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SUMMARY
Interactome maps are valuable resources to elucidate protein function and disease mechanisms. Here, we
report on an interactomemap that focuses on neurodegenerative disease (ND), connects�5,000 human pro-
teins via �30,000 candidate interactions and is generated by systematic yeast two-hybrid interaction
screening of �500 ND-related proteins and integration of literature interactions. This network reveals inter-
connectivity across diseases and links many known ND-causing proteins, such as a-synuclein, TDP-43,
and ATXN1, to a host of proteins previously unrelated to NDs. It facilitates the identification of interacting pro-
teins that significantly influencemutant TDP-43 and HTT toxicity in transgenic flies, as well as of ARF-GEP100

that controls misfolding and aggregation of multiple ND-causing proteins in experimental model systems.
Furthermore, it enables the prediction of ND-specific subnetworks and the identification of proteins, such
as ATXN1 and MKL1, that are abnormally aggregated in postmortem brains of Alzheimer’s disease patients,
suggesting widespread protein aggregation in NDs.
INTRODUCTION

Neurodegenerative diseases (NDs), such as Alzheimer’s disease

(AD), Parkinson’s disease (PD), Huntington’s disease (HD),

amyotrophic lateral sclerosis (ALS), and frontotemporal demen-

tia (FTD), are seriously disabling, chronic disorders that put an

enormous burden on patients, caregivers, and health systems

(Goedert, 2015; Ross et al., 2014; Taylor et al., 2016). Disease-

modifying treatments are urgently needed; existing therapies

target symptoms in the late stages of disease, when pathology

is already advanced and relief is modest (Bawa et al., 2016).

To find effective treatments, it is of critical importance to under-

stand the underlying molecular mechanisms responsible for

onset and progression of NDs (Keiser et al., 2016; Khanam

et al., 2016).
This is an open access article under the CC BY-N
Decades of research have revealed commonalities between

inherited and sporadic NDs (Ling et al., 2013). This includes

overlapping clinical symptoms, pathway perturbations, and

pathogenic molecular mechanisms, like aggregation of dis-

ease-relevant proteins (Higashi et al., 2007; Rubinsztein, 2006).

Databases and network models have been created that enable

the identification of relevant pathways, common genetic modi-

fiers (Chen and Burgoyne, 2012; Khurana et al., 2017; Na et al.,

2013), and proteins linked to known ND-associated proteins

(Lim et al., 2006; Limviphuvadh et al., 2007).

The deposition of misfolded proteins in inclusion bodies or

amyloid plaques, both inside and outside of neuronal and glial

cells, is a pathological hallmark of more than 15 NDs, including

AD, PD, FTD, ALS, and polyglutamine (polyQ) disorders such

as HD (Chiti and Dobson, 2006; Jellinger, 2012). Although the
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main protein component of pathological aggregates is specific

to each disease, such as a-synuclein (SNCA) in PD, huntingtin

(HTT) in HD, and b-amyloid in AD, several pathogenic proteins

are known to misfold and aggregate in more than one disease.

Abnormal aggregation of the RNA binding protein TDP-43 is

observed in FTD, ALS, and several further conditions (Chen-Plot-

kin et al., 2010; Toyoshima and Takahashi, 2014). Similarly, the

anomalous aggregation and deposition of SNCA and tau is a

pathological phenomenon detectable in brains of patients with

AD, PD, HD, and dementia with Lewy bodies (Gratuze et al.,

2016; Jellinger, 2012). This overlap in protein pathology supports

the hypothesis that neuronal dysfunction and degeneration in

various NDs are caused by shared pathomechanisms (Ling

et al., 2013). This view is substantiated by more recent discov-

eries indicating that amyloid aggregates from b-amyloid, tau,

HTT, SNCA, and TDP-43 polypeptides are biologically active

structures that can self-replicate and spread from cell to cell

by a prion-like mechanism (Brettschneider et al., 2015; Soto,

2012). Such corruptive aggregation templates, often termed

seeds, might function as drivers of pathogenesis in various NDs.

Studies of protein-protein interactions (PPIs) have demon-

strated that size, shape, and physicochemical complementar-

ities are critical determinants of protein complex formation

(Pechmann et al., 2009). Hydrophobic and electrostatic interac-

tions are further driving forces of aberrant protein aggregation

(Tartaglia et al., 2008). Identifying and characterizing PPIs can

therefore provide valuable knowledge on the formation of aber-

rant protein aggregates and the cellular processes that control

them. The aggregation propensity of ND-associated proteins

such as HTT is influenced dramatically by interactions with other

proteins (Stroedicke et al., 2015). PPIs either accelerate or slow

aggregation kinetics, thereby influencing toxicity of disease-

causing proteins in model systems (Mogk and Bukau, 2017;

Morley et al., 2002).

To identify connections between proteins, quantitative affinity

purification/mass spectrometry (MS)-based methods (Hosp

et al., 2015) or yeast-two-hybrid (Y2H) assays (Arumughan

et al., 2016; Goehler et al., 2004) are of high utility. They can

detect not only high-affinity PPIs but also weak, transient inter-

actions (Hein et al., 2015). These may have particular relevance

when aggregation-prone proteins are studied, because these

are often intrinsically disordered (Uversky et al., 2008) and bind

only weakly to partner proteins (Shimizu and Toh, 2009). Disor-

dered proteins, widespread in the human proteome (Pentony

and Jones, 2010; Uversky et al., 2008), are enriched among

known ND-associated proteins (Raychaudhuri et al., 2009), sug-

gesting that as a group they may play crucial roles in ND

processes.

Recent theoretical investigations indicate that a large fraction

of the proteins in the human proteome are vulnerable to misfold-

ing and aggregation because their cellular concentrations

relative to their solubilities are high (Ciryam et al., 2013, 2015).

These supersaturated or metastable proteins are overrepre-

sented in pathways perturbed in NDs (Ciryam et al., 2013).

Many proteins besides the known ones (HTT, SNCA, tau, TDP-

43, etc.) may therefore be aberrantly aggregated in disease

brains. They need to be identified to assess their relevance for

pathogenesis.
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In this study, we performed a systematic Y2H interaction

screen and integrated publicly available interaction data to

generate a high-confidence interactome map (�5,000 proteins

connected via �30,000 candidate interactions) for ND-associ-

ated human proteins. Our network uncovers interconnectivity

across NDs and links known ND-causing proteins (NDCPs),

such as SNCA, TDP-43, and ataxin-1 (ATXN1), to proteins previ-

ously believed to be unrelated to NDs. It facilitated the identifica-

tion of interacting proteins that significantly influence mutant

TDP-43 and HTT toxicity in transgenic fly models. Furthermore,

it enabled the detection of the protein ARF-GEP100 that controls

misfolding and aggregation ofmultiple disease proteins in exper-

imental models. Finally, disease-specific subnetworks of AD,

PD, and ALS (ADSN, PDSN, and ALSSN) were predicted and pro-

teins such as MKL1 and ATXN1 were found to be aggregated in

AD postmortem brain tissue. Our focused interactome map

provides a powerful framework for elucidating the underlying

mechanisms of multiple NDs.

RESULTS

Selection of Bait Proteins and Automated Interaction
Screening
We used manually and computationally generated gene lists to

prioritize human protein-encoding genes for their association

with NDs such as AD, PD, ALS, HD, and SCA1 (Figure 1A;

Table S1). By systematically extracting and combining infor-

mation on diseases from available public databases and

PubMed abstracts (Fontaine et al., 2009, 2011), a ranked list

of 3,711 genes with a potential role in NDs was generated

(Table S1). The 100 top-ranking genes include many well-

known ND genes, such as SNCA, MAPT, APP, HTT, and

ATXN1. These genes, when mutated, cause early-onset, in-

herited NDs with severe symptoms (Gatchel and Zoghbi,

2005; Taylor et al., 2016). Importantly, a fraction of the top

100 genes have not been studied extensively in the context

of NDs so far (Figure S1; Table S1).

To identify interaction partners for proteins involved in multiple

NDs, an automated Y2H system was applied, which allows the

detection of binary PPIs through systematic interaction mating

(Stelzl et al., 2005; Vinayagam et al., 2011). We focused on the

first 524 open reading frames (ORFs) from the ranked list. They

were subcloned as full-length cDNAs or fragments thereof into

bait expression plasmids using the Gateway technology. We

generated 596 MATa yeast strains that produce DNA binding

domain fusion proteins (baits), of which 492 (82.6%) (Table S1)

produced non-autoactivating bait proteins and were suitable

for interaction mating. Subsequently, all MATa strains were

screened as pools against an array of �16,000 MATa yeast

strains expressing prey proteins. Positive clones, which activate

the reporters HIS3, URA3, and lacZ, were identified by growth

selection on selective plates and b-galactosidase assays (Fig-

ure 1B). To increase our sampling, the entire search space

was independently screened four times. Putative interactions

identified in the pooled mating experiments were subsequently

retested in multiple pairwise experiments. The steps of the

automated interaction mating procedure are summarized in

Figure S2A.
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Figure 1. Research Approach and Workflow of the Interactome Mapping Study

(A) Selection of ND-associated target proteins for interaction mapping studies using available literature information.

(B) Identification of interaction partners for selected target proteins by automated Y2H interaction screening.

(C) Integration of identified Y2H interactions with published binary PPIs to create an extended interactome network for proteins involved in NDs.

(D) Validation of selected binary PPIs with computational and experimental methods.

(E) Computational prediction of subnetworks and protein modules for AD, PD, and ALS starting from NN1.0ext and known NDCPs.

(F) Analysis of the potential disease relevance of selected proteins from computationally predicted ND modules using experimental model systems and patient

brain samples.

See also Tables S1, S2, S3, S4, S5, and S6 and Figures S2 and S4–S6.
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Using this experimental approach, we identified 18,663

Y2H candidate interactions connecting 471 bait and 3,482

prey proteins. For further analysis of PPI data, each cDNA frag-

ment was mapped to the Entrez GeneID and a final dataset—

termed NeuroNet1.0 (NN1.0)—was created. It connects 3,135

unique human proteins via 13,736 Y2H PPIs (Table S2). A com-

parison of the NN1.0 data with literature interactions in the HIP-

PIE (Human Integrated Protein–Protein Interaction rEference)

database (Alanis-Lobato et al., 2017) revealed that only 783

(�5.7%) of the identified PPIs are already known.
Extension of NN1.0 andComputational Validation of Y2H
Interactions
Because previous investigations with positive PPI reference sets

have demonstrated that the sensitivity of Y2H assays is �25%

(Venkatesan et al., 2009), it is advisable to combine high-confi-

dence binary interaction datasets to augment the scope and

density of interactome network maps. To expand NN1.0 (Fig-

ure 1C), we added high-quality binary interactions from the Lit-

BM-13 and HI-II-14 datasets (Rolland et al., 2014). Using this

strategy, we created NeuroNet1.0extended (NN1.0ext) that
Cell Reports 32, 108050, August 18, 2020 3
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B Figure 2. Functional and Disease Rele-

vance of Binary Interactions in NN1.0 and

NN1.0ext

(A) Enrichment of binary interactome maps

(NN1.0, NN1.0ext, and HI-II-14) for functional

relationships and cocomplex memberships.

Literature interactions were obtained from previ-

ous publications and databases: HI-II-14, binary

interactome dataset; MS, MS-based map; Phos-

phosite, kinase-substrate interactions; CORUM,

protein complex dataset.

(B–D) Prediction of known NDCPs, ND modifiers,

and drug targets in NN1.0ext using network

propagation. Prediction performance is measured

using a ROC curve (red); predictions were

compared with those of 100 randomized networks

that preserve node degrees (gray) and the random

expectation (dashed black).

See also Table S3.
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either directly connects NN1.0 proteins or links Lit-BM-13 and

HI-II-14 proteins to NN1.0 proteins (Figure S2B) via at least two

interactions. NN1.0ext links 4,956 human proteins via 30,374

candidate interactions (Table S2).

Next, we performed a computational assessment of the qual-

ity of the interactions in NN1.0 and NN1.0ext. The high-quality

PPI dataset HI-II-14 (Rolland et al., 2014) was analyzed as a con-

trol. We first measured enrichment for shared Gene Ontology

(GO) terms for biological process (BP), molecular function (MF),

and cellular component (CC). We observed significant enrich-

ment for BP and CC terms in all three datasets (Figure 2A). For

MF, significant enrichment was observed for NN1.0 and

NN1.0ext, but not for HI-II-14. Then, we determined how many

binary interactions are part of larger protein complexes as anno-

tated in CORUM (protein complex data set) (Ruepp et al., 2010)

and MS (Woodsmith and Stelzl, 2014), a MS-based interaction

dataset. We observed similar performance of the PPIs from all

three datasets (Figure 2A). Finally, we investigated the overlap

of the interactions in the three datasets with kinase-substrate in-

teractions cataloged in Phosphosite (Hornbeck et al., 2015). We

found that interactions from both NN1.0 and NN1.0ext, but not

from HI-II-14, were enriched, indicating that the ND-focused da-

tasets contain known kinase-substrate interactions. Overall,

these results support the assumption that NN1.0 and NN1.0ext

contain biologically meaningful interactions.

Finally, we assessed the network’s relevance for known

NDCPs, such as SNCA, HTT, and TDP-43. In NN1.0ext, 2,173

proteins are linked to 94 known NDCPs (Tables S2 and S3). 62

NDCPs are connected via 85 direct interactions (Figure S2C),

suggesting that NDs are linked at the molecular level. Using a

cross-validation setting, we assessed the ability of NN1.0ext to

predict novel proteins relevant for ND. Starting from curated

sets of (1) NDCPs, (2) known ND modifiers, and (3) drug targets
4 Cell Reports 32, 108050, August 18, 2020
(Table S3), we used a network propaga-

tion algorithm (Vanunu et al., 2010) to

predict ND-related proteins. For compar-

ison, the same procedure was applied to

100 randomized networks with the same
node degree distribution. Receiver operating characteristic

(ROC) curve analysis revealed that NN1.0ext is suited to predict

NDCPs, ND modifiers, and drug targets (Figures 2B–2D; empir-

ical p < 0.01).

