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Abstract
Problem: From conception, a delicate regulation of galectins, a family of carbo-
hydrate-binding proteins, is established to ensure maternal immune tolerance in 
pregnancy. Though galectin-3 (gal-3), the only chimera-type galectin, is abundantly 
expressed at the feto-maternal interface; the physiological role of this lectin during 
pregnancy remains to be fully elucidated and requires further investigation.
Method of study: In this study, we analyzed serum gal-3 levels during the course 
of healthy gestation. Trophoblast functions were evaluated upon gal-3 exogenous 
stimulation	using	trophoblastic	cell	lines	(e.g.	,	HIPEC65,	SGHPL-4,	and	BeWo	cells).	
Finally, we investigated variations in peripheral gal-3 levels associated with the devel-
opment of spontaneous abortion and gestational diabetes mellitus (GDM).
Results: Gal-3 circulating levels increased as normal pregnancy progressed. In vitro 
experiments showed that exogenous gal-3 positively regulated trophoblast func-
tions inducing invasion, tube formation, and fusion. Compared with normal pregnant 
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1  | INTRODUC TION

Pregnancy constitutes a major challenge to the maternal immune sys-
tem because it requires tolerance of fetal alloantigens encoded by pa-
ternal genes. Local factors at the maternal-fetal interface are required 
to maintain such tolerance and ensure normal development of the 
semiallogeneic conceptus.1	Galectins	 are	 a	 family	of	 at	 least	15	ga-
lactoside-binding proteins that share conserved carbohydrate recog-
nition domains (CRD).2 Several members of this family are emerging as 
key regulators of the three pillars in pregnancy-associated processes: 
maternal immune responses, angiogenesis, and placentation.3

Galectin-3 (gal-3) is the only chimera-type galectin, with a 
C-terminal domain containing the carbohydrate recognition domain 
(CRD) displaying the lectin activity linked to the N-terminal domain 
via a repetitive collagen-like sequence.4 Extracellular gal-3 interacts 
with β-galactoside residues of several glycoproteins via the CRD and 
through their N-terminal domain gal-3 monomers form pentamers and 
are able to cross-link carbohydrates.5 During the menstrual cycle, gal-3 
is—together with gal-1—the predominant member of this lectin family 
in the human endometrium.6 Progesterone and estradiol regulate its 
expression7 with an increase during the secretory phase. The increase 
in gal-3 expression is attributed to glandular epithelial cells whereas 
the expression in stromal cells and leukocytes remains unchanged. 
Moreover, gal-3 expression peaks in intensity in the regressing corpus 
luteum.8 During the first trimester, cytotrophoblast (CTB) stem cells 
in the placental villi express gal-3 while the syncytiotrophoblast (STB) 
overlying the CTB stem cells are negative for gal-3.9,10 This lectin is also 
abundant in CTB cell columns, which anchor the placental villi to the 
maternal decidua. Both interstitial and endovascular extravillous CTB 
(EVT) that leave the cell columns, invade the decidua and remodel ma-
ternal spiral arteries express gal-3.10 However, Bozic et al reported no 
gal-3 expression in EVT.11 In the decidua itself, stromal and glandular 
cells strongly express gal-3.10,12 Toward term pregnancy, low levels of 
gal-3 are expressed in the decidua, STB, and EVT.13 Under pathological 
conditions such as gestational trophoblastic disease, placental gal-3 is 
up-regulated.11 In line with this, gal-3 expression is increased in EVT 
of preeclamptic and HELLP patients but not in women with IUGR.13 
Furthermore, small-for-gestational neonates showed higher gal-3 levels 
in their cord blood than appropriate-for-gestational age infants, which 

might result from elevated inflammatory signals.14,15 In concordance, 
treatment of cord blood samples with a Group B streptococcus sep-
sis strain induces gal-3 in vitro.14 Although gal-3 expression has been 
reported in human pathological gestation, its kinetics during normal 
pregnancy remains to be elucidated.

