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Multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) are

autoimmune central nervous system conditions with increasing incidence and

prevalence. While MS is the most frequent inflammatory CNS disorder in young adults,

NMOSD is a rare disease, that is pathogenetically distinct from MS, and accounts

for approximately 1% of demyelinating disorders, with the relative proportion within

the demyelinating CNS diseases varying widely among different races and regions.

Most immunomodulatory drugs used in MS are inefficacious or even harmful in

NMOSD, emphasizing the need for a timely and accurate diagnosis and distinction

from MS. Despite distinct immunopathology and differences in disease course and

severity there might be considerable overlap in clinical and imaging findings, posing

a diagnostic challenge for managing neurologists. Differential diagnosis is facilitated

by positive serology for AQP4-antibodies (AQP4-ab) in NMOSD, but might be

difficult in seronegative cases. Imaging of the brain, optic nerve, retina and spinal

cord is of paramount importance when managing patients with autoimmune CNS

conditions. Once a diagnosis has been established, imaging techniques are often

deployed at regular intervals over the disease course as surrogate measures for

disease activity and progression and to surveil treatment effects. While the application

of some imaging modalities for monitoring of disease course was established

decades ago in MS, the situation is unclear in NMOSD where work on longitudinal

imaging findings and their association with clinical disability is scant. Moreover, as

long-term disability is mostly attack-related in NMOSD and does not stem from

insidious progression as in MS, regular follow-up imaging might not be useful in the

absence of clinical events. However, with accumulating evidence for covert tissue

alteration in NMOSD and with the advent of approved immunotherapies the role

of imaging in the management of NMOSD may be reconsidered. By contrast, MS

management still faces the challenge of implementing imaging techniques that are
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capable of monitoring progressive tissue loss in clinical trials and cohort studies into

treatment algorithms for individual patients. This article reviews the current status of

imaging research in MS and NMOSD with an emphasis on emerging modalities that

have the potential to be implemented in clinical practice.

Keywords: multiple sclerosis, neuromyelitis optica spectrum disorders (NMOSD), magnetic resonance imaging,

optical coherence tomography, neuroimaging

INTRODUCTION

Multiple sclerosis (MS) and neuromyelitis optica spectrum
disorders (NMOSD) are inflammatory, autoimmune central
nervous system conditions that have shown increasing incidence
and prevalence over the past decades (1–5). While MS is the most
frequent inflammatory CNS disorder in young adults, NMOSD is
a rare disease. Relative frequency within the demyelinating CNS
diseases varies widely among different ethnicities and regions,
accounting for ∼1% of demyelinating disorders (6, 7). Based
on results from population-based studies, NMOSD prevalence
broadly ranges from 0.52 to 7.7 per 100,000 (7). Although
NMOSD frequency in Asian and White/Caucasian ethnicities
seems to be comparably similar (4, 8), Blacks seem to have highest
NMOSD prevalence of up to 13/100,000 as inferred from mixed
Northern American populations (9, 10).

For a long time, NMOSD had been seen as a rare variant of
MS; however, the seminal discovery of a highly specific serum
IgG autoantibody to the astrocyte water channel aquaporin-
4 (AQP4) in up to 80% of NMOSD patients and subsequent
research into the role of these antibodies in disease pathogenesis
and lesion formation has made clear that this is a condition
distinct from MS (11–17). Clinical experience has then shown
that most immunomodulatory drugs used inMS are inefficacious
or even harmful in NMOSD, emphasizing the need for a timely
and accurate diagnosis and distinction fromMS (18–21). Despite
distinct immunopathology and differences in disease course and
severity, there might be considerable overlap in clinical and
imaging findings, posing a diagnostic challenge for managing
neurologists. Differential diagnosis is facilitated in case of a
positive serology for AQP4-abs obtained with a highly specific
cell-based assay but might be difficult in seronegative cases or
when less specific assays for AQP4-abs are used (22, 23).

Imaging of the brain, optic nerve, retina, and spinal cord is
a procedure of paramount importance when managing patients
with inflammatory CNS conditions at first presentation to enable
diagnosis and differential diagnosis (24–28). Once a diagnosis
has been established, imaging techniques are often deployed at
regular intervals over the disease course as surrogate measures
for disease activity and progression and to surveil treatment
effects (29, 30). Although the application of some imaging
modalities for monitoring of disease course was established
decades ago in MS, the situation is less clear in NMOSD in which
work on longitudinal imaging findings and their association
with clinical disability is scant (26). Moreover, as long-term
disability is mostly attack-related in NMOSD and does not
stem from insidious progression as in MS, regular follow-up
imaging might not be useful in the absence of clinical events.

However, with accumulating evidence for covert tissue alteration
in NMOSD and with the advent of approved immunotherapies,
the role of imaging in the management of NMOSD might have
to be reconsidered in the near future (31–37). In addition,
imaging markers indicating impending relapses are an unmet
need in NMOSD. On the contrary, MS management still
faces the challenge of implementing imaging techniques that
are capable of monitoring progressive tissue loss (for example
brain or spinal cord atrophy) in clinical trials and cohort
studies into treatment algorithms for individual patients (38–
40).

