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Abstract
Objective
In this observational study, we investigated the impact of genetic factors at the immunoglobulin
heavy chain constant locus on chromosome 14 and the major histocompatibility complex region
on intrathecal immunoglobulin G, A, and M levels as well as on B cells and plasmablasts in the
CSF and blood of patients with multiple sclerosis (MS).

Methods
Using regression analyses, we tested genetic variants on chromosome 14 and imputed human
leukocyte antigen (HLA) alleles for associations with intrathecal immunoglobulins in 1,279
patients with MS or clinically isolated syndrome and with blood and CSF B cells and plas-
mablasts in 301 and 348 patients, respectively.

Results
The minor alleles of variants on chromosome 14 were associated with higher intrathecal immu-
noglobulin G levels (β = 0.58 [0.47 to 0.68], lowest adjusted p = 2.32 × 10−23), and lower
intrathecal immunoglobulin M (β = −0.56 [−0.67 to −0.46], p = 2.06 × 10−24) and A (β = −0.42
[−0.54 to −0.31], p = 7.48 × 10−11) levels. Alleles from theHLA-B*07:02-DRB1*15:01-DQA1*01:
02-DQB1*06:02 haplotype were associated with higher (lowest p = 2.14 × 10−7) and HLA-B*44:
02 with lower (β = −0.35 [−0.54 to −0.17], p = 1.38 × 10−2) immunoglobulin G levels. Of interest,
different HLA alleles were associated with lower intrathecal immunoglobulin M (HLA-C*02:02,
β = −0.45 [−0.61 to −0.28], p = 1.01 × 10−5) and higher immunoglobulin A levels
(HLA-DQA1*01:03-DQB1*06:03-DRB1*13:01 haplotype, β = 0.40 [0.21 to 0.60], p = 4.46 ×
10−3). The impact of HLA alleles on intrathecal immunoglobulin G and M levels could mostly be
explained by associations with CSF B cells and plasmablasts.

Conclusion
Although someHLA alleles seem to primarily drive the extent of humoral immune responses in the
CNS by increasing CSF B cells and plasmablasts, genetic variants at the immunoglobulin heavy
chain constant locus might regulate intrathecal immunoglobulins levels via different mechanisms.
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An elevated immunoglobulin G (IgG) index is seen in 70% of
patients with multiple sclerosis (MS), whereas intrathecal syn-
thesis of immunoglobulin M (IgM) and immunoglobulin A
(IgA) occurs less frequently (20% and 9%, respectively).1 Al-
though the amount of intrathecal production of Igs varies strongly
between patients, it remains relatively stable over the disease
course—even under disease-modifying treatment.2–4 A genetic
contribution to intrathecal Ig synthesis, therefore, likely exists.

We could previously demonstrate in a genome-wide associa-
tion study (GWAS) that genetic variants located at the im-
munoglobulin heavy chain constant (IGHC) locus on
chromosome 14 are associated with the IgG index in patients
with MS or clinically isolated syndrome (CIS).5 This finding
was replicated in a large multicenter GWAS.6

In addition, the GWAS by Goris et al.6 showed that the
haplotype rs9271640*A-rs6457617*G that correlates with the
human leukocyte antigen (HLA) allele HLA-DRB1*15:
01—the strongest known MS risk allele7,8—was also associ-
ated with higher IgG indices.

The aim of the present study was to further investigate the
influence of genetic variants and HLA alleles on intrathecal
immunoglobulin synthesis in a large cohort of patients with
MS or CIS. Based on our previous findings, we aimed at
a more detailed characterization of the association of the
IGHC locus and not only intrathecal IgG but also IgM and
IgA levels. To further elucidate the mechanisms by which the
genetic variants alter the intrathecal immune response, we
analyzed possible associations with serum concentrations of
IgG, IgA, and IgM, as well as with the proportion of B cells and
plasmablasts in CSF and blood.

Methods
Cohorts
We analyzed DNA samples of 1,279 patients with MS or CIS
including all patients with available DNA samples andCSF data
at the Klinikum rechts der Isar of the Technical University
of Munich as well as patients recruited by the German MS
competence network.9 Diagnosis was based on standard di-
agnostic criteria.10–13 Of 2,559 patients with available DNA, we
excluded all patients with missing data on sex, age, or date of
lumbar puncture. In all patients, lumbar puncture had been
performed as part of the diagnostic workup. We performed
quality control on available genetic data as described below and
excluded patients without available genome-wide chip data.

Standard protocol approvals, registrations,
and patient consents
We obtained written informed consent from all patients
according to the Declaration of Helsinki and collected sam-
ples with ethical approval at the recruitment sites. The ethic
committee at the Technical University of Munich approved
the study.

