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Abstract Vascular network density determines the amount of oxygen and nutrients delivered to

host tissues, but how the vast diversity of densities is generated is unknown. Reiterations of

endothelial-tip-cell selection, sprout extension and anastomosis are the basis for vascular network

generation, a process governed by the VEGF/Notch feedback loop. Here, we find that temporal

regulation of this feedback loop, a previously unexplored dimension, is the key mechanism to

determine vascular density. Iterating between computational modeling and in vivo live imaging, we

demonstrate that the rate of tip-cell selection determines the length of linear sprout extension at

the expense of branching, dictating network density. We provide the first example of a host tissue-

derived signal (Semaphorin3E-Plexin-D1) that accelerates tip cell selection rate, yielding a dense

network. We propose that temporal regulation of this critical, iterative aspect of network formation

could be a general mechanism, and additional temporal regulators may exist to sculpt vascular

topology.

DOI: 10.7554/eLife.13212.001

Introduction
The unique vascular topology of different organs exists for organ-specific functions. Different vascu-

lar network densities determine the specific amount of oxygen and nutrients to be delivered to each

host tissue. Development of new vascular networks depends upon two types of specialized endothe-

lial cells that work together: (1) The endothelial ’tip cell’, which is located at the front of a growing

vessel and guides its extension by sensing and responding to environmental cues, analogous to the

axonal growth cone (Gerhardt et al., 2003; Kurz et al., 1996). (2) ’Stalk cells’, which trail behind the

tip cell and elongate the sprout. Tip and stalk cell identities are primarily controlled by the Dll4-

Notch lateral inhibition pathway, which is activated in endothelial cells in response to VEGF from the

local environment. VEGF-induced Dll4 activates Notch1 on the neighboring cell, leading to the

down-regulation of VEGF receptor levels (Figure 1B) (Hellström et al., 2007; Leslie et al., 2007;

Lobov et al., 2007; Suchting et al., 2007),(Benedito et al., 2009; Phng et al., 2009; Roca and

Adams, 2007). Thus, lateral inhibition between endothelial cells generates an alternating pattern of

active tip cells (Dll4 high) and inhibited stalk cells (Dll4 low). Moreover, tip cell selection is a dynamic

process, and tip cell identity is transient (Arima et al., 2011; Jakobsson et al., 2010). Reiteration of

tip cell selection, sprout extension, and connection of neighboring sprouts (anastomosis) is the basis

for building a sophisticated vascular network (Adams and Eichmann, 2010; Carmeliet, 2000).

Although this VEGF/Notch signaling pathway has been well studied and found to be conserved
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among different vascular beds and species, how this central pattern generator is modified by various

target tissue-specific signals to yield diverse network topologies is not known.

Here, we propose a general principle of how collective cell behavior determines the diverse den-

sities of different networks: the generation of vascular topologies depends heavily on the temporal

regulation of tip cell selection. Integrated simulations predict that as cell neighborhoods change,

due to anastomosis or cell rearrangement events, lateral inhibition patterns will necessarily be dis-

rupted, requiring continual re-selection of new tip cells (Bentley et al., 2009; 2014a). In fact, mouse

genetics experiments demonstrated that tip cell numbers are positively correlated with the branch-

ing points of the network (Hellström et al., 2007; Kim et al., 2011). Therefore, the length of time it

takes to establish (and re-establish) the alternating pattern of tip and stalk cells may be a missing,

critical determinant of vascular topology (Bentley et al., 2014b; 2014c). Here, we took an inte-

grated approach combining computational modeling, mouse genetics, and in vivo endothelial cell

tracking to determine whether tip/stalk patterning can be temporally modulated to generate differ-

ent topologies. We hypothesize that the frequency of tip cell selection determines the length of lin-

ear extension vs. branching, thus dictating the density of the network.

To begin to test this hypothesis, it is crucial to analyze dynamic single cell behavior and collective

movement in the context of network formation (Arima et al., 2011; Jakobsson et al., 2010). Previ-

ously, we used static analyses of the postnatal mouse retina as a model to understand how neural

signals shape vascular topology (Kim et al., 2011). We discovered that retina ganglion cell-derived

Semaphorin3E (Sema3E) and its receptor Plexin-D1, which is expressed in endothelial cells at the

front of actively sprouting blood vessels, control the VEGF/Notch pathway via a feedback mecha-

nism. Mice lacking either Sema3E or Plexin-D1 exhibited an uneven vascular growth front and a

eLife digest Many animals have a network of blood vessels that supplies oxygen and nutrients

to every part of the body. Each organ contains a unique pattern of blood vessels; some have lots of

densely packed vessels, while others have fewer vessels that are more widely spaced.

New blood vessels typically form by sprouting from the side of pre-existing vessels. This involves

the endothelial cells that line the inner wall of blood vessels moving outwards to create a sprout that

is made up of ‘tip cells’ and ‘stalk cells’. Tip cells are found at the front of the growing vessels and

encourage the formation of new sprouts, while the stalk cells trail behind and elongate the sprout.

Two signaling pathways that involve two proteins called VEGF and Notch interact with each other

to control which cells become tip cells and which become stalk cells. Cells with higher levels of

VEGF signaling will become tip cells. These cells also activate Notch signaling, which in turn blocks

VEGF signaling in their neighboring cells. This feedback mechanism enables a new sprout to form by

forcing cells present around a newly formed tip cell to become stalk cells. However, it was still not

understood how the different organs develop blood vessel networks with different densities.

