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Abstract During cardiac development, cardiomyocytes form complex inner wall structures called

trabeculae. Despite significant investigation into this process, the potential role of metabolism has

not been addressed. Using single cell resolution imaging in zebrafish, we find that cardiomyocytes

seeding the trabecular layer actively change their shape while compact layer cardiomyocytes

remain static. We show that Erbb2 signaling, which is required for trabeculation, activates

glycolysis to support changes in cardiomyocyte shape and behavior. Pharmacological inhibition of

glycolysis impairs cardiac trabeculation, and cardiomyocyte-specific loss- and gain-of-function

manipulations of glycolysis decrease and increase trabeculation, respectively. In addition, loss of

the glycolytic enzyme pyruvate kinase M2 impairs trabeculation. Experiments with rat neonatal

cardiomyocytes in culture further support these observations. Our findings reveal new roles for

glycolysis in regulating cardiomyocyte behavior during cardiac wall morphogenesis.

Introduction
During development, the heart undergoes a series of morphogenetic changes to form a functional

cardiac wall structure (Moorman and Christoffels, 2003; Staudt and Stainier, 2012). The outer wall

of the developing ventricle consists of compact layer cardiomyocytes (CMs), while the inner wall con-

sists of complex muscular ridges, termed trabeculae, which facilitate efficient cardiac contraction

and oxygenation of the cardiac wall prior to the formation of coronary vessels (Sedmera et al.,

2000; Staudt and Stainier, 2012). Disruption of ventricular wall morphogenesis is associated with

congenital cardiac malformations, the most common type of birth defects (Fahed et al., 2013), yet

the cellular and molecular mechanisms regulating this complex process remain unclear.

Neuregulin (NRG)/Erb-b2 receptor tyrosine kinase (ERBB) 2/4 signaling has been shown to be

essential for cardiac trabeculation. Nrg1, Erbb2 and Erbb4 knockout mice (Gassmann et al., 1995;

Lee et al., 1995; Meyer and Birchmeier, 1995) and nrg2a (Rasouli and Stainier, 2017) and erbb2

(Liu et al., 2010) mutant fish fail to form trabeculae. ERBBs are members of the epidermal growth

factor (EGF) receptor tyrosine kinase family. NRGs are expressed by the endocardium (Corfas et al.,

1995; Meyer and Birchmeier, 1995; Grego-Bessa et al., 2007; Rasouli and Stainier, 2017) and

bind to ERBBs on CMs, triggering homo- or heterodimerization of ERBB family members and lead-

ing to activation of downstream pathways (Sanchez-Soria and Camenisch, 2010). However, the tar-

gets of ERBB2 signaling that regulate CM behavior during trabeculation have not been identified.

Cardiac metabolism has been extensively studied in adult animals due to its central role in supply-

ing energy for cardiac contraction (Doenst et al., 2013; Kolwicz et al., 2013). Adult CMs rely mostly

on fatty acids as an energy substrate, and they are oxidized in mitochondria to generate ATP
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(Ellen Kreipke et al., 2016). Under conditions of hypertrophic or ischemic stress, CMs revert to gly-

colytic metabolism (Doenst et al., 2013), which is characteristic of embryonic cardiomyocytes and

uses glucose as a fuel. Besides its role in energy generation, little is known about the role of metabo-

lism during cardiac development.

Here, using high-resolution single cell imaging in zebrafish, we first show that developing CMs

undergo extensive shape changes during the formation of the trabecular layer. By modulating glu-

cose metabolism pharmacologically, we show that glycolysis regulates these processes. Using CM-

specific loss- and gain-of-function models as well as mutant animals compromised in their glycolytic

activity, we identify a role for glycolysis in cardiac wall morphogenesis. This study provides new

insights into the role of cardiac metabolism in cardiac development.