Experimental Validation of Interactions
For experimental validation (Figure 1D), Y2H interactions were

retested in a dual luminescence-based coimmunoprecipitation

(DULIP) assay in mammalian cells (Trepte et al., 2015). We

first assessed the performance of the method with two refer-

ence sets, one with known low-affinity PPIs (dissociation con-

stant Kd > 10�7 M; L-Aff reference set), another with known

high-affinity PPIs (Kd < 10�7 M; H-Aff reference set). In addi-

tion, the reference sets hsPRS-v1 and hsRRS-v1 (Braun

et al., 2009) were investigated. We detected PPIs in the refer-

ence sets L-Aff and H-Aff with success rates of 26.5% and

39.1%, respectively (Figure 3A; Table S4), substantiating pre-

vious observations that coimmunoprecipitation methods have

a preference for high-affinity interactions (Elion, 2006). In com-

parison, PPIs in the reference sets hsPRS-v1 and hsRRS-v1

were identified with success rates of 30.5% and 3.8%,

respectively (Figure 3A; Table S4), confirming that the method

is suited to distinguishing between positive and negative inter-

actions (Trepte et al., 2015). Next, we applied the DULIP

method to independently validate 231 randomly selected

PPIs from the NN1.0ext dataset, of which 169 (73.2%) were

NN1.0 PPIs. We confirmed the NN1.0 interactions with a suc-

cess rate of 23.1% (39 PPIs), whereas the interactions from

the HI-II-14 dataset (62 PPIs) were detected with a success

rate of 25.8% (16 PPIs). Altogether, we confirmed Y2H interac-

tions in NN1.0ext with a success rate of 23.8% (55 PPIs) (Fig-

ure 3A; Table S4), indicating that the data can be verified with

DULIP to a similar extent as the L-Aff interactions.
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B Figure 3. Experimental Validation of Interac-

tions in DULIP Assays and Disease Model

Systems

(A) Validation of binary Y2H PPIs in mammalian cells

using DULIP. The recovery of binary interactions by

DULIP from several PPI sets was investigated. The

statistical significance was assessed using a Fisher’s

exact test with Holm-Bonferroni correction (***p <

0.001, ****p < 0.0001).

(B) RNAi screen as an orthologous approach to

assess the functional significance of TDP-43 in-

teractions. PPIs from the NN1.0ext dataset (Y2H) and

a published affinity-purification-based MS dataset

were assessed with systematic RNAi knockdown

experiments in a D. melanogaster disease model

(Ritson et al., 2010).

(C) Selected eye phenotypes resulting from RNAi

knockdown experiments in transgenic flies express-

ing the mutant protein TDP-43-M337V in photore-

ceptors (Ritson et al., 2010). Both phenotype

enhancing and phenotype suppressing effects can be

observed.

(D) Selected eye phenotypes resulting from over-

expression of human HTT partner proteins in a

D. melanogaster HD model. Expression of the mutant

protein HTT336Q128 leads to a severe eye phenotype

(Stroedicke et al., 2015) that can be modified by HTT-

interacting proteins.

(E) Quantification of retinal degeneration in HD

transgenic flies (Stroedicke et al., 2015). n R 9 flies

per genotype; data are represented as mean ± SEM;

***p % 0.001, two-sided t test with unequal variance.

Red, suppressors; green, enhancers.

See also Table S4.
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To investigate whether the Y2H interactions identified in

this study are of functional relevance, we performed systematic

RNA interference (RNAi) knockdown experiments in a

Drosophila melanogaster model that expresses a TDP-43 pro-

tein with the M337V mutation (Ritson et al., 2010). In humans,

this mutation causes highly penetrant familial ALS (Sreedharan

et al., 2008); in transgenic flies, expression of TDP-43-M337V

leads to a moderate degenerative eye phenotype (Ritson

et al., 2010).

We hypothesized that decreasing the abundance of biologi-

cally relevant TDP-43 interaction partners in TDP-43-M337V-

expressing transgenic flies with RNAi might reveal disease-rele-

vant functional interactions. We obtained RNAi lines (Dietzl et al.,

2007) for 77 TDP-43 interaction partners (Table S4) identified in

Y2H screens and crossed these lines with transgenic TDP-43-

M337V flies. Then, the impact of gene knockdowns on the

rough-eye phenotype was systematically analyzed. For most

genes, we investigated the effect of two independent RNAi lines

(Table S4). Finally, fly strains were classified according to the

impact of the short hairpin RNAs (shRNAs) (no effect, weak

effect, or strong effect). Of 77 genes tested in flies, 47 (61%)

influenced the phenotype (Figures 3B and 3C). Knockdown of

12 genes (15.6%) had a strong effect on the TDP-43-M337V-

mediated eye phenotype. These results are in good agreement

with previous studies, indicating that modifier genes are

identified with a success rate of�45%when interaction partners

of a specific target protein are assessed with focused RNAi

experiments in transgenic flies (Kaltenbach et al., 2007). In com-

parison, in a large-scale RNAi knockdown screen in Drosophila,

genetic modifiers were detected with a hit rate of �7.5% (Lam-

itina et al., 2006; Sigoillot and King, 2011). Strikingly, our studies

revealed that knockdown of the nuclear RNA export protein

NXF1 strongly suppresses the TDP-43-M337V-mediated eye

phenotype (Figure 3C), supporting recent observations that

inhibiting TDP-43 translocation from the nucleus into the cyto-

plasm is a protective strategy (Archbold et al., 2018).

Similar results were obtained when the knockdown of TDP-43

interaction partners previously identified by affinity purification

and MS (Freibaum et al., 2010) was analyzed in transgenic flies.

We selected 78 TDP-43-interacting proteins from published data

for gene knockdown experiments in TDP-43-M337V flies, of

which 19 (24.4%) were also identified as TDP-43 partners in

this Y2H study (Figure S3A). 55 of the genes (70.5%) influenced

the rough-eye phenotype (Figures 3B and 3C). In total, the

impact of 136 genes (Table S4) was systematically tested in

the transgenic fly model, of which 85 genes (62.5%) influenced

the TDP-43-M337V-induced rough-eye phenotype (Figures 3B,

3C, and S3B; Table S4). Knockdown of 59 genes (69.4%)

enhanced the phenotype; knockdown of 26 genes (30.6%) sup-

pressed it.

Next, the effect of interaction partners on the subcellular

localization of a YFP (yellow fluorescent protein)-tagged TDP-

43-M337V fusion protein was assessed in a Caenorhabditis

elegansmodel.We randomly selected 15TDP-43-interacting pro-

teins from the Y2H interaction dataset, of which 17 orthologous

genes (Table S4) were ultimately assessed in RNAi experiments

(Nollen et al., 2004). We defined three phenotypes to study the

gene knockdown effects on TDP-43-M337V-YFP localization:
6 Cell Reports 32, 108050, August 18, 2020
(1) exclusively nuclear localization (no effect), (2) nuclear localiza-

tion plus the appearance of cytoplasmic TDP-43 protein (weak

effect), and (3) nuclear localization plus cytoplasmic foci and

diffuse cytoplasmic staining (strong effect). We found that knock-

down of 7 (41.2%) of 17 tested genes alters the localization of

TDP-43-M337V-YFP in C. elegans (Figure S3C; Table S4).

Finally, we assessed whether coexpression of HTT-interacting

proteins canmodulate a severe degenerative eye phenotype in a

transgenic D. melanogaster HD model (Kaltenbach et al., 2007;

Stroedicke et al., 2015). We generated 35 fly strains that copro-

duce HTT-interacting proteins and an N-terminal HTT fragment

with a pathogenic polyQ tract of 128 glutamines (HTT336Q128)

and investigated the degeneration of photoreceptors in flies

(Stroedicke et al., 2015). We found that 17 (48.6%) of 35 investi-

gated human proteins significantly influence the HTT336Q128-

induced eye phenotype (Figures 3D and 3E; Table S4), of which

10 (58.8%) suppressed and 7 (41.2%) enhanced the phenotype.

Collectively, these experiments indicate that genetic modifiers

are enriched in the PPI dataset.

Prediction of ND-Focused Protein Subnetworks and
Cross-Validation with Reported Datasets
Previous work has shown the utility of network-based ap-

proaches in predicting potentially disease-relevant subnet-

works and protein modules (Barabási et al., 2011). To define

ND-specific protein subnetworks in NN1.0ext, we applied a

computational method for associating protein complexes with

ND phenotypes (Mazza et al., 2016). We first scored proteins

in NN1.0ext based on their proximity to a set of prior proteins,

which we predefined based on their causative role in inherited

NDs. We focused on AD, PD, and ALS, for which many NDCPs

have been reported (Lill, 2016; Rosenberg et al., 2016; Taylor

et al., 2016). Through network propagation (Cowen et al.,

2017; Vanunu et al., 2010), ranked lists of network proteins

were created (Figure S4A; Table S5). For each disease, the re-

sulting propagation scores were compared with scores from

random controls, which were obtained with random protein

sets of the same size as the set of disease-causing proteins.

Proteins with significantly high scores (p < 0.01) were used to

create the disease subnetworks ADSN, PDSN, and ALSSN, which

contain 738, 285, and 283 human proteins (Table S5), respec-

tively. The subnetwork ALSSN is exemplarily shown in Fig-

ure S4B. It contains 13 known ALS-associated NDCPs that

were initially used as priors for network propagation (Fig-

ure S4C), as well as 59 further known disease-associated pro-

teins referenced in OMIM (OMIM disease-associated proteins

[ODAPs]) (Amberger et al., 2015). Similarly, the subnetworks

ADSN and PDSN contain NDCPs (Figure S4C), along with

numerous ODAPs (Figure S4D).

Next, we performed cross-validation using two datasets with

reported genetic modifiers (Chen and Burgoyne, 2012; Na

et al., 2013) that influence ND-associated phenotypes in model

systems such as Drosophila, C. elegans, and yeast. To identify

modifiers that potentially influence pathogenesis in different

NDs, we compiled the predicted proteins in ADSN, PDSN, and

ALSSN and cross-compared the generated protein list with

the reported datasets (Na et al., 2013; Chen and Burgoyne,

2012). We found a significant overlap between the datasets
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Figure 4. Computationally Predicted ND

Subnetworks and Modules

(A) Cross-comparison of computationally pre-

dicted proteins in ADSN, PDSN, and ALSSN with

datasets of potential genetic modifiers reported in

Na et al. (2013) and Chen and Burgoyne (2012).

The Venn diagram indicates the number of genetic

modifiers recovered.

(B) Statistical analysis of data cross-comparisons.

The calculated hypergeometric p values for the

recovered genetic modifiers in (A) are shown.

(C) Ingenuity pathway analysis (IPA) with 21 po-

tential genetic modifiers identified by data cross-

comparison shown in (A).

(D–F) Disease protein modules containing inter-

connected high-scoring protein clusters for the

diseases AD, PD, and ALS are shown. Known

NDCPs, marked in purple, were used as a starting

point (priors) for network propagation. Other

known ODAPs are marked in gray. Other colors

indicate highly connected protein clusters.

(G) Representation of priors (known NDCPs) in the

predicted modules.

(H) Representation of other known ODAPs (based

on available OMIM data) in the predicted modules.

See also Table S5 and Figure S4A.
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(Figures 4A and 4B), indicating that potential disease modifiers

are present in the computationally predicted subnetworks. 21

proteins were identified in all three datasets (Figure 4A), suggest-

ing that at least a fraction of the predicted ND-associated

proteins are common disease modifiers. Many proteins initially

found as genetic modifiers in HD model systems are also linked

to AD pathogenesis (Table S5). For example, the ribosomal pro-

teins L18 and L19 were found in all three predicted subnetworks

(Table S5), hinting at an important role of ribosome function an-

d/or protein translation in different NDs. In addition, Hsp40

(DNAJB4) was identified in all three subnetworks (ADSN, PDSN,

and ALSSN) (Table S5), supporting previous studies that chaper-

ones safeguard proteostasis in different NDs (Brehme et al.,

2014). A potential disease-modifying role of protein translation

in NDs was confirmed by ingenuity pathway analysis (Thomas

and Bonchev, 2010), indicating that proteins involved in eukary-

otic Initiation Factor 2 (eIF2) signaling are enriched among the

potential ND-associated genetic modifiers (Figure 4C). Strik-

ingly, enhanced concentrations of stress kinases such as PKR

(protein kinase R) that phosphorylate eIF2 and thereby slow

translation have been observed in brains of ND patients (Bando

et al., 2005; Hugon et al., 2017).
C

Computational Prediction of Small
Experimentally Accessible
Interconnected ND-Associated
Protein Modules
Using an algorithm, smaller protein clus-

ters were derived from the large subnet-

works that are more easily accessible

for experimental validation (Figure S4A).

The generated modules ADMO, PDMO,

and ALSMO contain 30, 28, and 27 pro-
teins, respectively (Table S5). For each disease, the 4–5

highest-scoring interconnected protein clusters are displayed

(Figures 4D–4F). As expected, each module contains NDCPs

that were initially used as a starting point for the module identifi-

cation process (Figure 4G) as well as ODAPs (Figure 4H), which

were not used as priors (Figure 4H; hypergeometric p < 0.0001).

Certain known NDCPs were present in multiple ND-associ-

ated protein modules. For example, ATXN1, which is mutated

in SCA1 (Donato et al., 2012), was found both in ADMO and

ALSMO (Figures 4D and 4F), supporting previous observations

that ATXN1 is also associated with these diseases (Conforti

et al., 2012; Zhang et al., 2010). Similarly, we found that SNCA,

which in its mutated form causes familial PD (Xu et al., 2015),

is present in ADMO, PDMO, and ALSMO (Figures 4D–4F). Proteins

not previously associated with NDs, such as MKL1, a transcrip-

tional coactivator for the serum response factor (Scharenberg

et al., 2010), were linked to AD, PD, and ALS (Figures 4D–4F).

Loss of this protein was previously shown to decrease neurite

length in hippocampal neurons (Knöll et al., 2006). Similarly, we

observed that knockdown of Drosophila Mkl1 dramatically

enhances the TDP-43-M337V-mediated rough-eye phenotype

in transgenic flies (Table S4), supporting its protective role in
ell Reports 32, 108050, August 18, 2020 7
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neurons (Kaneda et al., 2018). Many connections to known

NDCPswere also observed for the guanine nucleotide exchange

protein ARF-GEP100 (IQSEC1) (Figures 4E and 4F), which regu-

lates vesicle formation and phagocytosis in mammalian cells

(Someya et al., 2010).