In 2011, researchers revealed that two other proteins, Semaphorin3E and its receptor Plexin-D1,

are expressed in tip cells in the back of the eye in mice and control the VEGF/Notch signaling

pathway. Now Kur et al. – including some of the researchers involved in the 2011 work – have used a

combination of predictive computer simulations and experimental approaches to understand this

interaction in more detail.

The analysis showed that Semaphorin3E and Plexin-D1 speed up VEGF/Notch signaling, which

causes new tip cells to form at a faster rate, and results in a more densely packed network of blood

vessels. For example, in mice that lack Semaphorin3E and Plexin-D1, VEGF/Notch signaling was

slower and new tip cells formed more slowly, which resulted in the blood vessel network at the back

of the mice’s eyes being less dense.

Kur et al. propose that different organs have different ‘molecular metronomes’ that control the

pace of VEGF/Notch signaling. A fast acting metronome would yield a dense network, while a

slower one would form a less dense network. This helps to explain how diverse densities of blood

vessel networks are formed in different organs. This work may aid efforts to develop therapeutic

approaches for controlling the development of new blood vessels in cancers and other diseases.

DOI: 10.7554/eLife.13212.002
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Figure 1. Calibrated computational model predicts delayed tip cell selection in the absence of Sema3E-Plexin-D1

signaling. (A) Whole-mount vascular staining (Isolectin B4) of retinas from Sema3e-/- and wildtype littermates at P4.

The mutant vasculature exhibits a reduced number of tip cells and branching points (asterisks) and an uneven

growth front (arrows and arrowheads). Scale bar: 500 mm. (B) Feedback between the VEGF/Notch and Sema3E-

Plexin-D1 signaling pathways included in the extended agent-based computational model of tip cell selection. D1-

D4: transcriptional delays. r1-r3: recovery delays representing degradation. d, s, s: change in expression levels in

response to receptor activation. (C) Simulated tip cell selection. Colors represent Dll4 levels on a continuum from

purple (low) to green (high). The red boxes highlight a time frame in which a salt and pepper pattern has formed

in the control vessel, while in the absence of Sema3E-Plexin-D1 signaling, only few early tip cells have been

selected. (D) Average number of selected tip cells in simulated vessels. At a timepoint where the simulated control

vessel (black line) already exhibits an alternating pattern of tip and stalk cells, the simulated vessel lacking

Sema3E-Plexin-D1 signaling (blue line, for a given set of parameter values: d =5, s=3) shows a 50% reduction in tip

cells. Thin lines: standard deviation. n=50. (E) In silico Dll4 levels in single endothelial cells during simulated tip cell

Figure 1 continued on next page
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reduction of tip cells that resulted in a less branched network compared to their wildtype littermate

controls (Kim et al., 2011) (Figure 1A). However, it is not clear how this phenotype is generated:

specifically, how the Sema3E-Plexin-D1 feedback mechanism regulates VEGF/Notch signaling at a

dynamic cellular level, and whether changes in temporal modulation of this pathway lead to the

overall vascular topology phenotype.

To begin to understand how Sema3E-Plexin-D1 signaling modifies vascular topology formation in

a dynamic, spatiotemporal manner, we took advantage of an existing agent-based computational

model (the ’MemAgent-Spring Model’ or MSM) that simulates the cellular processes during tip cell

selection making explicit the time it takes for gene expression (e.g. transcription/translation) changes

to occur (Figure 1B,C – note time delay parameters D1 and D2) (Bentley et al., 2008; 2009). The

MSM has been tested against numerous independent experimental data sets and validated as pre-

dictive of new mechanisms in vivo/in vitro (Bentley et al., 2014a; Guarani et al., 2011;

Jakobsson et al., 2010). To now simulate tip cell selection in the context of Sema3E-Plexin-D1

crosstalk signaling with VEGF/Notch signaling (Fukushima et al., 2011; Kim et al., 2011) the MSM

model was extended by adding four new parameters (Figure 1B, Video 1–5), with sensitivity analy-

ses and calibration simulations performed, which include modulation of the existing parameter (d)

representing the induction level of Dll4 by VEGFR-2 activation (See methods section). These four

new parameters represent the time delay for induction of Plexin-D1 by VEGF (D3), the time delay

(D4) and strength (s) of the reduction of Dll4 levels in response to Sema3E-Plexin-D1 signaling,

based on the experimental data previously shown (Kim et al., 2011), as well as the degradation rate

of Plexin-D1 (r3). Loss of Sema3E-PlexinD1 signaling was simulated by setting all Plexin-D1 levels to

zero. Loss of function simulations recapitulated the two prominent features of Plxnd1-/- and

Sema3e-/- mutant retinal vasculature remarkably

Figure 1 continued

selection. In the control situation (top), Dll4 levels quickly stabilize. In the absence of Sema3E-Plexin-D1 signaling

(bottom) Dll4 levels fluctuate in near synchrony before they finally stabilize.

DOI: 10.7554/eLife.13212.003

Video 1. Calibration of time delay parameters

(induction of Plexin-D1, reduction of Dll4 levels).

Simulation of tip cell selection with Sema3E-Plexin-D1

related regulatory time delays equal to the time it takes

for pVEGFR-2 to up-regulate Dll4 (D3+D4=D1). Color

indicates cell Dll4 levels (green = high, purple = low).

DOI: 10.7554/eLife.13212.004

Video 2. Calibration of time delay parameters

(induction of Plexin-D1, reduction of Dll4 levels).

Simulation of tip cell selection with Sema3E-Plexin-D1

related regulatory time delays slightly slower than the

time it takes for pVEGFR-2 to up-regulate Dll4 (D3

+D4=D1+1). Dll4 levels flash irregularly between very

high and very low with no stable selection possible.