Results

Cardiomyocytes that enter the trabecular layer exhibit distinct
behaviors
During cardiac trabeculation in zebrafish and mouse, CMs delaminate from the compact layer to

seed the trabecular layer (Liu et al., 2010; Zhang et al., 2013; Staudt et al., 2014; Jiménez-

Amilburu et al., 2016; Del Monte-Nieto et al., 2018). Although CM behavior during trabeculation

has been observed in zebrafish (Staudt et al., 2014; Cherian et al., 2016), the 3D morphology of

single cardiomyocytes during the trabeculation process needs to be further explored. To this end,

we performed 3D time-course imaging using chimeric hearts generated by cell transplantation. To

label CM membranes and nuclei with EGFP and DsRed2 respectively, we used Tg(myl7:EGFP-

HRAS); Tg(myl7:nDsRed2) cells as donors (Figure 1a and Figure 1—figure supplement 1a). We

found that delaminating CMs exhibit morphological changes as well as rearrangements of contact

sites (Figure 1b–c” and Figure 1—figure supplement 1b–d”; Figure 1—videos 1 and 2), while

CMs remaining in the compact layer do not exhibit such changes (Figure 1d–e”). To examine cell-

cell junctions during delamination, we analyzed N-cadherin (Cdh2), a major adherens junction com-

ponent, at single cell resolution, and to this end used Tg(myl7:EGFP-HRAS); Tg(myl7:cdh2-tdTo-

mato) cells as donors (Figure 1—figure supplement 1e). We observed that N-cadherin localizes to

protruding membranes in delaminating CMs (Figure 1—figure supplement 1f–g”) and to the lateral

membranes of compact layer CMs (Figure 1—figure supplement 1h–i”), in agreement with a previ-

ous report (Cherian et al., 2016). Next, we analyzed sarcomere structure during delamination using

Tg(myl7:LIFEACT-GFP); Tg(myl7:nDsRed2) cells as donors. We found that CMs display partial sarco-

mere disassembly in their protrusions when entering the trabecular layer (Figure 1f–g”). These data

indicate that delaminating CMs exhibit distinct behaviors including dynamic cell shape changes.

ERBB2 signaling activates glycolysis in cardiomyocytes
To gain additional insight into the molecular mechanisms that regulate trabeculation, we focused on

ERBB2 signaling which is essential for this process in both mouse (Gassmann et al., 1995;

Lee et al., 1995; Meyer and Birchmeier, 1995) and zebrafish (Liu et al., 2010; Peshkovsky et al.,

2011; Rasouli and Stainier, 2017). In order to identify targets of ERBB2 signaling, we analyzed pro-

tein expression in a CM-specific transgenic mouse model inducibly expressing a constitutively active

form of ERBB2 (CAERBB2) (D’Uva et al., 2015). We found that upon CAERBB2 overexpression (OE),

several glycolytic enzymes were upregulated, while mitochondrial proteins and oxidative phosphory-

lation (OXPHOS)-related enzymes were downregulated (Figure 2—source data 1). We also tested

the effects of Erbb2 OE, which like CAErbb2 OE, activates downstream signaling (Pedersen et al.,

2009), on the expression of glycolytic enzyme genes in rat neonatal CMs, and found that many of

them were upregulated (Figure 2a). Notably, we found that Erbb2 OE in rat neonatal CMs greatly

upregulated the levels of pyruvate kinase M2 (PKM2), a key glycolytic enzyme, (Figure 2b and c),

and increased glycolytic activity as evidenced by measuring extracellular acidification rate (ECAR)

(Figure 2d). NRG1 stimulation also activated glycolysis in rat neonatal CMs (Figure 2—figure sup-

plement 1a). These findings are also supported by a study analyzing changes in mRNA levels in

caErbb2 OE mouse hearts (Honkoop et al., 2019). Moreover, we treated zebrafish embryos with an

Erbb2 inhibitor (Figure 2e), which has been shown to severely affect trabeculation (Figure 2—figure

supplement 1b) (Liu et al., 2010; Peshkovsky et al., 2011), and found that the cardiac expression
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of glycolytic enzyme genes was downregulated (Figure 2b). Altogether, these data indicate that

ERBB2 signaling activates glycolysis in CMs.