ND-Associated Subnetworks Contain Proteins that
Aggregate in Patient Brains
Supersaturated proteins are metastable and have an elevated

aggregation propensity in mammalian cells (Ciryam et al.,

2013). Human proteins were previously classified according to

their supersaturation scores sf and su that measure the risk of

folded (sf) and unfolded (su) proteins to form insoluble aggre-

gates. Using these scores, aggregation-prone proteins were

predicted to be overrepresented among ND-associated proteins

(Ciryam et al., 2015), suggesting that such proteins might also be

enriched in disease subnetworks (Figure S4B; Table S5). We first

calculated the median su and sf supersaturation scores for

the proteins in ADSN, PDSN, and ALSSN (Table S5) and then

compared these values to the median score of the proteome.

We found that the sf scores for the network proteins were

significantly higher than those for the control proteins (Figure 5A),

indicating that aggregation-prone proteins are enriched in the

predicted subnetworks. The analysis of median su scores re-

vealed that unfolded proteins with a high aggregation propensity

are less abundant in disease subnetworks, except for ADSN (Fig-

ure 5B), which contains many proteins with high su scores.

Next, we assessed whether proteins that form abnormal ag-

gregates in brains of patients with NDs tend to appear in the

ND-associated subnetworks. We evaluated published proteo-

mic studies and assessed whether proteins found in amyloid

plaques (Liao et al., 2004), neurofibrillary tangles (NFTs) (Wang

et al., 2005) or Lewy bodies (Xia et al., 2008) are present in the

computationally predicted disease networks. We found that

117 (15.4%; hypergeometric p < 0.0001) of the 762 aggregated

proteins in AD and PD patient brains are present in the predicted

disease subnetworks (Figures 5C–5E), supporting our hypothe-

sis that aggregation-prone proteins are enriched among ND-

associated proteins.

Predicted ND Protein Modules Facilitate Identification
of Aggregated Proteins in AD Patient Brains
To investigate whether proteins in ADMO (Figure 4D) are abnor-

mally aggregated in disease, we analyzed postmortem brains

of AD patients and age-matched controls using a filter retarda-
Figure 5. Computationally Predicted Proteins Are Abnormally Aggrega

(A and B) Comparison of supersaturation scores sf (A) and su (B) of proteins in th

extend from the lower to the upper quartiles, with the internal lines referring to the

U test with Bonferroni-corrected p values (*p < 0.05, **p < 0.01, ***p < 0.001, ****p <

median for the human proteome.

(C–E) Abundance of proteins found in aggregates of ND patient brains in ND-spec

proteins associated with NFTs, and (E) proteins identified in Lewy bodies. The s

ferroni corrections (*p < 0.05, ***p < 0.001, ****p < 0.0001). PL, plaques; LB, Lew

(F–O) Detection of insoluble protein aggregates in postmortem brain homogenate

red lettering) using a native FRA. Triplicates per sample were filtered. Quantifica

Aida image analysis software. The statistical significance was assessed with an

mean ± SEM.

See also Tables S5 and S6 and Figures S4B–S4D and S5.
tion assay (FRA) (Wanker et al., 1999). We initially selected 15

proteins from ADMO for this analysis. Because of a lack of

specific antibodies, however (Table S6), we finally assessed

the aggregation state of 7 proteins in AD patient and control

brains (Figures 5H–5N and S5A). For benchmarking, we first

examined tau and TDP-43, which are aberrantly aggregated in

AD brains (Kr€uger and Mandelkow, 2016; Wilson et al., 2011).

Analysis of tissue homogenates (10 each, temporal cortex)

with FRAs revealed significantly higher levels of tau and TDP-

43 aggregates in AD samples than in controls (Figures 5F and

5G). Next, we analyzed the aggregation state of the predicted

proteins ATXN1, filamin A (FLNA), ubiquilin-1 (UBQLN1), Hsp70

(HSPA5), ERG2, SNCA, and MKL1 in brain homogenates using

the FRA. Except for SNCA (Kelley et al., 2018; Xu et al., 2002),

all selected proteins had previously not been described to form

abnormal aggregates in AD patient brains, whereas colocaliza-

tion of UBQLN1 and FLNA with tau aggregates was reported

(Feuillette et al., 2010;Mizukami et al., 2014). Strikingly, we found

that all proteins were significantly more strongly aggregated in

AD than in control brains (Figures 5H–5N), substantiating our

hypothesis that aggregation-prone proteins are associated

with NDs. The specificity of the applied antibodies was

confirmed by SDS-PAGE and immunoblotting (Figure S5A). No

aggregation was detected with the control protein actin (Fig-

ure 5O). Finally, we confirmed that high-molecular-weight

MKL1, ATXN1, UBQLN1, and FLNA aggregates can also be de-

tected in AD patient brains by native PAGE and immunoblotting

(Figures S5B–S5E).

ARF-GEP100 Controls Misfolding and Aggregation of
Multiple NDCPs
Many well-known NDCPs such as SNCA and TDP-43 have a

high propensity to self-assemble into insoluble protein aggre-

gates in NDs (Sami et al., 2017). We hypothesized that NDCP-

interacting proteins might control their aggregation propensity

in disease-relevant model systems. To address this question,

we focused on the protein ARF-GEP100 (IQSEC1) that interacts

with multiple aggregation-prone proteins such as TDP-43 and

SOD1 (Figures 4E and 4F; Table S5) in yeast and LuTHy assays

(Figure S6A). ARF-GEP100 is expressed in brain and was previ-

ously shown to regulate phagocytosis (Someya et al., 2010),

suggesting that it might influence the degradation of different

misfolded NDCPs in mammalian cells.

We first assessed whether RNAi-mediated knockdown of

the gene M02B7.5 (IQSEC1) in a C. elegans model influences
ted in Postmortem Brains of AD Patients

e proteome and proteins in the predicted ND-specific subnetworks. Boxplots

median values. The statistical significance was assessed by the Mann-Whitney

0.0001). FC, fold change; the values indicate supersaturation scores above the

ific subnetworks and the whole proteome. (C) Proteins found in AD plaques, (D)

tatistical significance was assessed with a Fisher’s exact test with Holm-Bon-

y bodies.

s of 10 AD patients (1–10, black lettering) and 10 age-matched controls (11–20,

tion of protein aggregates retained on filter membranes was performed using

unpaired, two-tailed t test (***p < 0.001, **p < 0.01). All data are expressed as

Cell Reports 32, 108050, August 18, 2020 9
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Figure 6. ARF-GEP100 Influences Misfolding of Different Aggregation-Prone Polypeptides in Model Systems

(A) SYN-YFP aggregation phenotype resulting from RNAi-mediated knockdown of target genes in a transgenic C. elegans model. Representative images are

shown.

(B) Quantification of aggregates (green dots) shown in (A). n = 7–10 nematodes per knockdown experiment were analyzed. ***p < 0.001 by two-sided t test.

(C)Q35-YFPaggregationphenotype resulting fromRNAi-mediatedknockdownof target genes in a transgenicC.elegansmodel. Representative imagesareshown.

(D) Quantification of aggregates (green dots) shown in (C). n = 20 nematodes per knockdown experiment were analyzed. ***p < 0.001 by two-sided t test.

(E) Luciferase-R188Q-R216Q-YFP aggregation phenotype resulting from RNAi-mediated knockdown of target genes in a transgenic C. elegans model.

Representative images are shown.

(F) Quantification of aggregates (green dots) shown in (E). n = 20 worms per knockdown experiment were analyzed. ***p < 0.001 by two-sided t test.

(G) Effect of V5-tagged ARF-GEP100 coproduction on CFP-HTTex1Q49 aggregation in HeLa cells. Representative images of mutant HTT aggregates retained on

filter membranes (black dots) are shown.

(H) Quantification of results shown in (G). *p < 0.05 by two-sided t test.

Data in (B), (D), (F), and (H) are expressed as mean ± SEM.

See also Table S4 and Figures S3C–S3E and S6B–S6D.
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a-synuclein-YFP (SYN-YFP) aggregation inmuscle cells. In addi-

tion, the knockdown of the hsp-1 gene, encoding the molecular

chaperone Hsc70 (Nollen et al., 2004), was assessed as a
10 Cell Reports 32, 108050, August 18, 2020
positive control. We observed a strong increase of SYN-YFP ag-

gregation upon knockdown of both genes (Figures 6A and 6B),

suggesting that ARF-GEP100, similar to Hsc70, controls
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misfolding and aggregation of SNCA in nematodes. The RNAi-

mediated knockdown of IQSEC1 transcripts in SYN-YFP-ex-

pressing worms was confirmed in two independent qRT-PCR

experiments (Figures S3D and S3E).

Next, we assessed whether knockdown ofM02B7.5 also influ-

ences polyQ-mediated protein aggregation (Scherzinger et al.,

1999) in worms. Expression of Q35-YFP in C. elegans leads to

the formation of proteotoxic aggregates in muscle cells, which

increase in their abundance upon RNAi-mediated knockdown

of hsp-1 (Morley et al., 2002; Nollen et al., 2004). We observed

that Q35-YFP aggregation was significantly increased in muscle

cells when M02B7.5 was knocked down (Figures 6C and 6D),

indicating that ARF-GEP100, similar to molecular chaperones

(Mogk and Bukau, 2017), influences aggregation of different

disease proteins in cells.

We also assessed whether knockdown of ARF-GEP100 influ-

ences aggregation of the folding sensor luciferase-R188Q-

R216Q-YFP (Rampelt et al., 2012) in worms. We found that this

protein is soluble in muscle cells under control conditions. How-

ever, it formed insoluble protein aggregates when the genes

M02B7.5 and hsp-1 were knocked down (Figures 6E and 6F).

Finally, we investigated whether overproduction of ARF-

GEP100 influences polyQ-mediated protein aggregation in

mammalian cells. We coexpressed ARF-GEP100 with a CFP-

tagged HTTex1Q49 fusion protein in HeLa cells and quantified

the formation of polyQ-containing protein aggregates after

24 h by FRA (Wanker et al., 1999). In a control experiment, the in-

fluence ofmCherryLuc onCFP-HTTex1Q49 aggregation was as-

sessed. We found ARF-GEP100 overproduction significantly

decreased the abundance of CFP-HTTex1Q49 aggregates in

mammalian cells (Figures 6G and 6H). The expression of tagged

recombinant proteins was confirmed by SDS-PAGE and immu-

noblotting (Figures S6B–S6D).

DISCUSSION

Screening for PPIs and integrating publicly available interaction

data, we generated an interactome network (termed NN1.0ext)

focused on proteins associated with various NDs, such as AD,

PD, and ALS. It directly connects 4,956 human proteins via

30,374 candidate interactions, providing a framework for

computational network-based interrogations (Barabási et al.,

2011) and more focused, hypothesis-driven experiments (Aru-

mughan et al., 2016).

In NN1.0ext, 1,348 partner proteins are linked to 94 well-

known NDCPs, such as TDP-43, SNCA, LRRK2, and HTT, indi-

cating that it contains relevant information for multiple NDs.

Focused interaction maps centered on specific proteins can

be extracted from the PPI data formore detailed functional anno-

tation of disease proteins. NN1.0ext also highlights connections

among NDCPs (Figure S2C), indicating that multiple relation-

ships exist among ND-associated molecules. For example, we

confirmed an interaction between the HD-causing protein HTT

and optineurin (OPTN), which is mutated in ALS (Maruyama

et al., 2010). Optineurin controls autophagy in mammalian cells

(Ying and Yue, 2016), and mutations in this protein are linked

to the accumulation of abnormal protein aggregates in brains

of ALS patients (Maruyama et al., 2010). Our results implicate
optineurin in HD and other NDs (Figure S2C), supporting previ-

ous evidence that it is a multifunctional adaptor with a role in

different NDs (Markovinovic et al., 2017).

A disease phenotype is rarely the consequence of an abnor-

mality in a single gene or protein but rather reflects a multitude

of pathobiological processes connected in a complex network

(Barabási et al., 2011). Starting from known NDCPs and the

NN1.0ext PPI dataset, we computationally predicted subnet-

works and interconnected protein modules for AD, PD and

ALS (Figures 4D–4F), which contain many proteins that had not

previously been linked to a specific disease. We propose that

disease-causing missense mutations in NDCPs perturb a

considerable number of disease-associated interactions, lead-

ing to neuronal dysfunction and neurotoxicity. Previous investi-

gations indicate that missense mutations often change PPIs,

suggesting that specific interaction perturbations underlie

distinct ND phenotypes (Sahni et al., 2015).

We found that the predicted disease protein modules, e.g.,

PDMO and ALSMO, contain distinct interactions (Figures 4E and

4F), indicating that specific molecular deficits and perturbations

are the origin of a particular disease phenotype. However, we

also found overlapping PPIs present in more than one of the

modules, suggesting therapeutic strategies might be relevant

for more than one ND (Ehrnhoefer et al., 2011). This is supported

by our cross-comparisons, indicating that genetic modifiers

(Chen and Burgoyne, 2012; Na et al., 2013) are linked to different

NDCPs in our computationally predicted disease subnetworks

(Figures 4A–4C). Our analysis also revealed that many other

known human disease proteins (ODAPs) are linked to NDCPs

(Figures 4G and 4H), suggesting that knowledge from other dis-

ease areas might stimulate ND-specific research. For example,

the transcriptional coactivator MKL1 involved in cancer develop-

ment is linked to many known NDCPs in the predicted modules

(Figures 4D–4F). In the brain, however, MKL1 function is critical

for dendritic spine maturation (Kaneda et al., 2018). A loss of

this function in AD brains, e.g., through abnormal aggregation

(Figure 5H), may contribute to disease development and

progression.