Color indicates cell Dll4 levels (green = high, purple =

low).

DOI: 10.7554/eLife.13212.005
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closely: In vivo, mutant vascular networks exhibit

fewer tip cells and 1.5–2 fold reduction in branching points, as well as an uneven growth front (com-

pare Figure 1A with 1C [red boxes]) (Kim et al., 2011). Furthermore, the dynamic nature of the sim-

ulations provided a novel insight to explain how this phenotype is generated. Simulations predict

that higher Dll4 levels in the cells generates a shift towards synchronized Dll4 fluctuations overtime

in contiguous cells, as they collectively battle more strongly via lateral inhibition negative feedback,

causing an overall delay in amplification of differences needed to select the alternating pattern of tip

Video 3. Calibration of time delay parameters

(induction of Plexin-D1, reduction of Dll4 levels).

Simulation of tip cell selection with Sema3E-Plexin-D1

related regulatory time delays slightly faster than the

time it takes for pVEGFR-2 to up-regulate Dll4 (D3

+D4=D1-1). Dll4 levels flash irregularly between very

high and very low with no stable selection possible.

Color indicates cell Dll4 levels (green = high, purple =

low).

DOI: 10.7554/eLife.13212.006

Video 4. Calibration of Plexin-D1 degradation rate.

Simulation of tip cell selection with slowed degradation

of Plexin-D1 allowing it to affect transcription of Dll4 for

one timestep (12 s) longer. Dll4 levels flash irregularly

between very high and very low with no stable

selection possible. Color indicates cell Dll4 levels

(green = high, purple = low).

DOI: 10.7554/eLife.13212.007

Video 5. Calibration of Plexin-D1 degradation rate.

Simulation of tip cell selection with slowed degradation

of Plexin-D1 allowing it to affect transcription of Dll4 for

two timesteps (30 s) longer. Dll4 levels flash irregularly

between very high and very low with no stable

selection possible. Color indicates cell Dll4 levels

(green = high, purple = low).

DOI: 10.7554/eLife.13212.008

Video 6. Simulation of a vessel with 20 endothelial

cells in the absence of Sema3E-Plexin-D1 signaling.

Extended regions occur with no sprouting as cells

battle for longer undergoing fluctuations as the Dll4

up-regulation is higher. These eventually resolve and

tip cells are selected across the whole region.

DOI: 10.7554/eLife.13212.009
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and stalk cells (Figure 1C–E,

Video 6,7). Therefore, computational simula-

tions suggest that Sema3E-Plexin-D1 signaling

enhances the speed and frequency of tip cell

selection and thus increases the density of reti-

nal vascular networks.

We next examined single cell behavior in a

mosaic environment, because lateral inhibition

requires collective coordination, and the relative,

not absolute, levels of Dll4 expression among

neighboring cells determine the outcome of the

tip cell selection process (Jakobsson et al.,

2010). A Plxnd1-/- cell will behave differently in

competition with a second Plxnd1-/- cell than in

competition with a wildtype cell. Thus, we inves-

tigated whether the cell autonomous function of

Sema3E-Plexin-D1 signaling in the direct compe-

tition process between two neighboring endo-

thelial cells can drive changes to the tip cell

selection dynamics. In a simulated mosaic vessel,

where cells lacking Sema3E-Plexin-D1 signaling

are intermingled with normal cells, the contribu-

tion of cells lacking Sema3E-Plexin-D1 signaling to the tip cell population was predicted to increase

to 68–74% (robustly across a range of parameter values: d =4–6, s=2–4) in comparison to control

cells (Figure 2A,B, Video 8), with an increased speed of patterning compared to a vessel entirely

lacking Sema3E-Plexin-D1 signaling. This result suggests that normally, Plexin-D1 cell-autonomously

suppresses the tip cell phenotype.

To test the direct competition of Plxnd1-/- cells and wildtype cells in vivo, we performed mosaic

analysis using mice with tamoxifen inducible loss of Plxnd1 expression in the vasculature (Cdh5-Cre-

ERT2; Plxnd1flox/flox). In the sprouting front of the wildtype retina, cells expressing Plexin-D1 were

equally distributed at both tip cell and the adjacent stalk cell positions (Figure 2C, left panel,

Figure 2D), showing they have no preference for either position. However, at approximately 45% of

Plxnd1-/- mosaicism, 75% of the Plxnd1-/- cells became tip cells (Figure 2C, middle panel,

Figure 2D) indicating that these cells do have a competitive advantage over Plexin-D1 expressing

wildtype cells during tip cell selection. In contrast, in control experiments using mice with tamoxifen

inducible expression of GFP (Cdh5-Cre-ERT2; Z/EG+), GFP positive cells showed no preference for

either position (Figure 2C, right panel, Figure 2D), demonstrating that preferential tip cell occu-

pancy of mutant cells is due to lack of Sema3E-Plexin-D1 signaling. Taken together, in silico predic-

tion and in vivo mosaic retinal analyses demonstrate that Sema3E-Plexin-D1 signaling suppresses the

tip cell phenotype in a cell-autonomous manner. Interestingly, this cell-autonomous effect at single

cell level contrasts with the effect of Sema3E-Plexin-D1 signaling at the collective level, where more

new tip cells are selected in the presence than in the absence of Sema3E-Plexin-D1 signaling (Fig-

ure 1). This finding highlights the differences between collective and cell autonomous behaviors,

and the challenge of intuiting one from the other.