Glycolysis regulates cardiomyocyte delamination during development
In order to analyze the role of glycolysis during trabeculation, we first focused on pyruvate metabo-

lism. The pyruvate dehydrogenase complex (PDC) catalyzes the conversion of pyruvate to acetyl-

coenzyme A (acetyl-CoA), which enters the tricarboxylic acid cycle (Zhang et al., 2014). Pyruvate

dehydrogenase kinases (PDKs) inhibit PDC activity and enhance glycolysis in CMs (Zhao et al.,

2008) and cancer cells (Koukourakis et al., 2005; Lu et al., 2008; Leclerc et al., 2017; Peng et al.,

2018), thereby regulating the switch between glycolysis and OXPHOS (Zhang et al., 2014). Our

analyses show that ERBB2 signaling positively regulates Pdk3 gene as well as protein expression

Figure 1. Cardiomyocyte behavior during cardiac trabeculation. (a) Schematic of the transplantation experiment.

(b–e) 3D time-course images of chimeric hearts; magnified view (b’, c’, d’, e’) of area in white boxes and Y-Z plane

images (b”, c”, d”, e”) along white dashed lines (b’, c’, d’, e’). CMs initially in the compact layer (b’, b”) enter the

trabecular layer (c’, c”) exhibiting morphological changes and membrane protrusions (c’; arrowheads; n = 5 CMs);

CMs remaining in the compact layer (d’, d”, e’, e”) do not exhibit obvious morphological changes (n = 5 CMs).

The same CMs are shown at 126 and 175 hpf as indicated in the images. (f, g) 3D time-course images of chimeric

heart; magnified view (f’, f”, g’, g”) of area in white boxes. CMs entering the trabecular layer exhibit partial

disassembly of their sarcomeres (g’; arrowhead). Scale bars, 20 mm.

The online version of this article includes the following video and figure supplement(s) for figure 1:

Figure supplement 1. Cardiomyocytes change morphology and exhibit cell-cell junction rearrangements when

entering the trabecular layer.

Figure 1—video 1. Z-stack images of 126 hpf CMs related to Figure 1b’.

https://elifesciences.org/articles/50161#fig1video1

Figure 1—video 2. Z-stack images of 175 hpf CMs related to Figure 1c’.

https://elifesciences.org/articles/50161#fig1video2
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Figure 2. ERBB2 signaling activates glycolysis in cardiomyocytes. (a) qPCR analysis of mRNA levels of glycolytic

enzyme genes in control and Erbb2 overexpressing (OE) rat neonatal CMs (n = 3). Error bars, s.e.m. (b) Staining for

PKM2, CTNI and DNA (DAPI) in control and Erbb2 OE rat neonatal CMs; arrowheads point to PKM2+ CMs. (c)

Western blot analysis of PKM2 levels in control and Erbb2 OE rat neonatal CMs. (d) Extracellular acidification rate

(ECAR) analysis in control and Erbb2 OE rat neonatal CMs; glycolytic capacity shown on the right (n = 7). Error

bars, s.d. (e) qPCR analysis of mRNA levels of glycolytic enzyme genes in DMSO and Erbb2 inhibitor treated

zebrafish hearts (n = 3). Error bars, s.e.m.; *p<0.05 and **p<0.001 by two-tailed unpaired t-test. NS, not significant.

Scale bar, 20 mm.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Mass spectrometry data.

Source data 2. Primer sequences for qPCR analysis.

Source data 3. Mean Ct values of qPCR analysis in Figure 2a and e.

Figure supplement 1. NRG1/ERBB2 signaling activates glycolysis in CMs.

Figure supplement 2. Uncropped images related to western blotting data.
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(Figure 2a and b and Figure 2—source data 1). Thus, we hypothesized that PDK3 was one of the

key enzymes regulating glycolysis in delaminating CMs in response to Erbb2 signaling. Consistent

with this model, we found that the PDK inhibitor dichloroacetate (DCA) led to a significant reduction

in the number of CMs in the trabecular layer (Figure 3a). Of note, this phenotype is similar to the

one caused by Erbb2 inhibition (Figure 3a).