This article reviews the current status of imaging research
in MS and NMOSD with an emphasis on emerging modalities
that have the potential to be implemented in clinical practice
for diagnosis, differential diagnosis, and monitoring of disease
course and immunotherapies.

MULTIPLE SCLEROSIS

As in previous versions of the MS diagnostic criteria,
conventional MRI of the brain and spinal cord (T2/Flair/T1 post
gadolinium sequences) is a cornerstone for an MS diagnosis
within the 2017 revision of the McDonald criteria (41, 42),
taking potential “red flags” and “MS mimics” into consideration
that may point to an alternative diagnosis (24, 25). However,
sensitivity of the 2017 criteria might have improved, and time
to diagnosis appears to be shorter at the expense of specificity
(43–45). Thus, frequent misdiagnosis of MS based upon
misinterpretation of imaging findings on conventional MRI
in conjunction with atypical clinical presentations even by MS
experts has remained an alarming issue (46–49).

Recently the so-called “central vein sign” (CVS) was proposed
as a potential new biomarker for a more specific MS diagnosis,
emerging from observations, mostly at ultra-high field MRI
studies, that MS lesions are frequently characterized by a small
intralesional vein in contrast to relevant imaging differential
diagnoses, such as NMOSD, small vessel disease, inflammatory
CNS vasculopathies, Susac syndrome, and others (50–56).

CVS is now reliably assessable at 3T, for example, using
T2∗/FLAIR and co-registered SWI images, and might, therefore,
become a clinically applicable imaging feature to discriminateMS
from classical mimics at a high specificity (56–58) (Figure 1). In
one study, a threshold of 50% perivenular lesions discriminated
MS from inflammatory vasculopathies, such as Behcet disease,
primary angiitis of the CNS, antiphospholipid syndrome, Sjögren
syndrome, and systemic lupus erythematosus (SLE), with 100%
accuracy (56), and another multicenter study conducted by
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FIGURE 1 | Representative axial 3 T FLAIR-SWI images from individuals with (A) relapsing–remitting multiple sclerosis (RRMS; 28-year-old woman) and (B)

AQP4-antibody-positive neuromyelitis optica spectrum disorder (AQP4+-NMOSD; 76-year-old woman). The central vein sign (red arrows) is present in the majority of

MS lesions but not in white matter lesions in NMOSD. White boxes show magnified views of lesions in axial and sagittal plane. T, Tesla; FLAIR, fluid-attenuated

inversion recovery; SWI, susceptibility-weighted imaging; RRMS, relapsing-remitting multiple sclerosis; AQP4-ab+, AQP4-antibody positive; NMOSD, neuromyelitis

optica spectrum disorder.

the MAGNIMS consortium reported a specificity of 83% for
a 35% CVS proportion threshold for discriminating MS from
mimics such as NMOSD, SLE, migraine, cluster headache,
diabetes, and other types of small vessel disease (58). Perhaps less
onerous in the clinical situation is the three-lesion CVS criterion,
which yielded a specificity of 89% for discriminating MS from
other conditions. In this study, sensitivity was better with
an optimized T2∗-weighted sequence. These findings require
replication in prospective studies enrolling patients with various
ethnic backgrounds and from different regions of the world
and will hopefully lead to a novel imaging biomarker with high
specificity for MS that might find its way into a future revision of
the McDonald criteria.

Although MRI T2 hyperintense lesions represent one of
the major diagnostic hallmarks of MS, macroscopic MRI-
visible lesions are commonly termed as “tip of the iceberg”
because many more lesions are detected by histopathology at a
microscopic level (59). Particularly, cortical lesions are widely
elusive to conventional MRI at 3 Tesla although introduction
of ultra-high field 7 T MRI more than doubles detection of
cortical MS lesions (60) (Figure 2). Of note, post mortem studies
showed that sensitivity to detect cortical lesions at 7 T is strongly
influenced by their histopathological subtype, ranging from 11 to
100% (61). Hence, cortical pathology still remains more extensive
than even 7 T MRI can reveal.

Cortical lesions are considered a distinctive feature of MS
and are rarely present or even totally absent in other conditions
mimicking multiple sclerosis, such as migraine or NMOSD
(60). Intriguingly, presence and number of cortical pathology
appears to correlate with clinical outcomes, most notably
cognitive impairment in MS (62). However, clinical significance
of cortical lesions is controversially discussed throughout the
literature, and further 7 T MR studies, including investigations
with improved visualization at magnetization-prepared 2 rapid

acquisition gradient echoes (MP2RAGE), are highly warranted
to clarify potential diagnostic and prognostic value of MS cortical
pathology (63).