Having confirmed that the calibrated set of parameters is valid to model contributions of the

Sema3E-Plexin-D1 pathway to VEGF/Notch patterning and to predict new in vivo data of a static

nature, we next employed the model to predict the effect of Sema3E-Plexin-D1 signaling on the rate

of tip cell selection during the fuller dynamic network formation processes in which tip and stalk cell

identities are constantly re-defined during cell rearrangement/position switching. Here, we used a

new ’MSM-CPM’ model that has been previously extended, parameterized and experimentally vali-

dated to simulate tip/stalk patterning together with cellular rearrangements within a vascular sprout

(Bentley et al., 2014a). In this model, a cell can move within the adhered collective of the sprout

powered by multiple local junctional movements. By incorporating the newly calibrated Sema3E-

PlexinD1 signaling extension the MSM-CPM model we simulated cell rearrangements in vascular

sprouts in the presence or absence of Sema3E-Plexin-D1 signaling (Figure 3A,B,

Video 9,10). Simulations predicted that in the presence of Sema3E-Plexin-D1 signaling, the tip cell

Video 7. Simulation of a wildtype vessel for

comparison with Video 6. The selection occurs much

faster and more regularly than in the vessel without

Sema3E-Plexin-D1 signaling.

DOI: 10.7554/eLife.13212.010
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Figure 2. Sema3E-PlexinD1 signaling is cell-autonomously required to suppress tip cell identity. (A) Simulated tip

cell selection in a mosaic vessel with 50% mutant cells placed randomly. Cells without Sema3E-Plexin-D1 signaling

are indicated by bright pink color, which turns to yellow if Dll4 levels increase. For wildtype cells: purple = low

Dll4, pink = high Dll4. (B) Comparison of simulated and in vivo contribution to the tip cell population by cells

lacking Sema3E-Plexin-D1 signaling at 45% mosaicism. A range of d values simulates different strengths of loss of

Sema3E-Plexin-D1 signaling. Simulations, n=50, in vivo, n=6. Data is represented as mean +/- SEM. (C) Analysis of

the occupation of tip or stalk cell position by Plxnd1 expressing wildtype cells in control retina (left), and Plxnd1-/-

cells (middle) or GFP+ cells (right) in mosaic retinas at P5. Red: vascular membrane staining (Isolectin B4), blue:

vascular nuclear staining (a-ERG), green: in situhybridization (left, middle), a-GFP staining (right). (D) Quantification

of c. n.s.= not significant, **p=0.0033. WT retinas, n=6; Plxnd1-/- mosaic retinas, n=6; GFP+ mosaic retinas, n=4.

Scale bar: 50 mm. Data is represented as mean +/- SEM.

DOI: 10.7554/eLife.13212.011
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is repeatedly overtaken by another cell. In con-

trast, in the absence of Sema3E-Plexin-D1 sig-

naling, tip cell overtaking frequency is reduced

by factor of 1.26; a given tip cell occupies the

tip cell position for a longer time (Figure 3C).

Given the MSM is a qualitative not quantitative

model we also performed simulations over a

range of parameters and found that if the

strength of Dll4 upregulation by VEGF (d) is

increased then this delay in overtaking is further

exaggerated; a given tip cell occupies the tip

cell position longer (Figure 3C).

To test experimentally if tip cell selection and

overtaking rates are slowed down in the absence

of Sema3E-Plexin-D1 signaling, we next per-

formed live endothelial cell tracking to follow

the behavior of individual cells in an actively

forming vascular network. Previously, live imag-

ing with single cell resolution has mainly been

described in sprouting assays using aortic rings

(Arima et al., 2011) or embryoid bodies (EBs)

generated from ES cells (Jakobsson et al.,

2010). However, those assays primarily give rise

to simple linear sprouts with less frequent

branching than observed during retinal angio-

genesis. To better mimic in vivo temporal and spatial events within a highly branched network, we

developed a new ex vivo system, using explants from embryonic lungs. Whole embryonic lungs

(E12.0) were embedded within a collagen matrix in a tissue culture dish containing medium supple-

mented with recombinant human VEGF. After one day, endothelial sprouts grow out of the explant

(Figure 4—figure supplement 1A) with tip cells extending filopodia into the collagen matrix (Fig-

ure 4—figure supplement 1B). We observed branching events at various positions of the sprouts

(Figure 4B), as well as anastomosis (Figure 4—figure supplement 1C), showing that all steps of the

in vivo angiogenic sprouting process are recapitulated in our system even though there is no gradi-

ent of VEGF signaling. Lung explants endogenously express Sema3e and Plxnd1 (Figure 4—figure

supplement 1D). We could also detect Plexin-D1 and Dll4 in sprouting endothelial cells (Figure 4—

figure supplement 1E,F). We next performed long-term live imaging of wildtype and Plxnd1-/-

explants and analyzed tip cell selection frequency. In contrast to the computational model where a

tip cell selection event can only occur via a switch between two cells at the tip of the sprout

(Figure 3A), in the live imaging assay, tip cell selection events occur in the following distinct catego-

ries (Figure 4A,B): a positional switch between a tip and a stalk cell in a linear sprout (switch), the

selection of a new tip cell at the front of the sprout (branch, type I) or at more proximal sites (branch,

type II). Single cells were tracked manually using a nuclear live stain. Consistent with the computa-

tional model prediction, in vivo live imaging data indeed showed a significant delay in the selection

of new tip cells in Plxnd1-/- vascular sprouts compared to wildtype sprouts. The overall appearance

of new tip cells, i.e. the tip cell selection frequency, was slowed down by factor 1.5 in the mutants

(Figure 4C,D, Video 11,12). When analyzing the different categories separately, the number of

events per total imaging time was significantly reduced in the categories ’switch’ and ’branch, type

II’ in the absence of Sema3E-Plexin-D1 signaling (Figure 4E).

