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Abstract

Motivation: A significant portion of molecular biology investigates signalling pathways and thus depends on an up-
to-date and complete resource of functional protein—protein associations (PPAs) that constitute such pathways.
Despite extensive curation efforts, major pathway databases are still notoriously incomplete. Relation extraction can
help to gather such pathway information from biomedical publications. Current methods for extracting PPAs typical-
ly rely exclusively on rare manually labelled data which severely limits their performance.

Results: We propose PPA Extraction with Deep Language (PEDL), a method for predicting PPAs from text that com-
bines deep language models and distant supervision. Due to the reliance on distant supervision, PEDL has access to
an order of magnitude more training data than methods solely relying on manually labelled annotations. We intro-
duce three different datasets for PPA prediction and evaluate PEDL for the two subtasks of predicting PPAs between
two proteins, as well as identifying the text spans stating the PPA. We compared PEDL with a recently published
state-of-the-art model and found that on average PEDL performs better in both tasks on all three datasets. An expert
evaluation demonstrates that PEDL can be used to predict PPAs that are missing from major pathway databases and
that it correctly identifies the text spans supporting the PPA.

Availability and implementation: PEDL is freely available at https://github.com/leonweber/pedl. The repository also

includes scripts to generate the used datasets and to reproduce the experiments from this article.
Contact: leser@informatik.hu-berlin.de or jana.wolf@mdc-berlin.de
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Molecular biology explores chemical and physical interactions be-
tween key intermediates, mostly proteins, in cells. The biological
function rarely depends on single interactions but on the complex
interplay of many, for example in cellular signalling, metabolism or
gene regulation. Techniques from network analysis are widely used
to connect interactions between proteins to the functional organiza-
tion of cells (Barabasi and Oltvai, 2004). A major challenge for
building these networks is to gather all relevant information from
the literature, since the quality of the model and the model predic-
tions rely on completeness and correctness of the individual proteins
and their interactions. It is important to not only have the know-
ledge that two proteins interact but also to know the exact type of
interaction, such as kinase-substrate relation or gene-gene regula-
tion. These functional protein—protein associations (PPAs) (Junge
and Jensen, 2019) can be found in manually curated databases such
as Reactome (Jassal et al., 2019) or the Protein Interaction Database
(PID) (Schaefer et al., 2009). However, these databases are notori-
ously incomplete despite extensive curation efforts (Koksal et al.,
2018). For instance, we found that for a state-of-the-art model of
p53 signalling (Hat et al., 2016) 25% of the contained PPAs cannot
be found, neither in Reactome nor in PID (see Supplementary
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Material S1 for details). Extracting PPAs from the biomedical litera-
ture has been a long-standing research goal. Early approaches
focused on matching sentences to manually defined templates, usu-
ally leading to high-precision but low-recall results (Friedman et al.,
2001). Later methods used supervised machine learning to classify
whether a sentence expresses a relation between a given pair of pro-
teins, frequently relying on support-vector-machines (SVMs) with
graph kernels (Miwa et al., 2009; Tikk ez al., 2012). Similar techni-
ques have been applied to biomedical event extraction, which aimed
at not only extracting pairwise relations between two proteins but
also complex biochemical reactions between proteins (Bjorne et al.,
2009; Miwa et al., 2010). More recently, also approaches based on
neural networks have been applied to sentence-wise supervised clas-
sification of protein—protein interactions (Peng and Lu, 2017) and to
biomedical event extraction (Bjorne and Salakoski, 2018). None of
these methods are capable of detecting relations between proteins
mentioned in different sentences or make use of pre-trained lan-
guage models that recently have led to large gains in other Natural
Language Processing (NLP) tasks (Devlin et al., 2019). Additionally,
these models rely on manually annotated training data, which for
PPA-extraction requires expert knowledge and thus is very costly.
Consequently, the available manually labelled PPA datasets are
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rather small, typically containing at most a few thousand sentences
(Pyysalo et al., 2008).

This data sparsity led to the introduction of distantly supervised
approaches (Mintz et al., 2009) for PPA prediction (Junge and
Jensen, 2019; Poon et al., 2014; Thomas et al., 2011). However,
both Thomas et al. (2011) and Poon et al. (2014) are based on non-
neural models with manually defined features and Junge and Jensen
(2019) use averaged word embeddings without leveraging multi-
instance learning. Distantly supervised relation extraction methods
generate noisy training data by aligning a knowledge base to a large
collection of texts. To achieve this, a large knowledge base of rela-
tions (in our case PPAs) in the form (e1,7,e2) is connected to a text
by first linking the entities from the knowledge base ey, e, to the
entities in the text. Initially, the core assumption of distant supervi-
sion was that every sentence that contains the entities ey, e
expresses the relation . This assumption can be relaxed through the
use of multi-instance learning (Hoffmann et al., 2011; Riedel et al.,
2010; Surdeanu et al., 2012). Multi-instance learning explicitly
models the assumption that at least one sentence expresses the rela-
tion between the entity pair in question by selecting only a subset of
the sentences to generate the prediction. Originally, probabilistic
graphical models were used to achieve this, but recently deep
learning-based models in the form of piece-wise convolutional neur-
al networks (Zeng et al., 2015) with selective attention (Lin ef al.,
2016) were successfully applied. An orthogonal line of work also
uses auxiliary directly supervised training examples, achieving sig-
nificant improvements for graphical models (Angeli et al., 2014;
Pershina ef al., 2014) and for neural networks (Beltagy et al., 2019a;
Liu et al., 2017). However, all of these approaches only consider en-
tity pairs that occur together in the same sentence, which severely
limits recall (Quirk and Poon, 2017).