Brain and spinal cord volumetric imaging is another MR-
based measure that might have the potential to be used in
clinical practice to monitor disease progression and treatment
response. Both neuropathology and imaging studies have shown
that atrophy of the entire brain, including cortical and deep gray
matter (DGM) as well as the spinal cord, are typical hallmarks
of MS from earliest disease stages (64–68) and that, particularly,
cerebral gray matter volume loss (above all, the deep gray
matter) and spinal cord atrophy correlate with clinical disability
and cognitive impairment and are predictive of further disease
progression in longitudinal studies (69–78). In clinically stable
and untreatedMS patients, annual brain volume loss ranges from
∼0.5 to 1.0% in comparison to 0.1–0.3% for healthy subjects
(73, 79). In a recent large Europeanmulticenter study comprising
more than 1,200 patients with MS and more than 200 healthy
subjects, volumes of deep and cortical gray and white matter
were obtained, and participants followed over an average of
2.41 years (69). Deep gray matter showed the fastest annual
atrophy rates, which ranged from −1.34 to −1.66% in various
MS forms and was −0.88% in CIS and −0.94% in HC. Of all
regional volumes quantified at baseline, only deep gray matter
volume predicted time to EDSS progression, which underscores
the relevance of DGM loss for disability accumulation. A 7.5-
year longitudinal study (range 1–12 years), 206MS patients and
35 healthy controls reported a cutoff of −0.4% annualized brain
volume change to have a sensitivity of 65% and a specificity
of 80% for discriminating physiological from pathological brain
volume loss (80). The clinical relevance of this cutoff remains
to be demonstrated. Various immunotherapies have been shown
to decelerate brain volume loss; however, it is currently unclear
how this observation would inform treatment decisions in
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FIGURE 2 | MS-specific 7 T MR imaging markers displayed by T2*-weighted sequence. (A1) Lesions in relapsing-remitting MS commonly exhibit a central vein (red

arrows). (A2) Hypointense rim structures (red arrow-heads) are prevalent in a subset of MS lesions. (A3) 7T MRI allows for the delineation of gray matter lesions in

great detail. (B1,B2) Central vein sign and hypointense rim structures are absent in lesions of AQP4+-NMOSD patients. (B3) Gray matter lesions are commonly absent

in AQP4+-NMOSD. MS, multiple sclerosis; T, Tesla; FLAIR, fluid-attenuated inversion recovery; SWI, susceptibility-weighted imaging; RRMS, relapsing-remitting

multiple sclerosis; AQP4-ab+, AQP4-antibody positive; NMOSD, neuromyelitis optica spectrum disorder. LGN, lateral geniculate nucleus; V1, primary visual cortex.

individual patients (81–85). Brain volumetric measurements
for use in individual patients are still hampered by numerous
technical challenges, such as inter-session variability, influence
of physiological factors (for example, hydration status), normal
aging and comorbidities on brain volumes, time of day of MR
scan, effect of lesion filling on post-acquisition quantitation
procedures, and systematic differences pertaining to scanners
and sequences parameters (38, 86). Therefore, despite sufficient
accuracy of brain volume measurements in observational and
interventional cohort studies, the technology is not yet apt to
reliably investigate changes in individual patients within periods
of less than a few years and therefore—also in light of the
various physiological sources of error—atrophy measurements
are currently not usable to monitor therapy in MS (30, 73, 87).
Besides technical advances to reduce measurement variability, a
better understanding into the neuropathological correlates and
drivers of deep and cortical gray matter atrophy and whole brain
volume loss is urgently required (38). The same applies to spinal
cord atrophy, which is relatively easy to measure at the cervical
level (mean upper cervical cord area or MUCCA) even on brain
scans that cover the superior part of the spinal cord down to the
C2/C3 level (88). However, physiological fluctuations and change
over time of this measure in healthy subjects are unknown, and
although some studies have reported spinal cord atrophy rates of
between <0.5% and more than 2% per year, with progressive and
clinically deteriorating patients exhibiting faster atrophy rates,

it is not established how MUCCA could be used to monitor
individual patients (88–93). However, a recent study suggests that
conventional measures of spinal cord involvement, such as focal
lesions and emergence of new lesions, can be used to estimate
risk of secondary progressiveMS and EDSS at 15 years in patients
with clinically isolated syndrome (94).

Other advanced MRI techniques have been recently
applied to investigate pathogenetic processes associated
with neurodegeneration and disease progression. Amid other
emerging quantitative MRI approaches, diffusion tensor imaging
(DTI), which relies on the detection of changes in the random
translational motion of water molecules and thereby estimates
the level of tissue degradation in the normal-appearing white
matter, provides promising imaging markers to detect neuronal
damage (83). Post mortem investigations showed fractional
anisotropy (FA) decrease to be to associated with axonal loss
and myelin density, thereby suggesting DTI FA to be a useful
indicator of both neurodegeneration and demyelination in
MS (95) (Figure 3). However, future histopathological and
clinical studies on quantitative MRmarkers are highly warranted
to validate the capacity of modern MRI in detecting and
monitoring neurodegenerative MS pathology that remains
elusive to conventional structural MRI.

In clinical management, the use of MRI to monitor treatment
response still relies on conventional parameters, such as new
or enlarging T2 lesions and gadolinium-enhancing lesions
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FIGURE 3 | Diffusion-weighted imaging based probabilistic tractography allows for the delineation of the optic radiations displayed in (A1) sagittal and (A2) axial view.