A large body of previous evidence points to abnormal aggre-

gation of NDCPs such as HTT, SNCA, tau, and TDP-43 as poten-

tial drivers of pathogenesis in NDs (Sami et al., 2017). Theoretical

investigations indicate that various aggregation-prone proteins

may be associated with NDs (Ciryam et al., 2015), suggesting

that protein aggregation is a more widespread phenomenon

than commonly appreciated. However, systematic experimental

studies with biosamples from ND patients to support these con-

siderations have been lacking. Here, we present experimental

evidence that various computationally predicted AD-associated

proteins, such as UBQLN1, FLNA, ATXN1, HSPA5, ERG2,

SNCA, andMKL1, are aberrantly aggregated in AD patient brains

(Figures 5H–5N), confirming that current assumptions underesti-

mate the relevance of the phenomenon. We hypothesize that the

initial formation of primary amyloid such as b-amyloid or tau may

trigger an aggregation cascade that over time involves multiple

proteins (Gidalevitz et al., 2006) and leads to synergistic dysfunc-

tion and toxicity in patient brains. However, different aggrega-

tion-prone proteins may precipitate independently, leading to

the accumulation of spatially distinct protein deposits in
Cell Reports 32, 108050, August 18, 2020 11
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mammalian cells. The coexistence of TDP-43, tau, and SNCA

aggregates in brains of AD patients has been described (Higashi

et al., 2007), whereas abnormal aggregation of ATXN1 in AD

brains has not been reported. Strikingly, loss of this protein

was shown to potentiate AD pathogenesis in mouse brains

(Suh et al., 2019), supporting our hypothesis that ATXN1 aggre-

gationmay contribute to ADpathogenesis. Mixed protein pathol-

ogies have been shown to be associated with more severe

symptoms in AD patients (James et al., 2016) and PD patients

(Irwin et al., 2013). A better understanding of the relationships

between aggregate pathologies and their associated clinical

phenotypes will be critical to clarifying the role of amyloidogenic

protein aggregates in disease.

Our strategy to create a PPI map for proteins involved in NDs

and to define potentially disease-relevant subnetworks and

protein modules will extend our current understanding of ND

mechanisms, like the identification of ARF-GEP100 as a generic

modulator of protein aggregation inmammalian cells and various

disease models (Figure 6). However, it is important that the pre-

sented PPI networkmap of NDs be regarded as neither complete

nor final. Many highly relevant disease proteins, like glucocere-

brosidase (GBA) and various Rab proteins (e.g., RAB7-L1),

have not been systematically screened, because cDNAs were

not available or they acted as autoactivators in the Y2H assays.

Further mapping, validation, and data integration efforts will

create an even more comprehensive PPI dataset for proteins

associated with NDs. To aid these efforts, NN1.0ext is a valuable

resource that contains unique information for detecting disease

modifiers, novel drug targets, and biomarkers for multiple NDs.
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Knöll, B., Kretz, O., Fiedler, C., Alberti, S., Sch€utz, G., Frotscher, M., and Nord-

heim, A. (2006). Serum response factor controls neuronal circuit assembly in

the hippocampus. Nat. Neurosci. 9, 195–204.

Kr€uger, L., and Mandelkow, E.M. (2016). Tau neurotoxicity and rescue in ani-

mal models of human Tauopathies. Curr. Opin. Neurobiol. 36, 52–58.

Lamitina, T., Huang, C.G., and Strange, K. (2006). Genome-wide RNAi

screening identifies protein damage as a regulator of osmoprotective gene

expression. Proc. Natl. Acad. Sci. USA 103, 12173–12178.

Liao, L., Cheng, D., Wang, J., Duong, D.M., Losik, T.G., Gearing, M., Rees,

H.D., Lah, J.J., Levey, A.I., and Peng, J. (2004). Proteomic characterization

of postmortem amyloid plaques isolated by laser capture microdissection.

J. Biol. Chem. 279, 37061–37068.

Lill, C.M. (2016). Genetics of Parkinson’s disease. Mol. Cell. Probes 30,

386–396.

Lim, J., Hao, T., Shaw, C., Patel, A.J., Szabó, G., Rual, J.F., Fisk, C.J., Li, N.,

Smolyar, A., Hill, D.E., et al. (2006). A protein-protein interaction network for

human inherited ataxias and disorders of Purkinje cell degeneration. Cell

125, 801–814.

Limviphuvadh, V., Tanaka, S., Goto, S., Ueda, K., and Kanehisa, M. (2007). The

commonality of protein interaction networks determined in neurodegenerative

disorders (NDDs). Bioinformatics 23, 2129–2138.

Ling, S.C., Polymenidou, M., and Cleveland, D.W. (2013). Converging mecha-

nisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79,

416–438.

Lu, T., Pan, Y., Kao, S.Y., Li, C., Kohane, I., Chan, J., and Yankner, B.A. (2004).

Gene regulation and DNA damage in the ageing human brain. Nature 429,

883–891.

Markovinovic, A., Cimbro, R., Ljutic, T., Kriz, J., Rogelj, B., and Munitic, I.

(2017). Optineurin in amyotrophic lateral sclerosis: Multifunctional adaptor

protein at the crossroads of different neuroprotective mechanisms. Prog. Neu-

robiol. 154, 1–20.

Maruyama, H., Morino, H., Ito, H., Izumi, Y., Kato, H., Watanabe, Y., Kinoshita,

Y., Kamada, M., Nodera, H., Suzuki, H., et al. (2010). Mutations of optineurin in

amyotrophic lateral sclerosis. Nature 465, 223–226.
14 Cell Reports 32, 108050, August 18, 2020
Mazza, A., Klockmeier, K., Wanker, E., and Sharan, R. (2016). An integer pro-

gramming framework for inferring disease complexes from network data. Bio-

informatics 32, i271–i277.

Mizukami, K., Abrahamson, E.E., Mi, Z., Ishikawa, M., Watanabe, K., Kinosh-

ita, S., Asada, T., and Ikonomovic, M.D. (2014). Immunohistochemical analysis

of ubiquilin-1 in the human hippocampus: association with neurofibrillary

tangle pathology. Neuropathology 34, 11–18.

Mogk, A., and Bukau, B. (2017). Role of sHsps in organizing cytosolic protein

aggregation and disaggregation. Cell Stress Chaperones 22, 493–502.

Morley, J.F., Brignull, H.R., Weyers, J.J., and Morimoto, R.I. (2002). The

threshold for polyglutamine-expansion protein aggregation and cellular

toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc.

Natl. Acad. Sci. USA 99, 10417–10422.

Na, D., Rouf, M., O’Kane, C.J., Rubinsztein, D.C., and Gsponer, J. (2013). Neu-

roGeM, a knowledgebase of genetic modifiers in neurodegenerative diseases.

BMC Med. Genomics 6, 52.

Nollen, E.A., Garcia, S.M., van Haaften, G., Kim, S., Chavez, A., Morimoto, R.I.,

and Plasterk, R.H. (2004). Genome-wide RNA interference screen identifies

previously undescribed regulators of polyglutamine aggregation. Proc. Natl.

Acad. Sci. USA 101, 6403–6408.

Orchard, S., Ammari, M., Aranda, B., Breuza, L., Briganti, L., Broackes-Carter,

F., Campbell, N.H., Chavali, G., Chen, C., del-Toro, N., et al. (2014). The MIn-

tAct project–IntAct as a common curation platform for 11molecular interaction

databases. Nucleic Acids Res. 2014 Jan (42), D358–D363.

Pechmann, S., Levy, E.D., Tartaglia, G.G., and Vendruscolo, M. (2009). Phys-

icochemical principles that regulate the competition between functional and

dysfunctional association of proteins. Proc. Natl. Acad. Sci. USA 106,

10159–10164.

Pentony, M.M., and Jones, D.T. (2010). Modularity of intrinsic disorder in the

human proteome. Proteins 78, 212–221.

Perez-Iratxeta, C., Wjst, M., Bork, P., and Andrade,M.A. (2005). G2D: a tool for

mining genes associated with disease. BMC Genet. 6, 45.

Rampelt, H., Kirstein-Miles, J., Nillegoda, N.B., Chi, K., Scholz, S.R., Mori-

moto, R.I., and Bukau, B. (2012). Metazoan Hsp70 machines use Hsp110 to

power protein disaggregation. EMBO J. 31, 4221–4235.

Raychaudhuri, S., Dey, S., Bhattacharyya, N.P., and Mukhopadhyay, D.

(2009). The role of intrinsically unstructured proteins in neurodegenerative dis-

eases. PLoS ONE 4, e5566.

Ritson, G.P., Custer, S.K., Freibaum, B.D., Guinto, J.B., Geffel, D., Moore, J.,

Tang, W., Winton, M.J., Neumann, M., Trojanowski, J.Q., et al. (2010). TDP-43

mediates degeneration in a novel Drosophila model of disease caused by mu-

tations in VCP/p97. J. Neurosci. 30, 7729–7739.

Rolland, T., Tasxan, M., Charloteaux, B., Pevzner, S.J., Zhong, Q., Sahni, N., Yi,

S., Lemmens, I., Fontanillo, C., Mosca, R., et al. (2014). A proteome-scale map

of the human interactome network. Cell 159, 1212–1226.

Rosenberg, R.N., Lambracht-Washington, D., Yu, G., and Xia, W. (2016). Ge-

nomics of Alzheimer Disease: A Review. JAMA Neurol. 73, 867–874.

Ross, C.A., Aylward, E.H.,Wild, E.J., Langbehn, D.R., Long, J.D.,Warner, J.H.,

Scahill, R.I., Leavitt, B.R., Stout, J.C., Paulsen, J.S., et al. (2014). Huntington

disease: natural history, biomarkers and prospects for therapeutics. Nat.

Rev. Neurol. 10, 204–216.

Rubinsztein, D.C. (2006). The roles of intracellular protein-degradation path-

ways in neurodegeneration. Nature 443, 780–786.

Ruepp, A., Waegele, B., Lechner, M., Brauner, B., Dunger-Kaltenbach, I.,

Fobo, G., Frishman, G., Montrone, C., and Mewes, H.W. (2010). CORUM:

the comprehensive resource of mammalian protein complexes—2009. Nu-

cleic Acids Res. 38, D497–D501.

Sahni, N., Yi, S., Taipale, M., Fuxman Bass, J.I., Coulombe-Huntington, J.,

Yang, F., Peng, J., Weile, J., Karras, G.I., Wang, Y., et al. (2015). Widespread

macromolecular interaction perturbations in human genetic disorders. Cell

161, 647–660.

http://refhub.elsevier.com/S2211-1247(20)31035-4/sref40
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref40
http://refhub.elsevier.com/S2211-1247(20)31035-4/opt5VGvz6GDZL
http://refhub.elsevier.com/S2211-1247(20)31035-4/opt5VGvz6GDZL
http://refhub.elsevier.com/S2211-1247(20)31035-4/opt5VGvz6GDZL
http://refhub.elsevier.com/S2211-1247(20)31035-4/opt5VGvz6GDZL
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref41
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref41
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref41
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref41
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref42
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref42
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref42
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref42
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref43
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref43
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref43
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref44
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref44
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref44
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref45
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref45
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref45
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref45
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref46
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref46
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref46
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref46
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref47
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref47
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref47
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref47
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref48
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref48
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref48
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref49
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref49
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref49
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref50
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref50
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref50
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref50
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref51
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref51
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref52
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref52
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref52
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref52
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref53
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref53
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref53
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref54
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref54
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref54
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref55
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref55
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref55
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref56
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref56
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref56
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref56
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref57
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref57
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref57
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref58
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref58
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref58
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref59
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref59
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref59
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref59
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref60
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref60
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref61
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref61
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref61
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref61
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref62
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref62
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref62
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref63
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref63
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref63
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref63
http://refhub.elsevier.com/S2211-1247(20)31035-4/optFZ2owHBHvj
http://refhub.elsevier.com/S2211-1247(20)31035-4/optFZ2owHBHvj
http://refhub.elsevier.com/S2211-1247(20)31035-4/optFZ2owHBHvj
http://refhub.elsevier.com/S2211-1247(20)31035-4/optFZ2owHBHvj
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref64
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref64
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref64
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref64
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref65
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref65
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref66
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref66
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref67
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref67
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref67
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref68
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref68
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref68
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref69
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref69
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref69
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref69
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref70
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref70
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref70
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref70
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref71
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref71
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref72
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref72
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref72
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref72
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref73
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref73
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref74
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref74
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref74
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref74
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref75
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref75
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref75
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref75


Resource
ll

OPEN ACCESS
Sami, N., Rahman, S., Kumar, V., Zaidi, S., Islam, A., Ali, S., Ahmad, F., and

Hassan, M.I. (2017). Protein aggregation, misfolding and consequential human

neurodegenerative diseases. Int. J. Neurosci. 127, 1047–1057.

Scharenberg, M.A., Chiquet-Ehrismann, R., and Asparuhova, M.B. (2010).

Megakaryoblastic leukemia protein-1 (MKL1): Increasing evidence for an

involvement in cancer progression and metastasis. Int. J. Biochem. Cell Biol.

42, 1911–1914.

Scherzinger, E., Sittler, A., Schweiger, K., Heiser, V., Lurz, R., Hasenbank, R.,

Bates, G.P., Lehrach, H., and Wanker, E.E. (1999). Self-assembly of polyglut-

amine-containing huntingtin fragments into amyloid-like fibrils: implications for

Huntington’s disease pathology. Proc. Natl. Acad. Sci. USA 96, 4604–4609.

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin,

N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software environment

for integratedmodels of biomolecular interaction networks. GenomeResearch

13, 2498–2504.

Shimizu, K., and Toh, H. (2009). Interaction between intrinsically disordered

proteins frequently occurs in a human protein-protein interaction network.

J. Mol. Biol. 392, 1253–1265.

Sigoillot, F.D., and King, R.W. (2011). Vigilance and validation: Keys to success

in RNAi screening. ACS Chem. Biol. 6, 47–60.

Someya, A., Moss, J., and Nagaoka, I. (2010). The guanine nucleotide ex-

change protein for ADP-ribosylation factor 6, ARF-GEP100/BRAG2, regulates

phagocytosis of monocytic phagocytes in an ARF6-dependent process.

J. Biol. Chem. 285, 30698–30707.

Soto, C. (2012). Transmissible proteins: expanding the prion heresy. Cell 149,

968–977.

Sreedharan, J., Blair, I.P., Tripathi, V.B., Hu, X., Vance, C., Rogelj, B., Ackerley,

S., Durnall, J.C., Williams, K.L., Buratti, E., et al. (2008). TDP-43 mutations in

familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668–1672.

Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F.H., Goehler, H.,

Stroedicke, M., Zenkner, M., Schoenherr, A., Koeppen, S., et al. (2005). A hu-

man protein-protein interaction network: a resource for annotating the prote-

ome. Cell 122, 957–968.