In the current study, we analyzed the expression of gal-3 during 
normal and pathological pregnancies to gain insight into its possible 
function	during	human	gestation.	We	show	that	normal	progression	
of pregnancy is associated with an increase in systemic gal-3 lev-
els. Using various human trophoblast cell lines, we demonstrate that 
gal-3 influences the invasive of EVT cell lines properties and tube 
formation capacity of the cells, revealing the importance of gal-3 
in trophoblast functions associated with placental vascularization. 
Furthermore, maternal circulating gal-3 decreased upon onset of 
gestational diabetes mellitus (GDM). These observations provide 
prospects for the development of complementary diagnostic tools 
that target gal-3 in routine gynecologic analysis.

2  | MATERIAL S AND METHODS

2.1 | Study populations

Three human cohorts were part of this study. For measurement of 
circulating gal-3 levels during normal pregnancy, blood samples were 
collected from healthy pregnant women in the first, second, and third 
trimester of pregnancy at their planned visits to the Department of 
Obstetrics and Gynecology, Umeå University Hospital, Sweden, and 
to the Polyclinic Maternity Care Units for control of pregnancy pro-
gression as described.16 All the patients involved in this work were 
properly informed about the purpose of our research and gave their 
written consent before the sampling. The study was approved by the 
ethics committee of the Umeå University Hospital. The characteris-
tics of the recruited participants are summarized in (Table 1). At re-
cruitment, blood samples were taken by venous puncture and serum 
was	harvested	after	centrifugation	(1500	x	g/20 min) and stored at 
−80°C	until	further	use.

For measurement of circulating gal-3 levels during the first 
trimester of normal pregnancies and spontaneous abortion (SA), 

women, circulating gal-3 levels were significantly decreased in patients who devel-
oped GDM.
Conclusion: Our results reveal a physiological role for gal-3 during pregnancy, pro-
moting proper trophoblast functions associated with healthy gestation. GDM is 
associated with a failure to increase circulating gal-3 levels late in gestation. Thus, 
dysregulation of gal-3 may indicate a contribution of the chimera-type lectin to this 
adverse pregnancy outcome.

K E Y W O R D S

gal-3, pathological pregnancy, placenta, trophoblast
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samples from a prospective cohort study conducted by the 
Departments of Internal Medicine, Psychosomatics and Obstetrics 
at the Charité, University Medicine Berlin, Germany were used.17 
Written	 informed	 consent	was	 obtained	 from	 all	 the	women,	 and	
the study was approved by the ethics committee of the local and 
Charité-	Medicine	University	of	Berlin	(renewed	EA2/030/06).	The	
recruited participants' characteristics are summarized in (Table 2).

For analyses of gal-3 levels during normal pregnancies and GDM, 
blood samples were collected from healthy and GDM pregnant 
women in the first, second, and third trimester of pregnancy at their 
planned visits to the Department of Obstetrics, Sao Paulo Federal 
University (UNIFESP), Brazil. All patients involved in this work were 
properly informed about the purpose of our research and gave their 
written consent before the sampling. The study was approved by 
the ethics committee of Sao Paulo Federal University (UNIFESP). 
Characteristics of the recruited participants are summarized in 
Table 3. Diagnosis of GDM was based on the criteria proposed by 
the	World	Health	Organization:	fasting	glucose	≥126	mg/dL	and/or	
≥140	mg/dL	2	hours	after	the	ingestion	of	75	g	of	glucose	(OGTT).	
Control	population	consisted	of	155	healthy	pregnant	women	with-
out any maternal or fetal disorders. Groups were matched by ethnic-
ity (self-referred). Inclusion criteria for both groups were as follows: 
singleton pregnancy with living fetus and gestational age between 
6	and	36	weeks.	Exclusion	criteria	for	both	groups	were	as	follows:	
autoimmune diseases, pre-existing diabetes, uterine malformation, 
pregnancy resulting from in vitro fertilization, placental abruption, 
infection, cancer, or any other systemic disease, including pre-ex-
isting	 hypertension.	 We	 also	 excluded	 women	 with	 solid	 organ	
transplantation and in the use of steroids, antibiotics, immunosup-
pressants, antihistamines, or anti-inflammatory medication.