Accordingly, there is growing interest in using text that spans
multiple sentences for distantly supervised biomedical relation ex-
traction. Verga et al. (2018) used transformer-based models to pre-
dict all relations between chemicals, diseases and genes contained in
one abstract but do not consider multiple abstracts simultaneously.
Quirk and Poon (2017) used multi-instance learning to predict rela-
tions between drugs and genes that can be up to three sentences
apart with an SVM-classifier on manually defined dependency graph
features.

Recently, deep language models have seen widespread success in
NLP, including the biomedical domain (Beltagy et al., 2019b). The
often used two-step process of training these models can be regarded
as a type of transfer learning (Pratt et al., 1991): The first step is pre-
training, in which a large model, typically with hundreds of million
parameters, is trained on a huge corpus of texts with a language
modelling task. In the second step, the pre-trained model is applied
to the target task, either by fine-tuning the model parameters or
using the model to generate contextualized embeddings (Peters
et al., 2019). BERT (Devlin et al., 2019) is a highly successful deep
language model based on the transformer architecture (Vaswani
et al., 2017) which allows to train very large models efficiently by
leveraging GPUs. Originally, BERT was trained on a large collection
of books and English Wikipedia, but recently two BERT models
trained on biomedical abstracts and full texts have been released,
BioBERT (Lee et al., 2019) and SciBERT (Beltagy ez al., 2019b). As
BERT uses WordPiece tokenization (Wu et al., 2016), it learns a
domain-dependent vocabulary that allows it to use sub-word infor-
mation to relate similar words such as TRAF2 and TRAF3. PPA
Extraction with Deep Language (PEDL) uses SciBERT as its pre-
trained language model, because unlike BioBERT, its WordPiece vo-
cabulary is optimized for scientific literature.

In this work, we propose PEDL models, a model that predicts
functional PPAs from biomedical publications. We approach this
problem by combining pre-trained language models with distant
supervision. Specifically, we source a large number of protein pairs
together with their PPAs from the PID database and find texts men-
tioning these pairs in a collection of roughly 24 million abstracts of
biomedical publications and 3 million full texts. The resulting PPA
extraction dataset is distantly supervised, i.e. it only contains anno-
tations for relations between the proteins but it is not known

whether a text span actually confirms the relation. Given a protein
pair, PEDL takes the text spans mentioning both proteins as input
and predicts which PPAs hold for this pair, if any. Importantly, in
what we call evidence prediction, PEDL predicts not only the PPAs
but also which text span expresses it. We augment the training data
of PEDL with data which additionally contains annotations for evi-
dence predictions, which we generate from those gold standard
datasets (Kim et al., 2011b) that include annotations for all PPA-
types considered by us. Following Beltagy et al. (2019b), we call this
type of data directly supervised. We compare the performance of
PEDL to state-of-the-art approaches on three different datasets and
find that, on average, it performs much better for both PPA and evi-
dence prediction. In a manual evaluation of the top 10 predicted
PPAs, conducted by three experts in Systems Biology, we find that
PEDL can be used to predict PPAs that cannot be found in major
pathway databases. Furthermore, the predicted evidence text spans
actually express the relation and thus can be used for easy verifica-
tion of the predicted PPAs, which is important for expert curation.

2 Materials and methods

In this work, we model PPA extraction following a multi-instance
learning framework for relation extraction (Hoffmann et al., 2011;
Riedel ef al., 2010; Surdeanu et al., 2012). Given two proteins pq
and p,, we aim to predict all PPAs 7 € R relating p; to p, by leverag-
ing a corpus of biomedical literature. We focus on a set R of five
PPAs which is a subset of the Simple Interaction Format relations
available in Pathway Commons:

* in-complex-with is true for a protein pair (A, B), if A and B occur
together in at least one protein complex.

* controls-state-change-of means that A regulates some change of
B. This can be a post-translational modification such as phos-
phorylation or ubiquitination or a transfer between cellular
compartments.

* controls-phosphorylation-of is a subset of controls-state-change-
of and means that A phosphorylates B.

* controls-transport-of is a subset of controls-state-change-of and
denotes that A controls the transfer of B to a cellular
compartment.

* controls-expression-of implies that A modulates the expression
of B.

Additionally, in what we term evidence prediction, we want the
model to find the strongest possible evidence for these PPAs in the
form of text expressing the relation between the proteins. This sec-
tion describes how PEDL combines deep language models, distant
supervision and auxiliary directly supervised data to approach these
two tasks. A detailed graphical description of PEDL can be found in
Figure 1.

