department of Computer Science,∥ Humboldt-Universität zu Berlin; and the Charité Comprehensive Cancer Center,‡ Berlin, Germany

Accepted for publication July 28, 2020.

Address correspondence to Hedwig E. Deubzer, M.D., Department of Pediatric Hematology and Oncology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany. E-mail: hedwig.deubzer@charite.de.

Neuroblastoma, a neuroectodermally derived embryonic tumor and the most common extracranial tumor of childhood, accounts for 11% of cancer-related deaths in children worldwide, mostly due to systemic and resistant relapses.1 It is characterized by a heterogeneous tumor biology and, hence, clinical variability ranging from spontaneous regression or localized, stable disease to rapid metastasizing progression with a fatal outcome.2 The basic helix-loop-helix transcription factor, N-myc proto-oncogene protein (MYCN), regulates the migration, proliferation, and differentiation of the neural crest progenitor cells.3 MYCN amplification occurs in approximately 25% of primary human neuroblastomas to increase the rate of DNA synthesis, promote cell cycle progression, and suppress differentiation.4 MYCN amplification is a strong predictive biomarker for unfavorable patient survival,5 and the detection and characterization of cell-free DNA (cfDNA) in peripheral blood from neuroblastoma patients may serve as a minimally invasive approach to liquid biopsy. Major challenges in the analysis of cfDNA purified from blood samples are small sample volumes and low cfDNA concentrations. Droplet digital PCR (ddPCR) is a technology suitable for analyzing low levels of cfDNA. Reported here are two quadruplexed ddPCR assay protocols that reliably quantify MYCN and ALK copy numbers in a single reaction together with the two reference genes, NAGK and AFF3, and accurately estimate ALKF1174L (exon 23 position 3522, C>A) and ALKR1275Q (exon 25 position 3824, G>A) mutant allele fractions using cfDNA as input. The separation of positive and negative droplets was optimized for detecting two targets in each ddPCR fluorescence channel by the adjustment of the probe and primer concentrations of each target molecule. The quadruplexed assays were validated using a panel of 10 neuroblastoma cell lines and paired blood plasma and primary neuroblastoma samples from nine patients. Accuracy and sensitivity thresholds in quadruplexed assays corresponded well with those from the respective duplexed assays. Presented are two robust quadruplexed ddPCR protocols applicable in the routine clinical setting and that require only minimal plasma volumes for the assessment of MYCN and ALK oncogene status. (J Mol Diagn 2020, 22: 1309—1323; https://doi.org/10.1016/j.jmoldx.2020.07.006)
indirect approaches to target binding partners or downstream effectors of MYCN have yielded encouraging results. Recent data suggest that MYCN amplification can exist at the (sub)clonal level, necessitating the use of biosampling procedures and technologies with the capacity for detecting these cell populations. Activating mutations in the anaplastic lymphoma kinase gene (ALK), occur in approximately 10% of neuroblastomas, the most frequent causing the F1174L and R1275Q substitutes in the receptor tyrosine kinase domain. The resulting proteins are auto-hyperphosphorylated and cause uncontrolled proliferation. ALK-driven neuroblastomas, often relapses that may have expanded from a single ALK-mutant clone, are frequently resistant to chemo- and radiotherapy. Activating ALK mutations or amplifications have become the first target in the treatment of neuroblastomas that is directly druggable by small-molecule inhibitors as a personalized medicine approach, necessitating continuous molecular monitoring in patients with neuroblastoma for potential (re)emergence of ALK mutant or amplified clones. Clinical testing for ALK variants is performed using a broad spectrum of methodologies, including next-generation sequencing, targeted-panel sequencing, and droplet digital (dd)–PCR. Gold standards for ALK diagnostics in routine clinical care are expected to evolve within the framework of clinical trials, and are likely to comprise two complementary untargeted and targeted technologies applied, at least initially, in partially overlapping analyses for longitudinal patient monitoring to keep costs affordable.

The invasive nature of surgical biopsies most often prevents their sequential application in monitoring disease. Single biopsies also fail to reflect cancer dynamics, intra-tumor heterogeneity, and drug sensitivities that most likely change during clonal evolution and under the selective pressure of therapy. Peripheral blood has several components that have been assessed for tumor-derived nucleic acid content. Thus, longitudinal patient monitoring using liquid biopsies may represent a promising strategy for patient care, although caution should be exercised in generalizing from the limited data available at this time.

dPCR is a highly sensitive, recently developed technology for quantifying specific regions. The ddPCR reaction reagents are partitioned into 20,000 droplets before reactions are allowed to proceed to the end plateau in individual droplets; then droplets are classified as positive or negative from their fluorescence signal intensity. Duplex ddPCR protocols for detecting MYCN and ALK copy number status in cell-free (cf)-DNA purified from patient plasma samples have been previously established. Presented ddPCR protocols for detecting ALKF1174L and ALKR1275Q hotspot mutations, each together with the respective wild-type sequence in duplex reactions. Here, the blood sample volumes sequentially required from infants and young children, the patients most often affected by neuroblastoma, were minimized by the extension of multiplexing for the generation of robust quadruplexed ddPCR protocols.

Materials and Methods

Patient Samples

Paired blood plasma and fresh-frozen primary tumor samples were collected from patients treated at Charité—Universitätsmedizin Berlin (Berlin, Germany) or provided by the German Neuroblastoma Biobank (Cologne, Germany). All patients were registered with the German NB2004 trial or the NB 2016 Registry, and informed patient/parent consent was obtained before trial participation. Peripheral blood was centrifuged at 1900 × g for 7 minutes at Charité and at 1000 × g for 10 minutes at the German Neuroblastoma Biobank to separate plasma. After centrifugation at 3250 × g for 10 minutes to remove cell debris, plasma was stored at −80°C. The ALK copy number in tumor samples was determined as a routine diagnostic method using fluorescence in situ hybridization.

Cell Culture

The BE(2)-C cell line was obtained from the European Collection of Authenticated Cell Cultures (Salisbury, UK), and Kelly and SH-SY5Y cell lines, from the Deutsche Sammlung von Mikroorganismen und Zellkulturen (Braunschweig, Germany). The CLB-GA [established in the Centre Léon BERARD (CLB), Lyon, France] as well as the IMR-5, LAN-5, and LAN-6 cell lines were kindly gifted by Johannes H. Schulte (Charité—Universitätsmedizin Berlin); the NB-1 cell line, by Ina Oehme (German Cancer Research Center, Heidelberg, Germany); and the SH-EP and SK-N-AS cell lines, by Larissa Savelyeva (German Cancer Research Center). Cell lines were authenticated by high-throughput single-nucleotide polymorphism–based assays. Genomic cell line characteristics are summarized in Supplemental Table S1.