2.2 | Galectin-3 staining in human samples

Immunohistochemistry was performed on formalin-fixed, paraffin-
embedded placental tissues as previously described.18 Briefly, 4 µm 
sections derived from the first trimester and term placenta biopsies 

derived from normal pregnancy were dewaxed and rehydrated 
through	graded	alcohols.	Antigen	retrieval	was	performed	at	99°C	
for 20 min in a pH9 retrieval solution, and slides were incubated 
in	 Sequenza	 racks	with	 primary	 antibody	 gal-3	 (0.5	 µg/mL; Santa 
Cruz Biotechnology sc-32790), cytokeratin 7 (0.09 µg/mL; Abcam 
ab68459),	mouse	IgG1	isotype	control	(Dako)	or	rabbit	monoclonal	
antibody (Cell Signaling Technology) at equivalent concentrations 
at	 4°C	 for	 18	 hours.	 Anti-HLA-G	 immunohistochemistry	was	 per-
formed as previously described.19 Staining was visualized using the 
NovaRed peroxidase HRP substrate kit (Vector Laboratories) and 
counterstained using Mayer's hematoxylin (Merck Millipore). The 
sections were imaged using a NanoZoomer-SQ Digital Slide Scanner 
(Hamamatsu) and NanoZoomer Digital Pathology software at 200× 
magnification,	and	antibody	staining	was	quantitated	using	ImageJ.

2.3 | Purification of CTB and EVT cells

Placental tissue was obtained from patients undergoing a legal abor-
tion during the first trimester (8-12 weeks of gestation) or at delivery. 
Informed written consent was obtained from all the patients before 
their inclusion in the study, for which approval was obtained from the 

Parameters
Non-pregnant 
(n = 20) 

First trimester 
(n = 30) 

Second 
trimester 
(n = 20)

Third 
trimester 
(n = 20)

Age (y) 28.9 ±	5.9 28.6	± 3.04 30.0 ±	4.5 30.1 ± 4.4

GA (wk) – 9 - 12 18 – 12 37	−41

IUD 5 – – –

OC 7 – – –

Other methods 8 – – –

Note: Exclusion criteria: pregnant women with underlying conditions such as obesity, diabetes 
mellitus type I or type II, cardiovascular diseases including high blood pressure, autoimmune 
diseases, hormonal disorders, previous history of recurrent abortions or infertility, chronic 
diseases, any permanent medication or a smoking habit, pathological pregnancy progression such 
as an intrauterine growth retardation, preeclampsia, intrauterine infections, premature labor, 
placenta praevia, bleedings and other placental or fetal abnormalities.
Abbreviations: IUD, intrauterine device; GA, gestational age in weeks; OC, oral contraception.

TA B L E  1   Characteristics of the 
recruited participants at Umeå University 
Hospital, Sweden

TA B L E  2   Characteristics of the recruited participants at 
Charité—Universitätsmedizin Berlin, Germany

Parameters
Normally progressing 
pregnancy (n = 80) 

Subsequent spontaneous 
abortion (n = 55)

Age (y) 29.7 ± 2.8 30.5	±	3.5

GA (wk) 4-12 4-12

Note: Exclusion criteria: fertility treatment, hepatitis B/C or HIV 
infection; signs of an imminent miscarriage such as vaginal bleeding, 
low β-hCG, missing embryonic/fetal heart rate during ultrasound 
screening. Exclusion criteria for the subsequent spontaneous abortion 
group: molar pregnancy, abnormal fetal karyotype or infection-induced 
abortion.
Abbreviation: GA, gestational age in weeks.
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local ethics committee of Geneva University Hospital, Switzerland. 
Trophoblast cells were isolated as previously described.16 In brief, fresh 
tissue specimens were isolated and washed several times in sterile 
Hanks balanced salt solution. Tissue was then enzymatically digested 
five	times	for	20	minutes	at	37°C	(0.25%	trypsin,	0.25	mg/mL	Dnase	
I; Roche, Diagnostics GmbH). After incubation, the trypsin cocktail 
was neutralized with fetal bovine serum (FBS), and the cells resus-
pended in Dulbecco's modified Eagle's medium (DMEM; Invitrogen). 
This	cell	 suspension	was	 filtered	 through	a	50-μm mesh laid onto a 
Percoll	gradient	(70-5%	Percoll	diluted	with	HBSS)	and	centrifuged	for	
25	minutes	at	1200	g.	The	30%-45%	percoll	layer	containing	tropho-
blast cells was collected, the cells washed and resuspended in DMEM 
(Invitrogen). The cells were then immunopurified with immobilized 
anti-CD45	antibodies.	Ninety-five	percent	of	cells	were	positive	 for	
cytokeratin 7 and negative for vimentin. To obtain extravillous cy-
totrophoblast (EVT) cells, the cells were seeded on Petri dishes for 
15	minutes.	Supernatants	containing	EVT	were	centrifuged,	and	the	
cells	were	resuspended	in	culture	medium	and	seeded	in	6-well	plates	
(4 × 106	cells/well)	and	in	96-well	plates	(1	× 105 cells/well). Ninety-
five percent of 24 hours cultured cells were positive for cytokeratin 7 
and HLA-G and negative for vimentin.