2.1 PPA prediction as multi-instance learning

To predict relations between proteins p; and p,, the first step of
PEDL is to collect all text spans T, up to a given length, mentioning
p1 and p, together. This requires the use of named entity recognition
(NER) (Weber et al., 2020) and named entity normalization (NEN)
(Wei et al., 2019) as a pre-processing step.

For the two sub-tasks of relation prediction and evidence predic-
tion, the model has to produce two vectors r € R and e € RIT,
where R is the set of considered PPAs and T is the set of spans for
the pair. The vector 7 contains |R| scores € [0, 1] reflecting the confi-
dence of PEDL in each type of PPA. e contains |T| scores € [0,1],
each modelling PEDL’s confidence that the corresponding text span
expresses a relation between p; and p,.

For this, PEDL predicts a score-matrix § € RT*Rl for each text
span, representing the confidence of the model that a text span sup-
ports a given PPA. To achieve this, we first mark the entity pair in
each text span by surrounding the first entity with the entity markers
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Fig. 1. (a) Overview of PEDL for the two tasks of relation prediction and evidence prediction. In this example, the model predicts relations for the protein pair BTC and ErbB4
given three text spans containing both proteins. First, the BERT component produces a score matrix containing a prediction for each text and relation type. The relation pre-
dictions are then generated by applying LSE column-wise to approximate the maximum score for a given PPA type across all spans. The evidence predictions are obtained by
taking the row-wise maximum, which is the highest score assigned to this text span regardless of PPA type. (b) The generation of one row of the score matrix s. In each of
BERT’s 12 transformer layers, each token receives a 768 dimensional embedding (u; for the first and z; for the last layer). The embedding of the prepended [CLS] token is used
to summarize the text span in the single vector b, which is then transformed to one row of the score matrix by the output layer (W, b)

<el> and </el> and the second entity with <e2>, </e2>. Then,
each text span T; is fed through BERT individually, to obtain the
[CLS] embedding h; € R7®® of the 768-dimensional final layer,
which can be regarded as a summary of the whole text span. Finally,
we use a single hidden layer to transform b, to one row of the score
matrix S; containing logits reflecting the confidence of PEDL that
the text span expresses a given PPA. See Figure 1 for a graphical de-
scription of this process.

The relation prediction r for each PPA type is generated by
aggregating the scores for the PPA over all spans, i.e. column-wise.
Correspondingly, the evidence prediction e for an individual sen-
tence is produced by aggregating the scores of all PPA predictions
for this sentence, i.e. row-wise. Finally, both vectors are normalized
by applying the sigmoid function. In preliminary experiments, we
used maximum for both aggregations, but found that the resulting
sparse gradient flow hampered optimization. Thus, we use the
smooth approximation of maximum LogSumExp as aggregation
function for PPA predictions, because it allows for gradient flow
through all sentences and empirically works well in end-to-end
training of transformer models (Verga ef al., 2018). Putting every-
thing together, the formulae for predicting PPAs and evidence are
the following:

hi = BERTc15)(Th)

S,’f‘ = (W'/’),‘)/-—Fb/'

ej = o(max(S;)) (1)
i

1 =a(log Z exp (S;)),

where log and exp denote element-wise application of logarithm
and exponentiation, W € R78*Rl and b € Rl are trainable param-
eters, and ¢ is the element-wise sigmoid function. Alternatively, S;
can be directly used as an evidence score per relation.

For the training of PEDL, we assume that two types of data are
available: Distantly supervised data which only has labels for rela-
tion prediction and directly supervised data which has labels for
both relation and evidence prediction. Furthermore, we assume that
both types of data share the same label space. The directly super-
vised data is used to give the model additional guidance on how text
spans expressing PPAs look like. To achieve this, we combine both
types of data using a multi-task learning framework. We introduce
one loss term each type of data: Ly, for the distantly supervised
and L. for the directly supervised data. The loss for the directly
supervised data is composed of a loss term for relation prediction

lation
L:d' — [
irect

evidence ocs

and another term for prediction:

+Lépidence The loss for the distantly supervised data only consists of
the loss term for the relation prediction task, because labels for evi-

dence predictions are not available for this type of data:

Listant = L;“Ziﬁ’;’tn The total loss for the batch is then a weighted

average of the direct and distant losses:
‘Czotal = ['direct + (1 - OC) : Edistant (2)

where « € [0, 1] is a hyperparameter controlling the relative import-
ance of the direct loss and will be tuned on the development set of
each considered dataset separately. At each optimization step, we
sample a batch from the distant and one from the directly supervised
data.

Since we model PPA prediction as a multi-label task, all losses
are computed with binary cross entropy. Note, that the only param-
eters of PEDL are those of BERT and one output layer (W, b). We
optimize these parameters with Adam (Kingma and Ba, 2015). The
detailed hyperparameter settings can be found in Supplementary
Material S2. One training step on one batch (16 protein pairs with
up to 100 text spans each) takes ~9.5's on four RTX 2080 Ti GPUs.