Stroedicke, M., Bounab, Y., Strempel, N., Klockmeier, K., Yigit, S., Friedrich,

R.P., Chaurasia, G., Li, S., Hesse, F., Riechers, S.P., et al. (2015). Systematic

interaction network filtering identifies CRMP1 as a novel suppressor of hun-

tingtin misfolding and neurotoxicity. Genome Res. 25, 701–713.

Suh, J., Romano, D.M., Nitschke, L., Herrick, S.P., DiMarzio, B.A., Dzhala, V.,

Bae, J.S., Oram, M.K., Zheng, Y., Hooli, B., et al. (2019). Loss of Ataxin-1

Potentiates Alzheimer’s Pathogenesis by Elevating Cerebral BACE1 Tran-

scription. Cell 178, 1159–1175.

Tartaglia, G.G., Pawar, A.P., Campioni, S., Dobson, C.M., Chiti, F., and Ven-

druscolo, M. (2008). Prediction of aggregation-prone regions in structured pro-

teins. J. Mol. Biol. 380, 425–436.

Taylor, J.P., Brown, R.H., Jr., and Cleveland, D.W. (2016). Decoding ALS: from

genes to mechanism. Nature 539, 197–206.

Thomas, S., and Bonchev, D. (2010). A survey of current software for network

analysis in molecular biology. Hum. Genomics 4, 353–360.

Toyoshima, Y., and Takahashi, H. (2014). TDP-43 pathology in polyglutamine

diseases: with reference to amyotrphic lateral sclerosis. Neuropathology 34,

77–82.

Trepte, P., Buntru, A., Klockmeier, K., Willmore, L., Arumughan, A., Secker, C.,

Zenkner, M., Brusendorf, L., Rau, K., Redel, A., and Wanker, E.E. (2015).
DULIP: A Dual Luminescence-Based Co-Immunoprecipitation Assay for Inter-

actome Mapping in Mammalian Cells. J. Mol. Biol. 427, 3375–3388.

Trepte, P., Kruse, S., Kostova, S., Hoffmann, S., Buntru, A., Tempelmeier, A.,

Secker, C., Diez, L., Schulz, A., Klockmeier, K., et al. (2018). LuTHy: a double-

readout bioluminescence-based two-hybrid technology for quantitative map-

ping of protein-protein interactions in mammalian cells. Mol. Syst. Biol. 14,

e8071.

Uversky, V.N., Oldfield, C.J., and Dunker, A.K. (2008). Intrinsically disordered

proteins in human diseases: introducing the D2 concept. Annu. Rev. Biophys.

37, 215–246.

Vanunu, O., Magger, O., Ruppin, E., Shlomi, T., and Sharan, R. (2010). Asso-

ciating genes and protein complexes with disease via network propagation.

PLoS Comput. Biol. 6, e1000641.

Venkatesan, K., Rual, J.F., Vazquez, A., Stelzl, U., Lemmens, I., Hirozane-Kish-

ikawa, T., Hao, T., Zenkner, M., Xin, X., Goh, K.I., et al. (2009). An empirical

framework for binary interactome mapping. Nat. Methods 6, 83–90.

Vinayagam, A., Stelzl, U., Foulle, R., Plassmann, S., Zenkner, M., Timm, J.,

Assmus, H.E., Andrade-Navarro, M.A., and Wanker, E.E. (2011). A directed

protein interaction network for investigating intracellular signal transduction.

Sci. Signal. 4, rs8.

Wang, Q., Woltjer, R.L., Cimino, P.J., Pan, C., Montine, K.S., Zhang, J., and

Montine, T.J. (2005). Proteomic analysis of neurofibrillary tangles in Alzheimer

disease identifies GAPDH as a detergent-insoluble paired helical filament tau

binding protein. FASEB J. 19, 869–871.

Wanker, E.E., Rovira, C., Scherzinger, E., Hasenbank, R., Walter, S., Tait, D.,

Colicelli, J., and Lehrach, H. (1997). HIP-I: a huntingtin interacting protein iso-

lated by the yeast two-hybrid system. Human Molecular Genetics 6, 487–495.

Wanker, E.E., Scherzinger, E., Heiser, V., Sittler, A., Eickhoff, H., and Lehrach,

H. (1999). Membrane filter assay for detection of amyloid-like polyglutamine-

containing protein aggregates. Methods Enzymol. 309, 375–386.

Wilson, A.C., Dugger, B.N., Dickson, D.W., and Wang, D.S. (2011). TDP-43 in

aging and Alzheimer’s disease—a review. Int. J. Clin. Exp. Pathol. 4, 147–155.

Wishart, D.S. (2007). In silico drug exploration and discovery using DrugBank.

Current protocols in bioinformatics 2007 Jun (Chapter 14), Unit 14.4.

Wishart, D.S., Knox, C., Guo, A.C., Shrivastava, S., Hassanali, M., Stothard, P.,

Chang, Z., and Woolsey, J. (2006). DrugBank: a comprehensive resource for

in silico drug discovery and exploration. Nucleic Acids Res. 34, D668–D672.

Woodsmith, J., and Stelzl, U. (2014). Studying post-translational modifications

with protein interaction networks. Curr. Opin. Struct. Biol. 24, 34–44.

Xia, Q., Liao, L., Cheng, D., Duong, D.M., Gearing, M., Lah, J.J., Levey, A.I.,

and Peng, J. (2008). Proteomic identification of novel proteins associated

with Lewy bodies. Front. Biosci. 13, 3850–3856.

Xu, G., Gonzales, V., and Borchelt, D.R. (2002). Rapid detection of protein ag-

gregates in the brains of Alzheimer patients and transgenic mouse models of

amyloidosis. Alzheimer Dis. Assoc. Disord. 16, 191–195.

Xu, W., Tan, L., and Yu, J.T. (2015). Link between the SNCA gene and parkin-

sonism. Neurobiol. Aging 36, 1505–1518.

Ying, H., and Yue, B.Y. (2016). Optineurin: The autophagy connection. Exp.

Eye Res. 144, 73–80.

Zhang, C., Browne, A., Child, D., Divito, J.R., Stevenson, J.A., and Tanzi, R.E.

(2010). Loss of function of ATXN1 increases amyloid beta-protein levels by

potentiating beta-secretase processing of beta-amyloid precursor protein.

J. Biol. Chem. 285, 8515–8526.
Cell Reports 32, 108050, August 18, 2020 15

http://refhub.elsevier.com/S2211-1247(20)31035-4/sref76
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref76
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref76
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref77
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref77
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref77
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref77
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref78
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref78
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref78
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref78
http://refhub.elsevier.com/S2211-1247(20)31035-4/optn4EISIfsMt
http://refhub.elsevier.com/S2211-1247(20)31035-4/optn4EISIfsMt
http://refhub.elsevier.com/S2211-1247(20)31035-4/optn4EISIfsMt
http://refhub.elsevier.com/S2211-1247(20)31035-4/optn4EISIfsMt
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref79
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref79
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref79
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref80
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref80
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref81
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref81
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref81
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref81
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref82
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref82
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref83
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref83
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref83
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref84
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref84
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref84
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref84
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref85
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref85
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref85
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref85
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref86
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref86
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref86
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref86
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref87
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref87
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref87
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref88
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref88
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref89
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref89
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref90
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref90
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref90
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref91
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref91
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref91
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref91
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref92
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref92
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref92
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref92
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref92
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref93
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref93
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref93
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref94
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref94
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref94
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref95
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref95
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref95
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref96
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref96
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref96
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref96
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref97
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref97
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref97
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref97
http://refhub.elsevier.com/S2211-1247(20)31035-4/opt6fbO2PscDV
http://refhub.elsevier.com/S2211-1247(20)31035-4/opt6fbO2PscDV
http://refhub.elsevier.com/S2211-1247(20)31035-4/opt6fbO2PscDV
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref98
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref98
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref98
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref99
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref99
http://refhub.elsevier.com/S2211-1247(20)31035-4/optxnmStcHSxv
http://refhub.elsevier.com/S2211-1247(20)31035-4/optxnmStcHSxv
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref100
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref100
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref100
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref101
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref101
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref102
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref102
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref102
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref103
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref103
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref103
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref104
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref104
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref105
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref105
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref106
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref106
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref106
http://refhub.elsevier.com/S2211-1247(20)31035-4/sref106


Resource
ll

OPEN ACCESS
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-sheep IgG Jackson ImmunoResearch

Labs; Dianova

Cat#313-005-003; RRID:AB_2339937

Rabbit polyclonal anti-tau12 (tau 6-18) BioLegend Cat#806501; RRID:AB_2564707

Rabbit polyclonal anti-TDP-43 Proteintech Group Cat#10782-2-AP; RRID:AB_615042

Rabbit polyclonal anti-ataxin-1 Cell Signaling Technology Cat#2177; RRID:AB_2061047

Rabbit polyclonal anti-mouse IgG

(Fc specific) POD

Sigma-Aldrich Cat#A0168; RRID:AB_257867

Mouse monoclonal anti-a-tubulin Sigma-Aldrich Cat#T9026; RRID:AB_477593

Anti-a-Synuclein antibody, Mouse monoclonal Sigma-Aldrich Cat#S5566; RRID:AB_261518

Rabbit anti-MKL1 (C-Term) Aviva systems biology;

Antikörper online

Cat#ARP37504_T100; RRID:AB_842351

Rabbit anti-UBQLN1 Elabscience; Antikörper online Cat#E-AB-14655; RRID:AB_2750981

Mouse monoclonal anti-beta Actin Abcam Cat#ab8224; RRID:AB_449644

Rabbit polyclonal anti-HSPA5 Antikörper online Cat#ABIN651231; RRID: AB_10818618

Rabbit anti-EGR2 Abcam Cat#ab108399; RRID:AB_10862073

Rabbit anti-FLNA (Filamin A) Assay Biotech; Antikörper online Cat#ABIN1532246; RRID:AB_10696433

Chemicals, Peptides, and Recombinant Proteins

Isopropyl-b-D-thiogalactopyranosid (IPTG) Sigma-Aldrich CAS ID: 367-93-1

Levamisole Sigma-Aldrich CAS ID: 14769-73-4 (Levamisol)

DAPI Sigma-Aldrich CAS ID: 28718-90-3 (Dihydrochlorid)

Agarose Sigma-Aldrich Cat#16500500

LR clonase Thermo Fisher Scientific Cat#11791019

b-galactosidase enzyme Sigma-Aldrich Roche: 10745731001

High density nylon membranes Thermo Fisher Scientific Cat#77015

Opti-MEM� I Reduced Serum Medium Thermo Fisher Scientific Cat#31985062

Tween 20 (PBS-T) Sigma-Aldrich CAS ID: 9005-64-5

Protease inhibitor cocktail (Tm complete) Sigma-Aldrich Roche: 04693116001

Tris hydrochloride (Tris-HCl) Sigma-Aldrich Roche: 10812846001; CAS ID: 1185-53-1

SDS Sigma-Aldrich CAS ID: 151-21-3

Sodium deoxycholate Sigma-Aldrich CAS ID: 302-95-4

Triton X-100 Thermo Fisher Scientific Cat#HFH10

Benzonase Sigma-Aldrich CAS ID: 9025-65-4

BSA protein Thermo Fisher Scientific Cat#AM2616

Cellulose acetate membrane GE Healthcare Life Sciences Product code/ID: 7000-0002

PBS buffer GE Healthcare Life Sciences Product code/ID: BR100672

Skim milk Sigma-Aldrich CAS ID: 999999-99-4

Dulbecco’s modified Eagle’s medium (DMEM) Thermo Fisher Scientific Cat#31885049

Fetal Bovine Serum (FBS) Thermo Fisher Scientific Cat#10270098

Penicillin-Streptomycin (P/S) antibiotic Thermo Fisher Scientific Cat#15140122

Linear Polyethyleneimine (PEI) Polysciences Cat#23966-1

HEPES buffer Promega Cat#H5302

NP-40 Sigma-Aldrich CAS ID: 9016-45-9

Deoxycholate Sigma-Aldrich CAS ID: 302-95-4

Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich CAS ID: 60-00-4
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Dithiothreitol (DTT) Sigma-Aldrich CAS ID: 3483-12-3

PMSF Promega Cat#G6521

Dual-Glo luciferase buffer Promega Cat#E298B-C

Dual-Glo Stop and Glo buffer Promega Cat#E314B-C

Bovine serum albumin Sigma-Aldrich Cat#9048-46-8

Nematode Growth Media (NGM) Teknova Cat#N1098

M9 medium Sigma-Aldrich Cat#M6030

Ampicillin Sigma-Aldrich CAS ID: 7177-48-2

X-Gal substrate Thermo Fisher Scientific Cat#B1690

Bouin’s fixative Sigma-Aldrich Cat#HT10132

Critical Commercial Assays

QIAprep 96 Turbo Miniprep Kit (4) QIAGEN Cat#27191

Pierce BCA protein assay kit Thermo Fisher Scientific Cat#23225

ChemiGlow West Chemilumineszenz

Substrat Kit

Biozym Cat#518020

Deposited Data

UAS-RNAi lines Vienna Drosophila Resource

Center (VDRC)

RRID: SCR_013805 (http://stockcenter.

vdrc.at/control/main)

UAS-RNAi lines Bloomington Drosophila Stock

Center (Indiana University,

Bloomington, IN, USA)

RRID: SCR_006457 (https://bdsc.

indiana.edu/)

PPIs from co-purified AP-LC-MS/MS data Freibaum et al., 2010 N/A

Dataset of human genes and C. elegans

orthologs

This paper and Ahringer library

(Kamath et al., 2003)

N/A

OMIM database OMIM RRID: SCR_006437 (http://omim.org)

EST database NCBI EST RRID: SCR_004630 (https://www.ncbi.

nlm.nih.gov/nuccore/)

GEO database Gene Expression Omnibus RRID: SCR_007303 (https://www.ncbi.

nlm.nih.gov/geo)

NN1.0ext PPI dataset Source: This paper (Table S2);

deposited in IntAct (RRID:

SCR_006944, https://www.ebi.

ac.uk/intact/) at EMBL-EBI, UK

IntAct: IM-28217

HIPPIE database Alanis-Lobato et al., 2017 RRID: SCR_014651 (http://cbdm-01.zdv.

uni-mainz.de/�mschaefer/hippie/)