CSF protein analysis
CSF analysis was performed at each center independently. If
CSF data frommore than 1 time point were available, we only
considered the first CSF sampling data. CSF and serum
concentrations for albumin and the 3 Ig classes IgG, IgM, and
IgA were measured in parallel by standard turbidimetric or
nephelometric assays, depending on the center. We calculated
CSF/serum quotients (QIgG, QIgM, QIgA, andQalb) as well
as IgG, IgM, and IgA indices as QIgG/Qalb, QIgM/Qalb, and
QIgA/Qalb, respectively.

Flow cytometric analysis
We performed flow cytometric analysis of CSF and blood
immune cells for 348 and 301 treatment-naive patients, re-
spectively, as described previously.14 Flow cytometry data were
available only for patients treated at the Klinikum rechts der
Isar.We used the following antibodies for staining of B cells and
plasmablasts: CD45 (clone HI30, BD Biosciences), CD19
(clone J3.119, Beckman Coulter), and CD138 (clone B-A38,
Beckman Coulter) and analyzed the stained cells using a flow
cytometer (CyAn ADP, Beckman Coulter). We then gated the
cells on CD45 to select all leukocytes and subsequently on
CD19 (CD45+ CD19+ B cells) and CD138 (CD45+ CD19+

CD138+ plasmablasts). We determined cell numbers using
FlowJo v10 (FlowJo LLC) and calculated percentages of B cells
and plasmablasts of all CD45+ cells.

Genotyping and quality control
The previously described variants at the IGHC locus associated
with the IgG index are not well represented on most of the
available whole-genome genotyping microarrays. We therefore
genotyped 16 single nucleotide polymorphisms (SNPs) at the
IGHC locus on a MassARRAY system using MALDI-TOF
mass spectrometry with iPLEX Gold chemistry (Agena) and
called genotypes with Typer Analyzer 4.0.22.67. For genotyp-
ing, we collected DNA samples from venous blood and stored
the samples at −80°C. During quality control, we excluded
variants with a minor allele frequency <1%, a Hardy-Weinberg
equilibrium test p value <0.0001, or a call rate <98%, leaving 13
variants for further analysis. Genome-wide genotyping SNP
data had been acquired using 2 different microarrays (Illumina

Glossary
CIS = clinically isolated syndrome; GWAS = genome-wide association study; HLA = human leukocyte antigen; IgA =
immunoglobulin A; IgG = immunoglobulin G; IGHC = immunoglobulin heavy chain constant; IGHG = immunoglobulin
heavy constant gamma; IgM = immunoglobulin M; LD = linkage disequilibrium; MHC = major histocompatibility complex;
SNP = single nucleotide polymorphism.
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OmniExpress v1.0, v1.1, and v1.2 and Illumina 660-Quad) in
different batches at the Max Planck Institute of Psychiatry in
Munich, Germany, the Helmholtz Zentrum Munich in Neu-
herberg, Germany, and the Wellcome Trust Sanger Institute in
Cambridge, United Kingdom. Genotype calling had been
performed with GenomeStudio Genotyping Module v2.0 or
with Illuminus.15We conducted quality control of the genotype
data using PLINK v1.90b6.916,17 as described previously.8 We
excluded individuals with a genotyping rate <98%, cryptic re-
latedness >1/8, and any genetic outliers with a distance in the
first 2 multidimensional scaling ancestry components of the
identity-by-state matrix of >5 SDs. We further excluded indi-
viduals with deviation of autosomal heterozygosity >4 SDs
from the mean and individuals with heterozygosity on the X
chromosome of < −0.2.

HLA imputation
We performed HLA allele imputation using SNP2HLA v1.0.3
(Beagle v3.04) and the Type 1 Diabetes Genetics Consortium
imputation panel, as previously described.18–20 After quality
control, we selected 98 HLA alleles with 4-digit resolution, an
allele frequency of ≥1%, and a Beagle imputation r2 ≥ 0.3 for
further analysis. We also analyzed the following haplotypes
determined using Beagle phasing results: HLA-A*03:01-
C*07:02-B*07:02-DRB1*15:01-DQA1*01:02-DQB1*06:02,
HLA-DQA1*01:03-DQB1*06:03-DRB1*13:01, HLA-A*02:
01-B*44:02-C*05:01-DRB1*04:01, and HLA-A*02:01-B*27:
02-C*02:02-DRB1*16:01.