2.2 Data

The training of PEDL requires distantly and directly supervised
data. To obtain the distantly supervised data, we follow the stand-
ard approach for creating a multi-instance learning dataset (Riedel
et al., 2010). First, we collect all protein pairs and the relations be-
tween each pair from a large knowledge base, where we opt for the
PID data base (Schaefer er al., 2009), due to its very high curation
standards. We gather our data from the Simple Interaction Format
version of PID provided by PathwayCommons (https://www.path
waycommons.org/archives/PC2/v11/PathwayCommons11.pid.hgnc.
txt.gz) (Cerami et al., 2011). Then, for each protein pair p; and p»,
we collect all text spans up to the length of 300 characters that men-
tion p; and p, together. To estimate the probability that a protein
pair is related by none of the considered PPAs, we also require nega-
tive pairs which are not related by any PPA. We generate such nega-
tive examples by randomly sampling 10 - [PID| pairs, where |[PID| is
the number of pairs obtained from PID.

As a text corpus, we use all 24 377 760 PubMed abstracts avail-
able through PubTator Central (ftp://ftp.ncbi.nlm.nih.gov/pub/lu/
PubTatorCentral/bioconcepts2pubtatorcentral.offset.gz, Version of
2019/08/19) (Wei et al., 2019) and 2 986 273 full texts available in
the PubmedCentral BioC text mining collection (ftp://ftp.ncbi.nlm.
nih.gov/pub/wilbur/BioC-PMC/, Version of 2019/05/24) (Comeau
et al., 2019). We use the NER and NEN annotations from PubTator
Central for both abstracts and full texts. We transform the Entrez
ids provided by PubTator Central to Uniprot identifiers with the
mapping provided by Uniprot (ftp:/ftp.uniprot.org/pub/databases/
uniprot/current_release/knowledgebase/idmapping/by_organism/
HUMAN_9606_idmapping.dat.gz) to relate them to the Uniprot
identifiers from PID. Additionally, we expand the identified proteins
with all homologous proteins obtained from the HomoloGene
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Table 1. Statistics of the datasets BioNLP 2011, BioNLP 2013 and PID
Relations Pairs Texts (Avg.)
expr. phosph. State Transport Complex Total pos. neg. pos. neg.
BioNLP 2011 245 44 136 38 278 741 615 1845 19.69 4.97
BioNLP 2013 179 104 160 43 441 927 730 2190 17.44 4.85
PID 2376 2714 8425 1020 5799 20622 16 369 54261 53.60 16.32

Note: Relations gives the total number of protein pairs for the five considered relations controls-expression-of (expr.), controls-phosphorylation-of (phosph.),

controls-state-change-of (state), controls-transport-of (transport) and in-complex-with (complex). Pairs denote the total number of protein pairs with at least one

relation (pos.) and without any relation (neg.). Texts states the average number of text spans per protein pair for pairs with at least one relation (pos.) and without

any relation (neg.).

database  (ftp://ftp.ncbi.nih.gov/pub/HomoloGene/build68/homolo
gene.data), to increase the number of text spans per protein pair, con-
sidering only the taxa Homo Sapiens, Rattus norvegicus, Mus muscu-
lus, Oryctolagus cuniculus and Cricetulus longicaudatus. For protein
pairs which occur together in more than 100 texts, we randomly sam-
ple 100 texts and discard the rest. Finally, we discard all (positive and
negative) protein pairs which did not co-occur at least once. Detailed
statistics of the resulting dataset can be found in Table 1.

Next, we describe the generation of the directly supervised data,
which we need for two different purposes. First, we use it as addition-
al training data as explained above and second, it allows us to per-
form experiments with known relations for text spans, which then
lets us evaluate the performance for evidence prediction without man-
ual inspection of the predictions. To perform these experiments, we
actually need two distinct directly supervised datasets, one for evalu-
ation and one as additional training data for PEDL. To generate the
directly supervised data, we transform sentence-level event extraction
data from the BioNLP-shared tasks (Kim et al., 2011a; Nédellec
et al., 2013) into multi-instance learning data. We transform the
BioNLP event structures into pairwise relations between proteins
with the same five relation types as for the distant data. The details of
this transformation can be found in Supplementary Material S3.
Then, akin to the generation of the distant data, we normalize all pro-
tein mentions, collect all pairs of co-occurring proteins and sample
non-interacting proteins as negative examples. We normalize protein
mentions by querying MyGenelnfo (Xin et al., 2016) for the human
uniprot id. Tokenization and sentence splitting are performed with
the en_core_sci_sm model of SciSpacy (Neumann et al., 2019). We
perform this transformation for the Genia (Kim et al., 2011b) and
epigenetics (Ohta et al., 2011) datasets from BioNLP 2011 as well as
the Genia (Kim et al., 2013) and Pathway Curation (Ohta et al.,
2013) tasks from BioNLP 2013. These BioNLP datasets were specif-
ically selected since they were the only ones containing annotations
for all considered PPA types. Finally, we aggregate the protein pairs
of both 2011 and 2013 tasks, respectively. This yields two multi-
instance learning datasets with the additional information of which
text spans express relations between the proteins. Detailed statistics
of both datasets can be found in Table 1.

