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Abstract: Chloroplast RNA processing requires a large number of nuclear-encoded RNA binding
proteins (RBPs) that are imported post-translationally into the organelle. Most of these RBPs are
highly specific for one or few target RNAs. By contrast, members of the chloroplast ribonucleoprotein
family (cpRNPs) have a wider RNA target range. We here present a quantitative analysis of RNA
targets of the cpRNP CP31A using digestion-optimized RNA co-immunoprecipitation with deep
sequencing (DO-RIP-seq). This identifies the mRNAs coding for subunits of the chloroplast NAD(P)H
dehydrogenase (NDH) complex as main targets for CP31A. We demonstrate using whole-genome
gene expression analysis and targeted RNA gel blot hybridization that the ndh mRNAs are all
down-regulated in cp31a mutants. This diminishes the activity of the NDH complex. Our findings
demonstrate how a chloroplast RNA binding protein can combine functionally related RNAs into
one post-transcriptional operon.
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1. Introduction

Chloroplasts contain genetic information that is essential for photosynthesis. The expression of this
information is realized by a unique mixture of ancestral bacterial and derived eukaryotic features [1].
Chloroplast gene expression can be regulated on the transcriptional level [2,3], but post-transcriptional
processes are of at least equal importance [4–6]. The abundance of chloroplast mRNAs changes in
response to external triggers and functionally related RNAs can be combined into larger groups of
transcripts [7,8]. Sigma-factors required for the specificity of the plastid-encoded RNA polymerase have
been demonstrated to co-regulate functional classes of chloroplast genes at the level of transcription [9,10].
How co-regulation occurs on the post-transcriptional level, remains unknown.

One key evolutionary change in post-transcriptional processes between chloroplast and their
bacterial ancestors are the vastly increased RNA half lives in the organelle. In bacteria, transcription and
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translation are usually directly coupled and mRNAs have short half-lives (in the range of minutes; [11])
In chloroplasts, the half-lives of mRNAs are long (in the range of hours) and untranslated RNAs
accumulate in large amounts [12,13]. Important protein families responsible for RNA stability and thus
transcript accumulation are pentatricopeptide repeat (PPR) proteins and chloroplast ribonucleoproteins
(cpRNPs, [14,15]). The cpRNP protein family consists of ten members in Arabidopsis thaliana [15].
All cpRNPs are targeted to the chloroplast post-translationally, and dedicated import receptors appear
to be responsible for their transport across the chloroplast envelope [16,17]. Genetic analyses have
demonstrated that Arabidopsis CP31A supports RNA editing at multiple sites and modulates the
stability of mRNAs [18,19]. Interestingly, temperature modulates the effects of the loss of CP31A. In the
cold, the germination rate of null mutants is reduced and their newly emerging leaf tissue bleaches
at 8 ◦C [19]. All analyzed proteins of the photosynthetic apparatus are reduced in this cold-treated,
defective tissue. This was linked to multiple defects in RNA processing (e.g., RNA splicing, RNA editing,
and intercistronic processing), but is likely primarily caused by the strongly reduced accumulation
of multiple chloroplast mRNAs [19]. By contrast, under normal growth temperatures, the most
strong effect of the lesion in cp31a was observed for the ndhF mRNA, which encodes a subunit of
the NADH dehydrogenase-like complex or short NDH complex [18]. ndhF is hardly detectable
by RNA gel blot hybridization in cp31a mutants [18] and an analysis of remaining degradation
products suggested that CP31A helps to protect this mRNA against degradation from its 3′-end [19].
RNA co-immunoprecipitation analyses demonstrated that CP31A binds to the 3′-UTR of ndhF
and is required for the generation of the ndhF 3′-terminus under normal growth conditions [19].
A transcriptome-wide survey of RNA targets using RNA co-immunoprecipitation and microarray
analysis (RIP-chip) uncovered dozens of mRNAs co-precipitated with CP31A that were functionally
assigned to the various chloroplast thylakoid membrane complexes and also, to the ribosome.
By contrast, mature tRNAs and rRNAs were not among the identified RNA ligands. Thus, CP31A has
a broad RNA target range. However, the minimal defects observed at normal growth temperatures
suggests a hierarchy of functional relevance of CP31A at least under these conditions. We, therefore,
set out to determine quantitatively, which are the main targets of CP31A and analyze in a genome-wide,
quantitative fashion, which RNAs—next to the ndhF mRNA—are most strongly affected by the loss
of CP31A.