2.4 | Invasion in vitro assay

The human invasive, proliferative extravillous cytotrophoblast 
HIPEC-65	cell	line	(a	generous	gift	from	Prof.	D.	Evain-Brion,	Paris20) 
was	grown	in	DMEM	high	glucose	containing	10%	FBS	(Oxoid	AG)	
and antibiotics (100 U/mL penicillin, 100 µg/mL streptomycin; 
Invitrogen)	 at	 37°C	 in	 a	 humidified,	 5%	CO2 atmosphere. 4 × 105 
HIPEC-65	cells	were	seeded	 in	a	 six-well	plate.	The	 following	day,	
cells were serum-starved for 24 hours. Invasion assay was performed 
in an invasion chamber as described elsewhere.21 Briefly, 3 × 104 
HIPEC-65	cells	in	100	μL were added to the upper compartment of 

the transwell chambers and 400 μL of culture medium was added in 
the lower chamber. Cells were then treated with different concen-
trations	(0,	0.5,	1,	and	2	μg/mL)	of	human	recombinant	gal-3	(R&D	
Systems)	in	serum-free	medium	for	24	hours	at	37°C	in	a	CO2	(5%)	
incubator. After incubation, viable cells that invaded collagen were 
stained	with	 crystal	 violet	 and	measured	 at	560	nm.	Each	experi-
ment was run in triplicate. Data were expressed as the percentage of 
treated cells that invaded the collagen-coated membrane relative to 
the untreated (control) cells.

2.5 | Tube formation in vitro assay

SGHPL-4	cells	were	a	kind	gift	from	Judith	E.	Cartwright	(St	George's	
University of London, UK). SGHPL-4 cells are derived from primary 
human first-trimester extravillous trophoblasts (EVT) transfected 
with the early region of SV40 (previously known as MC418) and re-
tain features of normal EVT,22 including similar invasive potential. 
Tube formation was done in growth factor–reduced Matrigel (BD 
Bioscience) in µ-slides (Ibidi). SGHPL-4 cells in serum-free media 
were seeded onto the Matrigel-coated wells (10 000 cells per well) 
and	were	treated	with	Placental	Growth	Factor	(PLGF,	R&D	systems	
264-PGB/CF,	100	ng/mL),	human	recombinant	gal-3	(R&D	Systems	
1154-GA	2	μg/mL) or gal-3C (10 μg/mL). After 48 hours incubation 
(37°C),	 tube	 formation	 was	 assessed	 through	 an	 inverted	 phase-
contrast microscope at ×5	(Zeiss).	Quantification	was	done	with	the	
WimTube	software	(Wimasis).

2.6 | Detection of cell fusion by cell-labeling

BeWo	 choriocarcinoma	 cells	 (ECACC)	were	 treated	 as	 previously	 de-
scribed.23	Briefly,	2.5	× 105	BeWo	cells	were	labeled	with	8	μg/mL DiO 
(1,1′-dioctadecyl-indocarbocyanine	perchlorate)	fluorescent	cell-labeling	

Parameters Controls (n = 40) 
Gestational diabetes mellitus 
(n = 40)

Age (y) 30.3 ±	6.1 32.0 ±	6.1 31.5	± 4.1 33.2 ±	5.3

GA (wk) 39.8 ±	1.54 39.75	±	1.16 39.67	± 1.30 39.83 ± 1.40

BMI 
(pre-pregnancy)

