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Materials and methods 

Measurement of psychophysiological stress response markers 

Heart rate      

We used a standard pulse oximeter included in the Physiological Monitoring Unit of the 

MRI scanner to acquire pulse rates during experimental stages B and D. Compatible with 

our processing of fMRI data, only the last 8 min of stage D were evaluated for heart rate 

computation during stress. Details of heart rate determination including filtering are 

delineated in Weygandt et al. (2016). Based on a visual inspection of the filtered raw data, 

the quality of heart signals was considered sufficient for 20 of all 25 patients. The signals 

of these 20 patients were used for heart rate-related analyses, the data of the remaining 

five patients were considered as outliers and thus discarded.  

Salivary cortisol 

HPA-axis activity was assessed by salivary cortisol levels measured across the stress task 

(which took place in a constant time window between 3 and 7 pm across all pwMS to 

control for circadian variations). A salivary cortisol collection system (Sarsted, Germany) 

was used to acquire the samples. Specifically, participants were asked to keep the saliva 

collection device for 2 minutes in their mouth. Samples were stored at -80 °C until assayed 

using an Enzyme Linked Immunosorbent Assay (IBL, Germany). Salivary cortisol 

concentrations were measured in nanomoles per liter. Salivary cortisol data, which were 

already acquired in our recent cross-sectional study (10), were available for 13 out of 36 

pwMS included in (10). For the subsample of 25 pwMS evaluated in the present 

longitudinal study, salivary cortisol data were available for 8 pwMS. Given that we were 

only interested in associations of immediate stress response markers and future atrophy 

in pwMS in this study (and not in an analysis of immediate and delayed 
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psychophysiological and neural stress responses as in [10]), we only evaluated cortisol 

data acquired during three stages in this longitudinal work (i.e., during A Pre-Baseline, C 

Pre-Stress, and E Post-Stress). Consistent with the other (neural and psychophysiological) 

stress response markers evaluated in the present work, salivary cortisol data acquired 

during an additional, delayed post-stress measurement in (10) were not analyzed. 

 

MRI sequences  

We acquired MR images of multiple sclerosis patients acquired during T0 and T1 with the 

same 3 Tesla whole-body tomograph (Magnetom Trio, Siemens, Erlangen, Germany) 

using a standard 12-channel head coil. For fMRI scans, we used a pseudo-continuous 

Arterial-Spin Labeling (ASL) Echo-Planar Imaging (EPI) sequence (Wang et al., 2005) 

roughly covering the whole brain (22 ascending transversal slices, slice thickness 5.75 

mm [including 15% inter-slice gap]; in-plane voxel resolution 3 · 3 mm2; TR = 4000 ms; 

TE = 19ms; FA = 90°; FOV = 192 · 192 mm2; matrix size = 64 · 64; label duration 1.5 sec, 

post-label delay 1.2 sec; phase-encoding direction anterior to posterior). One hundred 

and twenty images (60 control and 60 label) were acquired during the Rest stage (B; 8 

minutes duration), 180 images (90 control, 90 label) during the Stress stage (D; 12 

minutes duration).  

In addition, two spin-echo EPI reference volumes with opposite phase encoding 

directions (anterior to posterior, posterior to anterior) were acquired in advance to the 

Rest and Stress ASL measurements with the same parameters as reported above to 

facilitate distortion correction of ASL images.  

An anatomical T1-weighted sequence and a T2-weighted sequence were acquired 

with the following parameters: (T1) 176 slices; slice thickness 1.3 mm; in-plane voxel 

resolution 1.5 · 1.5 mm2; TR = 1720 ms; TE = 2.34 ms; FA = 9°; FOV = 192 · 192 mm2; 
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matrix size = 128 × 128; 1 minute and 43 seconds duration; (T2) 176 slices; 1 mm 

isotropic voxels; TR = 5000 ms; TE = 502 ms; FA = 120°; FOV = 256 · 256 mm2; matrix size 

= 256 · 256; 5 minutes and 52 seconds duration.  