2. Results

2.1. CP31A Has a Preference for Transcripts Encoding Subunits of the NDH Complex

Previous studies using microarrays for the detection of RNA targets of CP31A were not quantitative,
amongst other reasons because probes used to detect the different RNAs differed in size and sequence
composition and were unable to differentiate between the two strands of a gene [19]. Another potential
bias was introduced by sample preparation. For the previous RIP-chips, chloroplasts were prepared
prior to extract preparation. Given that this procedure takes hours and is performed at or below 4 ◦C,
changes in the association of CP31A with RNAs could occur. We therefore established DO-RIP-Seq
for chloroplasts, which uses formaldehyde cross-linking in flash-frozen leaf tissues (Supplementary
Figure S1A). DO-RIP-Seq has been set up previously for HEK29 cells to quantify the binding site of
an RBP at the whole-transcript target level, but has not been applied to a whole organism yet [20].
Here, wild-type (WT) Arabidopsis seedlings were grown for 14 days under normal growth conditions
and then subjected to formaldehyde cross-linking and immunoprecipitation (IP); [19]. The tissue
lysates were treated with a nuclease to yield RNA fragments protected by RNA binding proteins.
Three biological replicates were performed. Successful recovery of CP31A in precipitates was verified
by immunoblotting (Supplementary Figure S1B). DO-RIP-Seq libraries were prepared from input
and pellet samples for all replicates (Supplementary Figure S1C). We tested the reproducibility
of the DO-RIP-Seq experiments by calculating pairwise correlation coefficients across all samples
(Supplementary Table S1). We found strong correlations among the input samples (average Pearson
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coefficient (R): 0.985), and the pellet samples from the IP (R: 0.999). This analysis demonstrates high
reproducibility between biological replicates of our DO-RIP-Seq assay (the data are deposited under
the GEO accession GSE152579).

For the analysis of DO-RIP-Seq reads, we mapped the reads to the chloroplast genome and
counted reads for each annotated protein coding gene (including intronic regions), taking only
reads into account that represent the functional strand (coding strand; according to NCBI acc. no.
NC_000932.1). A finer mapping of binding sites turned out to be difficult since we obtained too few
reads in the input library to allow calculation of enrichment ratios for shorter sequence stretches.
The chloroplast genome is transcribed in overlapping polycistronic RNAs, making a definition of
UTRs difficult. Nevertheless, most sequence elements important for RNA stability and translation
are located proximal to the annotated regions. We therefore included for our analysis the 100 nt
upstream and downstream of each gene, adding reads found here to the reads within the reading
frames. Read counts were normalized using TPM, in order to account for gene length and library depth.
A high pass filter was used to account for stochastic noise in low coverage genes, which excludes
genes with less than 5 reads in any library from the analysis. We then calculated the enrichment
of RNA in the pellet fraction of CP31A IPs versus the input fraction, averaging across the three
replicates. Using an enrichment of at least two-fold and a significance cutoff for enrichment of p ≤ 0.05
(one-sided, paired t-test), we identified 24 target RNAs for CP31A (Figure 1). Remarkably, all 11
mRNAs encoding NDH subunits are significantly enriched (Figure 1) and of the 10 most enriched
RNAs, 9 belong to the NDH complex (Supplementary Table S2). Gratifyingly and in line with our
previous analyses, ndhF is the second most enriched mRNA in this analysis (Figure 1). We also
performed immunoprecipitations with non-specific immunoglobulins (IgGs) as a negative control and
sequenced the co-precipitated RNA. As expected, with one exception, no significantly enriched RNAs
were found in this experiment (Supplementary Figure S1D). This demonstrates the specificity of RNA
enrichment in CP31A precipitates.
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2.2. NDH mRNAs Are Reduced in cp31a Null Mutants 