In preliminary experiments on the PID dataset, we found that
the predictions of PEDL seemed to almost exclusively rely on the
protein names appearing in the text span. While this led to good per-
formance for relation prediction, this is most likely an artefact of the
PID database, because if two proteins are related by a given PPA,
then frequently, all members of the respective protein families are
related by the same PPA. Ultimately, we are interested in predicting
PPAs that are not contained in PID, and thus, we performed all fur-
ther experiments on entity blinded data, which prevents PEDL from
inferring family membership. To achieve this, we replaced all pro-
tein names recognized by the en_ner_jnlpba_md model of SciSpacy
with dummy identifiers.

2.3 Baselines

We compare PEDL to the two competitor methods comb-dist
(Beltagy et al., 2019a) and EVEX (Van Landeghem et al., 2013),
representing the state-of-the-art for distantly supervised relation

extraction (comb-dist) and for sentence-level relation extraction
applied on whole PubMed (EVEX).

comb-dist is a recently published multi-instance learning method
for distantly supervised relation extraction. It set a new state-of-the-
art on a standard benchmark for distantly supervised relation ex-
traction (Riedel et al., 2010) strongly outperforming competitor
methods by additionally integrating directly supervised data. As a
base model, comb-dist uses a piece-wise convolutional neural net-
work with selective attention and pre-trained word embeddings.
comb-dist was not developed for biomedical applications and has
never been applied to such data as far as we know. In all experi-
ments with comb-dist, we use the (selective) attention distribution
over the text spans as evidence predictions. A detailed discussion of
the differences between PEDL and comb-dist is provided in
Supplementary Material S6. For word embeddings, we equip comb-
dist with wikipedia-pubmed-PMC (http://evexdb.org/pmresources/
vec-space-models/wikipedia-pubmed-and-PMC-w2v.bin)  embed-
dings of Pyysalo et al. (2013), because they performed well in our
earlier work (Habibi ez al., 2017). The hyperparameter settings of
comb-dist for each task are provided in Supplementary Material S2.

EVEX is a database of text-mined biological events, accompa-
nied by inferred pairwise PPAs and has annotations for whether an
event was deemed speculative or negated. The database was created
by applying a state-of-the-art biomedical event extraction tool
(Bjorne, 2014) to a large collection of PubMed abstracts and PMC
full texts. Since the EVEX database was last updated in 2013, we
compare PEDL with EVEX on a modified test data of PID in which
we only use texts published prior to 2013 to ensure a fair compari-
son. We apply a straight-forward mapping of EVEX’s types of PPAs
to the five considered in our work (see Supplementary Material S4)
and remove all relations with a detected negation, but retain specu-
lative relations.

2.4 Evaluation details
We use the three datasets PID, BioNLP 2011 and BioNLP 2013 in
three different experimental settings E1, E2 and E3.

* El: PID is the distantly supervised data and the union of both
BioNLP datasets are the directly supervised auxiliary training data.

* [E2: BioNLP 2011 is the distantly supervised data (disregarding
evidence annotations during training) and BioNLP 2013 is the
directly supervised auxiliary training data.

* E3: BioNLP 2013 is the distantly supervised data and BioNLP
2011 is the directly supervised auxiliary training data.

In both E2 and E3, we report the average of five runs with differ-
ent seeds to compensate for the small dataset sizes. Note that results
from the BioNLP shared tasks are not comparable to E2 and E3 be-
cause we do perform multi-instance learning (and not sentential pre-
diction) and the label spaces are different. We use the directly
supervised data only during training and remove all protein pairs
occurring in the development and test set from the directly super-
vised data to prevent knowledge leaks. We split each dataset into
train, development and test set by randomly dividing protein pairs
with their associated text in a 60:10:30 ratio. For relation
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prediction, we compare models by plotting their precision—recall
(PR) curves. These curves are computed by ranking all PPAs by the
predicted confidence score of the model and computing the resulting
(micro-averaged) precision and recall for all possible threshold val-
ues. We also report the average precision (AP) which is an approxi-
mation of the area under the PR-curve. We use mean average
precision (mAP) and precision at ten (P@10) to evaluate evidence
predictions, both for the automated evaluation in E2 and E3, as well
as for the manual evaluation by domain experts in E1. mAP aver-
ages the individual APs of evidence predictions for each protein pair
and P@10 is defined the mean precision of the top ten predictions.