We next focused on pyruvate dehydrogenase E1 alpha 1 subunit a (pdha1a), which encodes a cat-

alytic subunit of the PDC. Analysis of CM-specific loss of Pdha1 in mice has revealed the importance

of PDC activity for OXPHOS (Sun et al., 2016). We generated a Tg(myl7:pdha1aSTA-P2A-tdTomato)

line to overexpress an activated form of Pdha1a in CMs. This activated form of Pdha1a (Pdha1aSTA)

contains mutations in its phosphorylation sites and thus is not inhibited by PDK. As a result, glycoly-

sis is reduced and OXPHOS enhanced, as previously shown in cancer cells (Hitosugi et al., 2011;

Fan et al., 2014). Notably, larvae expressing this activated form of Pdha1a exhibited a significant

decrease in the number of CMs in the trabecular layer (Figure 3b and Figure 3—figure supplement

1a). We also generated a Tg(myl7:pdk3b-P2A-tdTomato) line to overexpress pdk3b in CMs and

thereby promotes glycolysis (Lu et al., 2008), and found that these transgenic larvae exhibited a sig-

nificant increase in the number of CMs in the trabecular layer (Figure 3b). Next, we tested whether

the modulation of glycolysis affected CM proliferation and found that Tg(myl7:pdha1aSTA-P2A-

tdTomato) or Tg(myl7:pdk3b-P2A-tdTomato) larvae did not exhibit a significant change compared

to WT in the percentage of mVenus-gmnn+ CMs (Figure 3—figure supplement 1b). Furthermore,

we examined whether the modulation of glycolysis affected CM morphology in rat neonatal CMs in

culture and found that Pdk3 overexpression led to the induction of membrane protrusions

(Figure 3d and d’), as well as cell-cell junction rearrangements (Figure 3d–d”). Similar effects were

also observed following Erbb2 overexpression (Figure 3e–e”). Together, these data suggest that

CM morphological changes regulated by glycolysis are important for delamination.

In order to further assess the role of glycolysis in trabeculation, we focused on zebrafish pkm2 to

analyze a glycolytic enzyme mutant model. Loss of PKM2 has been shown to impair glycolysis in

endothelial cells (Stone et al., 2018), and PKM2 expression has been associated with glycolysis and

cell growth in cancer cells (Christofk et al., 2008). Moreover, in rat neonatal CMs, Erbb2 OE upre-

gulated Pkm2 (Figure 2b and c). Mammalian Pkm encodes two splice variants (M1 and M2 iso-

forms); PKM2 plays an important role in glycolysis, while PKM1 promotes OXPHOS (Christofk et al.,

2008; Lunt et al., 2015; Zheng et al., 2016). Zebrafish pkma2, a splice variant of pkma, and pkmb

are the orthologues of mammalian Pkm2 (Stone et al., 2018). During early development, pkma is

expressed in the heart, head, spinal cord and blood vessels, while pkmb is highly expressed in the

somites (Figure 4—figure supplement 1a). At later stages, pkmb becomes clearly expressed in the

heart (Figure 4—figure supplement 1b; Gunawan et al., 2019). We examined pkma2; pkmb dou-

ble mutants in which Pkma1, which drives pyruvate metabolism via OXPHOS, remains intact, and

found that loss of pkma2 and pkmb impaired trabeculation (Figure 4—figure supplement 1c). We

did not find evidence for increased CM apoptosis in pkma2; pkmb double mutants compared to WT

(Figure 4—figure supplement 1d). In order to examine the CM-specific role of pkma2 and pkmb in

trabeculation, we performed cell transplantation experiments whereby pkma2; pkmb double hetero-

zygous and double mutant cells were transplanted into WT embryos (Figure 4a). We found a signifi-

cantly lower percentage of double mutant versus double heterozygous CMs in the trabecular layer

of mosaic hearts (Figure 4b–c), indicating the importance of these genes in trabeculation. We also

counted the number of trabecular CMs in these chimeric hearts and observed no significant devia-

tion from WT (Figure 4—figure supplement 1e). Altogether, these results indicate that glycolysis

plays important and CM-autonomous roles during trabeculation.