Figure 1. Target RNAs of CP31A identified by DO-RIP-Seq. The enrichment of RNAs in the pellet
samples of CP31A over the respective input samples is shown for all protein coding chloroplast genes
(based on the TPM normalized and log2-transformed read counts for every gene in every sample).
Three biological replicates were used. Genes surpassing the cut-off criteria, namely enrichment of
≥log2(1) and ≤p 0.05 were considered targets. Results for non-target genes were greyed out.
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2.2. NDH mRNAs Are Reduced in cp31a Null Mutants

We next investigated chloroplast RNA levels in cp31a versus WT samples using an oligonucleotide
tiling array that represents the entire chloroplast genome of Arabidopsis thaliana in a tiling fashion.
We scored only exon probes whose RNA levels were at least one-third lower in the mutant compared
to WT. Of all exon probes in the array, 16% represent ndh sequences. Importantly, among exon
probes whose signals were decreased in the mutants, 75% contained ndh sequences (Figure 2a,b,
Supplementary Figure S2). No other functional category showed enrichment in this analysis.
To confirm these results, we performed RNA gel-blot hybridization experiments for four ndh genes
that represent the four ndh operons in the chloroplast genome (Figure 2c). We analyzed cp31a mutant
RNAs alongside RNAs from seedlings with impairment in the expression of SIGMA FACTOR 4 (SIG4),
which is specifically required for the transcription of the ndhF mRNA [9], and CHLORORESPIRATORY
REDUCTION 2 (CRR2), which is required for the accumulation of monocistronic ndhB transcripts [21].
As expected, the control mutants showed specific defects for their known target RNAs (Figure 2c),
while all other transcript patterns are identical to WT and in line with previous publications [19,21,22].
By contrast, the ndhK transcripts accumulated to normal levels in these two control lines, and the
ndhD mRNA was only slightly decreased (Figure 2c). In contrast and consistent with our microarray
results, the cp31a mutants displayed reductions in all four ndh transcripts analyzed. The decrease was
most pronounced for ndhF, strong for ndhK and ndhB, and somewhat weaker for ndhD (Figure 2c).
Collectively, these findings indicate that CP31A stabilizes mRNAs from all four ndh operons, suggesting
that CP31A regulates ndh mRNAs as a group.
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Figure 2. Analysis of RNA accumulation in cp31a mutants. (a) Summary of microarray analyses of
14 days old WT and cp31a mutant seedlings. Relative abundance of exon probes showing at least
1.5-fold stronger signals in WT versus cp31a mutants. Three replicate microarray hybridizations were
analyzed and assigned to different gene categories. All results are presented in Supplementary Table S3.
(b) Relative distribution of all exon probes on the microarray to different gene categories. (c) RNA gel
blot analysis of 14 days old Arabidopsis seedlings. A quantity of 4 µg RNA from WT, cp31a mutants,
and two control mutants (crr2 and sig4) together with dilutions of WT samples (1/2 and 1/4) were
probed with radiolabeled RNA probes against four different ndh genes. The resulting autoradiographs
are always shown with the corresponding methylene blue stains of the membranes (below). The 2 kb
marker band is shown as a reference.