UniHi database Unified Human Interactome

(Chaurasia et al., 2007)

RRID: SCR_005805 (http://www.unihi.org)

DrugBank database DrugBank (Wishart, 2007;

Wishart et al., 2006)

RRID: SCR_002700 (http://www.

drugbank.ca)

HomoloGene database HomoloGene RRID: SCR_002924 (https://www.ncbi.

nlm.nih.gov/homologene)

STRING database STRING RRID: SCR_005223 (https://string-db.org/)

Blat search genome database N/A https://genome.ucsc.edu/cgi-bin/hgBlat

GoldenPath (human genome) database N/A https://genome.ucsc.edu/

Gene Ontology (GO) database Gene Ontology RRID: SCR_002811 (http://www.

geneontology.org/)

Collection of differentially aging-related

expressed human genes

Lu et al., 2004 N/A

Collection of HTT-interacting proteins

from a Y2H/MS study

Kaltenbach et al., 2007 N/A

Collection of selected NDCPs This paper (Table S3) N/A

(Continued on next page)
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Collection of selected ND modifiers This paper (Table S3) N/A

HI-II-14 PPI dataset Rolland et al., 2014 N/A

CORUM (protein complex dataset) CORUM (Ruepp et al., 2010;

Woodsmith and Stelzl, 2014)

RRID: SCR_002254 (https://mips.

helmholtz-muenchen.de/corum/)

Phosphosite (kinase-substrate PPI dataset) PhosphoSitePlus: Protein

Modification Site

(Hornbeck et al., 2015)

RRID: SCR_001837 (https://www.

phosphosite.org/homeAction.action)

Supersaturation scores of human proteins Ciryam et al., 2013 N/A

Protein set obtained from amyloid plaques Liao et al., 2004 N/A

Protein set obtained from neurofibrillary

tangles (NFTs)

Wang et al., 2005 N/A

Protein set obtained from Lewy bodies Xia et al., 2008 N/A

Experimental Models: Cell Lines

E.coli: Competent Mach1 cells Thermo Fisher Scientific Cat#C862003

S. cerevisiae: L40cca [MATa his3D200 trp1-910

leu2-3,112 ade2 LYS2::(lexAop)4HIS3 URA3::

(lexAop)8-lacZ GAL4 gal80 can1 cyh2]

Wanker et al., 1997; Goehler et al., 2004 N/A

S. cerevisiae: L40ccua [MATa his3D200 trp1-

901 leu2-3,112 LYS2::(lexAop)4-HIS3 ura3::

(lexAop)8-lacZ ADE2::(lexAop)8-URA3 GAL4

gal80 can1 cyh2]

Wanker et al., 1997; Goehler et al., 2004 N/A

Homo sapiens: HeLa cell line ECACC (Sigma-Aldrich) Cat#93021013; RRID: CVCL_0030

Homo sapiens: HEK293 cell line ECACC (Sigma-Aldrich) Cat#85120602; RRID: CVCL_0045

Experimental Models: Organisms/Strains

E. coli: OP50 strain N/A Acc. No.: PRJNA41499; Tax ID: 637912

D. melanogaster: GMR-GAL4/UAS-TDP-43 M337V Ritson et al., 2010 Line #1

D. melanogaster: y1w118 Juan Botas (The Hutch, Seattle, USA) N/A

D. melanogaster: GMRGAL4/CyO Juan Botas (The Hutch, Seattle, USA) N/A

D. melanogaster: UAS-Hsap\HTT336Q128[M64] Juan Botas (The Hutch, Seattle, USA) N/A

D. melanogaster: Elav-GAL4 Juan Botas (The Hutch, Seattle, USA) N/A

D. melanogaster: UAS-Hsap\HTT336Q128[F27B] Juan Botas (The Hutch, Seattle, USA) N/A

Homo Sapiens: Brain tissues Institute for Aging and Health,

Newcastle University (Newcastle upon

Tyne, UK)

N/A

pBTM116-D9 (derived from pBTM116) Clontech; Goehler et al., 2004 N/A

pACT4-DM (derived from pACT2) Clontech Cat#638822

pPA-RL-GW Trepte et al., 2015 N/A

pFL-V5-GW Trepte et al., 2015 N/A

pCFPHttex1Q49 This paper N/A

pV5mCherryLuc This paper N/A

pV5ARF-GEP100 This paper N/A

pTHW Kaltenbach et al., 2007 N/A

pmTq2-DEVD-mCit Gr€unberg et al., 2013 N/A

pGW-RL-PA Trepte et al., 2015 N/A

pGW-FL-V5 Trepte et al., 2015 N/A

pNL1.1 Promega #N1001

pcDNA3.1(+) ThermoFisher V79020

pDONR221 ThermoFisher 12536017

pDS_X-mCherry ATCC MBA-303

(Continued on next page)
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pDONR221-NL Trepte et al., 2018 N/A

Additional plasmids and more information Trepte et al., 2018 Dataset EV1

Software and Algorithms

G2D (candidate genes to inherited diseases) tool Perez-Iratxeta et al., 2005 RRID: SCR_008190

Genie text mining tool Fontaine et al., 2011 http://cbdm-01.zdv.uni-mainz.de/

�jfontain/cms/?page_id=6

MeSH (medical vocabulary resource) MeSH RRID: SCR_004750 (https://www.

nlm.nih.gov/mesh/index.html)

Visual Grid software Agennix AG N/A

GraphPad Prism GraphPad RRID: SCR_002798 (http://www.

graphpad.com)

Aida image analysis software Elysia-Raytest RRID: SCR_014440 (https://www.elysia-

raytest.com/en/cataloglight/c30�aida-

mage-analysis-software)

R for statistical computing R Project for Statistical Computing RRID: SCR_001905

(https://www.r-project.org/)

Cytoscape software Shannon et al., 2003 RRID: SCR_003032

(https://cytoscape.org/)

NetworkAnalyzer (Cytoscape plugin) Assenov et al., 2008 N/A

PRINCE algorithm Vanunu et al., 2010 N/A

Prediction of protein complexes Mazza et al., 2016 N/A
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Erich

Wanker (erich.w@mdc-berlin.de).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The accession number for the binary PPIs of NN1.0ext reported in this paper (Table S2) is IntAct: IM-28217. The data have been sub-

mitted to the IMEx consortium (http://www.imexconsortium.org) through IntAct [Orchard et al., 2014] and are accessible under

https://www.ebi.ac.uk/intact/search/do/search?searchString=pubid:IM-28217.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cells, C. elegans and D. melanogaster models
For plasmid transformation experiments, competent E. coli Mach1 cells were routinely grown in flasks or microtiter plates with LB

ampicillin medium. Nematodes were maintained on E. coli OP50 seeded NGM plates. For transformation with plasmid DNA yeast

strains (L40ccua and L40cca) were grown in rich medium (YPD) supplemented with 2 % glucose. For transient transfection exper-

iments with plasmid DNAs, HeLa cells were cultivated in DMEM medium (Dulbecco’s Modified Eagle Medium, GIBCO 31885049)

containing L-glutamine, sodium pyruvate and 1 g/l D-glucose, supplemented with 10% FBS and 1% P/S. Cells were incubated at

37�C with 5% CO2 in cell culture flasks. Then, cells were washed once with PBS and treated with trypsin/EDTA for two minutes, re-

suspended in medium and centrifuged for three minutes at 150 g. Finally, the cells were seeded into new cell culture flasks, 6-well

plates or 96-well microtiter plates according to maintenance or analyses intended.

For RNAi-mediated knockdown experiments nematodes were grown on NGM plates seeded with the E. coli HTT115 strains

carrying the L4440 plasmid encoding the respective C. elegans gene at 20�C. For synchronization, gravid adults from one 10 cm

NGM plate were collected in a canonical tube and treated with 20% alkaline hypochlorite solution under vigorous agitation for

4 min. The eggs were then washed 3 times with cold 0.1 M NaCl solution. The eggs were allowed to hatch in M9 medium at 20�C
for 22 h.
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The D. melanogaster strain GMR-GAL4/UAS-TDP-43 M337V (line #1) was previously described (Ritson et al., 2010). Flies were

raised on standard diet. RNAi stocks were obtained from either the Bloomington Drosophila Stock Center (Indiana University, Bloo-

mington, IN, USA, RRID:SCR_006457) or the Vienna Drosophila Resource Center (RRID:SCR_013805). Drosophila lines used for

RNAi knockdown and co-expression experiments are listed in Table S4.

The fly line for expression of GFP (1521) was obtained from the Bloomington Drosophila Stock Center. The fly strains y1w118,

GMRGAL4/CyO, UAS-Hsap\HTT336Q128[M64], Elav-GAL4 and UAS-Hsap\HTT336Q128[F27B] were provided by Juan Botas

(Fred Hutchinson Cancer Research Center, Seattle, Washington). Transgenic flies harboring HTT partner proteins (Table S4) were

generated by BestGene Inc (Chino Hills, CA, USA). For all experiments, flies were kept at 25�C on standard medium. The Information

about age and sex of the flies is not available.

METHOD DETAILS

Selection of ND-related target genes
For the selection and prioritization of target genes related to neurodegenerative diseases (NDs), we first generated 15 collections with

human genes (see below and Table S1). Targets were selected based on available literature information, high throughput experi-

mental datasets, data mining of genomic and drug target data and text mining of MEDLINE abstracts (https://pubmed.ncbi.nlm.

nih.gov/). We focused mainly on five diseases (AD, HD, PD, ALS and SCA1) but did not exclude available information related to other

NDs. Finally, using the available information a ranked list of genes related to NDs was generated. Each gene g of the collection cwas

scored with a subscore Rcg between 0 (not selected or not predicted relation) and 1 (high confidence selection or prediction):

Rcg ∊ [0,1]

An overall gene score Sg was computed as a weighted sum of the collection’s subscores as

Sg =
X

c

W�
cRcg

where the collection weight Wc was defined as shown in Table S1.

When a high throughput dataset of size N (e.g., the total number of probes of a microarray dataset) was analyzed for a collection c

and returned a p value (Table S1), the subscore Rcg of gene g was defined as:

Rcg =
min

�� log10ðpvalueÞ;�log10

�
K
N

��

�log10

�
K
N

�

For the gene collection ProtAgg_TM the constant K = 1 e-30 was applied; for the gene collections ND_TM, ND_DifExp, ND_DrugT_TM

and Aging_DifExp (see details below and in Table S1), we applied K = 0.05. Through this data integration strategy, a ranked list of

3,711 potentially ND-associated genes was created (Table S1).

The Known_NDTs selection method is a manual selection by mutations from the literature on the following disease-causing genes

known to be related to the key NDs described above (sub score = 1 if selected, 0 otherwise): SNCA, APP, HTT, ATXN1, PARK2, SOD1

and PSEN1. In addition to known disease causing genes, the procedure includes a manual ranking of genes genetically related to

NDs from the OMIM database (sub score = 1 if considered very interesting, 0.75 if interesting, 0.5 if moderately interesting, 0.3 if

selected and 0 otherwise).

The manual method GenMod was used to select genes from the literature that have mutations associated to NDs (sub score = 1 if

selected, 0 otherwise).

With AggToxMod genes known to be disease modulators were manually selected from literature (sub score = 1 if

selected, 0 otherwise).

The HTT_Int method is a selection of HTT-interacting proteins from a study using high-throughput yeast two-hybrid screenings and

affinity pull down followed bymass spectrometry experiments. The HTT sub score is set to 1 if the genewas listed in the related article

(Kaltenbach et al., 2007), 0 otherwise.

The OrthMod method is a selection based on several studies of HD, PD and SCA modulators in human or animal models (mouse,

yeast, fly and worm). Relevant genes in a set of selected articles (Table S1, sheet ‘‘Studies OrthMod’’) were extracted and automat-

ically matched to the human orthologs using the Homologene database.

The sub score is set to 1 if the gene is a modifier, listed in the articles and if it has a human ortholog. The sub score is equal

to 0 otherwise.

The ND_ChrReg method is a set of gene predictions for the NDs of interest (Table S1, sheet ‘‘Datasets’’) using the G2D tool (Perez-

Iratxeta et al., 2005), except SCA1 due to missing information. G2D evaluates genes in the chromosomal region where the disease is

mapped to; it prioritizes them for a possible relation to the disease based on the phenotype of the disorder or their similarity to an

already known related gene. If a phenotype is linked to multiple loci, known or inferred interactions between proteins of two loci

each are also used. The sub score is the resulting gene score of G2D or 0 if the gene has no G2D score.

TheND_TMmethodused theGénie textmining algorithmof gene prioritization (Fontaine et al., 2011). The query for each diseasewas

done using corresponding MeSH (Medical Subject Headings; NCBI). As no MeSH term is specifically dedicated to SCA1, we used the

more general term ‘‘Spinocerebellar Ataxias’’ to produce the results. We selected genes associated to p values below 0.005. The sub
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score is a scaling of the returned p value between 0 and 1 (see calculation of Rcg above). Score = 1means that topics of articles related

to a gene over-represent at least one of the 5 NDs with very high confidence. Score 0 means that there is no over-representation.

The ND_TissESTs method is based on the EST database to have evidence on gene expression in tissues from the nervous system.

We used the GenBank database to select ESTs annotated to be expressed in the nervous system. EST tissue annotations were

matched to relevant MeSH terms. We used all MeSH headers and synonymous terms which depend on ‘‘Nervous System’’

(MeSH term ID starts with A08) in the hierarchy. Assignment of ESTs to genes was done by similarity search (Blat) on the human

genome (GoldenPath). We selected only hits with high score and percentage of identity (blat score/qSize R 95 and pid R 95%).

The sub score is set to 1 when ESTs were selected, 0 otherwise.

The ND_DifExp method is based on publicly available microarray datasets of ND-related human samples (Table S1, sheet ‘‘Micro-

arrays ND_DifExp’’). Each dataset was processed to extract differentially expressed genes between healthy and disease patients. No

SCA1-related datasets were found in the NCBI Geo database. The score is a scaling of the minimal p value between 0 and 1 (see

calculation of Rcg above). We selected p values below 0.005. Score 1 means that a gene is considered differentially expressed

(over- or under-expressed) with very high confidence. Score 0 means no differential expression.