Discussion
During trabeculation, CMs exhibit membrane protrusions (Staudt et al., 2014) and rearrange their

cell-cell junctions (Cherian et al., 2016; Miao et al., 2019). Our 3D single CM imaging clearly reveals

that CMs that enter the trabecular layer change their shape, similar to migrating cells, and lose cell-

cell adhesion, indicating that they undergo phenotypic changes. Epithelial cells exhibit cellular plas-

ticity as they change shape, and lose cell-cell adhesion and apicobasal polarity - a phenotypic trans-

formation called epithelial to mesenchymal transition (EMT) (Nieto, 2013; Ye and Weinberg, 2015;

Varga and Greten, 2017). Recent studies suggest that endothelial cells can also undergo
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Figure 3. Glycolysis regulates cardiac trabeculation. (a) Confocal images (mid-sagittal sections) of 77 hpf hearts

treated with DMSO, dichloroacetate (DCA) or Erbb2 inhibitor; magnified view of area in white boxes shown below;

arrowheads point to CMs in the trabecular layer; percentage of CMs in the trabecular layer shown on the right

(n = 5–7 ventricles). (b) Confocal images (mid-sagittal sections) of 77 hpf Tg(myl7:BFP-CAAX) alone or in

Figure 3 continued on next page
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phenotypic changes towards mesenchymal-like cells (Markwald et al., 1977; Zeisberg et al., 2007;

Pearson, 2015; Dejana et al., 2017; Kovacic et al., 2019). Before the onset of trabeculation, com-

pact layer CMs exhibit apicobasal polarity, and then some of them depolarize and subsequently

delaminate to seed the trabecular layer (Jiménez-Amilburu et al., 2016). Notably, ERBB2 signaling,

which is essential for trabeculation (Lee et al., 1995; Liu et al., 2010), induces EMT in breast cancer

cells (Carpenter et al., 2015; Ingthorsson et al., 2016). Altogether, these data indicate that during

trabeculation CMs undergo an EMT-like process triggered by ERBB2 signaling.

Figure 3 continued

combination with Tg(myl7:pdha1aSTA-P2A-tdTomato) or Tg(myl7:pdk3b-P2A-tdTomato) hearts; magnified view of

area in white boxes shown below; arrowheads point to CMs in the trabecular layer; percentage of CMs in the

trabecular layer shown on the right (n = 5–7 ventricles). (c–e”) Staining for CTNI, N-cadherin and DNA (DAPI) in

control (c), Pdk3 (d) and Erbb2 (e) OE rat neonatal CMs; magnified view of area in yellow (c’, d’, e’) and white (c”,

d”, e”) boxes; percentage of CMs exhibiting membrane protrusions shown on the right (n = 3 individual

experiments; each value corresponds to an average of 30 CMs). Pdk3 and Erbb2 OE causes rat neonatal CMs to

exhibit membrane protrusions (d’, e’; arrows) and cell-cell junction rearrangements (d’, e’; arrowheads). Error bars,

s.e.m.; *p<0.05 and **p<0.001 by ANOVA followed by Tukey’s HSD test. Scale bars, 20 mm.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Cardiomyocyte proliferation does not appear to be affected by modulation of glycolysis.

Figure 4. Loss of pkm2 impairs cardiac trabeculation. (a) Schematic of the transplantation experiment. (b, b’) 3D

and mid-sagittal section images of chimeric hearts using pkma2+/-; pkmb+/-; Tg(myl7:EGFP-HRAS) (b) and

pkma2-/-; pkmb-/-; Tg(myl7:EGFP-HRAS) (b’) cells as donors; magnified view of area in white boxes shown below.