The BE(2)-C, CLB-GA, SH-SY5Y, and SK-N-AS cell lines were maintained in Dulbecco’s modified Eagle’s medium (Lonza, Cologne, Germany) supplemented with 10% fetal calf serum and 1% nonessential amino acids. The LAN-6 cell line was cultured in Dulbecco’s modified Eagle’s medium supplemented with 20% fetal calf serum. The IMR-5, Kelly, LAN-5, NB-1, and SH-EP cell lines were cultured in RPMI 1640 medium (Lonza) supplemented with 10% fetal calf serum and 1% nonessential amino acids. All cell lines were maintained at 37°C and 5% CO₂, and continuous culture was avoided to maintain low passage numbers and to reduce the risk for long-term culture-induced genomic alterations. Cells for experiments were grown in short-term culture from low-passage stock aliquots maintained in liquid nitrogen. All cell lines were regularly monitored for infection with *Acholeplasma laidlawii, Mycoplasma spp*, and *squirrel monkey retrovirus* using high-throughput, multiplexed testing.
Genomic DNA and cfDNA Preparation

Genomic DNA (gDNA) was extracted from tumor tissues and cell lines using the Puregene Core Kit A or the QIAamp DNA Mini Kit (both from Qiagen, Hilden, Germany) according to the manufacturer’s instructions. gDNA from cell lines was fragmented by sonication before ddPCR. Tumor DNA could not be sonicated because of the small sample volumes (20 µL), and fragmentation was achieved by adding 5 U of HindIII restriction enzyme (New England BioLabs, Frankfurt am Main, Germany) to each ddPCR reaction. Thawed plasma samples were centrifuged at 20,000 × g for 5 minutes to clear debris, then supernatants were centrifuged at 20,000 × g for 5 minutes. cfDNA was purified from a minimum of 200 µL of stored plasma samples using the QIAamp Circulating Nucleic Acid Kit (Qiagen), then concentrated to 50 µL using the DNA Clean & Concentrator-5 kit (Zymo Research, Freiburg, Germany), both according to the manufacturers’ directions. cfDNA did not require fragmentation prior to ddPCR. Extracted DNA samples were quantified on a Qubit 2.0 fluorometer (Life Technologies, Darmstadt, Germany). The Cell-Free DNA ScreenTape assay (both from Agilent Technologies, Santa Clara, CA) were used for DNA quality-control samples according to the manufacturer’s instructions.

Droplet Digital PCR

The QX200 ddPCR System (Bio-Rad Laboratories, Munich, Germany) was used for analyzing the copy number statuses of MYCN (2p24.3), ALK (2p23.2 to 2p23.1), NAGK (2p13.3), and AFF3 (2q11.2), and for detecting ALK F1174L (exon 23 position 3522, C>A) and R1275Q (exon 25 position 3824, G>A) hotspot mutations with their corresponding wild-type sequences. TaqMan ddPCR reaction mixtures contained the ddPCR Supermix for Probes (no deoxyuridine triphosphate) (Bio-Rad Laboratories) and optimized primer and probe concentrations. TaqMan ddPCR reaction mixtures contained the probe established for the detection of MYCN (2p23.2 to 2p23.1), NAGK (2p13.3), and AFF3 (2q11.2), and for detecting ALK F1174L (exon 23 position 3522, C>A) and R1275Q (exon 25 position 3824, G>A) hotspot mutations with their corresponding wild-type sequences. TaqMan ddPCR reaction mixtures contained the 2× ddPCR Supermix for Probes (no deoxyuridine triphosphate) (Bio-Rad Laboratories) and optimized primer and probe concentrations. 49 To confirm the specificity of the probes used for the detection of ALK F1174L (3522, C>A) and ALK R1275Q (3824, G>A), four double-stranded synthetic ALK templates with the following sequences were generated (Metabion, Planegg, Germany): ALK F1174L (3522, C>A, TTC>TTA), 5’-GCGCCACACTGACTGTTAATTTTGGGTACATCCCTC TCTGTCTTGACAGAATATAACACACCAGACATGTTC GTGCTGATCGGGG-3’, ALK R1275Q (3522, C>G, TTC>T TG), 5’-GCCGCGCACTGACTGTTAATTTTGGGTACAT CCCTCTCTGCTTGACAGAATATAACACACCAGACAT GTGCTGATCGGGG-3’, ALK R1275Q (3824, G>A, CAA>CAA), 5’-GTCCAGGGCCGCTTGAAGGTGGCCA AATGGGAGACCTGGGATGCCCCAAGACATCTACAG GTGATGAAGCTGCTGATTCCACCC-3’, and ALK R1275Q (3824, G>T, CAA>CTA), 5’-GTCCAGGGCCGCTTGAAG GTTGGCCAAGATTGGAAGAGTTGGGCCAAATGGGAGACCTGGGATGCCCCAAGACATCTACAG GTGATGAAGCTGCTGATTCCACCC-3’. The probe established for the detection of ALK R1275Q (3522, C>A) reliably detected this but not the ALK F1174L (3522, C>G) mutation. The probe established for the detection of ALK R1275Q (3824, G>A) detected only this and not the ALK R1275L (3824, G>T) mutation (Supplemental Figure S1), together confirming the specificity of the probes selected.

Reaction mixtures were loaded into droplet generator cartridges together with 70 µL Droplet Generation Oil (both from Bio-Rad). Droplets were generated in the QX200 droplet generator, and manually transferred into a 96-well PCR plate (Eppendorf, Hamburg, Germany) according to the manufacturer’s recommendations. The PCR plate was heat-sealed with the PX1 Plate Sealer (Bio-Rad), and PCR reactions were performed on a T100 thermocycler (Bio-Rad), with the following programs for copy number variations: denaturation at 95°C for 10 minutes, 40 cycles of 30 seconds at 94°C and 1 minute at 58°C, and final denaturation for 10 minutes at 98°C; and for ALK hotspot mutation analysis: denaturation at 95°C for 10 minutes, 40 cycles of 30 seconds at 94°C and 1 minute at 62.5°C, and final denaturation for 10 minutes at 98°C. Droplet reaction end points were assessed in the QX200 ddPCR Droplet Reader. Target gene copy numbers and mutant allele fractions (MAFs) were analyzed using QuantaSoft Analysis software version 1.7.4.0917 and QuantaSoft Analysis Pro software version 1.0.596 (Bio-Rad). All multiplex ddPCR assays contained appropriate nontemplate, positive and negative controls in each run to allow the software programs to generate specific thresholds.