(B1) Diffusion tensor imaging (DTI) values along the optic radiation of an exemplary ON patient 3 years after attack (red) show decreased FA values compared to a

healthy control (black) indicating trans-synaptic neurodegeneration after ON. (B2) MD values are pathologically increased in an exemplary ON patient almost

throughout the entire course of the optic radiations compared to the exemplary healthy control. ON, optic neuritis; FA, fractional anisotropy; MD, mean diffusivity.

in conjunction with clinical measures (relapses, disability
progression), measures summarized under the term “NEDA”
(no evidence of disease activity) (30). However, NEDA seems
to be a questionable treatment goal given that, in real-
world observational studies, <10% of patients retain a NEDA
status after more than 5 years (96), and even with highly
effective immunotherapies, NEDA rates hardly exceed 50%
(97). Moreover, the clinical relevance of this composite score
has been called into question, for example, by data from a
large prospective observational study with more than 500MS
patients from California showing that meeting the NEDA status
at 2 years was not predictive of long-term stability (98). In
addition, the NEDA concept has been heavily criticized because
of ignoring other relevant and disabling symptoms of the disease,
such as fatigue, cognitive problems, sleep disorders, depression,
etc. (71, 99–109). Moreover, recent safety concerns as to the
deposition of gadolinium-based contrast agents (predominantly
linear compounds) in the dentate nucleus and other brain regions

provide arguments against their frequent use in monitoring
radiographic disease activity in otherwise stable patients (110–
113). For detection of new brain lesions, a T2/FLAIR sequence is
sufficient as long as rigorous standardization of image acquisition
to ensure maximum comparability is guaranteed (29). To
overcome the shortcomings and downsides of the current NEDA
concept, a new term (“minimal evidence of disease activity”
or MEDA) has been proposed as well as a more sophisticated
approach to monitor MS therapy taking also patient-reported
outcomes into consideration (“multiple sclerosis decisionmodel”
or MDSM) (114, 115). However, both concepts lack prospective
validation, so their use in clinical management cannot be
unambiguously recommended. The same applies to the upgraded
NEDA concept that includes brain atrophy into the composite
measure (NEDA-4) (116, 117).

Numerous non-conventional and advanced imaging
modalities are currently under investigation that may help
improve visualization and quantification of (covert) tissue
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damage in the gray and white matter of the brain and the spinal
cord and could be used as an imaging surrogate of remyelination
and repair; among them are magnetization transfer imaging,
diffusion tensor imaging, myelin water imaging, susceptibility
weighted imaging, magnetic resonance spectroscopy, sodium
imaging, PET imaging, ultra-high field imaging at 7 Tesla,
functional imaging with resting state fMRI, T1/T2-weighted
ratio calculable from conventional T1- and T2-weighted
images, machine-learning based imaging, magnetic resonance
elastography, and several others, none of which will probably be
used in clinical practice in the near future (27, 52, 83, 88, 118–
135). Nonetheless, these endeavors are important to deepen our
understanding of mechanisms of tissue damage in MS and to
devise better imaging endpoints for clinical trials and routine
care than those currently in use.

A recent emerging imaging tool in neuroinflammation is
retinal optical coherence tomography (OCT), a technique that
takes advantage of the retinal backscatter and reflection of low
coherent light and enables the reconstruction of structural images
of the various retinal layers with a resolution of a fewmicrons and
a very time-efficient image acquisition of only a few minutes in a
cooperative patient (136).

OCT has been used for more than a decade in clinical
neuroimmunology, mostly in cohort studies and occasionally as
an endpoint in acute optic neuritis trials (137–139), and it is at the
verge of entering clinical management of patients with MS and
related disorders. Most widely used retinal measures of neuro-
axonal damage are the (peripapillary) retinal nerve fiber layer
(pRNFL) and the ganglion cell layer (GCL) that is often reported
together with the inner plexiform layer (IPL) due to inaccuracy of
segmentation and then displayed as ganglion cell/inner plexiform
layer (GCIPL) (39, 136). In MS, OCT has been shown to
be reliably applicable in a multicenter setting (140). Certain
standards for quality control of OCT scans and reporting of
data have been proposed, and confounders, for example, the
influence of retinal vessels on neuroaxonal measures, have to be
taken into consideration (141–143). Thinning of the RNFL or
the GCL/GCIPL are consistently reduced according to a high
number of studies both in MS eyes with a history of prior optic
neuritis as well as to a lesser extent in MS eyes without prior
ON (144–146). Retinal thinning in MS is detectable from the
earliest disease stages (147, 148) and is associated with altered
visual function, visual quality of life, VEP latencies, overall
disability, cognitive performance, inflammatory brain lesions,
and both spinal cord and brain atrophy, and has been shown to
reflect clinical and radiographic disease activity in longitudinal
studies (149–162). A recent meta-analysis comprising more than
1,000 eyes calculated an average pRNFL loss of 20µm in eyes
with prior ON and of 7µm in eyes without history of ON
(NON), and average GCIPL thinning was 16µm in ON eyes
and 6µm in NON eyes (144). Annual rates of RNFL thinning
in longitudinal studies range from ∼0.2 to 2.0µm per year and
depend on disease stage and treatment status. In general, patients
with progressive MS tend to show more severe retinal thinning
than RRMS patients (145). A retrospective, non-randomized
“real-world” study suggested that MS immunotherapies may
differentially affect the rate of annual ganglion cell loss with faster