Linkage disequilibrium of the variants on
chromosome 14 and HLA alleles
Of 16 genotyped variants, 13 variants at the IGHC locus passed
quality control. Using a linkage disequilibrium (LD) threshold of
r2 > 0.7, we defined 4 LD groups: A: rs10136766, rs1071803,
rs111608686, rs1134590, rs11621145, rs12884389, rs12897751,
rs2725142, rs2753571, and rs34398108; B: rs1059216; C:
rs61984162; and D: rs8009156. For the 4-digit HLA alleles,
7 LD groups with 2 members each and 5 LD groups with 3
alleles could be identified. We calculated LD using PLINK
v1.90b6.9.16,17

Statistical analyses
As the primary analysis, we investigated associations of the
genotyped variants on chromosome 14 and the imputed HLA
alleles with Ig indices (transformed by inverse rank normali-
zation) by linear regression. For the IGHC variants, we either
chose a dominant or an additive allelic model for the re-
gression analyses, following visual inspection of the data, and
included sex, age at lumbar puncture, and the sequencing
plate as covariates. For the imputed HLA alleles, we analyzed
dosage data (2× the probability for being homozygous for the
allele + 1× the probability for being heterozygous) using the
same covariates except the sequencing plate. To correct for
population stratification, we added up to 5 first multidimen-
sional scaling components as covariates if they were associ-
ated either with the dependent variable or the investigated
variant or HLA allele. The DNA samples had been genotyped

using 2 different microarray types. As visual inspection of the
multidimensional scaling components showed no distinction
between these data sets, we did not include the genotyping
chip as a covariate. We determined homoscedasticity of re-
gression residuals using the Breusch-Pagan test; for models
showing evidence for heteroscedasticity, we used robust
sandwich error estimators (R package sandwich). We tested
the normality of residuals by a Shapiro-Wilk test and cor-
rected p values for multiple testing using the Bonferroni
procedure for the number of LD groups with r2 > 0.7 (n = 85
independent tests, 4 LD groups of the chromosome 14 var-
iants, and 81 HLA allele LD groups). To determine the
phenotypic variance explained by the analyzed genetic var-
iants (R2), we conducted linear regression analyses using the
residuals from a null model including all covariates as the de-
pendent variable and the respective genetic variant as the
independent variable.

We carried all variants and HLA alleles significantly associated
with any of the Ig indices forward to secondary exploratory
analyses on their associations with rank-transformed Ig serum
concentrations and proportions of CSF and blood B cells
(CD45+ CD19+ cells) and plasmablasts (CD45+ CD19+

CD138+ cells). IgM indices and serum IgM concentrations
did not follow a normal distribution after inverse rank trans-
formation. We therefore validated associations with these
traits using permutation analyses (100,000 permutations).
We performed causal mediation analyses including non-
parametric bootstrap for estimation of CIs and p values using
the R package mediation21 with the same covariates as de-
scribed above with 10,000 simulations. We performed all
statistical analyses using R v3.5.1.22

Data availability
The data that support the findings of this study are available
from the corresponding author on reasonable request.

Results
Study cohort, CSF, and flow cytometry data
Table e-1, links.lww.com/NXI/A277, shows the demographic
data and aggregated CSF and flow cytometry parameters for
all 1,279 patients. Four hundred twenty of these samples were
included in one or both of the mentioned previous genetic
studies on IgG indices.5,6 We observed significant correlations
between all 3 Ig indices (Spearman ρ = 0.26, 95% CI
[0.20–0.31] for IgG and IgM indices; ρ = 0.18 [0.12–0.24] for
IgG and IgA indices; and ρ = 0.47 [0.42–0.52] for IgM and
IgA indices).

Genetic factors at the IGHC locus associated
with Ig indices
The minor alleles of all 10 variants from LD group A on
chromosome 14 were associated with higher IgG indices
(table 1 and figure 1A). All 10 variants were also significantly
associated with IgA and IgM indices. However, these associ-
ations had a reversed sign, i.e., the minor alleles were
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Table 1 Association of variants on chromosome 14 with the Ig indices

Variant (LD group) EA AF

Regression on IgG indices Regression on IgM indices Regression on IgA indices

β (95% CI) Adjusted p N β (95% CI) Adjusted p N β (95% CI) Adjusted p N

rs10136766 (A) A 25.5 0.57 (0.46 to 0.68) 1.02 × 10−21 1,229 −0.55 (−0.65 to −0.44) 6.35 × 10−22 1,151 −0.41 (−0.53 to −0.30) 3.57 × 10−10 1,143

rs1071803 (A) T 25.8 0.57 (0.46 to 0.68) 1.34 × 10−21 1,227 −0.57 (−0.67 to −0.46) 1.51 × 10−23 1,150 −0.41 (−0.52 to −0.29) 7.79 × 10−10 1,142

rs11160868 (A) T 25.7 0.58 (0.47 to 0.68) 2.32 × 10−23 1,262 −0.56 (−0.66 to −0.45) 2.61 × 10−23 1,189 −0.39 (−0.50 to −0.27) 2.69 × 10−09 1,181

