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1 Presence of P53 interactions in data bases

To give an indication of the completeness of pathway data bases, we manually
check whether PPAs from a state-of-the-art model of P53 signalling (Hat et
al., 2016) can be found in PID or Reactome. Three experts in systems biology
manually converted the reactions of the model to the considered PPAs. Then we
manually checked whether this PPA could be found in the PathwayCommons
versions of Reactome and PID. The results of this analysis can be found in
Table SM1. The model is comprised of 24 PPAs. Out of these, 6 can’t be found
in either data base and 12 are missing from at least one.

2 Hyperparameter settings

2.1 PEDL

We set the learning rate to 3e−5 and the batch size to 16 across all experiments.
The maximum sequence length per text span is set to 256 WordPiece-tokens and
all spans that exceed this length after tokenization are discarded. We imple-
mented PEDL with the PyTorch1 deep learning framework and the Hugging-
Face’s transformers library2. To allow the model to fit in GPU memory, we
represent parts of the models with only 16-bit floating point numbers (instead
of 32-bit) using the apex -libary3 with optimization level O1. On all data sets,
we found α = 0.2 to be optimal for the development data.

2.2 comb-dist

For BioNLP (E2 & E3 ), we found sent loss weight = 1 optimal, while for PID
(E1 ), sent loss weight = 2 yielded the best results. Dropout was turned off

1https://pytorch.org
2https://github.com/huggingface/transformers
3https://github.com/NVIDIA/apex
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PPA PID Reactome

ATM controls-phosphorylation-of TP53 3 3
ATM controls-phosphorylation-of MDM2 3 3
ATM controls-phosphorylation-of SIAH1 7 7
SIAH1 controls-state-change-of HIPK2 7 7

HIPK2 controls-phosphorylation-of TP53 3 7
TP53 controls-expression-of MDM2 3 3
TP53 controls-expression-of PPM1D 7 7

TP53 controls-expression-of CDKN1A 3 3
TP53 controls-expression-of BAX 3 3

PPM1D controls-phosphorylation-of ATM 7 7
PPM1D controls-phosphorylation-of MDM2 3 7
PPM1D controls-phosphorylation-of TP53 7 7
AKT1 controls-phosphorylation-of MDM2 3 3

MDM2 controls-state-change-of TP53 3 3
CDKN1A in-complex-with CCNE1 7 3

CCNE1 controls-phosphorylation-of RB1 3 7
RB1 in-complex-with E2F1 3 3

E2F1 controls-expression-of CCNE1 3 3
YWHAZ in-complex-with BAD 3 3

AKT1 controls-phosphorylation-of BAD 3 3
BAD in-complex-with BCL2L1 3 3
BAX in-complex-with BCL2L1 7 7

TP53 controls-expression-of PTEN 3 7
MDM2 controls-state-change-of HIPK2 3 7

Table 1: Presence of the PPAs from a state-of-the-art model of P53 signalling
in pathway data bases. 3 indicates that the PPA could be found and 7 that it
couldn’t.
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across all experiments because this yielded the best scores on all development
sets. The remaining hyperparameters were left at their default values from the
original implementation.4

3 Transforming BioNLP data to PPA format

BioNLP Event Type PPA

Gene expression controls-expression-of
Translation controls-expression-of

Transcription controls-expression-of
Transport controls-transport-of, controls-state-change-of

Localization controls-transport-of, controls-state-change-of
Phosphorylation controls-phosphorylation-of, controls-state-change-of

Dephosphorylation controls-phosphorylation-of, controls-state-change-of
Acetylation controls-state-change-of

Deacetylation controls-state-change-of
Ubiquitination controls-state-change-of

Deubiquitination controls-state-change-of
Hydroxylation controls-state-change-of

Dehydroxylation controls-state-change-of
Methylation controls-state-change-of

Demethylation controls-state-change-of
Glycosylation controls-state-change-of

Deglycosylation controls-state-change-of
Protein modification controls-state-change-of

Binding in-complex-with
Dissociation in-complex-with

Table 2: The mapping from BioNLP event types to PPAs used in the transfor-
mation of the BioNLP data. Comma-separated PPAs imply that the event type
maps to more than one PPA and thus multiple PPAs are inferred for one event
with this type.

The BioNLP event extraction data is distributed in the BRAT-standoff for-
mat, which was designed to annotate the textual description of complex bio-
chemical events. Each event is defined by a trigger-word such as ‘phosphoryla-
tion’ and a theme which denotes the protein undergoing the change expressed
by the event. Events can optionally be regulated by other proteins, which can
be expressed by cause annotations or connected regulation events. We extract a
PPA between proteins A and B if there is an event with theme B and regulator
A. The mapping from event types to PPAs can be found in Table SM2 and we

4https://github.com/allenai/comb_dist_direct_relex
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BioNLP Event Type PPA

Binding in-complex-with
Catalysis of acetylation controls-state-change-of

Catalysis of glycosylation controls-state-change-of
Catalysis of hydroxylation controls-state-change-of
Catalysis of methylation controls-state-change-of

Catalysis of phosphorylation controls-phosphorylation-of, controls-state-change-of
Catalysis of ubiquitination controls-state-change-of
Regulation of expression controls-expression-of

Regulation of phosphorylation controls-phosphorylation-of, controls-state-change-of
Regulation of localization controls-transport-of, controls-state-change-of

Regulation of transcription controls-expression-of

Table 3: The mapping from EVEX relation types to PPAs used in the trans-
formation of the BioNLP data. Comma-separated PPAs imply that the EVEX
type maps to more than one PPA and thus multiple PPAs are inferred for one
EVEX relation with this type.

discard all events that cannot be mapped to a PPA. If an event type maps to
multiple PPA-types, we infer multiple PPAs accordingly.