thinning in patients treated with interferon beta or glatiramer
acetate and slower thinning in patients on natalizumab (163). In
a longitudinal monocenter study in 72 patients with MS from
Italy, NEDA status was associated with relatively preserved RNFL
over 2 years; patients with NEDA (32% of the cohort) had an
average RNFL loss of −0.93µm as compared to −2.83µm in
the evidence of disease activity (EDA) group (164). Patients with
stable EDSS over the course of the study had on average a RNFL
loss of −1.33µm as in contrast to −3.23µm in patients with an
EDSS worsening of ≥0.5 points. A cutoff of −1.25µm RNFL
loss was able to classify the NEDA status with a sensitivity of
80% and a specificity of 81.4%. A large retrospective multicenter
study conducted by the International Multiple Sclerosis Visual
System Consortium (www.imsvisual.org) in 879 patients with
various stages of MS suggests that pRNFL may be used to
predict disability worsening (165). Patients with a pRNFL below
92/93µm (different OCT machines used) had a 60% increased
risk of disability progression after 1 year, and those with a pRNFL
<87/88µm had a 4-fold increased risk of progression on the
EDSS after 4–5 years.

Another retrospective study in 305MS patients in different
stages of the disease and with a median interval of 7.9 years
from the acquisition of an OCT scan (using the older time
domain technology tomeasure the pRNFL) (166) to the last EDSS
assessment evaluated the relationship between both parameters
(167). Each 1µm decrease in the baseline pRNFL was associated
with an increase in EDSS of 0.024 points, suggesting that a pRNFL
measurement may help to prognosticate disability within 6–9
years later. Similar results were obtained when adjusting for the
presence of previous optic neuritis episodes.

Also in a clinically isolated syndrome (CIS) scenario OCT
may be helpful to assess the risk of further disease activity. A
bicenter study from Germany grouped 89 patients with a CIS as
a qualifying event into three groups according to their baseline
GCIPL values in NON eyes (168). Patients in the lowest tertile
(ranging from 58.7 to 69.2µm) had a hazard ratio of 3.43 for
not meeting NEDA status within the follow-up period (max
2.5 years) as compared to patients in the highest GCIPL tertile
(ranging from 74.2 to 84.8µm). In contrast, other established
predictors of further disease activity in CIS patients, such as
MRI T2 lesion load, sex, or ON as a qualifying symptom, were
not predictive of a subsequent NEDA status. For the most
recent revision of the McDonald criteria it was controversially
discussed whether affection of the visual system should be used to
demonstrate dissemination in space or time. However, “the panel
felt the data . . . were insufficient to support incorporation into the
McDonald criteria” but “studies to validate MRI, visual evoked
potentials, or optical coherence tomography in fulfilling DIS or
DIT in support of a multiple sclerosis diagnosis were identified
as a high priority.” (41). A first step toward this direction has
been undertaken by the IMSVISUAL Consortium that recently
pooled data frommore than 1,500 patients with MS to determine
the optimal intereye differences in RNFL and GCIPL thicknesses
for identifying unilateral optic nerve lesions defined as history
of acute unilateral optic neuritis (169). Using receiver-operating
characteristic curve analysis, an intereye difference of 5µm for
RNFL and of 4µm for GCIPL was demonstrated as an optimal
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threshold for identifying unilateral optic nerve lesions. Eighteen
percent of patients in the entire cohort had intereye differences
of >5µm for RNFL and 12% of >4µm for GCIPL without
history of acute ON. In line with another recent study (170), these
findings suggest that these measures may complement MRI to
demonstrate dissemination in space and time.

NEUROMYELITIS OPTICA SPECTRUM
DISORDERS (NMOSD)

In 2015, new diagnostic criteria for NMOSD with and without
(or with unknown) AQP4 antibodies have been proposed
against the background of a broadening clinical spectrum
that was recognized with the increasing number of patients
tested for AQP4 antibodies (171). Imaging features regarded as
characteristic yet not pathognomonic for NMOSD are a core
element of the 2015 IPND criteria, in particular in seronegative
patients or in subjects with unknown AQP4 ab status. The
main goal of listing these imaging findings is to help clinicians
discriminate NMOSD from other conditions, namely MS, and
thus reduce the chance of misdiagnosis. Imaging abnormalities
in NMOSD are described according to the anatomical location in
the brain, optic nerve, and spinal cord. The establishment of the
2015 IPND criteria have led to a rise in the number of diagnosed
NMOSD cases by up to 76%, and fortunately, diagnostic delay
was considerably decreased from 53 months by the 2006 criteria
to 11 months by the 2015 criteria (172, 173).

Over the past 15 years, an impressive number of imaging
studies have made clear that—in contrast to earlier views—most
NMOSD patients exhibit some kind of brain lesions. Lesions
are not always located in areas of high AQP4 expression, and a
considerable proportion (42%) may even meet Barkhof criteria
for multiple sclerosis (24, 26, 174, 175). Most studies in NMOSD
have used conventional MR sequences; non-conventional and
advanced imaging studies are scant and have mostly yielded
inconsistent results (176).