(c) Percentage of donor-derived trabecular CMs (n = 10 ventricles). Error bars, s.e.m.; *p<0.05 by two-tailed

unpaired t-test. Scale bars, 20 mm.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Glycolytic enzymes regulate cardiac trabeculation.
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Cardiac metabolism is essential for energy production to sustain continuous cardiac contractions

(Doenst et al., 2013). However, the role of metabolism during cardiac development remains

unclear. Our study reveals that glycolysis regulates CM behavior during cardiac wall morphogenesis.

Glycolysis enables rapid production of ATP to meet the high-energy demands of cell proliferation

and migration in developing tissues, cancer cells and endothelial cells (Lunt and Vander Heiden,

2011; Liberti and Locasale, 2016; Potente and Carmeliet, 2017). Moreover, glycolytic intermedi-

ates are utilized to produce biomass including proteins and nucleic acids, further supporting these

processes (DeBerardinis et al., 2008; Potente and Carmeliet, 2017). In addition, excessive glycoly-

sis is associated with EMT in cancer cells (Peppicelli et al., 2014; Huang and Zong, 2017;

Morandi et al., 2017). These findings indicate that glycolysis could regulate CM behavior in several

different ways, and it will be interesting to dissect these processes further.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Genetic
reagent
(Danio rerio)

pkma2s717 Stone et al., 2018

Genetic
reagent
(Danio rerio)

pkmbs718 Stone et al., 2018

Gene
(Danio rerio)

pdk3b NM_001080688

Gene
(Danio rerio)

pdha1a NM_213393

Gene
(Rattus norvegicus)

Pdk3 NM_001106581

Gene
(Homo sapiens)

ERBB2 NM_004448

Antibody anti-Cardiac Troponin
I (Goat polyclonal)

Abcam AB_880622
Cat# ab56357

IF(1:500)

Antibody anti-PKM2
(Rabbit monoclonal)

Cell Signaling AB_1904096
Cat# D78A4

IF(1:100)
WB(1:1000)

Chemical
compound, drug

Sodium
dichloroacetate

Sigma Aldrich 347795

Software,
algorithm

Zen 2012
(Blue edition)

Carl Zeiss Microscopy Version 1.1.2.0

Software,
algorithm

Imaris x64 Bitplane Version 9.3.0

Other DAPI stain Sigma D954 (1 mg/mL)

Zebrafish
All zebrafish husbandry was performed under standard conditions in accordance with institutional

(MPG) and national ethical and animal welfare guidelines. The following transgenic lines and mutants

were used: Tg(myl7:EGFP-Has.HRAS)s883 (D’Amico et al., 2007) abbreviated Tg(myl7:EGFP-HRAS),

Tg(myl7:LIFEACT-GFP)s974 (Reischauer et al., 2014), Tg(�5.1myl7:DsRed2-NLS)f2Tg (Mably et al.,

2003) abbreviated Tg(myl7:nDsRed2), Tg(kdrl:Has.HRAS-mCherry)s896 (Chi et al., 2008) abbreviated

Tg(kdrl:HRAS-mCherry), Tg(myl7:cdh2-tdTomato)bns78 (Fukuda et al., 2017), Tg(myl7:BFP-

CAAX)bns193 (Guerra et al., 2018), Tg(myl7:mVenus-Gemnn)ncv43Tg (Jiménez-Amilburu et al., 2016),

pkma2s717 (Stone et al., 2018) and pkmbs718 (Stone et al., 2018). To generate Tg(myl7:pdk3b-P2A-

tdTomato)bns365 and Tg(myl7:pdha1aSTA-P2A-tdTomato)bns366, pdk3b (NM_001080688) and pdha1a

(NM_213393) were isolated by RT-PCR and cloned under the control of the myl7 promoter in a vec-

tor containing Tol2 elements and two I-SceI restriction enzyme sites. The following primers were

used to amplify the cDNA: pdk3b (forward 5’- AAGCAGACAGTGAACAAGCTTCCACCATGAAAC
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TGTTTATCTGCCTACTG-3’ and reverse 5’-TAGCTCCGCTTCCGTCGACTCTGTTGACTTTGTATG

TGGAC-3’); pdha1a (forward 5’-AAGCAGACAGTGAACAAGCTTCCACCATGAGAAAGATGC

TAACCATAATT-3’ and reverse 5’-TAGCTCCGCTTCCGTCGACGCTGATGGACTTGAGTTTG-3’).