4 Transforming EVEX data to PPA format

We transform the binary EVEX into our PPA format by applying the type
mapping given in Table SM3. The proteins in EVEX are identified by Entrez
ids, which we map to Uniprot identifiers by querying MyGeneInfo for the top-
scoring human Uniprot id. If an EVEX type maps to multiple PPA-types, we
infer multiple PPAs accordingly.

5 Annotation guidelines

The goal of this analysis is to evaluate how well the compared models perform in
evidence prediction. A text span is called evidence for a given PPA between two
proteins if the relation between both proteins is asserted somewhere in it. For
instance, if the given PPA is ‘BTC in-complex-with ErbB4’, then a supporting
text span for the PPA would be ‘BTC is a ligand of ErbB4’. A statement that
would not be considered as support would be ‘We estimate the expression of
BTC and ErbB4’.

Biological background knowledge is disregarded and only explictly stated
facts are considered. If a sentence reads ‘MAPK and its substrate MAP...’,
then this does not express a phosphorylation PPA, even though you know that
MAPK is a kinase.
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One mention per protein is marked in the text span. If the relation is
expressed between different mentions of the same proteins then the text span
still counts as evidence. The entity marking is only given for your convenience.

Sometimes the protein normalization (mapping from protein mention to
database id) might be wrong. In those cases, if the text span expresses the
relation between wrongly normalized proteins, this still counts as evidence, be-
cause we are not evaluating a normalization method.

If it is ambiguous whether an expressed relation is direct or indirect, the text
span should be counted as evidence. If the stated relation is clearly indirect, the
text span shouldn’t be counted as evidence. For instance, ‘MEKK2 activates
ERK5’ should be considered as evidence, whereas ‘MEKK2 activates ERK5 via
MKK5’ should not.

Complexes are frequently written down as ’ProteinA/ProteinB’. However, it
is frequently unclear whether this denotes a protein complex or means ‘ProteinA
or ProteinB’. If it is not obvious that this refers to a complex, the text span
should not be counted as evidence. For instance, ‘the dimer ProteinA/Protein’
should be considered as evidence, whereas ‘We study ProteinA/ProteinB’, shouldn’t.

We provide a browser-based viewer for the predictions of the model. A
screenshot can be found in Figure SM1

Figure 1: The browser-based relation viewer used for annotation.

6 Comparison to comb-dist

In this section, we provide a detailed comparison of PEDL to comb-dist. Both
PEDL and comb-dist are multi-instance learning methods developed for dis-
tantly supervised relation extraction. They both allow for inclusion of directly
supervised data to improve the accuracy of the model.

However, there are large differences with respect to the technical details of
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both methods. comb-dist employs a Piece-wise Convolutional Neural Network
(PCNN) with Selective Attention and Word Embeddings as its machine learn-
ing model. First, each word is encoded with pretrained (uncontextualized) word
embeddings. The PCNN first divides the text span into three subspans: (1) the
text left to the first entity, (2) the text between both entities and (3) the text
right to the entity. Each of these three subspans is then processed by a Convo-
lutional Neural Network (CNN) layer that models interactions between words
that are closely together. The resulting representations are then aggregated
with max-pooling, yielding a vector representation of each text span. Finally,
the vector representations of each text span are aggregated with selective atten-
tion and the resulting encoding of all text spans is used for prediction.

PEDL on the other hand uses pretrained transformers which recently led
to large gains over CNN models in many other NLP tasks (Devlin et al., 2019;
Beltagy et al., 2019b). In PEDL, each word in the text span is encoded by
the self-attention mechanism of the transformer, allowing to model interactions
between words regardless of their respective distance. The weights of the trans-
former have been pretrained with masked language modelling and next-sentence
prediction on a corpus that includes a large number of biomedical articles. This
allows the model to learn (general and domain-specific) regularities of language
which are then encoded in the contextualized word embeddings. Each text span
is then represented by the embedding of a special token, that was pretrained to
encode information about the entire span. Each of the span representations is
then transformed into a score vector that models which PPAs (if any) are ex-
pressed in the text span. These score vectors are then aggregated by taking the
maximum or its LogSumExp approximation. Note, that no attention module
is used in the aggregation of the span representations, which allows to directly
interpret the score vectors as PPA-predictions per span.

7 Error analysis

We perform an error analysis on the PID test data (E1) to gain a more detailed
picture of the performance differences between PEDL and comb-dist.

First, we analyze the AP as a function of the maximum number per texts.
For this, we select the subset of pairs that contain at most i text spans for
i ∈ [1, 100). Then, we compute the AP of both PEDL and comb-dist for each
subset. The result can be found in Figure SM2. We find that for both models
performance improves with the number of available text spans, with PEDL
performing roughly 5 pp better for all i’s.

In a second analysis, we proceed similarly, but analyze the AP as a function
of the maximum average length of texts. That is, we select the subset of all
protein-pairs whose text spans have an average length of not more than i for
i ∈ [1, 1000]. The results can be found in Figure SM3. For both models, there
is a trend of increasing performance with a larger average text length up to the
point of i = 300. After 300, the performance decreases slightly with growing i.
PEDL performs better than comb-dist for almost all average text lengths with
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Figure 2: Average Precision as a function of the maximum number of texts.
At each point, we compute the AP for the subset of bags with at most i text
spans for i ∈ [1, 100). PEDL performs consistently better than comb-dist for all
maximum text numbers. The performance of both models consistently increases
with the number of available text spans.

a larger difference for smaller values.
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Figure 3: Average Precision as a function of the maximum average text length.
At each point, we compute the AP for the subsets of bags with an average text
span length of at most i for i ∈ [1, 1000]. PEDL performs better than comb-dist
for most maximum average lengths with the improvement being higher for lower
lengths.
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