rs1134590 (A) C 21.8 0.55 (0.43 to 0.66) 2.89 × 10−19 1,262 −0.47 (−0.58 to −0.36) 1.37 × 10−15 1,185 −0.37 (−0.49 to −0.26) 3.34 × 10−08 1,177

rs11621145 (A) G 27.1 0.53 (0.42 to 0.64) 8.39 × 10−19 1,227 −0.53 (−0.64 to −0.42) 2.22 × 10−20 1,149 −0.40 (−0.52 to −0.29) 1.05 × 10−09 1,141

rs12884389 (A) C 28.7 0.51 (0.40 to 0.62) 1.72 × 10−17 1,229 −0.48 (−0.59 to −0.37) 2.51 × 10−16 1,152 −0.42 (−0.54 to −0.31) 7.48 × 10−11 1,144

rs12897751 (A) G 25.6 0.57 (0.46 to 0.68) 4.92 × 10−23 1,278 −0.56 (−0.67 to −0.46) 2.06 × 10−24 1,200 −0.40 (−0.51 to −0.29) 4.05 × 10−10 1,192

rs2725142 (A) G 29.0 0.51 (0.40 to 0.62) 1.13 × 10−17 1,233 −0.48 (−0.59 to −0.37) 1.46 × 10−16 1,156 −0.40 (−0.51 to −0.28) 1.07 × 10−09 1,148

rs2753571 (A) A 29.1 0.51 (0.40 to 0.62) 3.65 × 10−18 1,231 −0.46 (−0.57 to −0.36) 3.11 × 10−15 1,154 −0.39 (−0.50 to −0.27) 4.50 × 10−09 1,146

rs34398108 (A) A 27.9 0.52 (0.42 to 0.63) 2.40 × 10−19 1,229 −0.54 (−0.64 to −0.43) 2.71 × 10−21 1,153 −0.40 (−0.51 to −0.28) 1.19 × 10−09 1,145

rs1059216 (B) C 6.2 −0.10 (−0.27 to 0.07) 1.00 × 10−00 1,270 −0.17 (−0.33 to 0.00) 1.00 × 10−00 1,193 −0.12 (−0.30 to 0.05) 1.00 × 10−00 1,185

rs61984162 (C) A 2.8 0.20 (−0.04 to 0.45) 1.00 × 10−00 1,276 −0.20 (−0.44 to 0.04) 1.00 × 10−00 1,198 −0.15 (−0.40 to 0.11) 1.00 × 10−00 1,190

rs8009156 (D) T 44.8 −0.21 (−0.29 to −0.13) 5.80 × 10−06 1,256 0.19 (0.11 to 0.26) 1.07 × 10−04 1,178 0.14 (0.06 to 0.22) 5.18 × 10−02 1,170

Abbreviations: AF = allele frequency; EA = effect allele; Ig = immunoglobulin; IgA = immunoglobulin A; IgG = immunoglobulin G; IgM = immunoglobulin M; LD = linkage disequilibrium; N = number of patients.
Linear regression on Ig indices transformed by inverse rank normalization and variants on chromosome 14. p Values were adjusted by Bonferroni correction for multiple testing for n = 85 tests.
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associated with lower IgM (figure 1B) and IgA (figure 1C)
indices (table 1). Visual evaluation of the rank-transformed Ig
indices by genotype for these variants was consistent with
a dominantmodel of inheritance. Theminor allele rs8009156*T
was associated with lower IgG indices and higher IgM and IgA
indices, but the association with IgA indices was not significant
after correction for multiple testing. Associations for the

IgM index were validated using permutation analyses (data not
shown).

To fine map the association of variants at the IGHC locus
with Ig indices, we performed stepwise conditional re-
gression analyses, adjusting, in each step, for the variants
with the most robust support for association. For IgG in-
dices, we identified rs12897751 as the top-associated vari-
ant (explaining 7.6% of IgG index variance) and observed
no evidence for a second causal effect at this locus. SNP
rs12897751 also showed the most robust association with
IgM indices (explaining 8.2% of the variance), and we
observed weak evidence for a possible second causal effect:
SNP rs34398109 was associated at nominal significance
when conditioning for rs12897751 (β = −0.24 [−0.47
to −0.01], p = 0.037). For IgA indices, rs12884389 was
the top-associated SNP, explaining 4.2% of the variance,
and there was weak evidence for a second effect be-
cause rs11621145 was associated at nominal significance
in the conditional analysis (β = −0.19 [−0.37 to −0.01],
p = 0.035).