Finally, to directly test experimentally whether the reduced tip cell selection rate observed by live

imaging in our Plxnd1-/- lung explant indeed leads to a less branched network over time, we ana-

lyzed the topology of the lung explant under the same culture conditions as the live imaging para-

digm. Using a computational method (Figure 4—figure supplement 2 and detailed description in

the material and methods section) to analyze the number of branching points in an unbiased way we

found a significant reduction in branching points of the network (Figure 4F,G). These data further

demonstrate that a slowed tip cell selection rate results in a less branched vascular network.

Video 8. Simulated mosaic vessel with 50% mutant

cells placed randomly. Cells without Sema3E-Plexin-D1

signaling are indicated by bright pink color, which turns

to yellow if Dll4 levels increase. For wildtype cells:

purple = low Dll4, pink = high Dll4 as before. This

chimera achieves a 75% contribution of mutant cells to

the tip.

DOI: 10.7554/eLife.13212.012
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Together, the ex vivo and in silico results demonstrate that Sema3E-Plexin-D1 signaling modulate

the pace of tip cell selection. In the absence of Sema3E-Plexin-D1 signaling, the rate of tip cell selec-

tion is reduced, which overall leads to longer linear sprout extension with less frequent branching

substantially influencing the architecture of the growing vasculature and resulting in a less dense net-

work, as seen in the Plxnd1 and Sema3e mutant lung explant as well as in retina (Kim et al., 2011).

Figure 3. Computational simulation predicts that lack of Sema3E-Plexin-D1 signaling leads to prolonged tip cell occupancy and reduced tip cell

overtaking frequency. (A) Single frames of cell rearrangements in simulated sprouts of 10 cells. VEGF gradient extends in direction of vessel. (B)

Kymograph plots of cell rearrangements in simulated sprouts. Each line represents one endothelial cell. Arrows indicate overtaking events at the tip cell

position in a and b. (C) Quantification of overtaking events at the tip cell position in the presence and absence of Sema3E-Plexin-D1 signaling. A range

of d values simulates different strengths of loss of Sema3E-Plexin-D1 signaling. The setting d=5, which matched loss of Sema3E-Plexin-D1 signaling in

other conditions in the paper exhibits a 1.26 slower tip cell overtaking frequency (events/hour.) As d increases there is a clear trend towards slower tip

cell overtaking across d values. Data is presented as mean +/- SD, n=50.

DOI: 10.7554/eLife.13212.013
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During angiogenesis, the topology of the network is shaped essentially through the dynamic pro-

cess of stalk cells turning into a new tip cell (tip cell selection), which is dependent on the Delta-

Notch lateral inhibition pathway, a widely used machinery to regulate aspects of development that

require temporal control by a ’molecular clock’. For example, during somitogenesis, Delta-Notch

oscillations determine the frequency of new somite formation (’the somite clock’) (Aulehla and Pour-

quié, 2008). In endothelial cells, we propose that modulation of any of the components of the cen-

tral pattern generator will result in an altered pace of Delta-notch oscillations and an altered vascular

patterning. Deceleration of the Delta-notch feedback loop (by a ’slow molecular metronome’) will

lead to the selection of fewer tip cells within a certain time frame and thus to the formation of a less

dense network with bigger pore sizes. Acceleration of the selection process (by a ’fast molecular

metronome’) would result in an overly dense network (Figure 4—figure supplement 3). However,

complex nonlinear feedback dynamics are often hard to intuit, and further careful simulation inte-

grated with experimentation will be required to fully elucidate the temporal modulations and topo-

logical outcomes possible.

In this work, we describe how Sema3E-Plexin-D1 signaling can modify vascular density by imping-

ing on the central pattern generator VEGF/Notch signaling. Our computational modeling predic-

tions, mouse genetics mosaic analysis, and live imaging of individual cell dynamics in actively

forming blood vessel networks and computational quantification of branching points show that the

lack of Sema3E-Plexin-D1 signaling slows down the rate of tip cell selection and rearrangement,

resulting in a less branched vascular network. Therefore, the Sema3E-Plexin-D1 pathway represents

a ’faster molecular metronome’ that results in a relatively dense network. These data suggest that

temporal regulation of this critical, iterative aspect of network formation could be a general mecha-

nism, and additional temporal regulators with varying pace (fast vs. slow) may exist to sculpt vascular

topology in different tissues. Furthermore, our findings may provide insights into our understanding

of morphogenesis in general, and aid in efforts to develop therapeutic approaches for tissue engi-

neering and control of tumor progression and vascular diseases.

Material and methods

Animals
Plxnd1flox/floxmice (Zhang et al., 2009), Plxnd1+/- mice (Gu et al., 2005) and Cdh5-Cre-ERT2 mice

(Monvoisin et al., 2006) were maintained on a C57Bl/6 background. Z/EG+ reporter (Novak et al.,

2000) mice were maintained on a 129P3J;C57Bl/6 mixed background. Pregnant mice were obtained

following overnight mating (day of vaginal plug was defined as embryonic day 0.5). All animals were

treated according to institutional and US National Institutes of Health (NIH) guidelines approved by

the Institutional Animal Care and Use Committee (IACUC) at Harvard Medical School.

Video 9. Simulation of normal cell rearrangement and

tip cell overtaking in a sprout consisting of ten cells,

two per vessel cross section. VEGF gradient extends in

the direction of the sprout. Each cell indicated by a

different color.