The QuantaSoft Analysis software used for duplex ddPCR assays determined the copy number by calculating the ratio of target molecule concentration, A (copies/µL), to the reference molecule concentration, B (copies/µL), multiplied by the number of reference species copies, N Ref, in the human genome (Copy number = A/B · N Ref). The QuantaSoft Analysis Pro software used tripleplex and quadruplex ddPCR assays for determining the copy number by calculating the ratio of the target molecule concentration, A, to the geometric mean of the reference molecule concentrations, B and C (copies/µL) and D (copies/µL), multiplied by the number of reference species copies, N Ref, (Copy number = [A·geomean(B,C,D)] · N Ref). MYCN and ALK amplifications were used as the detection of ≥8.01 copies, with gain (defined as the detection of 2.74 to 8.00 copies) and normal diploid status (defined as the detection of 1.50 to 2.73 copies).22 The false-positive rate and lower limit of detection for point mutation analyses were calculated with Bio-Rad Lookup tables in line with the model by Armbruster and Pry.50 In principle, false-positive rate calculation was based on two parameters. The number of false-positive droplets and the minimally required concentration of mutant target molecules (copies/µL) for each point-mutation protocol were defined by analysis of gDNA from cell lines with the respective mutation. A sample was scored as positive if both the number of droplets detecting the mutation and mutant target molecules (copies/µL) were above the set thresholds.
accessed February 20, 2020). Reads were aligned to the
quality control was performed using FastQC version 0.11.9
median of 84 million fragments per sample. Standard
HiSeq 4000 sequencer (Illumina, San Diego, CA), with a
cell to be sequenced (100-bp, paired-end) in one lane on the

\[\text{Copy Number} = \frac{C_N}{C_D} \]

where \(C_N \) is the number of fragments per copy of the
reference sequence and \(C_D \) is the number of fragments per diploid

The lower limit of detection was determined for each assay
by measuring a 1:10 to 1:100,000 mix of DNA derived from
cell lines with (SH-EP, CLB-GA) or without (SK-N-AS) the
respective mutations. Thresholds were separately calculated
by measuring a 1:10 to 1:100,000 mix of DNA derived from
tumor cell lines to be sequenced (100-bp, paired-end) in one lane on the

WES of Matched cfDNA and Tumor Samples

Whole-exome sequencing (WES) libraries were prepared
with the Agilent SureSelect XT kit version 6 (Agilent
Technologies) according to the manufacturer’s protocol. For
sequencing, four to five libraries were pooled in the flow
cell to be sequenced (100-bp, paired-end) in one lane on the
HiSeq 4000 sequencer (Illumina, San Diego, CA), with a
median of 84 million fragments per sample. Standard
quality control was performed using FastQC version 0.11.9
(http://bioinformatics.babraham.ac.uk/projects/fastqc, last
accessed February 20, 2020). Reads were aligned to the

GRCh37 reference sequence using BWA-MEM software
version 0.7.15. Separate read groups were assigned for all
reads from one_lane, and duplicates were masked using
Samblaster software version 0.1.24.52 MYCN and ALK copy
numbers were estimated using CNVkit53 version 0.9.6 on
each WES library without a normal control, as described by
the manufacturer. Digital copy numbers in tumor samples
were calculated as \(2^{\log_2 FC} - 2 + 2 \cdot p \). The \(\log_2 \) fold-
change, \(\log_2 FC \), of a given gene was estimated to a diploid
baseline by CNVkit, and \(p \) was the tumor cell content.
Tumor samples had at least 70% tumor cells. Copy numbers
derived from cfDNA analysis were calculated by setting the
tumor cell content to 1.

WES of Neuroblastoma Cell Lines

DNA was extracted from the human neuroblastoma cell lines
BE(2)-C, Kelly, LAN-6, and SH-SY5Y using the NucleoSpin
Tissue kit (Macherey-Nagel, Düren, Germany) according to

Table 1

Sequences and Concentrations of Primers and Probes Used in Multiplexed ddPCR Protocols to Assess ALK and MYCN Copy Number Status

<table>
<thead>
<tr>
<th>Primer/Probe</th>
<th>Sequence</th>
<th>Concentration, nmol/L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Duplex ddPCR</td>
</tr>
<tr>
<td>ALK1275- for</td>
<td>5'-GCCCAGACTCAAGCTCATG-3'</td>
<td>900</td>
</tr>
<tr>
<td>ALK1275- rev</td>
<td>5'-CCCAGACTCAAGCTCATG-3'</td>
<td>900</td>
</tr>
<tr>
<td>ALK1275Q</td>
<td></td>
<td>250</td>
</tr>
<tr>
<td>ALK1275Q</td>
<td></td>
<td>250</td>
</tr>
</tbody>
</table>

*Adapted from Gottoh et al.46
FAM, 6-carboxyfluorescein; HEX, hexachloro-fluorescein.

Table 2

Sequences and Concentrations of Primers and Probes Used in Multiplexed ddPCR Protocols to Detect the Neuroblastoma-Specific ALK1274L and ALK1275Q Hotspot Mutations

<table>
<thead>
<tr>
<th>Primer/Probe</th>
<th>Sequence</th>
<th>Concentration, nmol/L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Duplex ddPCR</td>
</tr>
<tr>
<td>ALK1274L- for</td>
<td>5'-GCCCAGACTCAAGCTCATG-3'</td>
<td>900</td>
</tr>
<tr>
<td>ALK1274L- rev</td>
<td>5'-CCCAGACTCAAGCTCATG-3'</td>
<td>900</td>
</tr>
<tr>
<td>ALK1275Q</td>
<td></td>
<td>250</td>
</tr>
<tr>
<td>ALK1275Q</td>
<td></td>
<td>250</td>
</tr>
</tbody>
</table>

*Adapted from Combaret et al.23
FAM, 6-carboxyfluorescein; HEX, hexachloro-fluorescein.
the manufacturer’s instructions. Libraries for WES were prepared using the SureSelect Human All Exon kit version 7 (Agilent) and the TruSeq Exome kit (Illumina). Libraries were sequenced on HiSeq 4000 and NovaSeq 6000 sequencers (Illumina). Read sequences and base quality scores were demultiplexed and stored in FASTQ format using bcl2fastq software version 2.20 (Illumina). Adapter remnants and low-quality read ends were trimmed off using custom scripts. The quality of the sequence reads was assessed using FastQC software. Reads were aligned to the human genome, assembly GRCh38, using BWA-MEM software,51 and duplicate read alignments were removed using Sambler.52 Copy number variations were determined using CNVKit.53 Single-nucleotide variants were identified using Strelka2 software version 2.9.10.54 Potential germline variants were filtered out by excluding all single-nucleotide variants that had also been observed in at least 1% of samples in cohorts of healthy individuals, namely the 1000 Genomes Project55 and the National Heart, Lung, and Blood Institute’s Grand Opportunity Exome Sequencing Project56 cohorts.