Association of HLA alleles with Ig indices
Of 98 analyzed 4-digit HLA alleles, 9 showed an association
with at least 1 of the 3 Ig indices after correction for multiple
testing (table 2). HLA-DRB1*15:01, HLA-DQB1*06:02,
HLA-DQA1*01:02, and HLA-B*07:02 were all significantly
associated with higher IgG indices (figure 2A for HLA-
DQB1*06:02). We performed haplotype level analyses on
the extended HLA-A*03:01-C*07:02-B*07:02-DRB1*15:01-
DQA1*01:02-DQB1*06:02 haplotype with stepwise addi-
tion of the single HLA alleles of this haplotype. The most
robust support for association could be observed for the
HLA-DRB1*15:01-DQA1*01:02-DQB1*06:02 haplotype
that explained 2.6% of the variance of IgG indices. When
analyzed separately, HLA-DQB1*06:02 showed the most
robust association. In addition, HLA-B*44:02 showed an
association with lower IgG indices, explaining 1.0% of the
IgG index variance. This association was independent of
the HLA-DRB1*15:01-DQA1*01:02-DQB1*06:02 haplo-
type in a conditional analysis (β = −0.34 [−0.52 to −0.16],
unadjusted p = 2.64 × 10−04).

Only HLA-C*02:02 was associated with IgM indices after
correction for multiple testing. This allele was associated with
lower IgM indices, explaining 1.8% of the variance. All HLA
alleles significantly associated with IgG indices were also as-
sociated with IgM indices at a nominal significance level (table
2 and figure 2B), but these associations were not significant
after correction for multiple testing.

HLA-DRB1*13:01, HLA-DQB1*06:03, and HLA-DQA1*01:
03 were associated with higher IgA indices. All 3 HLA alleles
are part of the HLA-DQA1*01:03-DQB1*06:03-DRB1*13:01
haplotype, and the association of the haplotype was stronger
than the association of the single alleles, explaining 1.6% of the
IgA index variance (table 2).

Figure 1 Ig indices in carriers and noncarriers of the effect
alleles of variants on chromosome 14

Box plots showing IgG (A), IgM (B), and IgA (C) indices transformed by inverse
rank normalization for noncarriers, heterozygotes, and homozygotes of the
effect allele of themost significantly associated variants on chromosome 14.
Bars represent themedian, boxes the interquartile ranges, the vertical lines
the data range without outliers, and dots the outliers.
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Association of genetic variants and HLA alleles
with serum Ig concentrations
To further investigate the mechanisms by which the genetic
factors might have an effect on Ig indices, we performed sec-
ondary regression analyses on blood Ig concentrations for
variants and HLA alleles associated with Ig indices. Except for
rs8009156, the minor alleles of all other variants on chromo-
some 14 associated with IgG indices were also associated with
higher IgG serum levels, but the effect sizes of these associa-
tions were smaller compared with the analyses on IgG indices
(β = 0.15 - 0.28, data not shown). There was no association of
any of the analyzed variants at the IGHC locus with serum
IgM concentrations, and only rs12897751 was associated
with lower serum IgA concentrations. There was no asso-
ciation of any HLA allele with serum Ig levels after correction
for multiple testing (data not shown).

Association of genetic variants and HLA alleles
with blood and CSF B cells and plasmablasts
Of the analyzed variants on chromosome 14, only rs2725142
and rs2753571 showed an association with proportions of CSF
B cells (β = −0.29 [−0.52 to −0.07], adjusted p = 0.022 for both
variants), but were associated with a lower proportion of CSF
B cells. None of the other analyzed variants on chromosome 14
were significantly associated with the proportions of B cells and
plasmablasts in the CSF or peripheral blood (data not shown).
HLA-DRB1*15:01 was associated with higher CSF B cell
and plasmablast proportions and HLA-DQB1*06:02 and
HLA-DQA1*01:02 with higher CSF plasmablast pro-
portions (table 3 and figure 2 shown for HLA-DQB*06:02 as

this was the HLA allele with the strongest association with the
IgG indices). HLA-C*02:02 was associated with lower CSF
B cell and plasmablast proportions (table 3). HLA-DRB1*13:
01, HLA-DQA1*01:03, HLA-DQB1*06:03, and HLA-B*44:02
were not associated with CSF B cells or plasmablasts. There
was no significant association of any HLA allele associated with
the Ig indices with percentages of peripheral blood B cells or
plasmablasts (data not shown).