Anatomical T1-weighted MRI scans of healthy controls were acquired at the 

University Medical Center Hamburg-Eppendorf in Hamburg using a 3 Tesla whole-body 

tomograph (Magnetom Skyra, Siemens, Erlangen, Germany) and a standard 32-channel 

head coil (256 slices; slice thickness 0.94 mm; in-plane voxel resolution 0.83 · 0.83 mm2; 

TR = 2500 ms; TE = 2.12 ms; FA = 9°; FOV = 193 · 239 mm2; matrix size = 232 × 288; 4 

minutes and 57 seconds duration). 

 

 

MRI preprocessing 

Anatomical images 

Lesion mapping 

Supervised by a neuroradiologists, experienced raters manually generated patient-

specific masks for voxels containing focal lesions with ITK-SNAP 

(http://www.itksnap.org) using patients’ T2-weighted images.  

 

Segmentation of T1-weighted anatomical brain images 

To segment the brain of each participant and time point into areas of GM, white matter 

(WM), and cerebro-spinal fluid (CSF) we determined voxel images assessing the 

probability of each coordinate to belong to the three tissues with the combined spatial 

normalization and segmentation SPM12 (Wellcome Trust Centre for Neuroimaging, 

Institute of Neurology, UCL, London UK  http://www.fil.ion.ucl.ac.uk/spm) algorithm 

based on T1-weighted images. Coordinates containing lesioned tissue as reflected by the 

http://www.itksnap.org/
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lesion maps coregistered to the T1-weighted images were excluded. GM, WM, and CSF 

probability maps were computed once in the participant-specific (‘native’) image space 

and once in the anatomical Montreal Neurological Institute (MNI) standard space 

(Tzourio-Mazoyer et al., 2002). The latter maps were adjusted for spatial deformations 

applied during the normalization which yielded ‘modulated’ tissue probability maps.  

 

Determination of a GM group mask for fMRI analyses 

To constrain our fMRI analyses to functional brain activity signals from healthy GM, we 

determined a group mask for this tissue in MNI-space which was derived from the 

modulated tissue probability maps of multiple sclerosis patients. Based on these maps, 

we computed the voxel-wise average modulated tissue probability for GM, WM and CSF 

across all patients. We then assigned each voxel to the tissue class for which the mean was 

maximal.  

Coordinates which contained lesions according to the co-registered patient-

specific lesion maps in at least one patient were excluded from the mask. Moreover, we 

removed the six direct neighbor voxels of each lesion voxels, i.e. voxel having a Euclidean 

distance of no more than one voxel to a given lesion coordinate to account for potential 

partial voluming effects. Finally, voxel coordinates located in the GM group mask that 

were covered by all fMRI scans of all patients were entered into the predictive functional 

MRI group analysis. 

 

Determination of regional GM volume 

For the computation of regional longitudinal GM atrophy, we determined the volume of 

the 122 GM areas included in the Neuromorphometrics atlas (defined in MNI-space and 

derived from the OASIS project; http://Neuromorphometrics.com; derived; 

http://neuromorphometrics.com/
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http://www.oasis-brains.org; distributed by SPM12) separately for T0 and T1 in four 

fully automated steps. Please note that the outcome of this automated procedure was 

validated by a neuroradiologist (M. S.).  

First, we used the transformation parameters for co-registration of anatomical T1-

weighted images from native to MNI-space (determined during segmentation) to perform 

an inverse co-registration. In particular, we registered the neuroanatomical atlas and the 

SPM12 templates for GM, WM, and CSF defined in MNI-space to the native T1-weighted 

image space.  

In the second step, we assigned each voxel coordinate in native image space to one 

of the three tissue classes using their native space tissue probability maps as well as the 

tissue templates and lesion masks co-registered to the native T1-weighted image space. 

Specifically, a voxel was either assigned to GM (i.e. the target tissue type) i. if the 

probability for this tissue was larger than for WM and CSF based on the probabilistic 

tissue maps or ii. if the coordinate was simultaneously located in the manually determined 

and co-registered  lesion mask and a GM area as determined by the co-registered GM 

group template. Please note that the latter step was necessary to determine the tissue 

class of voxels within lesions as the segmentation procedure does not yield reliable results 

for lesion coordinates. Please also note that we computed the GM volume measures in 

native T1-weighted image space to harness its high spatial resolution and thus reduce 

partial voluming effects.  