Int. J. Mol. Sci. 2020, 21, 5633 6 of 14

2.3. NDH Complex Activity Is Reduced, but Not Absent, in cp31a Mutants

To analyze the effect of reduced ndh mRNAs on the NDH complex, we isolated thylakoid
membranes from wild-type, cp31a mutants and crr2-2 control mutants and subjected them to
immunoblot analysis (Figure 3a). There were no working antibodies available to us for the chloroplast
encoded subunits of the NDH complex, but is has been shown that the nuclear-encoded subunit
NdhL is affected in mutants of the chloroplast-encoded subunits NdhB, D, and F [23]. However,
both NdhL as well as a second nuclear-encoded NDH subunit, PnsB2, accumulate to almost WT
levels in the cp31a mutant. In addition, disruption of CP31A does not affect protein levels of PGRL1
which is a component of the Antimycin A sensitive CET pathway (Figure 3a). We further examined
PSI-NDH supercomplex integrity in cp31a (Figure 3b). To this end, we separated thylakoid complexes
from wild-type, cp31a and crr2-2 control mutants by blue native (BN)-PAGE, transferred denatured
complexes to a PVDF membrane and immunodetected the NDH-complex subunit NdhT. NDH-PSI
supercomplex formation is only mildly affected in cp31a (80 ± 6%), while it is clearly reduced in crr2-2
(19 ± 2%) compared to the wild-type control. We next investigated the NDH activity by monitoring
chlorophyll fluorescence during a light-to-dark transition. Such a light change leads to a transient
increase in chlorophyll fluorescence, which is a result of the reduction of plastoquinone by the NDH
complex. In mutants defective in NDH activity, this increase of fluorescence in the dark is lacking [24].
In cp31a mutants, no or only a minor reduction in the increase in fluorescence was observed, while the
control mutant crr2-2, which is deficient in the NDH complex, is not showing any increase at all
(Figure 3c). This measurement was carried out in primary leaves of 14 days old seedlings. By contrast,
a marked decrease in post-illumination fluorescence is observed in cotyledons of the same plants
(Figure 3c). Given that the analysis of post-illumination rise in fluorescence is not quantitative, it does
not differentiate between different pathways to reduce plastoquinone and is thus in sum impractical
to uncover more subtle differences in NDH activity, we decided to measure NDH activity with an
additional method. In this assay, chlorophyll fluorescence is observed in purified and ruptured
chloroplasts after the addition of NADPH and Fd under low measuring light [25]. The experiment is
carried out either in the presence or the absence of antimycin A, an inhibitor of the alternative route of
electrons around PSI via PGR5/PGRL1. We observed that the increase in chlorophyll fluorescence after
addition of NADPH/Fd reached only a slightly lower plateau in cp31a compared with WT. However,
after antimycin treatment the effect is much more pronounced (Figure 3d), although the plateau reached
in cp31a mutants is still higher than in the crr2-2 mutant (Figure 3d). This suggests that NDH activity
is lowered in cp31a mutants relative to WT, but not fully absent. Moreover, the contribution of the
NDH-dependent pathway to CET is minor under normal conditions (Shikanai et al., 1998) and the
impact of CP31A disruption on the post-illumination fluorescence rise might be masked by the activity
of the PGR5/PGRL1 pathway.
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Figure 3. Analysis of NDH complex accumulation and activity in cp31a mutants. (a) Thylakoid
membranes were isolated from wild-type (Col-0), cp31a and crr2 plants. Proteins samples adjusted
to 2.5 µg chlorophyll were size-fractionated on SDS-PAGEs, transferred to polyvinylidene difluoride
membranes (PVDF) and probed with antibodies raised against NdhL, PnsB2 and PGRL1. As loading
control, PVDF membranes were stained with Coomassie Brilliant Blue G-250 (C.B.B.). (b) Thylakoid
membranes from wild-type (Col-0), cp31a and crr2 plants corresponding to 80 µg chlorophyll were
solubilized with 1% [w/v] n-dodecyl β-D-maltoside and fractionated by 4 to 12% BN-PAGE. The major
protein complexes were assigned to individual bands as described [26]. Denatured protein complexes
were then transferred to a PVDF membrane and probed with antibodies raised against the NdhT subunit
of the NDH complex. NDH-PSI supercomplex amounts in cp31a-1 and crr2-2 were quantified relative
to wild-type samples. Averages and standard deviations calculated from three technical replicates are
shown below the immunodetection. (c) NDH activity of 4-week-old wild-type (Col-0), cp31a and crr2
plants was assessed by chlorophyll fluorescence imaging analysis during a light-to-dark transition.
Measurements were made with leaves or cotyledons of 2-week-old plants. Leaves were exposed to
a saturating light flash (SP) to obtain maximum fluorescence (Fm) and then to low actinic light (AL)
for 5 min. AL was then turned off and the subsequent transient rise in fluorescence ascribed to NDH
activity was monitored using a pulse amplitude modulation chlorophyll fluorometer. The main panel
shows the typical course of wild-type chlorophyll fluorescence under these conditions. Insets are
magnified traces from the boxed area normalized to Fm. ML, measuring light. (d) Quantification
of cyclic electron transport (CET) rates by measuring the increases in chlorophyll fluorescence in
ruptured chloroplasts under low measuring light (1 µE/m2 s−1), after the addition of NADPH and Fd.
Measurements were carried out with or without adding an inhibitor of the PGR5/PGRL1-dependent
pathway of CET (Antimycin A = AA) to detect the activity of the alternative CET route via the NDH
complex. Chlorophyll fluorescence was normalized to Fm, which was determined by application of an
initial saturating light flash.
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3. Discussion