To generate the plasmid encoding an activated form of pdha1a (pdha1aSTA), the equivalent resi-

dues for human PDHA1 Ser293 and Tyr301 were replaced by alanine using the following primers:

pdha1aSTA (forward 5’- CTATCGTTATCATGGACACGCTATGAGCGACCCAGGAGTCAGCGCCCG-

CACACGTGAGGAGA-3’ and reverse 5’- TTCCCTCACGTGTGCGGGCGCTGACTCCTGGGTCGC

TCATAGCGTGTCCATGATAACGATAG-3’). Plasmids were then injected into one-cell stage embryos

with I-SceI (NEB) or Tol2 mRNA.

Quantification of CMs in the trabecular layer
Quantification of trabecular CMs in 77 and 81 hpf heats was performed as previously described

(Jiménez-Amilburu et al., 2016) using the ZEN software (ZEISS). Starting from the mid-sagittal

plane, we quantified trabecular versus compact layer CMs in the ventricular outer curvature, 12

planes up and 12 planes down at an increment of 1 mm per plane. To quantify donor-derived trabec-

ular CMs in chimeric hearts generated by cell transplantation, we counted the number of donor-

derived trabecular and compact layer CMs. Then, the percentage of donor-derived trabecular CMs

was calculated by dividing the number of donor-derived trabecular CMs by the total number of

donor-derived CMs. Quantification of trabecular CMs in 131 hpf hearts was performed using the

ZEN software (ZEISS). Starting from the mid-sagittal plane, we measured the whole myocardial area

as well as the trabecular area, 10 mm up and 10 mm down. Three different sagittal planes per heart

were measured. The percentage of the trabecular area for each sagittal plane was calculated by

dividing the trabecular area by the myocardial area, and the average value was used for the graph.

In situ hybridization
In situ hybridization was performed as previously described (Thisse and Thisse, 2008). To synthesize

pkma (NM_199333) and pkmb (NM_001003488) RNA probes, the following primers were used to

amplify the corresponding DNA fragments: pkma (forward 5’- TTGGATCCACCATGTCTCAAAC

TAAAGCTC-3’ and reverse 5’- TTTGAATTCTTACGGCACTGGGACGACAC-3’); pkmb (forward 5’-

TTGGATCCACCATGTCTCAGACAAAGACTA-3’ and reverse 5’- TTTGAATTCTCAAGGCACCA-

CAACGATG’). The DNA fragments were cloned into the pCS2 vector. DIG-labeled RNA probes

were synthesized using a DIG RNA labeling kit (Sigma-Aldrich) and MegaScript T7 Transcription Kit

(Thermo Fisher Scientific).

Pharmacological treatments
Zebrafish embryos were treated with DMSO (control), 30 mM DCA (Sigma-Aldrich) or 5 mM Erbb2

inhibitor (AG1478; Sigma-Aldrich) from 50 hpf to 77 hpf and then analyzed.

TUNEL assay
To examine apoptosis, an in situ cell death detection kit (Roche) was used.

Immunostaining
Rat neonatal CMs were fixed in 4% paraformaldehyde. Anti-cardiac troponin I (CTNI) 1:500

(ab56357, Abcam) and anti-PKM2 1:100 (D78A4, Cell Signaling) were used. After washing with PBS,

samples were stained with Alexa-568, Alexa-488 or Alexa-647 secondary antibodies 1:500 (Life Tech-

nologies), followed by 40,6-Diamidine-20-phenylindole dihydrochloride (DAPI) 1:2000 (Merck) staining

to visualize DNA.

Cell culture
Rat neonatal (P2-P4) CMs were isolated and cultured as previously described (Fukuda et al., 2017).