DOI: 10.7554/eLife.13212.014

Video 10. Simulation of cell rearrangement in a sprout,

in the absence of Sema3E-Plexin-D1, consisting of ten

cells, two per vessel cross-section. VEGF gradient

extends in the direction of the sprout. Each cell

indicated by a different color.

DOI: 10.7554/eLife.13212.015
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Figure 4. Endothelial cell live tracking in ex vivo lung explants reveals a reduction in tip cell selection frequency

and a less branched lung vascular network in the absence of Sema3E-Plexin-D1 signaling. (A) Different types of tip

cell selection events observed during live imaging. (B) Single frames from live imaging experiments illustrating the

different types of tip cell selection events. Arrowheads point out the newly selected tip cells. Nuclei: blue. Scale

bar: 50 mm. (C) Long-term live imaging experiments of vascular sprouts from wildtype and Plxnd1-/- lung explants.

Single planes from z-stacks are shown. Arrowheads indicate a tip cell selection event. Nuclei: blue (top and

middle), white (bottom). Individual nuclei are outlined by different colors in the middle panel. (D) Quantification of

tip cell selection frequency calculated as events per hour. Tip cell selection frequency is reduced by factor 1.5 in

Figure 4 continued on next page
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Mosaic retina analysis
Cre-mediated recombination was induced by intraperitoneal injection of tamoxifen (T5648, Sigma-

Aldrich) dissolved in safflower oil on postnatal day (P) 4. Due to the different Cre sensitivities at

Plxnd1 and Z/EG locus, we experimentally determined the dosage of tamoxifen necessary for 45%

of mosaicism. 25 pg of tamoxifen was injected in Cdh5-Cre-ERT2; Plxnd1flox/flox pups, and 10 ng of

tamoxifen was injected in Cdh5-Cre-ERT2; Z/EG+ pups. Mice were sacrificed at P5 and retinas were

isolated for analysis. In situ hybridization, Isolectin B4 staining and ERG immunohistochemistry

(1:200; SC353, Santa Cruz) were performed as described previously. Images of flat mounted retinas

were taken at 40x magnification using Zeiss LSM 510 META confocal microscope. Images were proc-

essed using Adobe Photoshop and Image J (National Institutes of Health). Mosaic recombination in

Cdh5-Cre-ERT2;Plxnd1flox/flox or Z/EG; Cdh5-Cre-ERT2 was analyzed by in situ signal or GFP positiv-

ity, respectively, in combination with Isolectin B4 and endothelial nuclear ERG staining. The tip cells

were determined as blind-ended endothelial cells that are associated with filopodia protrusions at

the sprouting front. Endothelial cells (either tip or stalk cells) were counted by combination of Erg

positive staining and morphological definition. 84 endothelial cells from 3 Cdh5-Cre-ERT2;Plxnd1flox/

flox animals and 64 endothelial cells from 3 wildtype animals were counted for tip cells and stalk cells

that were either Plxnd1 positive or negative. 37 endothelial cells from 2 Z/EG;Cdh5-Cre-ERT2 animals

were counted for tip cells and stalk cells that were either GFP positive or negative. Statistical signifi-

cance was tested using two-way Anova.

Figure 4 continued

sprouts from Plxnd1-/- explants. WT, n=24 sprouts from 12 explants. Plxnd1-/-, n=30 sprouts from 11 explants. Data

is represented as mean +/- SEM. (E) Quantification of tip cell selection frequency calculated as incidence of events

in each category as illustrated in (A) during total imaging time. **p=0.013 (D), *p=0.029 (e ‘switch’), 0.041 (e

‘branch, type II’), permutation test with shuffled genotypes. (F) Vascular sprouts originating from Plxnd1+/- and

Plxnd1-/- lung explants on day 3. Left: whole-mount vascular staining (green, PECAM), right: reconstructed/

skeletonized network, Scale bar: 250 mm. (G) Quantification of branching points per area. The number of

branching points is significantly reduced in Plxnd1-/- lung explants. Data is represented as mean +/- SEM.

Plxnd1+/-, n=7 explants; Plxnd1-/-, n=6 explants. ***p=0.0005, permutation test with shuffled genotypes.

DOI: 10.7554/eLife.13212.016

The following figure supplements are available for figure 4:

Figure supplement 1. The ex vivo sprouting assay.

DOI: 10.7554/eLife.13212.017

Figure supplement 2. Computational method used for vascular network analysis.

DOI: 10.7554/eLife.13212.018

Figure supplement 3. Model: Modifications of the central pattern generator lead to the formation of diverse

vascular topologies.

DOI: 10.7554/eLife.13212.019

Video 11. Wildtype sprout in ex vivo endothelial cell

tracking assay. The movie represents 9 hr of live

imaging and corresponds to Figure 4C, left panel.

Merge of fluorescent channel (nuclear live stain) and

brightfield channel. Arrows indicate newly selected tip

cells that give rise to a new sprout. Arrowhead

indicates a switching event. Single planes from z-stacks

are shown.

DOI: 10.7554/eLife.13212.020

Video 12. Plxnd1-/- sprout in ex vivo endothelial cell

tracking assay. The movie represents 9 hr of live

imaging and corresponds to Figure 4C, right panel.

Merge of fluorescent channel (nuclear live stain) and

brightfield channel. Arrows indicate newly selected tip

cells that give rise to a new sprout. Single planes from

z-stacks are shown.