To investigate whether the association of the HLA alleles
from the HLA-DRB1*15:01-DQA1*01:02-DQB1*06:02
haplotype and HLA-C*02:02 with CSF B cell and plasma-
blast proportions fully explains the associations with the Ig
indices, we performed causal mediation analyses. These
analyses could only be performed in a smaller proportion of
the patients with available flow cytometry data and showed
nominally significant results. We observed full mediation of
the effect of the HLA alleles from the HLA-DRB1*15:01-
DQA1*01:02-DQB1*06:02 haplotype on IgG indices by
increased CSF B cell or plasmablast proportions (shown
for HLA-DQB1*06:02 in figure e-1, links.lww.com/NXI/
A277) and full mediation of the effect of HLA-C*02:02 on
IgM indices by decreased CSF plasmablast proportions
(figure e-1, links.lww.com/NXI/A277).

Epistasis between genetic factors at the IGHC
locus and HLA alleles on Ig indices
We tested for epistatic interactions between the variants at the
IGHC locus and HLA alleles. No significant interactions were
found between the top-associated IGHC variant, rs12897751,

Table 2 Associations of HLA alleles with the Ig indices

HLA allele AF

Regression on IgG indices
(no. of patients = 1,279)

Regression on IgM indices
(no. of patients = 1,200)

Regression on IgA indices
(no. of patients = 1,192)

β (95% CI) Adjusted p β (95% CI) Adjusted p β (95% CI) Adjusted p

B*07:02 17.8 0.18 (0.08 to 0.28) 2.92 × 10−02 0.12 (0.02 to 0.22) 1.00 × 10−00 0.09 (−0.02 to 0.19) 1.00 × 10−00

DQA1*01:02 33.0 0.17 (0.09 to 0.25) 7.61 × 10−03 0.11 (0.02 to 0.19) 1.00 × 10−00 0.05 (−0.04 to 0.13) 1.00 × 10−00

DQB1*06:02 26.5 0.27 (0.18 to 0.36) 2.41 × 10−07 0.15 (0.06 to 0.24) 1.05 × 10−01 0.09 (0.00 to 0.19) 1.00 × 10−00

DRB1*15:01 27.3 0.24 (0.16 to 0.33) 5.92 × 10−06 0.13 (0.05 to 0.22) 2.57 × 10−01 0.09 (0.00 to 0.18) 1.00 × 10−00

DQA1*01:03 6.0 0.10 (−0.07 to 0.26) 1.00 × 10−00 0.15 (−0.02 to 0.31) 1.00 × 10−00 0.37 (0.19 to 0.56) 6.71 × 10−03

DQB1*06:03 5.5 0.06 (−0.10 to 0.22) 1.00 × 10−00 0.17 (0.00 to 0.33) 1.00 × 10−00 0.34 (0.15 to 0.53) 3.40 × 10−02

DRB1*13:01 5.4 0.10 (−0.07 to 0.27) 1.00 × 10−00 0.18 (0.01 to 0.35) 1.00 × 10−00 0.39 (0.19 to 0.59) 8.59 × 10−03

B*44:02 4.5 −0.35 (−0.54 to −0.17) 1.38 × 10−02 −0.25 (−0.45 to −0.05) 7.44 × 10−01 −0.03 (−0.25 to 0.18) 1.00 × 10−00

C*02:02 4.3 −0.19 (−0.38 to −0.01) 1.00 × 10−00 −0.45 (−0.61 to −0.28) 1.01 × 10−05 −0.22 (−0.41 to −0.03) 1.00 × 10−00

Haplotype1 26.0 0.27 (0.18 to 0.36) 2.14 × 10−07 0.15 (0.06 to 0.24) 9.07 × 10−02 0.10 (0.01 to 0.19) 1.00 × 10−00

Haplotype2 5.5 0.11 (−0.06 to 0.28) 1.00 × 10−00 0.18 (0.01 to 0.35) 1.00 × 10−00 0.40 (0.21 to 0.60) 4.46 × 10−03

Abbreviations: AF = allele frequency; Haplotype1 = HLA-DRB1*15:01-DQA1*01:02-DQB1*06:02; Haplotype2 = HLA-DQA1*01:03-DQB1*06:03-DRB1*13:01;
HLA = human leukocyte antigen; Ig = immunoglobulin; IgA = immunoglobulin A; IgG = immunoglobulin G; IgM = immunoglobulin M; LD = linkage
disequilibrium.
Linear regression on Ig indices transformed by inverse rank normalization and 4-digit imputed HLA alleles. p Values were adjusted by Bonferroni correction
for multiple testing for n = 85 tests.
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and alleles from the HLA-B*07:02-DRB1*15:01-DQA1*01:
02-DQB1*06:02 haplotype on IgG indices or between
rs12897751 and HLA-C*02:02 on IgM levels. However, we
observed evidence for epistatic interaction between
rs12897751 and HLA-B*44:02 on IgG indices (interaction
term β = −0.58 [−0.94 to −0.22], p = 6.12 × 10−03, adjusted
for 4 independent test, figure e-1C, links.lww.com/NXI/
A277) and between rs12884389 and HLA alleles from the
HLA-DQA1*01:03-DQB1*06:03-DRB1*13:01 haplotype on
IgA indices (interaction term for the haplotype and
rs12884389 β = −0.61 [−0.97 to −0.26], adjusted p = 3.22 ×
10−03, figure e-1D, links.lww.com/NXI/A277).