Cells were plated onto 0.1% gelatin-coated (Sigma) plates and cultured in DMEM/F12 (Gibco) sup-

plemented with 5% horse serum, L-glutamine, Na-pyruvate, penicillin and streptomycin at 37˚C and

5% CO2. Adenovirus vectors for transfection into CMs were generated using the AdEasy system

(Agilent Technologies). To generate adenovirus vectors encoding PDK3 (NM_001106581) or ERBB2

(NM_004448), the following primers were used to amplify Pdk3 from rat neonatal CM or ERBB2
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from Addgene clone # 39321: Pdk3 (forward 5’-TAGAGATCTGGTACCGTCGACCACCATGCGGC

TCTTCTACCG-3’ and reverse 5’-GGATATCTTATCTAGAAGCTTCTAGAAAGTTTTATTACTCTTGATC

TTGTCC-3’); ERBB2 (forward 5’-TAGAGATCTGGTACCGTCGACGCGGCCGCACCACCATGTA

TCCATATGATGTTCCAGATTATGCTATGGAGCTGGCGGCCTTG-3’ and reverse 5’-GGATATCTTA

TCTAGAAGCTTTCACACTGGCACGTCCAG).

Imaging
Zebrafish embryos and larvae were anesthetized with 0.2% tricaine and mounted in 1% low-melting

agarose. A Zeiss spinning disk confocal microscope system (CSU-X1, Yokogawa) and ORCA-flash4.0

sCMOS camera (Hamamatsu) was used to acquire images. 3D images were processed using Imaris

(Bitplane). Circularity was measured using ImageJ (NIH).

Western blotting
Protein expression levels were analyzed by western blotting as previously described (Fukuda et al.,

2017). In brief, proteins were extracted with lysis buffer (150 mM Tris-HCl pH 7.5, 150 mM NaCl, 1%

Triton X-100, 0.2% SDS, 1 mM EDTA, 5 mM NaF, 0.1 mM orthovanadate, 1 mM phenylmethylsul-

fonyl fluoride and 1 mg/ml aprotinin). Proteins were separated by SDS-PAGE. The following primary

antibodies were used: anti-PKM2 1:1000 (D78A4, Cell Signaling) and anti-alpha-Tubulin 1:1000

(T6199, Sigma).

qPCR
Rat neonatal CMs were transfected with adenovirus vectors encoding genes of interest. 24 hr after

transfection, total RNA was extracted. Zebrafish embryos and larvae were treated with DMSO or

Erbb2 inhibitor from 55 to 106 hpf, and then the hearts were isolated to extract total RNA. A miR-

Neasy Mini kit (Qiagen) was used for total RNA extraction and cDNA was synthesized using a Super-

Script Second Strand kit (Life Technologies). A CFX Connect Real-Time system (Bio-Rad) and

DyNAmo colorFlash SYBR green qPCR kit (ThermoFisher Scientific) were used. Primer sequences are

shown in Figure 2—source data 2 and Ct values in Figure 2—source data 3.

Metabolic assays
The extracellular acidification rate (ECAR) was measured using a Seahorse XFe96 analyzer (Seahorse

Bioscience) following manufacturer’s protocol. Rat neonatal CMs were seeded at 30,000 cells/well

on to 0.1% gelatin-coated XFe96 microplates (Agilent Technologies) in DMEM/F12 (Gibco) contain-

ing 10% fetal bovine serum (FBS), L-glutamine, Na-pyruvate, penicillin and streptomycin at 37˚C and

5% CO2. After 24 hr of culture, the medium was replaced with serum-free medium. Then, cells were

transfected with adenovirus vectors encoding genes of interest or a mock adenovirus vector, or

treated with NRG1 (100 ng/ml; Abcam). 24 hr after transfection or NRG1 treatment, cells were main-

tained in non-buffered assay medium (Agilent Technologies) in a non-CO2 incubator 1 hr prior to the

assay. A glycolysis stress test kit (Seahorse Bioscience) was used to monitor ECAR where baseline

measurements were made followed by sequential injection of glucose (10 mM), oligomycin (2 mM),

and 2-DG (100 mM).
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