In the third, we assigned each voxel coordinate classified as GM in the second step 

that was covered by the co-registered neuroanatomical atlas to its corresponding region 

in the atlas.  

In the fourth step, we used a region growth algorithm to assign GM coordinates 

located inside the GM group mask but outside the co-registered atlas to one of the 122 GM 

http://www.oasis-brains.org/
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atlas regions. This was necessary as the co-registered atlas covered only approximately 

80% of GM voxels due to individual anatomical variations. After the number of voxels was 

determined for each atlas region, we computed the regional GM volume by multiplying 

the number of voxels by the volume of a voxel in mm3. Longitudinal volume differences 

(T1 minus T0) were then entered as criteria into our predictive fMRI analysis.  

 

Functional images  

In this study, we evaluated fMRI images that were already analyzed in Weygandt et al. 

(2016). Preprocessing of these images comprised six steps. Specifically, we first linearly 

co-registered the perfusion scans to spin-echo EPI reference volumes with anterior to 

posterior phase encoding direction measured in advance of each of the two fMRI blocks 

using the realignment algorithm of the SPM ASL processing software ASLtbx (Wang et al., 

2008). In the second step, we employed the FSL top-up algorithm (Andersson et al., 2003) 

to remove spatial image distortions from the realigned ASL scans induced by B0-field 

inhomogeneities. Both spin-echo EPI reference images with opposing phase encoding 

direction were used in this procedure. In the third step, we linearly co-registered the 

preprocessed ASL images to the high-resolution anatomical T1-weighted scan of a patient. 

In the fourth step, images resulting from the previous were spatially smoothed with a 

three-dimensional isotropic Gaussian kernel at full width and half maximum of 8 mm. In 

the fifth step, we determined voxel images of the average regional cerebral blood flow 

(CBF; ml/100g/min) for the (final) 8 minutes of the rest and the stress measurement 

based on control-label pairs with ASLtbx (Wang et al., 2008). Please note that only the 

final 8 minutes of the stress stage were used for averaging to control for scan duration 

across both conditions and task settings within the stress condition. Finally, we used the 

mapping parameters computed during segmentation of T1-weighted scans to register the 
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average regional CBF maps of both fMRI conditions to the MNI space. These spatially 

normalized regional CBF maps (voxel size of 3 · 3 · 3 mm3) computed for each patient and 

both fMRI conditions separately entered the fMRI group analysis (unlike contrast maps 

reflecting the regional CBF differences between stress and resting stage as in Weygandt 

et al., 2016). 

 

 

Statistical analyses 

Longitudinal GM atrophy 

Main effect of group on longitudinal GM atrophy 

In the supplementary results section, we report results obtained in the second/factorial 

analysis presented in the analysis of longitudinal GM volume loss in the main text for the 

main effect of group on regional GM volume in all 122 areas. We report these findings in 

order to highlight GM regions affected by multiple sclerosis atrophy independent of the 

temporal dynamics of this process. 

 

Psychophysiological stress task responses  

Here, we test the suitability of the mental arithmetic stress paradigm to induce stress in 

terms of perceived psychological stress, heart rate, and salivary cortisol. Specifically, we 

used LME regression to evaluate whether perceived stress is higher during the post-stress 

(E) than the pre-stress rating stage (C) and whether our heart rate measure determined 

for the stress stage (D) is higher than that determined for rest (B). Again, patients’ sex, 

age, progressive disease type, task load, and a fixed and random intercept were included 

in the model as covariates of no interest and permutation testing (10000 permutations of 

the task-stage vector / covariate of interest) was used for inference.  
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Stress-related variations in salivary cortisol release across experimental stages in 

pwMS were evaluated in a very similar fashion. Contrary to the analysis of perceived 

stress and heart rate, however, we decided to model cortisol data across the three 

respective stages (i.e., A Pre-Baseline, C Pre-Stress, and E Post-Stress) in each of the two 