3 Results

We evaluate PEDL, a method for predicting PPA-relations between
proteins and the evidence for these relations, on three different data-
sets. The results are compared to two competitor methods: comb-

Table 2. Results on the two BioNLP datasets (E2 and E3)

BioNLP 11 BioNLP 13
r-AP e-mAP r-AP e-mAP
comb-dist 65.4(2.6) 75.86(1.6) 70.68(2.6) 79.35(0.9)
— direct 62.33(1.8) 54.38(26.9) 70.06(2.1) 54.64(27.2)
PEDL 65.59(4.9) 82.36(1.2) 76.75(2.0) 84.67(1.6)
— direct 60.65(4.1) 64.64(4.1) 71.03(3.0) 75.14(2.1)

Note: r-AP is the AP for relation prediction and e-mAP the mAP for evi-
dence prediction. All results are averages of five runs with different random
seeds, with standard deviations given in brackets. ‘- direct’ shows scores with-
out directly supervised data. The best scores are displayed in bold.

Table 3. APs for relation prediction on the PID data (E1) for the PPA
types controls-expression-of (expr.), controls-phosphorylation-of
(phosph.), controls-state-change-of (state), controls-transport-of
(transport) and in-complex-with (complex)

expr. phosph. State Transport Complex Total
comb-dist 42.77 3838  49.14 5.87 47.86 44.78
PEDL 46.45 40.26  52.70 18.21 49.70  46.02
count 694 817 2532 288 1668 5999

Note: Total gives the AP for all PPA types as a micro-average. The best
score per relation-type is displayed in bold. Count denotes the number of pro-
tein pairs with this type of PPA in the test set. Note that total is computed on
a ranking of predictions including all PPA types, which leads to the fact that
the difference between both models is smaller than every distance of the indi-
vidual PPAs. EVEX cannot be compared in this setting, because it does not
consider texts published after 2013.

(a) All publications Before 2013
1.0 — PEDL
0.8 L{ comb-dist

c el | — EVEX

L2 0.6 ~

0

9 0.4 N

o
0.2
0.0

0.00 0.25 050 075 1.00 0.00 0.25 050 0.75 1.00

Recall Recall

dist, a recently published state-of-the-art multi-instance relation ex-
traction method, and EVEX a large data base of PPAs that was gen-
erated by applying biomedical event extraction to a large collection
of abstracts and full texts.

3.1 Prediction of PPAs

At first, we investigate the results of PEDL for predicting PPAs be-
tween pairs of proteins. The results for the BioNLP datasets (E2 and
E3) can be found in Table 2 and results for PID (E1) in Table 3. In
terms of AP, PEDL performs better than the competitor methods on
two of the three considered datasets and comparable on the third.
On BioNLP 2013 (E3), PEDL achieves an AP score that is 6.07 pp
higher than that of comb-dist, while on PID (E1, mixing predictions
for all PPA types) it is 1.24 pp higher. If one considers predictions
for each type of PPA on PID individually, the difference between
both models is considerably larger. PEDL performs better than
comb-dist on all five types with differences ranging from 1.84 pp for
in-complex-with to 12.34 for controls-transport-of, with an average
of 4.66 pp. On BioNLP 2011 (E2), the difference in AP of both
models is marginal.

It is instructive to compare the PR-curves of PEDL, comb-dist
and EVEX for relation prediction on the PID data (E1, see Fig. 2).
We compare with the results of EVEX only on abstracts and full
texts published prior to 2013 to account for the fact that EVEX was
last updated in 2013. Both models strongly outperform EVEX on
the before 2013 data, both in terms of recall and precision. The dif-
ference in recall is especially pronounced, because EVEX only gener-
ates positive predictions for fewer than 37% of the PPAs in the PID
test set. PEDL performs better than comb-dist in the mid-precision
regime but a little worse for low precisions when provided all
articles and full texts. On the before 2013 subset, PEDL performs
equal to comb-dist in the high-precision regime but worse for mid-
to-low precision values, leading to 40.54% AP for PEDL and
44.24% AP for comb-dist (see Section 4.2 for a discussion of this).

3.2 Evidence prediction

In most biomedical applications, extracted PPAs are not accepted
per se, but undergo confirmation through experts. The reason is the
far from perfect performance of state-of-the-art approaches, and the
fact that even a correctly extracted text needs not express biological
truth, for instance due to weak experimental evidence. Therefore, it
is important that methods not only predict the correct PPA, but also
the text spans on which the model’s PPA prediction is based (which
we call evidence prediction). Table 2 gives results for evidence pre-
diction on the BioNLP datasets, where both PEDL and comb-dist
achieve high mAP scores for evidence prediction. PEDL outperforms
comb-dist on both datasets with 6.38 pp for BioNLP ‘11 and 5.32
pp for BioNLP’13.