3.1. CP31A Co-Regulates ndh Genes

During the evolution of chloroplasts from cyanobacterial ancestors, operon structures were
disrupted, and operons were shuffled. Many chloroplast operons therefore include genes with different
functions. The ndh genes, for example, are separated into four transcriptional units in Arabidopsis and
are mixed with genes from other functional categories. This lack of conservation of operon structures
suggests that transcriptional units are less important than other processes for ndh gene regulation in the
chloroplast context, giving way to post-transcriptional processes. Translation plays an important role
for regulation [27], but it remains unclear, how post-transcriptional co-regulation is achieved prior to
translation. Our data lead us to propose that CP31A associates with all ndh mRNAs and that it prefers
ndh mRNAs over any other transcripts. This was made possible by applying the DO-RIP-Seq technique
to plants. We show that DO-RIP-Seq allows straight-forward quantification of RNA targets of plant
RNA binding proteins. This complements the crosslinking and immunoprecipitation method (iCLIP)
applied to plants previously, which allows base-resolution of RNA binding sites, but is also much more
elaborate [28]. A caveat of this approach is that the cross-linking step may lead to fixation of interactions
of CP31A with other proteins and thus it cannot be determined whether the identified RNA targets
are directly or indirectly associated with CP31A. Given that cpRNPs have been demonstrated to bind
RNA directly with their two canonical RNA recognition motifs [29,30], we assume that at least some of
CP31A’s target RNAs in DO-RIP-Seq experiments are due to direct interactions. How CP31A identifies
ndh transcripts is unclear at present. We did a survey of GC content and sequence motifs but could
not identify anything that would separate the ndh genes from other chloroplast genes. Techniques to
resolve the binding sites of CP31A could help to understand its preference for ndh mRNAs.

Importantly, the preference for ndh mRNAs is functionally relevant. ndh mRNAs are reduced in
cp31a mutants more than any other gene class. Since the loss of CP31A does not impede transcription [19]
and given that cpRNPs stabilize RNAs in vitro [31], we conclude that the protein is required for the
stability of ndh mRNAs. Such a stabilizing role could be carried out in conjunction with other proteins,
i.e., PPR proteins. An alternative explanation is that the loss of one RNA of the NDH complex
has an indirect, hierarchical effect on the other ndh RNAs that yields the observed reduction in all
ndh mRNAs. This phenomenon has been well described for hierarchical protein synthesis cascades in
chloroplasts [32], but it has not been previously shown to be relevant at the level of mRNA synthesis
or stability. Moreover, the likelihood of this scenario is weakened by our observation that the losses
of ndhF or ndhB in the sig4 or crr2 mutants, respectively, were not followed by the loss of all ndh
mRNAs. Taken together, our data indicate that CP31A serves to combine ndh mRNAs from different
genomic loci into a post-transcriptional operon in the chloroplast. Similar post-transcriptional operons,
or “RNA regulons”, have been well-described in fruit flies, budding yeast, and mammalian cells [33],
but were unknown in chloroplasts. In most cases, these RNA operons function in the combined
translation and/or stabilization of the participating RNAs [34–36]. Given the RNA-stabilizing roles of
cpRNPs in general and of CP31A in particular, we propose that CP31A adjusts the stability of the ndh
transcripts as a group.