Statistical Analysis

Correlation analyses were performed using GraphPad Prism software version 6.00 (GraphPad Software, San Diego, CA). P values ≤ 0.05 were considered significant.

Results

Developing Quadruplexing to Absolutely Quantify MYCN and ALK Copy Numbers in a Single ddPCR Assay

Duplex ddPCR assay conditions were previously reported to assess MYCN and ALK copy numbers in gDNA and cDNA using N-acetylgalactosamine kinase gene (NAGK) as a reference gene.22 To save sample volume, which is substantially restricted in infancy and early childhood, a quadruplex ddPCR assay was established for reliable measurement of both gene copy numbers in a single reaction together with two reference genes to increase robustness for normalization. Assay conditions for a triplex reaction were first established, in which MYCN or ALK was measured in parallel in channel 1 while NAGK and a second reference gene, AFF3, which is frequently used as a control for fluorescence in situ hybridization directed against MYCN,57 were both detected in channel 2. For accurate discrimination between fluorescence amplitudes of negative, single-positive, and double-positive droplet clusters for AFF3 and NAGK in channel 2, a uniplex reaction was performed using fragmented DNA from the SK-N-AS neuroblastoma cell line as a template, in which AFF3 and NAGK probe concentration series ranging from 100 to 400 nmol/L together with a fixed primer concentration of 900 nmol/L for both genes were tested. Optimal separation of AFF3-positive and NAGK-positive droplet clusters and identical fluorescence amplitude of AFF3-negative and NAGK-negative droplet clusters as the desired result were used for selecting probe concentrations of 125 nmol/L (AFF3) and 350 nmol/L (NAGK) for further testing in triplex reactions with these settings (Supplemental Figure S2). Using fragmented DNA from SK-N-AS cells as a template and the previously established primer and probe concentrations for ALK and MYCN for duplex reactions (Table 1),22 triplex reactions (ALK/AFF3/NAGK, MYCN/AFF3/NAGK) were performed and an accurate separation of negative and single-, double-, and triple-positive droplet clusters with ALK or MYCN in channel 1 and both AFF3 and NAGK in channel 2 were observed (Figure 1).

Probe and primer concentrations for the simultaneous detection of ALK and MYCN in channel 1 were next established using fragmented SK-N-AS gDNA as a template. Probes for ALK and MYCN were each tested in the range of 100 to 400 nmol/L in combination with the standard primer concentration (900 nmol/L) for duplex and triplex assays (Table 1) in a uniplex assay. The ALK probe concentration of 400 nmol/L and two MYCN probe concentrations (125 and 250 nmol/L) were further tested in MYCN/AFF3 and ALK/NAGK duplex reactions (Supplemental Figure S3A). Finalizing conditions were used for absolutely quantifying MYCN copy number, and the two probe concentrations were combined, with primer concentrations varying between 225 and 900 nmol/L. Positive and negative droplet clusters were optimally separated using probe and primer concentrations of 125 and 450 nmol/L, respectively, as: i) the bandwidths of both clusters were comparatively smallest, ii) the distance between both clusters was comparatively largest, and iii) the fluorescence amplitudes of MYCN-negative and ALK-negative droplet clusters were almost identical (Supplemental Figure S3B). The assay conditions were then optimized to absolutely quantify ALK copy numbers. The probe range of 350 to 400 nmol/L was tested with 300 or 900 nmol/L primer in the MYCN/AFF3 and ALK/NAGK duplex reactions. While ALK-positive and ALK-negative droplet clusters were clearly separable with each of the probe/primer combinations tested, 300 nmol/L primer with probe concentrations between 360 and 380 nmol/L was most suited for simultaneous ALK and MYCN detection in channel 1 (Supplemental Figure S4A). All three ALK-specific probe concentrations produced separation of negative and single-, double-, triple-, and quadruple-positive clusters in the ALK/MYCN/AFF3/NAGK quadruplex reaction, but with varying degrees of droplet rain between the ALK and MYCN double-positive cluster. The ALK single-positive cluster in channel 1 was smallest with 360 nmol/L ALK probe, prompting its selection as the optimized concentration (Supplemental Figure S4, B—D). QuantaSoft Analysis Pro software accurately distinguished a total of 16 different droplet clusters including negative and single-, double-, triple- and quadruple-positive droplets from the two-dimensional plot (Figure 2A and Table 1). Findings from channels 1 and 2 were confirmed in one-dimensional plots (Figure 2, B and C) and histograms (Figure 2, D and E).

The accuracy and sensitivity of the quadruplex ddPCR reaction was compared to those of the triplex and previously published duplex reactions using fragmented SK-N-AS
gDNA as a template in a dilution series from 0.5 to 100 ng. Detected and assigned MYCN, ALK, NAGK, and AFF3 concentrations were significantly and comparably correlated in all assay types (Pearson correlation coefficient, >0.99 for all four DNA targets in all assay types) (Supplemental Figure S5). These data demonstrate that the quadruplex reactions maintain the same linearity as triplex and duplex reactions within the range 0.5 to 100 ng template for the absolute quantification of MYCN and ALK copy numbers using AFF3 and NAGK as reference genes.