DOI: 10.7554/eLife.13212.021
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RT-PCR
Total RNA was extracted from collagen embedded lung explants, or whole retina using the RNeasy

Micro Plus RNA extraction kit (Qiagen) according to manufacturer’s instructions. cDNA was gener-

ated from 100 ng total RNA using the Superscript III reverse transcription kit (Invitrogen). The follow-

ing primers were used to detect Plxnd1 and Sema3e transcripts: Sema3e forward 5’-

aggctacgcctgtcacataaa-3’, Sema3e reverse 5’-ccgttcttgatactcatccagc-3’; Plxnd1 forward 5’-gctgactg-

tagcctatgggga-3’,Plxnd1 reverse 5’- gccatctggtgggatgtcat-3’.

Ex vivo endothelial cell tracking assay
Lungs were dissected from E12.0 embryos in ice-cold dissecting medium (DMEM + Penicillin/Strep-

tomycin), divided into single lobes, washed in dissecting medium (30 min, 4˚C) and embedded in a

glass-bottom dish (Mattek) between two layers of polymerized collagen IA gel (1.5 mg/ml, Cellma-

trix) prepared as previously described(Jakobsson et al., 2006). After solidification of collagen

(30 min, 37˚C), imaging medium was added (DMEM without phenol red, 15% ES cell grade FBS, 30

ng/ml rhVEGF (R&D systems), antibiotics). Explants were grown overnight at 37˚C, 5% CO2. Next

day, nuclear live stain solution (NucBlue, Life Technologies, Carlsbad, CA) was added (2 drops/ml for

45 min). Imaging medium was replaced and explants were imaged immediately using a Leica SP8

confocal microscope equipped with a Tokai Hit chamber (37˚C, 5% CO2). 70 mm stacks were

acquired at 20x magnification every 10 min. Single cells were tracked manually using a combination

of nuclear staining and bright-field images of the sprouts. Per explant, 1–4 sprouts were analyzed for

9–20 hr. Tip cell selection frequency was calculated as selection events observed per hour live imag-

ing. All 3 types of tip cell selection events were considered for quantification of selection frequency.

Statistical significance was tested using a permutation test with shuffled genotypes.

Immunostaining of lung explants
Explants were dissected at E12.0 or E13.5, prepared as described above, and fixed on day 2 or 3 in

4% PFA for 1 hr at RT. Then they were washed in PBS (3 x 10 min), permeabilized in blocking solu-

tion (PBS + 2% BSA + 0.2% Triton) for 1 hr at RT (2 x 30 min) and incubated with PECAM (1:300,

BD), Plexin-D1 (abcam) or Dll4 (R&D) primary antibody in PBS + 0.2% Triton overnight at 4˚C and

additional 6 hrs at RT. Explants were then washed in PBS + 0.1% Triton (6x 30 min), incubated with

secondary antibody in PBS + 0.1% Triton overnight at 4˚C and washed in PBS + 0.1% Triton (2 x

30 min). If HRP-conjugated secondary antibody was used, explants were washed longer (3 x 30 min

in PBS) and stained with DAB staining solution (1 mg/ml Diaminobenzindine tetrahydrochloride in

PBS, Sigma) for 3 min. For network topology analysis, Alexa488 conjugated secondary antibody was

used and explants were imaged at a Leica SP8 confocal microscope at 10x magnification.

Computational modeling
In the previously established ’MemAgent-Spring Model’ (MSM) each endothelial cell is comprised of

multiple smaller computational elements (’agents’) that represent local sections of cell membrane

and actin tension beneath. The memAgents have dynamic internal levels of proteins, which enable

them to sense protein levels in the local extracellular environment (primarily VEGF ligands). The

endothelial cell integrates this local spatial information to determine its behavior (e.g. extension of

filopodia) and perform genetic regulatory processes (e.g. Dll4-Notch) after a time delay representing

the processes of transcription and translation (parameters D1 and D2 in Figure 1B). As the time

delay for Notch/VEGF gene expression is not currently known in the mouse, the model was cali-

brated to match the known Notch periodicity (30 min) of the zebrafish somite clock (Guidicelli and

Lewis, 2004) so D1=D2=28 time steps (representing 7 min of real time) as it was previously shown

that, consistent with period/delay relations in the Notch somite clock models (Guidicelli and Lewis,

2004), the periodicity of Notch/VEGF signaling in the MSM model = 2 x (D1+D2+R1+R2), where R1

and R2 are the recovery delays, representing degradation rates, which were both set to 1

(Bentley et. al., 2008).

To include Sema3E-Plexin-D1 interactions to the existing MSM model of VEGF/Notch/Dll4 signal-

ing in endothelial cells during tip/stalk selection (full model described in [Bentley et al., 2008;

2009]), four new parameters were included. Two new time delay parameters: D3 controls how long

it takes for VEGFR-2 to increase Plexin-D1 protein levels at the membrane and D4 determines the
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time it takes for an active Plexin-D1 receptor to lower Dll4 expression. Additionally s was added to

determine the strength of Plexin-D1 down-regulation of Dll4 (specifically how many fewer Dll4 are

produced for one active Plexin-D1 receptor) and r3, which controls how long the down regulation

effect lasts for, encompassing the factors such as Plexin-D1 degradation rate, see Figure 1B for

schematic.

As Sema3E is assumed to be uniformly present around the cell based on experimental data in the

mouse retina (Kim et al., 2011), activation of Plexin-D1 by Sema3E is not directly modeled, but sim-

ply assumed to occur at a constant level. As the exact number of Plexin-D1 receptors on the cell sur-

face is also not known we assume Plexin-D1 receptors vary within the same range as VEGFR-2

receptors (see (Bentley et al., 2008) for details), and are instantly activated by Sema3E when pres-

ent. These assumptions produce the most parsimonious model possible, permitting Plexin-D1 levels

to be controlled by just the D3 time delay parameter, and Sema3E-Plexin-D1 signaling strength to

be determined by the modulation of a single parameter s, which varies the strength of effect of the

signaling on Dll4 up-regulation specifically. Dll4 levels were then determined as follows:

Dll4tþ1 ¼Dll4tþV
00

d�P 00s

where V 00 is the number of active VEGFR-2 receptors by VEGF after time delay D1 has been applied,

representing the current active VEGFR-2 level affecting gene expression in the nucleus. Likewise P 00

is the number of Plexin-D1 receptors (assumed activated by Sema3E) able to affect gene expression

after time delay D4.