LME regression analysis conducted to account for the smaller number of samples 

available (i.e., N = 8) and thus to increase the power of the analyses. Specifically, we used 

a dichotomous covariate of interest coding 1 for stage E and 0 for stages A and C to 

contrast differences in cortisol release between the post-stress vs. both pre-stress stages 

in a first LME analysis. Motivated by findings showing that an MRI scanning session can 

act as a potent stressor/trigger for cortisol release independent of the stimuli applied and 

that this stressor can trigger a maximal cortisol release at session (i.e., stressor) onset 

which is then followed by a continuous decline in release across the session (Muehlhan et 

al., 2011), we then proceeded by testing an alternative covariate of interest in a second 

analysis.  Specifically, the respective regressor of interest in this analysis coded 1 for stage 

A, 2 for C, and 3 for E to evaluate whether such a continuous decline in cortisol release is 

also present in our data. As for perceived stress and heart rate, patients’ sex, age, 

progressive disease type, task load, and a fixed and random intercept were included in the 

model as covariates of no interest in both cortisol data analyses.  

 

Predicting future multiple sclerosis GM atrophy based on neural stress responses 

Computation of neural network stress responses 

In this analysis, we tested whether task-induced activity changes of neural networks 

predict longitudinal GM volume differences (i.e., for T1 – T0) in regions subject to GM 

atrophy in pwMS. The predictors of interest for this analysis, the neural network stress 

response parameters, were computed in three steps. 
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In the first, we determined neural networks based on patients’ brain activity 

during the stress stage with SVD, a signal processing technique widely applied for the 

analysis of complex multivariate biological data (Wall et al., 2003; Mourao-Miranda et al., 

2005). Specifically, SVD decomposes a given set of manifest/directly measurable data 

represented by matrix X into three matrices U, S and V. In the present study, the elements 

of X reflect the average CBF for each participant (one participant per matrix row) and 121 

regions (one region per matrix column) comprised in the Neuromorphometrics atlas. 

(Please note that in contrast to our anatomical data only 121 regions could be evaluated 

for fMRI as a single small inferior cerebellar area (i.e. Vermal Lobules VIII-X) was not 

covered across all patients by the ASL fMRI sequence.) More specifically, matrix XRest 

contained these data for the resting measurement while matrix XStress contained the data 

for stress. After the average regional CBF values for both matrices were determined, they 

were standardized (i.e., centered) patient-wise by subtracting the average CBF of a given 

patient across all 121 regions during a given task stage. After applying SVD to XStress, we 

obtained UStress, SStress and VStress. The columns of UStress contain the principal components 

of XStress which reflect the characteristic variation of network activity (one column per 

network) across participants (one column element per patient). This characteristic 

variation underlies the signals of individual regions (columns in XStress) depending on the 

relatedness between a given region and network. The relatedness between a given 

network and all included regions of interest is reflected in a network-specific column of 

VStress which is frequently called the matrix of Eigenimages of raw data (e.g., Mourao-

Miranda et al., 2005). Finally, SStress corresponds to the matrix of singular values which 

reflect the strength of the contribution of each of the PC activity signals to the activity of 

all regions. Importantly, it is possible to reconstruct the raw data (here: the centered CBF 
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signals of individual regions) from the ‘latent’ variables determined by SVD by computing 

X = U ∙ S ∙ VT.  

As we were interested in differential network activity (i.e. network activity 

differences for stress minus rest), we computed the activity of our networks during the 

resting stage in the second step. Specifically, we used the Eigenimages and the matrix of 

singular values determined for stress and the centered regional CBF signals for rest and 

computed U*Rest = XRest ∙ (SStress ∙ VTStress)+. In this equation, (SStress ∙ VTStress)+ corresponds to 

the Moore-Penrose pseudoinverse of SStress ∙ VTStress.  

In the third step, we determined the differential network activity for stress minus 

rest by computing ∆U = UStress – U*Rest. Please note that it was impossible to determine 

differential activity by simply calculating ∆U = UStress - URest (i.e. using network activity 

URest as determined by SVD of XRest) as the principal components identified by SVD are 

based on the correlations (i.e. ‘connectivity’) between regions. Since these correlations 

differ for XRest and XStress (compare Fig. 3a), the PCs (i.e. neural networks) identified by 

SVD of XRest would not have been the same as the PCs identified by SVD of XStress. See Fig. 