The DrugBank method is based on the DrugBank database (Wishart et al., 2006) which is a bioinformatics and cheminformatics

resource that combines detailed drug data with comprehensive drug target information. At the time of download, the database con-

tained approximately 4,800 drug entries including > 1,350 FDA-approved small molecule drugs, 123 FDA-approved biotech (protein/

peptide) drugs, 71 nutraceuticals and > 3,243 experimental drugs. Additionally, more than 2,500 non-redundant protein (i.e., drug

target) sequences are linked to these FDA approved drug entries. We have set lists of drugs that target each gene. The specificity

of each drug decreases with its number of targets. Each drug related to a gene is scored as follows:

Drug specificity =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

number of known gene targets
p

The final gene score is the maximum of observed scores of its related drugs. Low scores denote weakly specific drugs and high

scores denote very specific drugs.

The ND_DrugSideEff method is based on protein targets prediction of FDA (Food and Drug Administration) approved drugs.

Known drug targets were extracted from the manually curated protein-chemicals interaction databases MATADOR, DrugBank

and PDSP Ki databases. The prediction is based on a scoring scheme that evaluates the probability that a drug shares a direct target

with known PD-, AD- or ALS-related drugs. The scoring scheme is calculated given the similarity of side effects and the Tanimoto’s

2D structural similarity index. The sub score of a gene is themaximal value of the specificity of its predicted drugs that is calculated as

defined in the DrugBank method (see above). Scores are between 0 (bad) and 1 (good).

The ND_DrugT_TMmethod scores each human gene thanks to a list of drugs related to the gene and to NDs by using text mining of

MEDLINE abstracts. We have used a list of known ND drugs and related disease targets from DrugBank (Table S1, sheet ‘‘Drugs

ND_DrugT_TM’’). The best drug-ND associations were first evaluated and selected by Fisher’s exact tests (p values < 0.005) based

on co-occurrences of ND-related MeSH terms and drug names in Medline abstracts. P values were scaled from 0, no association

to 1, strong association (see calculation of Rcg above). Scores were multiplied by the drug specificity (as defined in the DrugBank

method). Then, the final gene score is the maximum of observed scores of its related ND drugs.

The ProtAgg_TM method used the Génie text mining algorithm (Fontaine et al., 2011) to predict human protein-coding genes

related to protein aggregation. The training set was composed of abstracts related to protein aggregation from a PubMed query

and compared to the rest of MEDLINE (Fontaine et al., 2011). The method selected 992 genes with uncorrected p values ranging

from 1*10�5 to 1.55*10�158. The sub score was defined as the scaling of the p value (see calculation of Rcg above) so that a score 1

means very high confidence and score 0 means that there is no over-representation.

The IntGenMod method is based on Known_NDTs genes and used the UniHi database (http://www.unihi.org) to find interacting

proteins and the STRING database (https://string-db.org) to discover functionally related genes. We manually defined a scoring

scheme for UniHi genes that considers the number of related direct and indirect interactors within Known_NDTs genes, and a scoring

scheme for STRING genes that depends on the number of interactors (Table S1, sheet ‘‘Scores IntGenMod’’). Genes showing direct

interactions in UniHi with one or several Known_NDTs genes received the highest scores. A search in STRING was done for the best

27 Known_NDTs genes that have a sub score R 0.5. The overall score is the maximum of UniHi and STRING gene scores.

The Aging_DifExp method is based on genes differentially expressed between young (age% 42 years) and older (ageR 73 years)

people from a gene list provided in a published study (Lu et al., 2004). Post-mortem samples from the frontal pole of 30 individuals

ranging in age from 26 to 106 were analyzed using Affymetrix gene chips. The score is a discretization of the provided q-values.

Score 1 corresponds to a q-value equal to 0 and score 0.8 to a p value equal to 0.01. Score 0 means no differential expression.

Literature review for selected target genes
Textmining for the top 100 of the initially selected targets for the term ‘‘neurodegeneration’’ was done using theGénie algorithm (Fon-

taine et al., 2011). We assessed how often each of the selected target genes was found together with the term ‘‘neurodegeneration’’

in previously published scientific abstracts.
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Enrichment analysis
Enrichment of binary interactomemaps [NN1.0, NN1.0ext and HI-II-14 (Rolland et al., 2014)] for functional relationships [sharedGene

Ontology (GO) terms] and co-complex memberships was determined. In addition, the number of known kinase-substrate interac-

tions found in the binary interaction maps was investigated.

The published datasets (Ruepp et al., 2010; Woodsmith and Stelzl, 2014) and (Hornbeck et al., 2015) were used for analysis. PPIs

were trimmed to interactions where both proteins were present in the binary interactomemaps for pairwise comparisons. The enrich-

ment was computed as the hypergeometric p value of the intersection between the examined PPI set and a gold standard set

(Figure 2A).

Prediction of disease-relevant proteins
To predict potential disease-relevant proteins such as NDCPs, ND modifiers or drug targets in NN1.0ext, a network propagation al-

gorithm was applied (Mazza et al., 2016; Vanunu et al., 2010). This approach starts from primarily defined priors (e.g., known NDCPs)

and a single initial parameter (alpha) that weighs the contribution of the network versus that of the priors. Here, we used a default

parameter alpha of 0.9 as recommended (Gottlieb et al., 2011; Vanunu et al., 2010). This value gives more weight to the network

over the prior values.

A quantitative propagation score for every protein in the network was calculated, which is an indication of its proximity to the prior

proteins. This scoring provides a ranking of the proteins, which we can evaluate using a receiver operating characteristic (ROC) curve

(Figures 2B–2D). To assess the significance of the ROC curve obtained, we compared it to 100 analogous curves that result from

applying the same procedure to 100 randomized networks with the same node degrees.

It should be noted that the propagation scores correlate with the vertex degree that is highest for the baits of the Y2H experiment.

Since these baits were chosen to be ND related, they intersect the lists of NDCPs and NDmodifiers that are shown in the Figures 2B

and 2C.

Construction of ND subnetworks and modules
Subnetworks and protein modules for the NDs AD, PD and ALS were constructed using a previously described propagation-based

algorithm (Mazza et al., 2016). Briefly, the computation starts from known priors (NDCPs, Table S3), which are available in the liter-

ature for each disease. The network’s proteins are then ranked with respect to the prior set using propagation, and their scores are

compared to those obtained by propagating random prior sets of the same size. By ranking the real score of every protein against its

random counterparts (excluding the random instances where this protein was selected as the prior), we obtained an empirical p value

for every protein in NN1.0ext, retaining only those at a 0.01 significant level. The generated PPI subnetworks were termed ADSN, PDSN

and ALSSN. The subnetworks induced on these significantly scoring proteins served as the input network for the prediction of highly

connected protein clusters (Mazza et al., 2016), here also termed ADMO, PDMO and ALSMO (Figures 4D–4F). High scoring clusters

were detected using an integer linear programming algorithm (Mazza et al., 2016) that optimizes the interaction density of a candidate

module as well as the scores of its member proteins. This process resulted in 4-5 protein clusters for each disease using the available

PPI information (Figures 4D–4F and S4A).

Data cross-comparisons
For systematic data cross-comparisons, we merged the genes of our computationally predicted disease subnetworks ADSN, PDSN

and ALSSN into one dataset. This dataset was then compared with published data from Na et al. (2013) and Chen and Burgoyne

(2012). In both publications so-termed genetic modifiers, i.e., genes that influence ND-related phenotypes in disease

models such as C. elegans, D. melanogaster and yeast were compiled in comprehensive datasets. We then mapped these

genes to their human orthologs and defined those that are present in NeuroNet1.0ext. Next, we determined the overlaps

between our computationally predicted gene set and the previously reported datasets (Na et al., 2013; Chen and Burgoyne,

2012; Figure 4A). To evaluate whether the observed overlaps can be expected by chance, we performed a hypergeometric

test, indicating that potential genetic modifiers are significantly enriched in our computationally predicted protein subnetworks

(p values < 0.01; Figure 4B).

Next, we investigated whether proteins that aggregate in patient brains are enriched in our disease-associated subnetworks. We

compared this dataset with related published data from Liao et al. (2004), Wang et al. (2005) and Xia et al. (2008); here, proteins asso-

ciated with amyloid plaques, neurofibrillary tangles and Lewy bodies were identified.

We found that 117 (15.4 %) out of the 762 proteins, which are aggregated in AD and PD patient brains, are present in our compu-

tationally predicted disease-associated subnetworks (Figures 5C–5E). To assess whether this overlap can be expected by chance, a

hypergeometric test was performed using the protein set of NN1.0ext as the protein universe. It revealed that potential aggregation-

prone proteins are significantly enriched in our predicted disease subnetworks (p value < 0.0001).

For the identification of disease-associated proteins, we first merged the proteins of our computationally predicted disease

modules ADMO, PDMO and ALSMO into one dataset. In addition to priors (Figure 4G), i.e., known NDCPs that were initially utilized

for module identification, our protein modules contain 56 non-prior proteins. These proteins were then mapped to the OMIM data-

base containing information for multiple genetic disorders. We found that 24 (42.9 %) proteins are present in OMIM. They were

termedOMIMdisease-associated proteins (ODAPs, Figure 4H). To evaluatewhether such a high number of proteins can be expected
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by chance, we performed a hypergeometric test using NN1.0 as the protein universe. This analysis indicated that ODAPs are signif-

icantly enriched in our computationally predicted protein modules (p value < 0.0001).

Supersaturated, aggregation-prone proteins
Based on the database provided by Ciryam et al. (2013), that contains supersaturation scores assigned to proteins of the human

proteome, we compared the average supersaturation score of the whole proteome with the average score of the predicted proteins

in the subnetworks and modules. The supersaturation score sf measures the aggregation tendency of proteins that are initially

folded, while the supersaturation score su measures that of unfolded proteins. We calculated the median of the supersaturation

scores for the proteome and the proteins in the predicted disease-specific subnetworks and protein modules. The statistical signif-

icance was assessed by the Mann-Whitney U test with Bonferroni-corrected p values. GraphPad Prism (GraphPad,

RRID:SCR_002798) was used to create the boxplots. They extend from the lower to the upper quartiles, with the internal lines refer-

ring to the median values (Figures 5A and 5B).

To investigate the abundance of co-aggregating proteins from ND patient brains in our predicted subnetworks, we analyzed pro-

tein sets obtained from amyloid plaques (Liao et al., 2004), neurofibrillary tangles (NFTs) (Wang et al., 2005) and Lewy bodies (Xia

et al., 2008). For comparison, the abundance of the patient brain proteins in the proteome was also analyzed. The statistical signif-

icance was assessed with a Fisher’s exact test with Holm–Bonferroni corrections (Figures 5C–5E).

Automated Y2H interaction screening
The MATa yeast strain L40cca was individually transformed with pACT4-DM-based plasmids encoding prey proteins to create a

prey-matrix for interaction mating. The resulting yeast clones were arrayed in 384-well microtiter plates. The pBTM116-D9-based

plasmids encoding bait proteins were transformed into the MATa yeast strain L40ccua. The activation of the reporter genes HIS3,

URA3, and lacZ through the production of bait proteins (autoactivation tests) was investigated systematically. Only yeast strains

that express reporter non-autoactivating bait proteins were utilized for systematic interaction screening (Stelzl et al., 2005). Liquid

cultures of MATa yeast strains (preys) were replicated in 384-well microtiter plates using a pipetting robot (Tecan Freedom EVOware)

and mixed with MATa strains expressing bait proteins. Then, yeast mixtures were transferred onto YPD agar plates for interaction

mating using a spotting robot (Kbiosystems K4). After incubation for 48 h at 30�C, the resulting colonies were automatically picked

from agar plates and transferred into 384-well microtiter plates containing SDII (-Leu-Trp) liquid medium. From these plates, they

were spotted onto SDII (-Leu-Trp) agar to select for diploid yeasts carrying both – bait and prey - vectors. After additional incubation

for 48 h at 30�C, diploid yeast clones were spotted onto SDIV (-Leu-Trp-Ura-His) agar to detect PPIs through growth selection. In

addition, yeast clones were spotted onto high density Nylon membranes placed on top of SDIV agar plates to perform b-galactosi-

dase assays. After incubation for 3 to 4 days at 30�C, grown colonies were fractured by liquid nitrogen and b-galactosidase activity

was determined using X-Gal as a substrate. Digital images were taken from agar plates and from high density Nylon membranes and

analyzed using the Visual Grid software (GPC Biotech).

PPI detection in cells using DULIP and LuTHy
The procedure for detecting binary PPIs in mammalian cells using DULIP has been described in detail (Trepte et al., 2015). Briefly,

HEK293 cells (ECACC, Cat#85120602, RRID:CVCL_0045) were reversely transfected in 96-well microtiter plates at a density of

3.75 3 104 cells per well. 48 hours post transfection, cells were lysed in 100 mL HEPES lysis buffer [50 mM HEPES, 150 mM

NaCl, 10% glycerol, 1% NP-40, 0.5% deoxycholate, 20 mM NaF, 1.5 mM MgCl2, 1 mM ethylenediaminetetraacetic acid, 1 mM

DTT, 1 U Benzonase, protease inhibitor cocktail (ethylenediaminetetraacetic acid free; Roche) and 1 mM PMSF] for 30 min at

4�C. Production of luciferase-tagged fusion proteins was monitored by measuring the respective activities in crude cell lysates in

384-well microtiter plates. 10 mL of cell lysate was added to 20 mL phosphate-buffered saline (PBS), and 10 min after the addition

of 10 mL Dual-Glo luciferase reagent (Promega), the firefly activity (FLIN) was measured using an Infinite

M1000 (Tecan) plate reader. To stop the FL activity and to measure the RL activity (RLIN), we added 10 mL of the Dual-Glo Stop and

Glo reagent (Promega) andmeasured the activity after 15min of incubation. In parallel, 50 mL of the cell lysate was incubated for 3 h at

4�C in IgG pre-coated 384-well microtiter plates. Plates were coated with sheep gamma globulin (Dianova), blocked with 1% bovine

serum albumin in carbonate buffer (70 mM NaHCO3 and 30 mM Na2CO3, pH 9.6) before they were incubated with rabbit anti-sheep

IgGs (Jackson ImmunoResearch Labs Cat#313-005-003; RRID:AB_2339937) overnight. After cell lysate incubation, all wells were

washed three times with HEPES lysis buffer before 30 mL of PBS was added to each well. Measurement of firefly (FLOUT) and Renilla

(RLOUT) luminescence activity was performed as described above using an Infinite M1000 (Tecan) plate reader.