Calibrating Dll4 regulation parameters d; s
Previously d, which represents the up-regulation strength of Dll4 by VEGF-VEGFR-2 signaling, was

calibrated to 2 to generate matching tip/stalk pattern selection and sprouting behavior in vivo under

different conditions (Bentley et al., 2008; 2009). So now with a balancing inhibition term s repre-

senting reduction in Dll4 via Plexin-D1, we know that d - s = 2 is required for normal sprouting. Any

combination of d and s values such that this relation held true would give normal sprouting. To simu-

late loss of Sema3E-Plexin-D1 signaling s was set to zero. Thus the value for d chosen ultimately

determines the strength of the simulated Sema3E-Plexin-D1 mutant phenotype, hence results are

shown throughout across a range of d values when s = 0. For control simulations s = d-2.

Calibrating time delay parameters D3 and D4
Experiments indicate that the rate of Plexin-D1 up-regulation by pVEGFR-2 is fast compared to

pVEGFR-2 up-regulation of Dll4, indicating that together the delays D3+D4 >=D1. To investigate

the effects of varying the temporal regulation of Plexin-D1 on tip cell selection a sensitivity analysis

was performed simulating with different delay settings for the new parameters D3 and D4 (a full

analysis of varying delays D1 and D2 is given in [Bentley et al., 2008]). It was found that the lateral

inhibition mechanism is strictly sensitive to the values of these new delay parameters relative to the

existing delays D1 and D1. In the model, only a setting of D3+D4 =D1 would allow for normal tip

cell selection in control conditions (Video 1). Even a delay with D3 or D4 = ± 1 timestep in the model

(representing 15 s) would disrupt the process and tip cells could not be selected and the system falls

into unrealistic ’flashing’ oscillations as the cells instantly raise and then lower dll4 each time step

through the Notch/VEGF negative feedback loop resulting in a counter intuitive hypersprouting

rather than inhibited phenotype as no cell is under the inhibition long enough to become a stalk cell

(Video 2, 3). Interestingly if all delay parameters are set to zero, representing the null hypothesis

that no time delays are required to explain the phenotype, the same system behavior occurs as in

Video 2 and 3 illustrating the importance of explicitly representing the amount of time that gene

expression takes in computational models.

Calibrating the degradation rate r3
Disrupting the degradation rate r3 of Plexin-D1 was also found to have drastic affects on the ability

of the system to select tip cells. The r3 parameter was required to satisfy: r3 = r2 = r1 = 1 timestep

(representing 15 s). Any increase led to similar irregular flashing oscillations and abrogated tip cell

selection as seen with increases to the delays D3 or D4 (Video 4 and 5). Thus for all simulations D3

+D4 =D1, where D3= 1 and D4 = 27 timesteps.
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Mosaic vessel simulations
Mosaic vessels follow the same simulation method as simulations of a fully wildtype or mutant vessel,

except that at the start of the simulation each cell is randomly assigned a wildtype or mutant setting

of the d and s parameters (Video 8). 45% mosaicism was calculated as average of simulations with

40% and 50% mosaicism. Results were averaged over 50 runs.

The ’MSM-CPM’ model
In this model a cell can move within the adhered collective of the sprout powered by multiple local

junctional adhesion movements (based on the Cellular Potts Model ’CPM’ of differential adhesion

[Graner and Glazier, 1992]), which are regulated by VEGF/Notch signaling.

Computational method used for vascular network analysis
The stacks were processed and analyzed in 3D using the following Python 2.7 modules: Numpy,

Scipy, Matplotlib, Opencv2, Igraph and Networkx.

The first step of the algorithm was to apply a Gaussian smoothing filter to the stacks. A standard

deviation of 5 mm was used for the Gaussian kernel. Next, the moment-preserving threshold tech-

nique (Tsai, 1985) was used in order to find a proper threshold for stack binarization. Pixels having

intensity values larger than the calculated threshold were classified as belonging to a vessel. Remain-

ing image components(Stockman, and Shapiro, 2001) smaller than 20000 mm3 were considered

background noise and removed from the binary image. A thinning procedure (Palagyi and Kuba,

1998) was then applied to the binary image, resulting in what we call the skeleton (Costa and Cesar,

2009) of the blood vessels. The skeleton tends to present some sets of connected pixels having

more than two neighbors each. Such sets were erased from the skeleton and represented as a single

pixel at the center of mass of the set. The remaining skeleton pixels having at least three neighbors

were classified as branching points, while pixels having one neighbor were considered a termination

point.

Spurious skeleton segments were removed by an iterative algorithm. First, termination segments

smaller than 20 mm were erased, where a termination segment is defined as a segment having one

termination point. After erasing such segments, new small termination segments might appear. They

were iteratively erased until no new termination segments smaller than 20 mm remained. The sample

was then characterized by quantification of the remaining branching points. Finally, in order to vali-

date the analysis, we created images containing both the original image and the final skeletons and

verified that the obtained skeletons were accurately representing the original blood vessel structure.

Statistical significance was tested using a permutation test with shuffled genotypes.
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