According to newer studies, the majority of NMOSD patients
show some kind of brain lesions although findings considered
highly suggestive and suspicious of an NMOSD diagnosis are
less prevalent. Between 43 and 70% of NMOSD patients have
brain lesions at onset, and up to 85% of patients meeting
the 2006 Wingerchuk criteria for NMO and up to 89% of
seropositive patients were reported to have brain abnormalities
(12, 26, 177–180). Brain lesions considered highly suggestive
of NMOSD are diencephalic lesions surrounding the third
ventricle and cerebral aqueduct, which are often asymptomatic
but may occasionally present with inappropriate antidiuretic
hormone secretion, narcolepsy, hypothermia, hypotension, or
hyperprolactinemia. Another very characteristic predilection site
is the dorsal brainstem: Lesions adjacent to the fourth ventricle,
including the area postrema and the nucleus tractus solitarii,
are highly specific for NMOSD, reported in 7–46% of patients
with NMO (26, 181). The typical clinical manifestation is with
intractable hiccups, nausea, and vomiting (171). Lesions in
the corpus callosum (CC) have been described in 12–40% of
patients with NMOSD. Although the location in the CC is not

a unique finding that differentiates NMOSD from MS, NMOSD
callosal lesions are in contrast to MS located immediately
next to the ventricles and follow the ependymal lining (26).
CC lesions may extend into the cerebral hemisphere, forming
an extensive and confluent white matter lesion. Acute CC
lesions are often edematous and heterogeneous with a “marbled
pattern” (182). Hemispheric white matter lesions may appear
extensive and confluent, are often tumefactive (>3 cm in longest
diameter), or have a long spindle-like or radial shape following
white matter tracts; they usually have no mass effect. They
may occasionally mimic posterior reversible encephalopathy
syndrome (PRES) or Baló-like lesions or may resemble acute
disseminated encephalomyelitis (ADEM) or CNS malignancies
and were reported to be more frequent in AQP4 ab seropositive
than seronegative patients (26). Hemispheric whitematter lesions
may disappear but may also remain as cyst-like or cavitary
changes. Also corticospinal tracts may be involved in NMOSD
with either unilateral or bilateral involvement and were reported
in up to 44% of patients. These lesions may extend from the deep
white matter in the cerebral hemisphere through the posterior
limb of the internal capsule to the cerebral peduncles of the
midbrain or pons. They are often contiguous, longitudinally
extensive, and may follow pyramidal tracts. The reason for
involvement in NMOSD is unclear as corticospinal tracts are not
areas of high AQP4 expression. The probably most frequent type
of brain lesions in NMOSD reported in up to 84% of patients are
“non-specific” lesions: punctate or small (<3mm) dots or patches
of hyperintensities on T2-weighted or FLAIR sequences in the
subcortical or deep white matter that are usually asymptomatic
and tend to increase with age, presumably owing to age-
related vascular comorbidities. These lesions may nonetheless
pose diagnostic challenges vs. MS and other conditions. Few
studies have looked into gadolinium-enhancing brain lesions in
NMOSD; up to 36% of patients have shown enhancing lesions
that are often poorlymarginated, subtle, or show a patchy pattern.
One study from Japan suggested “cloud-like enhancement” to
be a characteristic enhancement pattern in NMOSD (178).
Nodular enhancement ormeningeal enhancement have also been
described, and linear enhancement of the ependymal surface
of the lateral ventricles (“pencil-thin lesion”) was proposed as
another imaging feature characteristic of NMOSD (183, 184).

In contrast to MS, cortical lesions are usually absent in
NMOSD, which is supported by 3 T double inversion recovery
and ultra-high field MR studies that investigated the cortex in
NMO as well as by several histopathologic studies (54, 185,
186) (Figure 2). Additionally, a lower proportion of NMOSD
lesions show the CVS or display hypointense rims compared to
lesions in MS (54, 57) (Figure 2). The challenging overlap of
brain lesion occurrence and numbers between NMOSD and MS
have prompted the use of algorithmic approaches to improve
differential diagnosis. For example, one study from the UK in
26 AQP4 ab seropositive NMOSD (63% of whom had brain T2
lesions and 16% met Barkhof criteria) and 50 RRMS patients
replicated a few key features in both conditions that appeared to
be discriminative, among them a smaller lesion size and fewer
numbers in NMOSD as compared to MS, and MS exhibited a
greater coherence of lesion location (most likely to occur adjacent
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to the posterior of the body of the lateral ventricle in the parietal
white matter) (187). In contrast, the lesional region with the
greatest likelihood to be within the NMOSD group and not
the MS group was adjacent to the fourth ventricle in the pons.
Both groups had callosal lesions, but NMOSD patients showed
no U fiber lesions and no Dawson’s fingers. A combination of
morphologic and locational criteria (at least one lesion adjacent
to the body of the lateral ventricle and in the inferior temporal
lobe or the presence of a subcortical U fiber lesion or a Dawson’s
finger–type lesion) could distinguish patients withMS from those
with NMOSD with 92% sensitivity, 96% specificity, 98% positive
predictive value, and 86% negative predictive value (187).