S1 below for an illustration of the procedure. 
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Figure S1 illustrates the network parameter computation method. Abbrev.: ctrd., 
centered; For details, see text. 
 

 

Determination of brain regions contributing significantly to the activity of networks 

To identify areas contributing significantly to the activity of networks described above, 

we used permutation testing (10000 permutations). In each permutation, all rows of each 

column of XStress were permuted independently first. Then, we computed the SVD of the 

permuted version of XStress and pooled all resulting elements of VStress across all 

permutations. Finally, we only considered those regions as significantly contributing to a 

given network which had a VStress-score (computed based on non-permuted XStress) 

smaller than the value with the 2.5% smallest value in the VStress-score distribution or 

larger than the value with the 2.5% largest value in this distribution (cf. Mourao-Miranda 

et al., 2005). 
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Stress network activity differences between persons with MS and controls To test 

whether atrophy-predictive neural network activity (i.e., of the 18th and the 22nd network; 

see Results) was characterized by hyper- or hypoactivity in MS, we compared the 

differential stress network activity parameters for pwMS (i.e., columns in ΔU for the 18th 

and the 22nd neural network; see ’Computation of neural network stress responses’ 

above) with the corresponding factors computed for the persons included in the fMRI 

control group. Specifically, we first computed U*Rest HC = XRest HC ∙ (SStress MS ∙ VTStress MS)+ and 

U*Stress HC = XStress HC ∙ (SStress MS ∙ VTStress MS)+ based on the fMRI data of the fMRI control group. 

In the next step, we subtracted U*Rest HC from U*Stress HC to obtain differential stress network 

responses ΔU in HCs. 

 After these differential activity parameters were determined, we conducted robust 

regression analyses testing differences of these parameters between pwMS and persons 

in the fMRI control group for both networks. Specifically, a dichotomous regressor coding 

ones for pwMS and zeros for HCs served as covariate of interest. Participants’ sex, age, 

and whether or not a progressive MS was present (plus constant) served as covariates of 

no interest. Again, permutation testing was used for inference (10000 permutations of 

the covariate of no interest).  

 

 

Predicting future GM atrophy in MS based on stress-related cortisol release 

In this analysis, we tested with robust regression whether the difference in cortisol 

release post-stress minus pre-stress (covariate of interest) in eight pwMS predicts the 

future atrophy of right superior parietal lobule and of right exterior cerebellum. Again, 

patients’ regional GM volume at T0, sex, age, the presence of progressive MS, task load, 
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and a constant served as covariates of no interest. Permutation testing was used for 

inference (10000 permutations). 

 

Associations between stress-related cortisol release, atrophy-predictive neural 

network activity, and perceived stress in MS 

Here, we evaluated in two analyses using robust regression whether stress-related 

cortisol release across patients is related to differential brain activity of each of the two 

atrophy-predictive networks (18 and 22). Specifically, differential activity of each 

network was treated as covariate of interest once. Variations in cortisol release post-

stress minus pre-stress across patients served as criterion, and patients’ sex, age, the 

presence of progressive MS, task load (plus constant) as covariates of no interest. 

Permutation testing (10000 permutations) was used for inference. 

 Finally, we also tested whether the mentioned differences in cortisol release for 

stress minus rest are related to perceived stress. Except for the fact that perceived stress 

served as covariate of interest, all aspects were identical to the two analyses conducted 

for modelling based on neural network activity. 
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Results 

Demographic and clinical participant characteristics  

An LME analysis showed that the EDSS (corrected for sex, age, progressive disease type 

[y/n], fixed and random intercept) did not vary significantly across time according to a 

two-sided threshold of α = 0.05 (t45 = -0.45, p = 0.669). The volume of T2-weighted lesions 

was Md = 4.61 cm3 (Rg: 0.09 – 48.91 cm3) at T0 and Md = 5.68 cm3 (Rg: 0.17 – 49.34 cm3) 

at T1. According to a longitudinal LME analysis and to a two-sided threshold of α = 0.05 

this increase (evaluated based on log-transformed lesion volume computed via ln [lesion 

volume + 0.001] and corrected for the same covariates of no interest as used for EDSS) 

was significant (t = 3.50, p = 0.002).  