Quadruplex ddPCR Can Quantify MYCN and ALK Copy Numbers in Cell Lines

Eight previously analyzed neuroblastoma cell lines known to harbor MYCN and/or ALK amplification, gain, or normal diploid chromosomal complements for comparative reanalysis in duplex, triplex, and quadruplex reactions were selected. In cell lines known to harbor MYCN amplifications, quadruplex ddPCR quantified MYCN copy numbers ranging from 109.9 to 504.8 copies, which corresponded well with copy numbers quantified in triplex (109.3 to 542.6) and duplex (106.2 to 530.8) assays (Figure 3A). Absolute MYCN copy numbers in the Kelly cell line were higher in quadruplex (521.3) and triplex (596.6) reactions than in duplex reactions (385.4) (Figure 3A), which was most likely due to the modified normalization procedure introduced by the second reference gene in quadruplex and triplex reactions. Quadruplex ddPCR confirmed MYCN gains in SH-SY5Y (3.13) and LAN-6 cells (3.18), and copy numbers corresponded well with MYCN copy numbers assessed by triplex and duplex reactions (Figure 3A). Quadruplex (87.8), triplex (85.1), and duplex (87.4) ddPCR also quantified the ALK amplification in the NB-1 cell line, and ALK gains in the BE(2)-C, Kelly, SH-SY5Y, and LAN-6 cell lines (Figure 3B). ALK copy numbers ranged between 2.74 and 4.05 in the quadruplex format, between 2.92 and 4.49 in triplex format, and between 2.92 and 5.35 in the duplex format. Absolute ALK copy numbers in the Kelly

Figure 1 Representative two-dimensional plots of triplex ddPCR assays assessing ALK and MYCN copy number status. Genomic DNA was extracted from SK-N-AS cells and fragmented by sonication before ddPCR reactions using a total of 20 ng as input material. Channel 1 fluorescence (6-carboxyfluorescein; FAM) was plotted against channel 2 fluorescence (hexachloro-fluorescein; HEX) for each droplet in the triplex reactions. A and B: ALK (A) and MYCN (B) copy numbers were detected in channel 1, and the normal diploid reference genes, AFF3 and NAGK, were measured in channel 2. Circles indicate individual droplet clusters.
cell line were, with 4.32 and 4.27 in the quadruplex and triplex assays, slightly higher than the 3.0 measured in the duplex assay (Figure 3B), most likely again reflecting the more robust normalization in the quadruplex and triplex assay designs. Normal ALK diploid status was detected in the LAN-5, IMR-5, and SK-N-AS cell lines (Figure 3B). Copy numbers ranged from 1.99/C6 0.13 to 2.10/C6 0.05 using the quadruplex protocol, which corresponded well with those determined using triplex (1.93/C6 0.24 to 2.13/C6 0.15) and duplex (1.85/C6 0.37 to 2.00/C6 0.25) protocols. For comparison, WES data were generated for the BE(2)-C, Kelly, SH-SY5Y, and LAN-6 cell lines and copy number variations were determined on the p-arm of chromosome 2. This analysis showed a strong focal amplification of the MYCN gene locus in the BE(2)-C and Kelly cells (Supplemental Figure S6). Further, the Kelly, SH-SY5Y, and LAN-6 cells showed widespread, albeit weaker, copy number gains, up to four copies in total, in the first 50 megabases of chromosome 2 that include the ALK gene locus (Supplemental Figure S6), thus validating the ddPCR results. Interestingly, the WES data showed a loss of heterozygosity in the AFF3 gene in the Kelly cell line, which explains the different MYCN and ALK copy number results obtained in those ddPCR assays that included AFF3 as a second reference gene in the calculation. The data demonstrate robust MYCN and ALK copy number quantification that clearly distinguishes between amplification, gain, and diploid allele status by the quadruplex ddPCR assay.

Quadruplex ddPCR Can Quantify MYCN and ALK Copy Numbers from Blood Plasma or Neuroblastoma Samples from Patients

Quadruplex ddPCR-based MYCN and ALK copy numbers were next assessed in blood plasma samples paired with gDNA from the corresponding primary neuroblastoma from three patients.
patients. Results were compared with copy numbers determined by duplex and triplex ddPCR and re-analyzed from WES data, which were deposited in the European Genome-Phenome Archive (accession number EGAS00001004275; https://www.ebi.ac.uk/ega/studies, last accessed March 2, 2020). Quadruplex ddPCR of tumor DNA revealed high-level MYCN amplifications in samples from Patients 1 and 2, which were confirmed by duplex and triplex ddPCR reactions and re-analysis of WES tumor data (Table 3). All multiplexed ddPCR assays detected the MYCN amplification using cfDNA in plasma from Patients 1 and 2, although the copy numbers estimated were consistently lower than those from direct assessment of tumor DNA (Table 3). Findings were confirmed through re-analysis of WES data from these cfDNA samples (Table 3). The lower copy numbers detected in circulating cfDNA may have stemmed from a dilution effect caused by handling-induced damage to white blood cells in the samples (these blood samples were previously collected for a different purpose) from tumor heterogeneity or cfDNA derived from nontumor cells. Therefore, the DNA quality was evaluated in plasma samples from Patients 1 and 2 using the TapeStation 4200 System. The cfDNA content amounted to 69.8% and 81.1% in these samples, thus pointing either to tumor heterogeneity or the presence of cfDNA derived from nontumor cells (Table 3). Diploid MYCN allele status was detected by quadruplex ddPCR using either tumor or cfDNA from Patient 3, and was confirmed by all other assays (Table 3). Quadruplex ddPCR detected an ALK gain using either tumor or cfDNA from Patient 1 and diploid ALK allele status in Patients 2 and 3 using either DNA source (Table 3). Although the ALK gain could not be clearly identified in the WES data, all other results were confirmed in all other assays (Table 3). ALK fluorescent in situ hybridization was performed on interphase nuclei of a tumor section from Patient 1 and detected three ALK copies (Supplemental Figure S7), thus confirming the ddPCR data and a false-negative result in the WES data. The data consistently demonstrate that absolute MYCN and ALK copy numbers can be quantified from DNA derived from either tumor or plasma samples from patients, and that quadruplexed ddPCR using two diploid reference genes for normalization is a feasible and sensitive alternative for reducing sample volumes.

Developing Quadruplex ddPCR—Based Detection of ALKF1174L and ALKR1275Q Hotspot Mutations

The ALK hotspot mutations at F1174 (C>A conversion at nucleotide 3522 in exon 23) and R1275 (G>A conversion at nucleotide 3824 in exon 25) occurring in neuroblastomas can be detected by duplex ddPCR.23 It was hypothesized that simultaneous detection of both ALK hotspot mutations in a quadruplex ddPCR reaction is technically feasible. As template providing both hotspot mutations and the wild-type ALK sequences to develop the quadruplex assay, DNA was extracted from the SH-EP neuroblastoma cell line (harboring a heterozygous ALKF1174L mutation) and mixed 1:1 with DNA extracted from the CLB-GA neuroblastoma cell line (harboring a heterozygous ALKR1275Q mutation). Uniplex and duplex assays determined that 900 and 600 nmol/L primers with 350 and 400 nmol/L probes concentrations were optimal for detecting ALKF1174L and ALKR1275Q target molecules, respectively, in channel 1 (Table 2). Both mutation sites in the wild-type sequence were targeted (ALKF1174 and ALKR1275) to detect wild-type ALK, with both clearly detected in channel 2 using 900 and 600 nmol/L primers with 350 and 400 nmol/L probes, respectively (Table 2). Combining ALKF1174L and ALKR1275Q detection in channel 1 with ALKF1174 and ALKR1275 detection in channel 2 in a quadruplex reaction allowed no clear identification of individual droplet clusters (data not shown), prompting the application of the concept of an inverted ddPCR protocol described by Alcaide et al.58