In contrast, PID is a distantly supervised dataset and does not
have annotations to evaluate evidence predictions. For the predic-
tions of comb-dist and PEDL, two domain experts evaluated the top
ten evidence predictions for the top 10 predictions of each PPA-type,
amounting to 500 evaluated evidence predictions (the annotation

' (b)

complex complex
B —— PEDL r
/.\\ comb-dist
/ =8
transpoit / fiz \“\exnression transpoit // “‘\\ expression
( y
[ e o=
state phosphorylation state phosphorylation

mAP P@10

Fig. 2. (a) PR curve for the PID data. The left plot shows results for all available abstracts and full texts. The right plot displays the results using only abstracts and full texts
published prior to 2013, which allows a fair comparison with EVEX. These results are based on a ranking that includes all types of PPA. The improvement of PEDL over
comb-dist is larger for rankings of only one type of PPA (see Table 3 for numbers and explanation). (b) Results from the manual evaluation of evidence prediction on PID
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guidelines can be found in Supplementary Material S5). Note, that
for this evaluation, we directly use the rows of the score matrix as
evidence score per relation for PEDL. This refinement is not possible
for comb-dist, because the attention distribution is computed inde-
pendently of the relation type. This allows PEDL to rank the evi-
dence specifically for one PPA type, while comb-dist only predicts
whether there is a relation between the proteins at all. The results of
this analysis show that PEDL performs better than comb-dist for
predicting evidence for the three PPA-types controls-transport-of,
in-complex-with and controls-expression-of (see Fig. 2). The results
for controls-state-change-of are comparable and worse for controls-
phosphorylation-of. The improvement over comb-dist is especially
striking in the case of controls-transport-of, for which comb-dist pro-
duces almost no correct evidence predictions and PEDL achieves a
mAP of 46%. The results in terms of P@10 are similar, with PEDL
additionally achieving better results for controls-state-change-of.
Moreover, the variability in performance across different PPA types is
much larger for comb-dist than for PEDL. On average, PEDL achieves
a 7.66 pp higher mAP and a 8.14 pp higher P@10 than comb-dist.

3.3 Analysis of new predictions

We also evaluated PEDL in a realistic application scenario, where
three experts in systems biology manually analyzed the top 10 pre-
dictions that are not contained in the aforementioned
PathwayCommons versions of neither Reactome nor PID. The
results are summarized in Table 4, where we provide all predictions
considered biologically justified by all experts together with the
highest ranking true evidence text span. In the evaluation, 6 out of
10 are predicted correctly, while one prediction is wrong due to
errors in the protein normalization pre-processing step, and the
other three are errors of PEDL. It can be further observed, that for
all correct predictions but one, the highest ranking text span (col-
umns Text span and ¢) actually expresses the PPA and either states
the finding of the PPA or refers to an earlier publication reporting it.

4 Discussion

4.1 Importance of directly supervised data

The results given in Table 2 allow for interesting observations regard-
ing the importance of directly supervised data. On the BioNLP data-
sets, the incorporation of directly supervised data improves results for
both relation and evidence prediction. The improvement is much
more pronounced for the evidence prediction task than for relation
prediction. This supports our hypothesis, that we can improve evi-
dence prediction specifically by including directly supervised data.
Compared to comb-dist, PEDL has a much larger gain from directly
supervised data in the relation prediction task (5.33 pp versus 1.85
pp). For BioNLP 2011, comb-dist even outperforms PEDL in relation

prediction when no directly supervised data is available. This might
partly be because the inclusion of directly supervised data stabilizes
PEDL’s training process. In preliminary experiments on the PID data-
set, we observed that without access to directly supervised data the
model failed to converge, while setting the whole score matrix to zero.
We attribute this to the fact that usually only a few of the (max.) 100
text spans actually express the annotated relation and think that the
directly supervised data compensates for the resulting label imbalance
for evidence prediction.

Notably, PEDL achieves strong results for evidence prediction
even without access to directly supervised data. This suggests that
the constraint of only aggregating (logit-)scores, and not high-
dimensional embeddings as in comb-dist’s selective attention, is
more appropriate for evidence prediction in absence of directly
supervised data. These scores also have a clear interpretation as the
confidence of PEDL that the given text span supports a given PPA.
The lower (average) performance of comb-dist in this setting can be
attributed to strong performance drops for some random seeds
(min. 24.03 versus max. 76.61), indicating a notable instability of
the model. We furthermore found that running comb-dist with the
most recent versions of PyTorch (1.4.0) and AllenNLP (0.9.0) leads
to a performance drop of 1 to 5 pp. for both relation prediction and
evidence prediction.

4.2 Comparison to EVEX

The comparison of the two distantly supervised methods to EVEX (cf.
Fig. 2) is instructive, because it allows to compare methods trained
only on directly supervised data to models with access to both types of
data. Especially striking is the difference in recall between EVEX and
the distantly supervised models, where EVEX only contains predic-
tions for 36.15% of the positive protein pairs, while PEDL and comb-
dist produce predictions for 95.1% and 95.33% of the protein pairs.
This might be partially attributed to the advancements in NER and
Normalization that were achieved since 2013—which we implicitly
incorporate by using PubTator Central—but also stresses the import-
ance of predicting relations for proteins that occur in different senten-
ces. Recall that EVEX only considers single sentences.

The importance of using multiple sentences will be further dis-
cussed in the next section. Notably, the increased recall does not
come at the price of reduced precision, as both PEDL and comb-dist
strongly outperform EVEX in all precision regimes. Together with
the encouraging results of the evidence prediction, this indicates that
distant supervision is a promising paradigm to train accurate classi-
fiers for PPA prediction.