Of note, previous research shows that non-lesional tissue
damage as measured by non-conventional imaging, such as
DTI, may not occur in NMOSD except in the connecting
tracts upstream and downstream of lesions (26). Although
these findings lend support to the notion that NMOSD,
in contrast to MS, may be a lesion-dependent disease that
produces relapses without more generalized neurodegenerative
pathology, the presence of potential subclinical tissue alterations
in NMOSD affecting the afferent visual system has been
controversially discussed. Recent DTI investigations in NMOSD
patients without a clinical history of visual pathway affection
showed structural retinal damage and pathological optic
radiation DTI FA decrease outside attack-related lesions,
suggesting a presumptive AQP4-ab–related astrocytopathy
(188). These findings are in accordance with histopathological
studies reporting on astrocytic end feet changes within LETM
lesions and spinal cord atrophy in AQP4-ab–positive patients
without previous myelitis attacks (189). Yet the question
as to whether neurodegenerative non-lesion-related pathology
exists in NMOSD is still under debate and needs to be
further elucidated by future combined in vivo and ex vivo
MRI investigations.

Longitudinally extensive myelitis lesions (LETM) spanning
three or more contiguous vertebral segments have long been
regarded as an imaging feature highly suggestive of NMOSD
(Figure 4). Sensitivity and specificity for this criterion were
98 and 83%, respectively, in the patient cohort underlying
the 2006 Wingerchuk criteria (177). Long cord lesions occur
more frequently in the cervical cord from which they may
extend into the brainstem and the upper thoracic spinal cord
than in lower cord regions. Moreover, NMOSD spinal cord
lesions occupy more than half of the cord area and show
preferential involvement in the spinal central gray matter during
the acute and chronic stages of spinal cord inflammation. By
contrast, the majority of MS spinal cord lesions are localized
in the lateral and posterior white matter regions of the cord
(190, 191). In the acute stage, spinal cord lesions often appear
hypointense on T1 weighted scans (in contrast to MS); the
inflamed cord is often swollen and may show patchy contrast
enhancement. In the chronic stage, extensive cord atrophy
with or without T2 signal changes may develop in NMOSD
(Figure 4). It is important to bear in mind that the timing of
the spinal MRI in relation to the onset of clinical symptoms
may be crucial for the detection of longitudinally extensive
cord lesions (192) and that ∼15–20% of myelitis attacks in

FIGURE 4 | Representative T2-weighted spinal cord images from individuals.

(A) Patient with relapsing–remitting multiple sclerosis (30-year-old woman) and

MS-related myelitis and spinal cord imaging at (A1) 1 months, (A2) 2 months,

(A3) 24 months, and (A4) 72 months after attack. Short extent (<3 segments)

spinal cord lesion (red arrow) at C3 with typical morphology of MS-related

myelitis. (B) Patient with AQP4-antibody-positive neuromyelitis optica

spectrum disorder (36-year-old woman) and NMOSD-related LETM and spinal

cord imaging at (B1) 2 months, (B2) 5 months, (B3) 12 months, and (B4) 60

months after attack. Spinal cord lesion (red arrows) with longitudinal

morphology (C2-Th1; >3 segments) and subsequent atrophy (red

arrow-heads) typical of NMOSD-related LETM. (C) Patient with MOG antibody

associated disease (41-year-old woman) and MOGAD-related LETM and

spinal cord imaging at (C1) 7 months, (C2) 8 months, (C3) 24 months, and

(C4) 48 months after attack. Initial LETM (C3-C7; red arrows) with remarkable

increase in length after relapse at month 8 (C2) (yellow arrows) and

subsequent atrophy (red arrow-heads). RRMS, relapsing-remitting multiple

sclerosis; AQP4-ab+, AQP4-antibody positive; NMOSD, neuromyelitis optica

spectrum disorder; LETM, longitudinally-extensive transverse myelitis;

MOGAD, myelin-oligodendrocyte-glycoprotein associated disease.
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FIGURE 5 | Representative OCT images from individuals with (A) relapsing–remitting multiple sclerosis with unilateral right-sided ON (RRMS; 41-year-old woman), (B)

AQP4-antibody-positive neuromyelitis optica spectrum disorder with recurrent bilateral ON episodes (AQP4+-NMOSD; 25-year-old woman), and (C) MOG antibody

associated disease with left-sided unilateral ON (MOGAD; 46-year-old man). OCT, optical coherence tomography; RRMS, relapsing-remitting multiple sclerosis; ON,

optic neuritis; OD, right eye; OS, left eye; ILM, inner limiting membrane; RNFL, retinal nerve fiber layer; AQP4-ab+, AQP4-antibody positive; NMOSD, neuromyelitis

optica spectrum disorder; MOGAD, myelin-oligodendrocyte-glycoprotein associated disease.