To evaluate the inflammatory disease activity preceding study participation, a 

neuroradiologist (M. S.) compared a T2w MRI brain scan acquired within a median time 

period of 321 days (Rg = 169 – 435 days) before the baseline visit T0 (available for 15 

PwMS) to the corresponding T2w scan acquired at T0. The comparison showed that only 

three PwMS had developed new lesions in this pre-study period (Md = 0 new lesions; Rg 

= 0 - 4 new lesions). Moreover, the median number of days since the end of the last relapse 

before T0 across all 25 PwMS was 657 days (Rg = 50 – 3550 days). Thus, the inflammatory 

disease activity prior to study participation at T0 was small.  

 

Longitudinal GM volume loss 

Fig. S2 below shows the regions in the atlas with significantly different GM volume in 

patients than controls across both time points or areas with a significant main effect of 

group on regional GM volume in the factorial analysis presented in the main text 

respectively.  
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Figure S2 depicts the main effect of group on GM volume across both time points. All 
areas identified with the two-sided test and aFWE = 0.05 / 122 = 4.1 ∙ 10-4 indicated areas 
with less GM volume in patients than controls.  
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Psychophysiological stress task responses  

These supplementary analyses confirmed that the task also induced stress on the level of 

the two psychophysiological stress response measures heart rate and perceived stress. In 

particular, the median level of perceived stress increased from 2 during pre-stress to 5 

during post-stress (t = 2.5, p = 0.012). Moreover, the median heart rate increased form 73 

beats per minute during the rest to 77 during the stress stage (t = 5.0, p < 10-4). Results 

for the supplementary analyses evaluating the relation of stress and salivary cortisol 

release are shown in the below Figure S3.  

 

Figure S3. Relation of stress and salivary cortisol release. (a) depicts the association 
between the dichotomous regressor coding 1 for the post-stress (E) and 0 for both pre-
stress conditions (A, C). Moreover, (b) shows the association between a linear regressor 
coding 1 for stage A, 2 for C, and 3 for E. In both panels (a) and (b), the criterion was 
corrected for covariates of no interest. 
 
 
Stress network activity differences between patients and controls 

This analysis showed that neither the stress-evoked activity of the 18th nor the activity of 

the 22nd network (which were both predictive of future atrophy in pwMS) differed from 
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the activity of the corresponding networks in the 21 persons included in the fMRI control 

group. Specifically, for the 18th network we computed t = -0.46, p = 0.641. Moreover, for 

the 22nd network we obtained t = 0.74 and p = 0.455. Figure S4 shows the t-statistics 

obtained for the group difference across all 25 networks.  

 

Figure S4 depicts differences between pwMS and persons in the fMRI control group in 
terms of differential, stress-evoked network activity at T0. The dash-dotted line highlights 
an undirected threshold (α = 0.05) derived from the t-distribution for 41 degrees of 
freedom. 
 

 

Predicting future GM atrophy in MS based on stress-related cortisol release 

This analysis suggests that neither the longitudinal volume loss in right superior parietal 

lobule nor that of right exterior cerebellum could be predicted based on stress-related 

salivary cortisol secretion during the mental arithmetic task conducted at T0. Figure S5 

below illustrates these results. 
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Figure S5. The panel on the left (a) depicts modelling volume differences T1 – T0 in the 
right superior parietal lobule based on differences in salivary cortisol secretion for Post-
stress – Pre-stress, whereas (b) depicts this for the right exterior cerebellum. In both 
panels (a) and (b), the criterion was corrected for covariates of no interest. 
 

 

Associations between stress-related cortisol release, atrophy-predictive neural 

network activity, and perceived stress in MS 

Relating stress-related cortisol releases to differential activity of atrophy-predictive 

networks showed that activity of the 18th network was negatively associated with 

differential salivary cortisol release according to an undirected test (t = -4.18, p = 0.045). 

See Figure S6. 
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Figure S6. (a) depicts the results for modelling differential salivary cortisol release based on 
differential activity of the 18th network (left graph) or differential activity of the 22nd network 
respectively (right graph). In (b), differential salivary cortisol release was modelled based on 
differential perceived stress ratings. In all depicted panels, the criterion was corrected for 
covariates of no interest. 
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