3.2. CP31A Supports NDH Activity

The reduction of ndh mRNAs in cp31a mutants raises the question of the physiological consequences
of CP31A activity. The NHD complex is known to contribute to electron routes from stromal sources
into the plastoquinone pool and thus also supports cyclic electron flow around photosystem I [37].
The measurements of electron transport in cp31a mutants after light–dark shifts suggests that there
is a decreased capacity to reduce the plastoquinone pool in the mutant. However, the reduction
is at best mild and only clearly visible when measuring this effect in cotyledons. When we used
Antimycin A to block the flow of electrons via the competing PGR5/PGRL1 shunt, we observed a clear
reduction of cyclic electron flow in the cp31a mutants versus WT plants. These results indicate that
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the PGR5/PGRL1 route compensates for the reduced activity of the NDH complex in cp31a mutants.
Importantly, the reduction in CET seen is not as pronounced as in crr2 mutants. CRR2 mutants show a
drastic reduction of the ndhB mRNA and were demonstrated previously to show a strong reduction
in NDH complex accumulation and activity [21]. The comparatively mild reduction in cp31a mutant
suggests that there is considerable residual NDH complex activity in these plants. This is in line with
our observation that only a slight reduction of PSI-NDH supercomplex formation could be identified
in BN PAGE gels. These results are at variance with our previous measurements that suggested a
more drastic reduction of NDH activity in cp31a plants grown in the green house [18], while the plants
analyzed here were raised in a phytotron. In general, different analyses of NDH complex mutants
have yet to deliver a uniform picture of the function of the complex, its impact on electron transport,
and other resulting phenotypes. This is particularly controversial when it comes to the role of the
NDH complex under different stress conditions. There is, for example, an ongoing debate about
the susceptibility of NDH complex mutants to strong light [38–41]. Moreover, NDH function can
be activated by hydrogen peroxide [42] and is linked to the chloroplast redox regulation network
via the NADPH-thioredoxin reductase NTRC [43]. Clearly, the function of the NDH complex differs
depending on plant and leaf age, growth conditions, and which species is analyzed [44]. In this
regard, it is noteworthy that we report here a lower activity of the NDH complex in cotyledons than
in primary leaves of cp31a mutants. Cotyledons are not only older than primary leaves but are also
physiologically and morphologically very different from primary leaves, all of which could underlie
the bigger impact of the cp31a lesion on NDH complex activity in this tissue. In sum, we propose that
differences in growth conditions and leaf age are behind the variance observed in NDH activity in
cp31a mutants. Understanding the physiological relevance of CP31A for NDH complex activity under
varying conditions will require further investigation.

4. Materials and Methods

4.1. Plant Growth

Arabidopsis thaliana Columbia-0, cp31a-1 T-DNA insertion mutants [18] were grown on soil with
a 16 h light/8 h dark cycle at 23 ◦C in a CLF growth cabinet at 120 µmol·m−2

·s−1. For DO-RIP-seq
experiments plants were grown on a soil/vermiculite 4:1 mixture at 21 ◦C for 14 days (normal conditions).

4.2. Immunoblot Analysis

Immunoblot analysis for the DO-RIP-seq experiments was performed as previously
reported [19] with protein samples taken from the input, supernatant and pellet fraction of
the co-immunoprecipitations.