Figure 3 Comparison of absolute MYCN and ALK copy numbers determined by multiplexed ddPCR assays in neuroblastoma cell lines. A and B: Genomic DNA was extracted and fragmented by sonication before ddPCR reactions to quantify MYCN (A) and ALK (B) copy numbers. A total of 2 ng of DNA was used as input material. Data are expressed as means ± SD. n ≥ 3.
Table 3 Comparatively Determined MYCN and ALK Copy Numbers in Patient Samples

<table>
<thead>
<tr>
<th>Patient</th>
<th>Disease stage</th>
<th>Sample</th>
<th>Tumor cell content, %</th>
<th>cfDNA content, %</th>
<th>MYCN copy number</th>
<th>ALK copy number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Quadruplex ddPCR*</td>
<td>Triplex ddPCR*</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>gDNA</td>
<td>75</td>
<td>---</td>
<td>290.6</td>
<td>239.2</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>gDNA</td>
<td>70</td>
<td>69.8</td>
<td>43.5</td>
<td>48.7</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>gDNA</td>
<td>90</td>
<td>---</td>
<td>81.1</td>
<td>32.3</td>
</tr>
</tbody>
</table>

*DNA input for ddPCR reactions ranged from 1 to 2 ng.†DNA input for WES ranged from 8 to 110 ng.

cfDNA, cell-free DNA; gDNA, genomic DNA; n.a., not analyzed; WES, whole-exome sequencing.

The hexachlorofluorescein fluorophore on the ALK1174 probe was replaced by a 6-carboxyfluorescein fluorophore, and the 6-carboxyfluorescein fluorophore on the ALK1275Q probe was replaced by a hexachlorofluorescein fluorophore for the simultaneous detection of ALK1174 and ALK1275 in channel 1 and ALK1275Q and ALK1275 in channel 2. This approach produced accurate separation of negative, single-positive, and double-positive droplet clusters including ALK1174/ALK1275, ALK1174/ALK1275Q, ALK1174/ALK1275Q, and ALK1174/ALK1275Q (Figure 4A). Findings from previous reports on other inverted ddPCR approaches, some double-double positive clusters (ALK1174/ALK1275) in channel 1 and ALK1275Q/ALK1275 in channel 2) as well as triple-positive and quadruple-positive droplet clusters were not clearly separable from other droplet clusters (Figure 4A). The dynamic range of the ALK1174/ALK1275Q quadruplex ddPCR detection was assessed using serially diluted DNA template (0.5 to 130 ng) from the SK-N-AS, SH-EP, or CLB-GA cell line. The detected concentrations of target molecules (ALK1174, ALK1275Q, ALK1174, and ALK1275) were significantly correlated with the theoretically assigned concentrations (Pearson correlation coefficients ranged from 0.9942 to 0.9981) and strongly resembled the concentrations detected in duplex reactions (ALK1174/ALK1174 and ALK1275Q/ALK1275), with Pearson correlation coefficients ranging from 0.9871 to 0.9981 (Supplemental Figure S8). The data demonstrate that quadruplex ALK1174 and ALK1275Q hotspot mutation detection remains linear within the range of 0.5 to 130 ng of input DNA.

Sensitivity thresholds for ALK hotspot mutation detection in quadruplex reactions were also defined and compared to sensitivity in duplex detection. DNA from cell lines harboring either ALK hotspot mutation was mixed 1:10 to 1:100,000 with DNA from cell lines with homozygous wild-type ALK. Mutant allele fractions (MAFs) were designated as 0% in cells with wild-type ALK. A neuroblastoma cell was categorized as harboring an ALK1174L mutation using the following thresholds: ≥4 positive droplets and at least 0.31 copies/μL for up to 10 ng of input DNA and ≥5 positive droplets and at least 0.57 copies/μL for higher input DNA amounts. These thresholds were very similar to those defined for the duplex reaction (≥4 positive droplets, at least 0.33 copies/μL). The thresholds for categorizing a neuroblastoma cell as harboring an ALK1275Q mutation varied according to input DNA amounts in both assays (quadruplex reaction, ≥5 to ≥15 positive droplets, 0.42 to 1.34 copies/μL; duplex reaction, ≥4 to ≥17 positive droplets, 0.32 to 1.31 copies/μL). Together, the sensitivity thresholds for the simultaneous detection of both neuroblastoma-specific ALK hotspot mutations in quadruplex ddPCR were similar to those for the respective duplex ddPCR reactions.

Quadruplex ddPCR Correctly Assesses ALK1174L and ALK1275Q MAFs in Cell Lines

The quadruplex ddPCR assay for ALK hotspot mutations was tested in a panel of six neuroblastoma cell lines harboring the ALK1174L mutation (SH-EP, Kelly12,34), the ALK1275Q mutation (CLB-GA, LAN-510,11), or wild-type ALK [SK-N-AS, BE(2)-C12]. The ALK1174L mutation was correctly detected in SH-EP and Kelly cells, and MAFs determined using quadruplex ddPCR corresponded well those determined by duplex ddPCR (Table 4). Both quadruplex and duplex ddPCR correctly detected MAFs indicating that only one allele harbored the mutation. Wild-type ALK in both alleles was correctly detected in CLB-GA, LAN-5, SK-N-AS, and BE(2)-C cells using the ALK1174 target in quadruplex ddPCR (Table 4). The monoallelic ALK1275Q mutation was similarly detected in CLB-GA and LAN-5 cells, with strongly corresponding MAFs detected by quadruplex and duplex ddPCR assays (Table 4). The single wild-type ALK allele in SH-EP and Kelly cells and the biallelic wild-type ALK status in SK-N-AS and BE(2)-C cells were correctly detected using the ALK1275 target in
quadruplex ddPCR (Table 4). These findings suggest that quadruplex ddPCR performs well as an assay-validating step in the detection of wild-type ALK and ALK hotspot mutations in neuroblastoma cell lines.