21.92 ± 3.97 25.04	± 7.90 29.38 ± 8.03 26.96	± 4.73

Birthweight (g) 3339.8 ±	568 3294 ± 440 3662.1	±	562 3635.9	±	661

Umbilical artery 
pH

7.28 ± 0.10 7.30 ± 0.08 7.30 ± 0.07 7.30 ± 0.10

Child gender Male Female Male Female

Note: Diagnosis	of	GDM	was	based	on	the	criteria	proposed	by	the	World	Health	Organization:	
fasting	glucose	≥126	mg/dL	and/or	≥140	mg/dL	2	h	after	the	ingestion	of	75	g	of	glucose	(OGTT).	
Inclusion	criteria:	singleton	pregnancy	with	living	fetus;	gestational	age	between	6	and	36	wk.	
Exclusion criteria: autoimmune diseases, pre-existing diabetes, uterine malformation, pregnancy 
resulting from in vitro fertilization, placental abruption, infection, cancer, or any other systemic 
disease, including pre-existing hypertension, solid organ transplantation, use of steroids, 
antibiotics, immunosuppressants, antihistamines or anti-inflammatory medication.
Abbreviation: GA, gestational age in weeks at birth.

TA B L E  3   Characteristics of the 
recruited participants at Sao Paulo 
Federal University (UNIFESP), Brazil
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solution (Vybrant Cell-Labeling Solutions, Molecular Probes) in serum-
free	 DMEM	 medium	 for	 20	 minutes	 at	 37°C	 without	 CO2. Further 
2.5	× 105	BeWo	cells	were	labeled	with	4	μg/mL	DiI	(1,1′-dioctadecyl-
3,3,3′-tetramethylindocarbocyanine	 perchlorate)	 fluorescent	 cell-labe-
ling solution. Cells were washed with serum-free DMEM medium three 
times. After washing, DiO and DiI labeled cell suspensions were mixed in 
one well of a 24-well plate. Finally, cells were incubated with 10 ng/mL 
gal-3	(R&D	Systems	1154-GA)	for	48	hours	at	37°C.	Cell	suspensions	
without application of gal-3 were used as control. Three independent ex-
periments	for	BeWo	cells	were	performed.	The	amount	of	cell	fusion	was	
evaluated in ten randomly chosen fields of each well using Zeiss Axiovert 
40 CFL fluorescent microscope (Zeiss). Images were obtained with a digi-
tal	camera	system	(Power	Shot	A620;	Canon).

2.7 | Galectin-3 ELISA

Gal-3 concentrations in the serum of pregnant patients were deter-
mined by ELISA as described previously.24 The paired antibodies for 
gal-3	ELISA	assay	are	anti-human	gal-3	(AF1154)	and	biotin-conju-
gated	anti-human	gal-3	(BAF1154)	from	R&D	system.	Each	reported	
value is the mean of triplicate assays.

2.8 | Statistical analyses

All data are presented as mean ± standard error, except where indi-
cated. Results were analyzed with GraphPad Prism 8.0 (GraphPad 
Software Inc). Comparisons were performed with non-parametric 
Mann-Whitney	U	test	or	one-way	ANOVA	and	Tukey's	post-test.	A	P 
value <.05	was	considered	as	significant.

3  | RESULTS

3.1 | Normal pregnancy progression implies up-
regulation of gal-3 systemic levels and trophoblast 
lineage-specific gal-3 expression

To determine if variable gal-3 levels occur in human pregnancy, we first 
analyzed circulating gal-3 levels by ELISA in a cohort of patients cours-
ing healthy pregnancies during the first, second, and third trimester. 
We	observed	 a	 steady,	 significant	 increase	 of	 circulating	 gal-3	 levels	
from the first to the third trimester and when compared to non-preg-
nant women (Figure 1A). In addition, as shown in Figure 1B, analyses 
of lineage-specific LGALS3 expression revealed higher mRNA levels in 