The double-readout bioluminescence-based two-hybrid technology (LuTHy) for testing binary interactions has been described

(Trepte et al., 2018). Reverse transfection of HEK293 cells in white 96-well microtiter plates (Greiner, 655983) at a density of 4.0–

4.5 3 104 cells per well was performed. Plasmids encoding donor and acceptor proteins were transfected at a 1:10 to 1:20 ratio,

with 5–10 ng DNA for the donor and 100 ng for the acceptor. The fluorescence of mCitrine was measured 48 h after transfection

in intact cells (Ex/Em: 500 nm/530 nm). Then, coelenterazine-h (NanoLight, 301 or pjk, 102182) was added to a final concentration

of 5 mM. The cells were incubated for an additional 15 min and the total, short-WL and long-WL luminescence was measured. Here,

fluorescence and luminescence were measured using the Infinite microplate readers M200, M1000, or M1000Pro (Tecan) using

the BLUE1 (370–480 nm) and the GREEN1 (520–570 nm) filters at 1,000 ms integration time. After this step, luminescence-based
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co-precipitation (LuC) was performed. Production of PA-mCit- and NL-tagged fusion proteins was monitored by measuring fluores-

cence (mCitIN) and luciferase activity (NLIN) in crude cell lysates in white, small volume 384-well microtiter plates (Greiner, 784074).

We added 5 ml coelenterazine-h to 5 ml of cell lysates to a final concentration of 10 mM and measured the luminescence activity as

before in a microplate reader with 100 ms integration time. We coated small-volume 384-well microtiter plates (Greiner, 784074) the

day before use with sheep gamma globulin (Jackson ImmunoResearch, 013-000-002) in carbonate buffer (70 mM NaHCO3, 30 mM

Na2CO3, pH 9.6) for 3 h at room temperature. Then, 15 ml cell lysate was incubated for 3 h at 4�C in the IgG-coated 384- well plates.

Wells werewashed 3 timeswith lysis buffer andmCitrine fluorescence (mCitOUT) wasmeasured as above. Finally, 15 ml of PBSbuffer

containing 10 mM coelenterazine-h was added to each well and the luminescence activity (NLOUT) was measured as described

above.

Selection of predicted AD-associated proteins
We created a list of all proteins of the AD module using Microsoft Excel and added random numbers. Based on these numbers, we

randomly selected 15 proteins for validation experiments. After eliminating proteins for which no specific antibodies could be iden-

tified by SDS-PAGE and immunoblotting (Table S6), 7 remaining proteins and 3 control proteins were assessed by filter retardation

assays.

Selection of predicted TDP-43 modulators
We created a list of all TDP-43 interacting proteins from the Y2H studies using Microsoft Excel and added random numbers. Based

on these numbers we randomly select 20 proteins for the validation experiments. After sorting the list for these numbers and elim-

inating known TDP-43 modulators, 15 remaining proteins were assessed experimentally.

Knockdown of target genes in D. melanogaster

We conducted our RNAi screen in a Drosophila model expressing TDP-43 with the mutation M337V under the control of the GMR-

Gal4 driver. The genotype for these transgenic flies has been described (Ritson et al., 2010). Phenotypic analysis of the Drosophila

eye was performed by crossing the TDP-43 flies to double-stranded UAS-RNAi lines (obtained from the Vienna Drosophila Resource

Center). A total of 136 genes were selected for modifier screening. This includes 77 genes from the NN1.0ext interaction dataset and

78 TDP-43 interaction partners from a previously published study (Freibaum et al., 2010), of which 19were also identified in NN1.0ext.

In total, 232 RNAi lines were systematically screened (1-3 RNAi lines per gene). Eye degeneration phenotypes were scored on a scale

from 0-14 with 7 representing the basal phenotype. Phenotypes were examined 24-48 h after eclosion (Figures 3B and 3C).

Knockdown of target genes in C. elegans

For RNAi-mediated knockdowns of target genes, nematodes were placed as L1 larvae onto RNAi plates (containing 1 mM IPTG) and

moved onto fresh plates every second day to separate them from their progeny. The aggregation-propensity of disease-associated

polypeptides tagged with fluorescent proteins (e.g., TDP-43-M337-YFP, SYN-YFP, Q35-YFP or Luciferase_R188Q_R216Q-YFP)

was assessed by fluorescence microscopy 1-5 days after the knockdown of target genes with RNAi was initiated. For imaging, nem-

atodes were mounted onto 2% agarose (Sigma) pads on glass slides and immobilized with 2 mM Levamisole (Sigma). DAPI staining

was carried out immediately before mounting the nematodes by incubating them in DAPI solution (final concentration: 100 ng/ml) for

30 min. Images were taken on a Leica SP5 and a Zeiss LSM780 confocal microscope.

Analysis of retina degeneration in flies
For analysis of retina degeneration (Stroedicke et al., 2015) heads of 2-3 day old females were fixed for 48 h in Bouin’s fixative (Sigma-

Aldrich, St. Louis, MO, USA). Vertical 10 mm semi-thin paraffin sections were produced without histological staining. The absolute

retina extension was measured using standard light microscopy. 5-29 females were analyzed per genotype.

Protein aggregates in patient brains
Human postmortem brain tissue samples were obtained from the Newcastle Brain Tissue Resource (NBTR), Newcastle University,

UK. Frozen tissue derived from temporal cortex was weighted and homogenized in a 10-fold excess (w/v) of ice cold 50mM Tris-HCl

pH 7.5, 150 mM NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1% Triton X-100, 0.25 U/ml Benzonase and a complete protease

inhibitor cocktail using a schuett homogen plus (schuett-biotec GmbH, Germany) semi-automatic homogenizer (700 rpm). After incu-

bating the homogenate for 30 min at 4�C with rotation, it was centrifuged for 20 min at 1,500 x g at 4�C to remove cell debris. The

supernatant was then transferred to a new tube and the protein concentration was determined with the Pierce BCA assay (Thermo

Fisher Scientific, Germany) using BSA as a standard. For analysis with filter retardation assays, protein homogenates prepared from

frozen brain tissues of AD patients and healthy controls were filtered through a cellulose acetate membrane with a pore size of 0.2 mm

(GE Healthcare Life Sciences, Germany). After washing the membrane with 1x PBS (13.7 mM NaCl, 0.27 mM KCl, 1 mM Na2HPO4,

0.2 mM KH2PO4, pH 7.4), it was blocked for 30 min with 3% skimmed milk (Sigma-Aldrich, Germany) in 1x PBS containing 0.05%

Tween-20 (PBS-T). Then, the membrane was incubated over night with the primary antibody diluted in 3% skimmed milk PBS-T.

Subsequently, the membrane was washed 3 times for 10 min in PBS-T, incubated for 15 min in 3% H2O2 and washed 3 times for

5 min in PBS. Then, the membrane was incubated with the secondary peroxidase-conjugated anti-mouse antibody for 1 h at
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room temperature and washed twice for 5 min in PBS-T and twice for 10 min in PBS; immunoreactive protein was finally detected

using ChemiGlow (Biozym Scientific GmbH, Germany). Chemiluminescence was detected with a FujiFilm LAS-3000 imager and im-

ages were quantified using the Aida image analysis software (Elysia-raytest, Germany, RRID:SCR_014440).

For the detection and quantification of CFP-Httex1Q49 aggregates in HeLa cells (ECACC, Cat#93021013; RRID:CVCL_0030) they

were washed once with PBS and lysed in buffer containing 50 mM Tris pH 8, 1 mM EDTA, 100 mM NaCl, 5 mM MgCl2, 1% NP40,

protease inhibitor cocktail and benzonase. Then, 30 ml of each cell lysate (20 mg of total protein) was supplied to cellulose acetate

membrane in triplicates, filtered and washed with 100 ml of 0.1% NP40. Membranes were blocked for 30 minutes in 3% milk-

PBS-0.05 % Tween-20 at room temperature. Incubation of membranes with primary antibodies (anti V5 or anti GFP) was carried

out at 4�C with mild shaking overnight, whereas the secondary POD-labeled antibody was applied for 1 h at room temperature.

For quantification of chemiluminescence signals, the Aida image analysis software was utilized (Raytest, Germany).

Knockdown of MO2B7.5 (IQSEC1) in C. elegans

The gene knockdownwas repeated in two independent experiments as described above.Wormswere collected, RNAwas prepared

and used for Real Time PCR to determine the amounts of MO2B7.5 transcripts in control and RNAi treated animals. The results are

shown in Figures S3D and S3E.

qRT-PCR with RNAi treated C. elegans strains
The Bristol N2 strain was grown on RNAi plates supplemented with 1 mM IPTG, and seeded with HT1551 E. coli expressing either ds

RNA against IQSEC1 (Ahringer library gene: M02B7.5, Source BioScience) or the empty vector L4440, as a control. Nematodes were

synchronized via alkaline hypochlorite treatment and left to grow until gravid adulthood, approximately 4 days at 20�C. On day 4,

nematodeswerewashed off plates andwashed 3 times inM9. After supernatant removal, nematode pellets were snap frozen in liquid

nitrogen and stored at �80�C. For RNA extraction worm pellets were thawed on wet ice. To disrupt the cuticle of the worms the

freeze-thaw cycle was repeated five times, followed by disruption of the worm pellet by a 19-gauge syringe. Total RNAwas extracted

using Trizol reagent (Invitrogen/Thermo Fisher Scientific, Waltham, MA, USA) and the NucleoSpin RNA kit (Macherey-Nagel, D€uren,

Germany) as described (Kirstein et al., 2017). Two mg of RNA was reverse-transcribed using the High-Capacity cDNA Reverse

Transcription Kit (Applied Biosystems/Thermo Fisher Scientific, Waltham, MA, USA). For quantitative RT-PCR, 10 ng of cDNA

was incubated with 6 ml SYBR Green PCR Master Mix (Applied Biosystems/Thermo Fisher Scientific, Waltham, MA, USA) and

3.96 pmol per primer in a total volume of 12 ml. The following primers were used:

IQSEC1 (Pair 1): 50-GGTGGAATGCAACTGGCTC-30 (forward) and 50-CTCCGCATCTTGCATCGAG-30 (reverse);
IQSEC1 (Pair 2): 50-GTGCTCGAGCGAAGATATGG-30 (forward) and 50-CATAATACAGTACTCGCGCCACG-30 (reverse);
cdc-42 (control gene): 50-AAACTTGTCTCCTGATCAGCT-30 (forward) and 50-TACTGTGACGGCGTAATTGT-30 (reverse).

Real-time PCR was performed using the ViiA 7 real-time PCR system (Applied Biosystems). Samples were measured in triplicates

and normalized to the cdc-42 housekeeping gene. Quantification was performed using the DCt method and the QuantStudio real-

time PCR Software v1.3.

Co-transfection of HeLa cells
Reverse transfection was applied in a 96-well plate format. For single and co-transfection experiments, 200 ng of each plasmid

(pCFPHttex1Q49, pV5mCherryLuc or pV5ARF-GEP100) were used per well. 0.825 ml PEI (stock concentration of 10mg/ml) wasmixed

in 1 mL OptiMEM, appropriate amounts of plasmids were added and incubated for 20 min at room temperature. 50 ml of these mix-

tures were split into triplicates and 6x104 cells were spread in 150 ml growth medium per well.

QUANTIFICATION AND STATISTICAL ANALYSIS

GraphPad Prism, Cytoscape (RRID:SCR_003032), MS-Excel and R (R Project for Statistical Computing, RRID:SCR_001905) were

used for data analysis and graphical representation. Statistical parameters including the value of n (number of independent exper-

imental replications), the definition of precision measures arithmetic mean ± SEM along with the significance are reported in the fig-

ures and figure legends. Data were judged to be statistically significant when p < 0.05 (*), p < 0.01 (**), p < 0.001 (***) and p < 0.0001

(****). Specified statistical tests are described in the method details.
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Figure S4. Related to Figures 4 and 5. Computational prediction of ND-relevant protein 
subnetworks and modules
(A) Workow depicting the procedure for the computational prediction of ND-specic protein 
modules and subnetworks from NN1.0ext with network propagation starting from disease-
causing proteins (NDCPs, priors); The procedure revealed highly connected protein clusters for 
the diseases AD, PD and ALS.
(B) The subnetwork ALS  contains 538 PPIs connecting 283 proteins. It includes 13 known SN

ALS-associated NDCPs that were used as 'priors' for network prediction (in red) as well as 59 
further known disease-associated proteins (ODAPs) referenced in OMIM (in green).
(C) Representation of priors (known NDCPs) in computationally predicted ND subnetworks.
(D) Representation of other known disease-associated proteins (ODAPs, based on available 
OMIM data) in computationally predicted ND subnetworks. Priors (known NDCPs) utilized for 
subnetwork prediction were not counted.
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Figure S5. Related to Figure 5. Detection of aggregated proteins in AD patient brains
(A) Western blot analysis. 10 µg of human brain homogenates derived from control 
individuals were analysed by a denaturing NuPAGE gel and Western blotting using protein 
specic antibodies. Arrows indicate the detected proteins with their predicted sizes. 
(B-E) Analysis of brain extracts by native PAGE. 10 µg of human brain homogenates derived 
from 7 AD patients (#1-8, black lettering) and 7 control individuals (#11-17, red lettering) 
were analysed by native PAGE and Western blotting using antibodies against (B) MKL1, (C) 
ataxin-1, (D) ubiquilin-1 and (E) lamin A. Intensities of high-molecular-weight protein 
aggregates in gel pockets (arrow) were quantied using the ImageJ software and are shown 
in arbitrary units (AU) (***p < 0.001, **p < 0.01, *p < 0.05, unpaired two-tailed t-test).
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Figure S6. Related to Figures 1, 4 and 6. Systematic  
analysis of PPIs from the predicted ALS module and of 
the effect of ARF-GEP100 on CFP-HTTex1Q49 
aggregation.
(A) Interacting proteins of ARF-GEP100 from the ALS 
module were co-expressed as N- and C-terminally tagged NL 
and PA-mCit fusion proteins in eight different orientations in 
HEK293 cells. For all orientations cBRET and cLuC ratios 
were calculated; values (colored in cyan), which are equal or 
above the thresholds of 0.01 and 0.03, respectively, indicate 
positive PPIs.
(B-D) Analysis of V5-tagged ARF-GEP100 on CFP-
HTTex1Q49 aggregation in HeLa cells by SDS-PAGE and 
immunoblotting.
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