4.3. DO-RIP-Seq Analysis

This protocol was built on previous efforts to identify quantitatively RNA species bound to an
RBP in human cells [20,45]. Arabidopsis thaliana plants were harvested in triplicates after 14 days and
flash-frozen in liquid nitrogen. The flash-frozen plant material was ground in liquid nitrogen. Between
250 to 350 mg plant material was suspended in 3 mL DO-RIP-seq lysis buffer containing formaldehyde
(50 mM HEPES-KOH pH 8.0, 200 mM KCl, 5 mM MgCl2, 5 mM CaCl2, 0.5% Nonidet P-40, 0.5% Sodium
deoxycholate, 1x cOmpleteTM, EDTA-free Protease Inhibitor Cocktail (Roche), 1% formaldehyde) per
1 g plant material. Crosslinking was performed for 10 min at room temperature, while samples were
constantly rotated and quenched by the addition of 125 mM glycine with subsequent incubation at room
temperature for 5 min. The plant extract was centrifuged for 20 min at 20,000× g and 4 ◦C to remove
insoluble plant material. An aliqout of the supernatant was used for a BCA assay (Pierce™ BCA™
Protein-Assay), in order to normalize the input amount used for immunoprecipitation according to
protein content. The rest of the supernatant was stored at −80 ◦C.
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For the DO-RIP, 8 µL affinity-purified anti-CP31A antibody [19] was bound to 50 µL Dynabeads
ProteinG (Invitrogen) under rotation (15 rpm). The plant extract was thawed and centrifuged for
10 min at 20,000× g and 4 ◦C. A volume representing approximately 2 mg of protein of each sample
was filled up to 790 µL using CO-IP buffer (150 mM NaCl, 20 mM Tris-HCl pH 7.5, 2 mM MgCl2,
0.5% Nonidet P-40, 5µg/mL Aprotinin). 10 µL RNaseI (0.5U/µL) were added to each sample, as well
as the antibody-coated magnetic beads resuspended in 200 µL CO-IP buffer. The samples were then
incubated for 60 min at 15 rpm and 4 ◦C. A total of 190 µL of the antibody-bead solution was taken as
the input sample. After the IP, the beads were washed four times in CoIP buffer and resuspended in
Proteinase K buffer (100 mM NaCl, 10 mM Tris-HCl pH 7.0, 1 mM EDTA, 0.5% SDS). 10 µL SDS (10%)
were added to the input samples.

The crosslink was reversed with 0.1 mg/mL Proteinase K (ThermoFisher Scientific, Darmstadt,
Germany) at 50 ◦C for 1 h and RNA was extracted from input and pellet fractions using TRIzol
and RNA Clean and Concentrator Columns (Zymo Research, Irvine, CA, USA) according to the
manufacturer’s instructions.

Library preparation was performed with the NEBNext® Multiplex Small RNA Library
Prep Set for Illumina (New England BioLabs, Frankfurt, Germany) according to the
manufacturer’s instructions with few deviations. Library preparation was performed for half
the volume. Additionally, a 5′ adaptor including unique molecular identifiers (UMI) was used
(5′-rGrUrUrCrArGrArGrUrUrCrUrArCrArGrUrCrCrGrArCrGrArUrCGATCNNNNNNNN-3′). PCR
amplification was performed using the KAPA HiFi HotStart ReadyMix with the cycling protocol for
library amplification for Illumina platforms and an annealing temperature of 62 ◦C. The PCR amplified
cDNA construct was purified using the GeneJET PCR Purification Kit (ThermoFisher Scientific)
according to the manufacturer’s instructions and then separated on 6% polyacrylamide gel. Library
fragments between 160 bp and 190 bp were extracted from the gel according to the NEBNext® protocol
and subjected to Illumina sequencing.

For the bioinformatic identification of the CP31A target RNAs, the following steps were performed.
The samples were adapter trimmed and filtered for reads size between 40 and 60 bp, using TrimGalore
(0.6.4). The 8 bp UMI sequence in the RNA adapter was extracted and reads were deduplicated after
mapping using umi_tools (0.5.4). Mapping was performed using STAR (2.5.3). The Arabidopsis thaliana
genome TAIR 10 was used as reference. The intron length was set to minimum 500 bp and maximum
1200 bp, reflecting the intron length in the chloroplast genome. Read counts were calculated using the
featureCounts function of Rsubread (2.0.1) for all protein-coding genes in the chloroplast, including
intronic sequences and 100 bp of upstream and downstream UTR. Read counts of all samples were
normalized by gene length and library depth using TPM. In order to avoid biased results from stochastic
noise, a high pass filter was used to exclude genes from the analysis, which had less than 5 read counts
in any sample. The TPM scores for each gene were log2-transformed for the calculation of enrichment
values of pulldown samples over input samples and for the calculation of significance of enrichment
by a one-sided, paired t-test using the three replicates of input and pulldown samples.