F I G U R E  1   Local and peripheral gal-3 
expression during normal pregnancy. A, 
Circulating gal-3 levels were measured 
with ELISA in non-pregnant (Non-P) 
and pregnant women during the first, 
second, and third trimester. B, Placental 
LGALS3 expression in isolated extravillous 
trophoblasts (EVT) and cytotrophoblasts 
(CTB) from first trimester and term 
pregnancy fresh placenta as analyzed 
by quantitative real-time PCR. Data are 
expressed as mean ± SEM. *P <	.05	using	
one-way ANOVA and Tukey's post-test. C, 
Representative gal-3 immunostaining of 
normal first trimester and term placenta 
paraffin-embedded serial sections. 
Arrowheads in the upper right panel 
indicate negative syncytiotrophoblast 
(STB) and positive cytotrophoblast 
(CTB) stained for gal-3 expression. At 
term, extravillous cytotrophoblast (EVT) 
stained positive for gal-3/HLA-G (arrows). 
Bars =	250	µm
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EVT derived from first-trimester chorionic villi compared with villous 
CTB	from	the	first	and	third	trimesters.	When	comparing	CTB	from	the	
first and third trimester the LGALS3 mRNA levels increased only slightly 
with pregnancy progression (Figure 1B). Localization of gal-3 in human 
placenta was characterized using immunohistochemistry on formalin-
fixed paraffin-embedded sections. Gal-3 localized to the progenitor cy-
totrophoblast cells of the chorionic villi (Figure 1C) and the trophoblast 
cell columns in an increasing gradient of expression toward the distal 
invasive edge, but was not detected in the STB (Figure 1C, upper pan-
els). In third-trimester placenta, gal-3 was found in the EVT (Figure 1C, 
bottom panels). To confirm identity of the EVT, HLA-G immunohisto-
chemistry was performed on serial sections (Figure 1C).

3.2 | Gal-3 promotes trophoblast functions 
associated with placental vascularization in vitro

Since the EVT is responsible for uterine artery remodeling and gal-3 
is highly expressed in EVT during normal gestation, we next investi-
gated the influence of gal-3 on trophoblast invasion using the human 
EVT	 cell	 line	 HIPEC-65.	 We	 found	 that	 gal-3	 dose-dependently	
increased the relative cell invasion in vitro (Figure 2A). To provide 

further insights into the mechanism by which gal-3 regulates EVT 
function, we treated the EVT-derived cell line (SGHPL-4) with human 
recombinant (hr) gal-3. As depicted in Figure 2B, the number of net-
works and total length of capillaries was significantly increased in 
hrgal-3 treated SGHPL-4 cells compared with untreated cells and 
similarly to PLGF-treated positive controls. Accordingly, we found 
that treatment with a truncated form of gal-3 (gal-3C, a dominant-
negative inhibitor of gal-325) decreased the number of networks 
and total length of capillaries of SGHPL-4 cells (Figure 2B). In a third 
model,	 we	 found	 that	 treatment	 of	 BeWo	 trophoblast	 cells	 with	
hrgal-3 resulted in an increase in cell fusion (Figure 2C).

3.3 | Onset of GDM is associated with a decrease of 
gal-3 maternal serum levels

In order to define if gal-3 is dysregulated during adverse pregnancy 
outcome entities, we next analyzed circulating levels of gal-3 in preg-
nancies affected by spontaneous abortion and gestational diabetes 
mellitus (GDM). In our prospective cohort, first-trimester gal-3 serum 
levels did not differ between healthy pregnant women and women 
who subsequently suffered from spontaneous abortion (Figure 3A). In 