Discussion
In this study, we report associations of genetic factors in 2
regions—the IGHC locus on chromosome 14 and the major
histocompatibility complex (MHC) region on chromosome
6—with IgG, IgA, and IgM indices in patients with MS or CIS.

We confirmed and fine mapped a previously reported associ-
ation between genetic variants at the IGHC locus and in-
trathecal IgG indices.5,6 The effect alleles of a highly correlated
group of 10 SNPs were significantly associated with higher IgG
indices. SNP rs12897751—an intronic variant in the immu-
noglobulin heavy constant gamma 3 (IGHG3) gene—showed
the most robust support for association. Another variant
strongly associated with IgG indices, but not independently of
rs12897751, was the missense variant rs1071803. Variant
rs1071803 (in high LDwith rs12897751, r2 = 0.95) defines the
IgG1 allotype G1m17 by altering the amino acid sequence of
the CH1 domain of IgG1. The G1m17 allotype is part of the
Gm21*;17,1;.. and the Gm21*;17,1,2;.. haplotypes, which are
prevalent haplotypes in Caucasian and Mongoloid pop-
ulations.23 The functional consequences of allotypes are poorly
understood. Allotypes have been shown to correlate with IgG
plasma concentrations24,25; they alter the IgG half-life26 and
might influence the distribution of antibodies to specific tissues,
affect class switching, or alter secondary messenger RNA

Figure 2 Ig indices and CSF B cell and plasmablast proportions for carriers and noncarriers of HLA-DQB1*06:02

Box plots showing the rank-transformed IgG indices (A), IgM indices (B), CSF B cell (C), and plasmablast (D) proportions (all transformed by inverse rank
normalization) for noncarriers, heterozygotes, and homozygotes of HLA-DQB1*06:02. Bars represent themedian, boxes the interquartile ranges, the vertical
lines the data range without outliers, and dots the outliers.
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structures and affect the transcription rate.27,28 Although
based on conditional analyses, rs1071803 does not appear to
be the causal variant for the association of the IGHC locus
and the IgG index, it is however possible that other genetic
variants causing Ig allotypy, not genotyped in the present
study but in LD with the investigated variants, are causal for
this relationship. Alternatively, as rs12897751 has been
shown to be associated with higher protein expression levels
of IGHG1, IGHG2, and IGHG3 (GTEx v829), an influence
of this or another correlated variant at this locus on gene
expression might affect IgG levels.

Most of the genetic variants on chromosome 14 associated
with Ig indices were also associated with serum IgG levels.
These associations were, however, much weaker than the
associations with Ig indices. Variants at the IGHC locus might
thus not only affect the amount of intrathecal Igs but also have
some effect on serum IgG concentrations. Analysis of flow
cytometry data from CSF cells showed an association of 2
SNPs on chromosome 14 with CSF B cells. As the effect
alleles of these variants were, however, associated with lower
CSF B cell proportions, it is unlikely that this explains their
association with higher IgG indices.

Of interest, the minor alleles of all variants on chromosome
14 that were associated with higher IgG indices were, at the
same time, associated with lower IgM and IgA indices. This
is especially striking, as higher IgG indices were correlated
with higher IgA and IgM indices. How the variants at the
IGHC locus influence intrathecal IgM and IgA is, therefore,
unclear; possible scenarios are an increased class switching
to IgG-producing cells with resulting lower concentrations
of IgA and IgM or feedback mechanisms resulting in reduced
synthesis of IgM and IgA.

Eight HLA alleles were associated with Ig indices in this
study. Alleles that are part of the extended HLA-DRB1*15:
01-DQA1*01:02-DQB1*06:02 haplotype were significantly
associated with higher IgG indices and nominally associ-
ated with higher IgM indices. The HLA-DRB1*15:01-
DQA1*01:02-DQB1*06:02 haplotype showed the most
robust support of association and HLA-DQB1*06:02 was
the most significantly associated single allele. Causal me-
diation analysis showed that the effect of these HLA alleles
on the IgG index is completely explained by their associa-
tion with higher CSF B cell and plasmablast proportions.
The same is true for the association of HLA-C*02:02 with
lower IgM indices and lower CSF B lymphocyte pro-
portions. HLA-B*44:02 was independently associated
with lower IgG indices, and we observed some evidence for
epistasis between HLA-B*44:02 and the top-associated
IGHC variant rs12897751. The HLA-DQA1*01:03-
DQB1*06:03-DRB1*13:01 haplotype and the individual
HLA alleles that are part of this haplotype, on the other
hand, were associated with higher IgA indices, but did not
show any association with CSF B cells or plasmablasts. We
did however observe evidence for epistatic interactions
between the HLA-DQA1*01:03-DQB1*06:03-DRB1*13:
01 haplotype and IGHC variants. Different HLA alleles thus
appear to have a differential effect on the intrathecal pro-
duction of the Ig classes IgG, IgM, and IgA, probably due to
different underlying mechanisms. Because of the design of
this study, we cannot conclude whether the observed effects
are specific for MS or possibly shared by other inflammatory
neurologic diseases.