Quadruplex ddPCR Detects ALKF1174L and ALKR1275Q MAFs in Blood Plasma and Neuroblastoma Samples from Patients

After quadruplex ddPCR was validated in the detection of neuroblastoma-specific ALK hotspot mutations in cell lines, the assay was applied to paired blood plasma and tumor samples from six patients with neuroblastoma to compare its accuracy and sensitivity to those of the established duplex ddPCR reactions using both standard tumor biopsies and liquid biopsies suited to longitudinal patient monitoring. The quadruplex ddPCR correctly detected an ALKF1174L mutation in tumor and plasma samples from Patients 4 and 5, with MAFs indicating that a varying proportion of tumor cells harbored the mutation on one allele (although 14% higher in quadruplex detection in cfDNA from Patient 4) (Table 5). No ALKF1174L mutation was detected in matched tumor-derived DNA/cfDNA samples from Patients 6 through 9 by either assay (Table 5). The quadruplex ddPCR assay correctly demonstrated an ALKR1275Q mutation in tumor-derived DNA and plasma-derived cfDNA from Patients 6 to 8, and the MAFs obtained by the two assays very closely resembled each other in all cases except one, which was a 10% higher MAF measured in tumor-derived DNA from Patient 8 by quadruplex ddPCR (Table 5). No ALKR1275Q mutation was detected in matched tumor/blood plasma samples from Patients 4, 5, or 9 by either assay (Table 5). The higher MAFs in cfDNA from Patient 4 and tumor-derived DNA from Patient 8, as determined by quadruplex ddPCR compared to duplex ddPCR, prompted the
testing of the influence of input quantity on MAF measurement, as the two respective samples contained higher DNA amounts than all other samples analyzed. Fragmented DNA was serially diluted from an ALKF1174L mutant cell line (SH-EP) and an ALKR1275Q mutant cell line (CLB-GA) in H\textsubscript{2}O to obtain 0.5, 2, 10, 20, 80, and 130 ng of DNA. ALKF1174L MAF assessment based on 0.5 to 20 ng of total input DNA resulted in similar findings in quadruplex and duplex reactions. Using DNA input amounts of 80 and 130 ng resulted in comparatively higher MAF results in the quadruplex reaction (Supplemental Figure S9A). Similar findings were obtained on analysis of the ALKR1275Q MAF with varying DNA input amounts. Using 0.5 to 20 ng of DNA input, MAF results were similar in the quadruplex and duplex reactions, but were higher in the quadruplex reaction with total input DNA amounts of 80 and 130 ng (Supplemental Figure S9B). This observation was likely due to the underestimation of an increasing amount of wild-type and mutant double-positive droplets in higher DNA input samples in inverted ddPCR protocols because the fluorescence signals of double-positive droplets had an amplitude similar to that of single mutant-positive droplets and might have been obscured in this droplet cluster.58 Taken together, the data demonstrate that the quadruplex ddPCR protocol accurately distinguishes between ALKF1174L, ALKR1275Q, and wild-type ALK in plasma-derived cfDNA and tumor DNA.

Table 4: Comparison of Multiplexed ddPCR Assays for Detecting ALKF1174L and ALKR1275Q Mutant Allele Fractions in Neuroblastoma Cell Lines

<table>
<thead>
<tr>
<th>Cell line*</th>
<th>ALKF1174L (3522, C→A)1</th>
<th>ALKR1275Q (3824, G→A)1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quadruplex ddPCR</td>
<td>Duplex ddPCR</td>
</tr>
<tr>
<td>SH-EP</td>
<td>45.82 ± 0.87</td>
<td>48.66 ± 0.31</td>
</tr>
<tr>
<td>Kelly</td>
<td>31.58 ± 0.69</td>
<td>31.20 ± 0.52</td>
</tr>
<tr>
<td>CLB-GA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LAN-5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SK-N-AS</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BE(2)-C</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*DNA input, 10 ng.

1 Mutant allele fraction is shown in mean percentage ± SD for n ≥ 3 replicates; mutant allele fraction of 0% indicates wild-type ALK.

Table 5: Comparatively Determined ALKF1174L and ALKR1275Q Mutant Allele Fractions in Paired Blood Plasma and Neuroblastoma Samples from Patients

<table>
<thead>
<tr>
<th>Patient</th>
<th>Sample*</th>
<th>ALKF1174L (3522, C→A)1</th>
<th>ALKR1275Q (3824, G→A)1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Quadruplex ddPCR</td>
<td>Duplex ddPCR</td>
</tr>
<tr>
<td>4</td>
<td>gDNA</td>
<td>48.17</td>
<td>48.36</td>
</tr>
<tr>
<td></td>
<td>cfDNA</td>
<td>59.29</td>
<td>45.40</td>
</tr>
<tr>
<td>5</td>
<td>gDNA</td>
<td>11.07</td>
<td>12.95</td>
</tr>
<tr>
<td></td>
<td>cfDNA</td>
<td>36.27</td>
<td>35.20</td>
</tr>
<tr>
<td>6</td>
<td>gDNA</td>
<td>0</td>
<td>47.92</td>
</tr>
<tr>
<td></td>
<td>cfDNA</td>
<td>0</td>
<td>32.91</td>
</tr>
<tr>
<td>7</td>
<td>gDNA</td>
<td>0</td>
<td>43.48</td>
</tr>
<tr>
<td></td>
<td>cfDNA</td>
<td>0</td>
<td>21.99</td>
</tr>
<tr>
<td>8</td>
<td>gDNA</td>
<td>0</td>
<td>87.29</td>
</tr>
<tr>
<td></td>
<td>cfDNA</td>
<td>0</td>
<td>71.90</td>
</tr>
<tr>
<td>9</td>
<td>gDNA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>cfDNA</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*Cell-free DNA input material ranged between 6.9 and 72.6 ng, and gDNA input material ranged between 6.9 and 98.5 ng.

1 Mutant allele fraction of 0% indicates wild-type ALK.

cfDNA, cell-free DNA; gDNA, genomic DNA.