F I G U R E  2   Exogenous gal-3 influences trophoblast cell properties in vitro. A, Relative cell invasion of the extravillous trophoblast (EVT) 
cell	line	HIPEC-65	when	treated	with	hrgal-3	(n	= 4). B, Effect of gal-3 treatment on capillary-like network formation by SGHPL-4 cells 
(n =	3-5).	Treatment	of	SGHPL-4	cells	with	gal-3	significantly	increased	the	formation	of	the	capillary-like	networks,	as	scored	by	the	number	
of branch points and total length formed following 24 h of treatment. In addition, the inhibitor gal-3C blocked the formation of capillary-like 
networks	by	SGHPL-4	cells.	C,	BeWo	cells	were	stained	with	DiO	(green)	or	Dil	(red)	and	mixed.	Both	cell	populations	are	seen	in	0	h	cell	
culture	in	vitro.	Fusion	BeWo	cells	stimulated	with	gal-3	appear	in	yellow,	48h.	All	treatments	were	performed	in	triplicate	in	at	least	three	
independent experiments. In all figures, data are plotted as mean ± SEM. *P <	.05,	**P < .01, and ***P < .001, using one-way ANOVA with 
Tukey's multiple comparisons test
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contrast, placenta of spontaneous abortion in late first and early sec-
ond trimester displayed reduced expression of gal-3 (Figure 3B), which 
in gestational-age matched controls was mainly confined to CTB and 
EVT of the trophoblast cell columns and cell islands (Figure 3B). CK7 
green fluorescent labeling used to identify the trophoblasts shows 
that gal-3 is expressed throughout the cell column whereas CK7 ex-
pression is detected only more distally (Figure 3B).

When	analyzing	the	circulating	gal-3	levels	during	the	develop-
ment of GDM, we did not observe any significant differences be-
tween normal and GDM pregnancies during the first and second 
trimesters (Figure 3C). However, during the third-trimester GDM 
was associated with a significant decrease in systemic gal-3 levels 
(Figure 3D). In GDM placenta, gal-3 expression was observed in a 
pattern similar to normal third-trimester pregnancies (Figure 3D) 
with CK7 employed in serial sections to identify trophoblast.

4  | DISCUSSION

Gal-3 has been recognized as an important modulator of biological pro-
cesses and an emerging player in the pathogenesis of several diseases 
including metabolic and immune/inflammatory disorders. However, 
scarce attention has been paid to the role of gal-3 in normal pregnancy 
progression and onset of pregnancy complications. In the present 
study, we demonstrated that gal-3 increased in maternal circulation 
with progression of uneventful pregnancy. Moreover, we showed that 

gal-3 is mainly expressed in EVT during the first trimester promoting 
critical trophoblast functions (e.g., invasion and tube formation) which 
influence healthy placental development. Finally, our findings suggest 
that progression of GDM is associated with changes in maternal gal-3 
levels, highlighting a novel role during impaired glucose homeostasis.

The expression of gal-3 significantly increases in the secretory 
phase endometrium and shows a specific pattern within the de-
cidua and placenta during the first trimester of pregnancy.9,10,12 In 
the present study, we show that normal progression of pregnancy 
is associated with increased circulating levels of gal-3 during the 
second and third trimesters. The increase in maternal peripheral 
levels coincides with the period of placental growth during the sec-
ond and third trimesters, suggesting that trophoblast cells could 
be one of the sources of the circulating chimera lectin. Supporting 
this, we have shown that gal-3 expression in the CTB increases 
from the first to the third trimester in healthy placental tissue. In 
addition, our analysis of EVT gal-3 expression revealed that the 
chimera lectin is highly expressed in the EVT layer of the human 
placenta. This observation is in agreement with previous stud-
ies showing that both interstitial and endovascular EVT are main 
sources of gal-310 and with the recently established role of gal-3 
as a component of the human trophoblast invasion machinery.26 
The functional studies reported here have confirmed that gal-3 
participates in trophoblast cell migration/invasion. Furthermore, 
the tube formation ability of trophoblasts (angiogenesis) was 
stimulated by gal-3 and reduced in presence of gal-3C. Because 