4.4. Microarray Analysis

Leaves from two-weeks-old Arabidopsis thaliana WT and cp31a seedlings (1.6 g each) were
homogenized in liquid nitrogen, thawed in 10.6 mL ribosome extraction buffer [46] and flash-frozen
in liquid nitrogen. Total RNA was extracted using TRIzolTM (Thermo Fisher) according to the
manufacturer’s instructions. DNA was removed by multiple DNaseI treatments. Ribosomal RNA
(rRNA) was removed from the samples using the Plant Leaf Ribo-ZeroTM Magnetic Kit (Illumina Inc.,
San Diego, CA, USA) according to the manufacturer’s instructions. The rRNA-depleted RNA was
fragmented by incubation in fragmentation buffer [46] for 12.5 min at 85 ◦C. The reaction was stopped
by the addition of EDTA, pH 8.0 to a final concentration of 50 mM. RNA was extracted using
phenol/chloroform/isoamyl alcohol and ethanol precipitation. Equal amounts of fragmented RNA
from WT and cp31a were labeled with fluorescent dyes (Cy5 and Cy3) using the ULSTM aRNA labeling
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kit (KREATECH Diagnostics, Leica Biosystems, Nussloch, Germany) according to the manufacturer’s
instructions. Hybridization was performed as in [46] to a custom microarray (MYcroarray, Ann Arbor,
Mi, USA) covering the complete Arabidopsis thaliana chloroplast genome. Array washing, scanning and
initial analysis was performed as described in [47]. Probes were assigned to different gene categories
(see Supplementary Table S3). Median fluorescent ratios of WT versus cp31a mutants were normalized
to their total intensity between the three biological replicates. Normalized median ratios were used to
calculate the mean of all replicates. Probes with less than six spots total, probes overlapping genes
belonging to different categories and rRNA probes were not included in the analysis. Only exon probes
showing at least 1.5-fold stronger signals in WT versus cp31a mutants were scored.

4.5. RNA Extraction and RNA Gel Blot Analysis

Total RNA was extracted from fully developed leafs (0.1 g) powdered in liquid nitrogen using
Trizol (Thermo Fisher) according to the manufacturer’s protocol. DNA was removed from RNA
samples by three consecutive DNase I treatments and Phenol/Chloroform/Isoamyl alcohol extractions.
Total RNA (4 µg) was fractioned on 1.2% agarose gels containing 1.2% formaldehyde, blotted and
hybridized with radiolabeled RNA probes produced by T7 in vitro transcription from PCR products
generated with primer combinations described in Supplementary Table S4.

4.6. Analysis of NDH Complex Abundance

Thylakoids were isolated as described in [48] from four-week-old plants grown on potting soil
(A210, Stender AG, Schermbeck, Germany) exposed to a long-day light regime (80–120 µE m2 s−1,
16 h light/8 h dark) in a temperature-controlled growth cabinet (22 ◦C in the light phase, 18 ◦C in
the dark phase). Chlorophyll concentration was determined according to [49]. SDS-, BN-PAGE and
immunodetection assays were carried out as described [50]. NdhT signals derived from PSI-NDH
supercomplexes were quantified with the Bio-1D software (Vilbert Lourmat, Eberhardzell, Germany).

4.7. NDH Complex Activity Analysis

The postillumination chlorophyll fluorescence rise was determined as described in Shikanai et al. 1998
using an imaging chlorophyll fluorometer (Imaging-PAM system; Heinz Walz GmbH, Effeltrich, Germany).
After dark-incubation for 20 min, seedlings in the four-leaf stage were exposed to pulsed, blue measuring
light. Maximal chlorophyll fluorescence (Fm) was recorded by applying a short saturating light flash. Then,
plants were subjected to 5 min of blue actinic light (80 µmol ×m−2 s−1) followed by dark incubation to
analyse the postillumination chlorophyll fluorescence rise of cotyledons and primary leaves. CET activity
measurements of ruptured chloroplasts were carried out as described [51,52].

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/16/
5633/s1.
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