A related interesting observation is that PEDL performs marked-
ly worse on the before 2013 subset of the data, whereas comb-dist
almost retains its performance. We hypothesized that the reason for
this behaviour lies in the fact that PEDL does not model the seman-
tic interactions between text spans via attention, making it more

Table 4. Evaluation results for the top-10 predictions that cannot be found either in Reactome or in PID

k PPA

Text span (source PMID) t

Evidence

1 IGF-1I in-complex-with VN

‘We have previously reported that IGF-II binds the extracellular matrix

1 Upton et al. (1999)

protein vitronectin (VN) [...] * (12746303)

2 hnRNP-A1 controls-expression-of IL10
IL10.” (19349988)
4 NCORI1 controls-expression-of PSA

‘These results suggest that hnRNP-A1 promotes transcription of human

‘ChIP-reChIP assays revealed that NCOR and [...] p300 are present in dis-

1 Noguchi et al. (2009)

4 Qietal. (2013)

tinct AR complexes on the promoter of PSA gene [...]" (23518348)

5 ets-2 controls-expression-of BRCA1

‘Conditional overproduction of ets-2 in MCF-7 cells resulted in repression of 1 Baker et al. (2003)

endogenous BRCA1 mRNA expression.” (12637547)

6 c-Rel controls-expression-of Bcl-X

‘We further demonstrate [...] that introduction of two downstream c-Rel tar- 1 Chen et al. (2000)/
get genes, Bel-X [...]" (15922711)

Lee et al. (1999)

8 C/EBP-beta controls-expression-of COX-2 ‘C/EBP-beta is a transcription factor [...] capable of inducing COX-2 expres- 1 Kim and Fischer (1998)/

sion [...]” (19124115)

Zhu et al. (2002)

Note: The rank of the prediction is given by k. We provide the highest ranking evidence text span that actually expresses the relation and its rank in PEDL (%),

as well as manually sourced literature evidence that provides strong biological evidence for the existence of the PPA. Note that this evidence need not be identical

to the evidence span predicted by the model.
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Fig. 3. Maximum possible recall for a given maximum character distance between
the protein mentions. ‘Positive’ refers to protein pairs with at least one PPA in PID
and ‘Negative’ to pairs without any. The dashed lines indicate the maximum recall
that is possible for sentence level approaches. The red vertical line indicates our
choice for the maximum distance between pairs

susceptible to violations of the at-least-once assumption. To validate
this, we inspect the top 10 predictions of PEDL for true PPAs with
the largest drop in ranking between the full and the before 2013
data. We found that for nine of the ten PPAs, none of the texts pub-
lished prior to 2013 contains any mention of the PPA. Additionally,
no text published prior to 2013 contained any mention of the associ-
ated protein pair for 5% of all true PPAs, which limits PEDL’s max-
imum recall to 95% for the before 2013 data.

4.3 Importance of using multiple sentences

We investigate the effect of considering protein mentions across sen-
tences by measuring the fraction of protein-pairs in PID that are at
most d characters away from each other in at least one text for dif-
ferent values of d. Additionally, we report this quantity considering
only single sentences, again using the en_core_sci_sm model of
SciSpacy to split the text into sentences. The results are depicted in
Figure 3. It can be observed that considering only protein mentions
that occur within the same sentence has a strong limiting effect on
maximum recall. Using d =300, PEDL can predict PPAs for 87.9%
of the positive pairs in PID, which is a large gain over the 59.24%
that would be achievable if we considered only single sentences.
This, however, comes at the price of more included negative protein
pairs. PEDL predicts PPAs for 50.01% of the considered negative
pairs, whereas a sentence-level approach would predict PPAs for
only 9.25%. This highlights the importance of using a strong ma-
chine learning model to rank the predicted PPAs instead of relying
on simple co-occurrence statistics in the high-recall regime.

5 Conclusion

We propose PEDL, a method for predicting PPAs and their textual
evidence by integrating deep language models, distant supervision
and auxiliary directly supervised data. We compare PEDL on three
different datasets with two state-of-the-art methods and find that,
on average, it outperforms them in most cases and performs com-
parably in the remaining ones. A manual evaluation of the predicted
PPAs shows that PEDL can be used to identify PPAs that are missing
in major pathway data bases. Furthermore, we demonstrate that the
predicted evidence text spans actually express the relation and thus
can be used to quickly verify the predicted PPAs.

Owing to the incorporation of BERT, the method proposed in
this article has very high runtime requirements which make it unsuit-
able for predicting PPAs between all possible pairs. This problem
could be solved using recently published model distillation techni-
ques for BERT (Sanh et al., 2019). We only address pairwise PPA
prediction in which a relation holds between exactly two proteins.
Actual biochemical reactions are much more complex than that, as

they can have multiple reactants, products and regulators, which
can also be protein complexes or completely different molecules
(Berg et al., 2019). It would be worthwhile to study whether bio-
medical event extraction (Ohta et al., 2013) can be combined with
distant supervision to predict such complex biochemical reactions.
Finally, PEDL could also be used to predict evidence for known
PPAs, for instance those from the distantly supervised training data,
which we did not investigate in this work.
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