F I G U R E  3   Local and peripheral 
gal-3 expression during pathological 
pregnancies. A, Circulating gal-3 levels 
during the first trimester were analyzed 
with ELISA in normal pregnant women 
(NP) and in patients with spontaneous 
abortions (SA). B, Immunofluorescence 
double staining with gal-3 (red) and 
CK7 (green) expression in a NP and SA 
trophoblast sample. Nuclei are labeled 
with	DAPI	(blue),	Bar:	50	µm. C, Gal-
3 levels in the circulation of normal 
pregnant (NP) women and patients with 
gestational diabetes mellitus (GDM) were 
measured with ELISA in the first, second, 
and third trimester. D, Immunofluorescent 
double labeling of gal-3 (red) and CK7 
(green) expression in NP and GDM 
term	placenta	(Bars:	50	µm upper panel 
and 120 µm lower panel). In (A) and (C), 
data are expressed as mean ± SEM and 
analyzed	with	Mann-Whitney	t test and 
one-way ANOVA with Tukey's post-test 
(*P <	.05)
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trophoblast growth and function play a critical role in determining 
fetal growth, our results showing that gal-3 promotes Bewo syn-
cytium formation together with its localization to villous CTB cells 
in the first-trimester placenta, indicate that the chimera lectin is 
necessary for placental health. Indeed, those EVT lineages that 
subsequently invade the decidua display the highest gal-3 expres-
sion, implying that this chimera lectin might be a major trigger for 
the process of trophoblast cell differentiation and also STB fusion. 
The syncytial surface is a critical component of physiological re-
pair and differentiation of the placental villous tree, its alteration 
has been suggested to reduce nutrient flow between mother and 
fetus resulting in poor neonatal outcomes.27

While	several	reports	have	highlighted	dysregulation	of	gal-3	
placental expression during poor pregnancy outcomes,11,13,14 their 
association with variations of maternal gal-3 circulating levels 
remains elusive. Our study provides the first evidence regard-
ing systemic levels of maternal gal-3 during the first trimester in 
women who subsequently suffered from spontaneous abortion. 
Although we did not find any differences in the maternal levels of 
circulating gal-3 compared with normally progressing pregnancy, 
our findings demonstrate the need to incorporate more members 
of the galectin family to the panel of diagnostic markers defining 
the galectin signature that characterizes each pregnancy compli-
cation. Of note, we previously found that circulating gal-1 levels 
were down-regulated in SA using the same cohort of patients.16 
In addition, our results show that the kinetics of peripheral gal-3 
differs from gal-1 as circulating levels of the prototype lectin sig-
nificantly decreased during the first trimester,16 even when β-hCG 
values were within the normal range. In this regard, it must also be 
noted that gal-3 expression during early gestation is under regula-
tion of β-hCG.28 Thus, the absence of changes in circulating gal-3 
in early pregnancy may be related to its kinetics itself but not be 
predictive of the development of spontaneous abortion. In sup-
port of this notion, it has been shown that maternal gal-3 circu-
lating levels are decreased after the onset of missed abortion.29 
In addition, dysregulation of gal-3 in placental villi has also been 
described for patients with missed abortion and may explain the 
observed dysregulation of peripheral gal-3 levels.30

An additional aim of this study was to determine the kinetics 
of the circulating maternal gal-3 throughout gestation, evaluating 
both	 uneventful	 pregnancies	 and	 development	 of	GDM.	We	 re-
port here that serum gal-3 levels were reduced in patients that 
developed GDM. The differential peripheral gal-3 kinetics ob-
served in GDM pregnant women was only evidenced during the 
third trimester, suggesting that gal-3 is sensitive to the hormonal 
and metabolic changes that characterize GDM. Although gal-3 
has both pro- and anti-inflammatory effects,31 in the context of 
chronic inflammation disorders as GDM, the chimera lectin exerts 
anti-inflammatory effects including stimulation of T-cell apop-
tosis, inhibition of T-cell growth and Th1 differentiation limiting 
further tissue injury.32,33 Therefore, it is conceivable that reduced 
peripheral levels of gal-3 would contribute to the pro-inflam-
matory response (eg, TNF-α,	 IL-6,	 and	 adipocytokines)	 in	 GDM	

patients.34 In addition, several studies have reported inflammation 
in association with altered glucose homeostasis in gal-3 deficient 
mice fed a high-fat diet, suggesting that gal-3 decreases immunity 
to overnutrition and protects against the obesity-associated type 
2 diabetes.35,36 The results reported here provide new insights in 
the relation between metabolic alterations during GDM and gal-3 
and point the need of further investigation on the effect of gal-3 
and glucose homeostasis during gestation.

In summary, this study reveals that the course of normal preg-
nancy requires the up-regulation of gal-3 expression, highlighting its 
requirement for proper EVT functions and reinforcing the concept 
that unique functional properties in support of healthy pregnancy 
are specific to each of the different members of the placental galec-
tin network.
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