We describe 2 genetic regions—the IGHC locus on chro-
mosome 14 and the MHC region on chromosome 6—that
were associated with the amount of intrathecal IgG, IgM,

Table 3 Association of HLA alleles with CSF B cells and plasmablasts

HLA allele AF

Regression on CSF B cell proportions
(no. of patients = 348)

Regression on CSF plasmablast proportions
(no. of patients = 348)

β (95% CI) Adjusted p β (95% CI) Adjusted p

B*07:02 17.5 0.13 (−0.06 to 0.31) 8.90 × 10−01 0.15 (−0.03 to 0.33) 5.35 × 10−01

DQA1*01:02 32.3 0.19 (0.03 to 0.36) 1.17 × 10−01 0.23 (0.07 to 0.39) 3.11 × 10−02

DQB1*06:02 25.5 0.23 (0.05 to 0.40) 5.50 × 10−02 0.23 (0.06 to 0.41) 3.74 × 10−02

DRB1*15:01 26.7 0.23 (0.06 to 0.40) 4.45 × 10−02 0.25 (0.08 to 0.42) 1.91 × 10−02

DQA1*01:03 6.0 −0.12 (−0.43 to 0.20) 1.00 × 10−00 −0.09 (−0.40 to 0.22) 1.00 × 10−00

DQB1*06:03 5.5 −0.12 (−0.43 to 0.19) 1.00 × 10−00 −0.04 (−0.34 to 0.27) 1.00 × 10−00

DRB1*13:01 5.8 −0.13 (−0.45 to 0.19) 1.00 × 10−00 −0.07 (−0.39 to 0.25) 1.00 × 10−00

B*44:02 3.2 0.07 (−0.35 to 0.49) 1.00 × 10−00 0.25 (−0.16 to 0.66) 1.00 × 10−00

C*02:02 4.3 −0.57 (−0.99 to −0.14) 4.52 × 10−02 −0.57 (−0.91 to −0.23) 5.35 × 10−03

Abbreviations: AF = allele frequency; HLA = human leukocyte antigen; Ig = immunoglobulin; IgA = immunoglobulin A; IgG = immunoglobulin G; IgM =
immunoglobulin M; LD = linkage disequilibrium.
Linear regression on CSF B cell and plasmablast proportions transformed by inverse rank normalization and 4-digit imputed HLA alleles. p Values were
adjusted by Bonferroni correction for multiple testing for n = 5 tests (only HLA alleles associated with at least one of the Ig indices were tested).
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and/or IgA in patients with MS or CIS. Our findings suggest
differential mechanisms by which the 2 genetic regions in-
fluence intrathecal Ig synthesis or concentration (figure e-2,
links.lww.com/NXI/A277). HLA alleles in LD with a known
MS risk allele, HLA-DRB1*15:01, appeared to influence the
proportion of intrathecal B cells and plasmablasts and thereby
increase the intrathecal synthesis of immunoglobulins, espe-
cially of IgG. The same was true for HLA-C*02:02 associated
with lower CSF B lymphocyte proportions and IgM indices.
The DQA1*01:03-DQB1*06:03-DRB1*13:01 haplotype was
associated with higher IgA indices, but not with higher CSF
B lymphocyte proportions. We cannot conclude from the
present study how these alleles influence CSF IgA levels.

Genetic variants at the IGHC locus on chromosome 14 were
associated with higher IgG and lower IgA and IgM indices.
These variants did not influence the composition of
B lymphocytes in the CSF. We therefore believe that they
might influence the amount of intrathecal Ig via other
mechanisms, such as an altered CSF immunoglobulin
homeostasis—probably as a result of changes of the protein
structure caused by the variation in the amino acid sequence
associated with the Gm21* haplotypes. Understanding the
mechanisms by which the IGHC locus influences intrathecal
Ig levels may have implications for the design of future
therapeutic antibodies to ensure a better enrichment and
persistence in the CNS compartment.
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