Discussion

One of the challenges in infants and children with a body weight of <10 kg is to sequentially obtain sufficient blood volumes for molecular analyses without considerably lowering hemoglobin levels and, ultimately, necessitating an iatrogenically induced blood transfusion. Volumes for blood sampling are therefore ethically restricted to 1 mL in infants and a maximum of 3 mL in children. Experiences with blood samples from neuroblastoma patients indicate that, on average, 10 to 130 ng of cfDNA diluted in 50 μL of elution buffer is available after purification for further analysis. Previously published duplex ddPCR protocols assessing MYCN and ALK copy numbers using NAGK as a single reference gene each require 5 μL of cfDNA extract.22 ddPCR is a rapid, highly sensitive, less expensive, and more accessible tool for many laboratories compared to next-generation sequencing approaches. It enables targeted analyses of known copy number variations and mutations, while next-generation sequencing sequencing enables an unbiased approach, but requires a longer time to obtain, process, and analyze data, with a need for bioinformatics expertise.19,60 Increasing evidence suggests that the characterization of the cfDNA in plasma from neuroblastoma patients with targeted and untargeted approaches such as ddPCR, real-time quantitative PCR, shallow WES, OncoScan arrays (Affymetrix, Santa Clara, CA), or WES contributes to the understanding of molecular risk factors as well as spatial and temporal heterogeneity in neuroblastoma.18,19,23,48,61–66

The technical feasibility of multiplexing DNA targets by ddPCR beyond single and duplex reactions has been exemplarily shown by the quantification of recurrent somatic mutations in diffuse large B-cell and follicular lymphoma tissue sections58 and scoring programmed cell death protein...
ligand 1 in non—small cell lung cancer biopsies. To optimize the amplitude of a droplet cluster in higher-order multiplexing assays, i) probe concentrations, ii) primer concentrations, and iii) annealing temperature in the PCR cycler program can be adapted. After optimization of the first two parameters, simultaneous copy number assessment of two of the major oncogenic drivers in neuroblastoma, MYCN and ALK, was shown to be technically feasible using NAGK and AFF3 as two normal diploid reference genes. Quality assessment of linearity and lower limit of detection showed highly comparable results between the respective duplex and triplex reactions, saving precious sample volume. While the quadruplexed ddPCR protocol was shown to be a highly sensitive and robust analytical tool for exact assessment of copy number status, it maintains a targeted analysis by nature, which is limited to the analysis of a short range of DNA base pairs, often of <100 nucleotides. This was reflected by a higher ALK amplification status in the NB-1 cell line and by the misdetection of a partial ALK amplification in the IMR-5 cell line due to the use of primer pairs different from those used for previously reported data. Another example of the targeted nature of the ddPCR technology was the observation that only the WES technology but none of the ALK ddPCR assays discriminated between a specific ALK gain and copy number gains within the first 50 megabases of chromosome 2p, including the ALK gene, in the neuroblastoma cell lines investigated. The WES data reported in the present study are in line with those from previous studies, summarized in Supplemental Table S1. The well-known intrinsic ddPCR assay limitation justifies the combination of this targeted analysis applicable in routine clinical testing at sequential time points for monitoring disease status and the emergence of new potentially druggable targets such as ALK or activating Ras—mitogen-activated protein kinase pathway mutations in combination with unbiased next-generation sequencing approaches at a defined time point, such as initial or relapse diagnosis. Other molecular characteristics used in neuroblastoma risk stratification, including DNA ploidy and segmental copy number variations, are not detected with the targeted MYCN/ALK quadruplexing ddPCR approach. The ddPCR technology could nonetheless affect clinical decision making by considerably shortening the time needed for switching to a potentially promising alternative targeted therapy, and may, therefore, have considerable potential with regard to its translation into daily clinical practice in the near future. Although the number of studies reporting ddPCR applications in oncology has rapidly increased over recent years, additional prospective studies in larger patient cohorts are needed for further validation.

To increase the robustness of the ddPCR assay in the assessment of MYCN and ALK copy number status, a second normal diploid reference gene on the 2q arm (AFF3 at 2q11.2) was included. The incorporation of a second reference gene enables the internal control between both reference genes to detect the unlikely but non-excludable event of a potential copy number variation in a well-established reference gene in individual patient samples. For example, the approximately 30% higher MYCN and ALK copy numbers detected by triplex and quadruplex reactions in Kelly cells were attributable to a loss of heterozygosity in AFF3. ALK copy number assessment in cfDNA purified from plasma samples will enable monitoring in patients with neuroblastoma for the targetable ALK amplification in the future. This is important because the treatment of ALK-amplified neuroblastoma cell lines with ALK inhibitor was shown to potently suppress ALK downstream signaling and to trigger an apoptotic response in vitro. ALK amplification is emerging as a potential biomarker associated with response to targeted inhibition in neuroblastoma models.

The quadruplexed ddPCR protocol detecting the ALK hotspot mutations ALK^{F1174L} (3522, C>A) and ALK^{R1275Q} (3824, G>A) is based on the previously reported inverted ddPCR approach, and allows the successful detection and quantification of either or both mutations in a simultaneous reaction in samples with low DNA input. Detection and quantification are possible by changes in the labeled probes and therefore measurement of ALK^{F1174L} (3522, C>A), together with the respective ALK^{wild-type} sequence in channel 1, and ALK^{R1275Q} (3824, G>A) with this corresponding ALK^{wild-type} sequence in channel 2. In this setting, the respective mutant and wild-type sequences are amplified with the same primer pair, and the reactions compete against each other for the existing resources in the droplet, diminishing the fluorescence signal from double-positive clusters. This well-known phenomenon from duplex reactions leads to a shift of the double-positive clusters in one channel to the upper single-positive clusters. Although the occurrence of double-positive droplets is comparatively low in samples with low DNA input, it increases in high-DNA input samples, causing MAF overestimation for the respective mutation in the calculation. Although the mutant and wild-type sequences are detected in separate channels in duplex reactions and can, thereby, clearly be distinguished from each other, the natural limitation of the inverted ddPCR approach used here necessitates that DNA input be restricted to maximally 20 ng, making it also well-suited for analyzing cfDNA. Here, two novel quadruplexed ddPCR protocols enabled, with high analytical sensitivity and low cost, the assessment of copy number variations and hotspot mutations crucial for monitoring and treating children with neuroblastoma in routine clinical settings.

Acknowledgments

We thank Daniela Tiburtius and Aleixandria McGearey for technical assistance; the German Neuroblastoma Biobank for providing blood plasma samples paired with gDNA from the corresponding primary tumor; the German Cancer
Research Center High Throughput Sequencing Unit for providing sequencing services; and Johannes H. Schulte, Ina Oehme, and Larissa Savelyeva for sharing CLB-GA, IMR-5, LAN-5, and LAN-6; NB-1; and SH-EP and SK-N-AS cell lines, respectively.

Supplemental Data

Supplemental material for this article can be found at https://doi.org/10.1016/j.jmoldx.2020.07.006.

References

Molecular Monitoring for Neuroblastoma