NMOSD may show short transverse myelitis lesions, spanning
2.5 vertebral segments or less (193, 194). This means that a
spinal cord lesion shorter than three vertebral segments does
not rule out an NMOSD diagnosis. Interestingly, a recent
study on 91 Chinese NMOSD patients compared patients
with LETM and patients with short transverse myelitis and
showed that the latter suffered less motor and bowel or bladder
disability and had minor EDSS at clinical onset but exhibited
shorter time to relapse (195). Moreover, although extensive
spinal cord lesions are highly suggestive of NMOSD, numerous
other conditions have to be taken into consideration, such
as sarcoidosis, spondylotic myelopathy, autoimmune GFAP
astrocytopathy, neoplasms, lymphoma, spinal cord infarction,
and many others (196–201). Recently, “bright spotty lesions”

on T2 weighted sequences were reported to be a discriminative
feature of NMOSD myelitis with specificity values up to 100%
(202, 203).

Recently, a study in 48 NMOSD (all AQP4 ab positive),
22MS patients, and 24 patients with other causes of LETM
from the United States assessed spinal cord imaging features that
may help discriminate NMOSD from MS. Four findings were
found to be most distinctive of NMOSD vs. other etiologies:
bright spotty lesions, T1 dark lesions, centrally located lesions,
and lesions involving more than 50% of the cord area on axial
sequences (190).

Another study in 116 NMOSD patients (98 AQP4 ab positive)
found a high proportion of patients (49%) without typical
NMOSD brain and spinal cord lesions and 37% meeting the
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2010 McDonald criteria. Nonetheless, a combination of easily
applicable criteria for brain and spinal cord images enabled
distinction from matched MS patients with good sensitivity and
specificity regardless of serostatus (204).

Although the optic nerve is frequently involved in NMOSD,
few studies with orbital MRI have been conducted. AQP4
ab–positive NMOSD tends to show more often posterior
involvement of the optic nerve(s) including the chiasm and a
more frequent intracranial and bilateral affection of the optic
nerve as compared to MS (205). In AQP4 ab–positive patients
with ON, lesion length on orbital MRI in the acute phase was a
strong predictor of visual outcome (206). Another study reported
a longitudinally extensive optic nerve lesion exceeding 17.6mm
to have a sensitivity of 81% and a specificity of 77% for NMOSD
vs. RRMS (207).

Advanced imaging with volumetric analyses, DTI,
spectroscopy, and others have increasingly been performed
over the past 10 years (176), albeit with many inconsistent
results, presumably owing to small sample sizes, ethnic
differences of the cohorts investigated, heterogeneity of the
samples with regard to AQP4 ab serostatus, and others.
It is, for example, still a matter of debate as to whether
progressive brain volume loss occurs in NMOSD over time
as is the case in MS and how different compartments, such
as white matter, cortex, or deep gray matter, are differentially
affected (208–218) and how this might be associated with
often-overlooked and insufficiently treated symptoms, such
as cognitive impairment and pain (219–222). Presence of
occult white matter damage as measured, for example, by DTI,
MTR, or T1 relaxation time, has also remained contentious,
presumably again owing to differences in inclusion criteria and
different approaches to the correction for multiple comparisons
problem (223–228). Few functional imaging studies with
resting state fMRI (rs-fMRI) in NMOSD suggest that visual
impairment due to severe optic neuritis causes brain network
connectivity changes, in particular in visual networks (229–
232). The vast majority of MR spectroscopy studies of the
brain has found no clear indication for covert white matter
damage (233–237), and low myoinositol/creatine values in the
lesional cervical cord of NMOSD patients suggest astrocytic
damage (238).

Spinal cord atrophy and reductions of MUCCA are a
consistent feature of AQP4 ab–positive NMOSD even in the
absence of myelitis attacks/spinal cord lesions (209, 239, 240)
(Figure 4). In one study in 27 NMOSD patients with a history
of myelitis and six NMOSD without history of myelitis and
without spinal cord lesions (all participants AQP4 ab positive),
MUCCA was reduced in both groups vs. healthy controls and
correlated with clinical disability (241). The clinical relevance
of MUCCA to monitor disease activity and covert progression
requires further studies.

With the introduction of retinal OCT into clinical
neuroimmunology, an increasing number of studies measuring
retinal damage in NMOSD have been conducted over the past 10
years (242). Most studies have consistently shown that thinning
of the RNFL and the GCIPL after an ON attack is on average
more severe in AQP4 ab–positive NMOSD as compared to MS,

a finding that aligns with the clinical experience of more severe
vision loss in NMOSD (243–246). Impairment of visual quality
of life caused by ON in NMOSD correlates with the extent
of retinal damage measured by OCT, which underscores the
potential clinical relevance of this technique (247) (Figure 5).
Furthermore, this finding supports the strong recommendation
for clinicians to treat ON as a neuroimmunological emergency as
quickly and consequentially as possible because retinal ganglion
cell loss starts early after clinical onset of symptoms, so timely
administration of steroids or plasma exchange might help
preserve retinal tissue and improve visual outcome (248–252).
In NMOSD, ∼25% of patients show so-called microcystic
macular edema (MME) in the inner nuclear layer (INL)
following ON, a frequency that is higher than in MS (5–10%)
(242, 253–255). MME is not specific to NMOSD as it was
described in a wide range of optic neuropathies. MME may
be dynamic over time and seems to be associated with a less
favorable visual outcome although neither its clinical relevance
nor its pathophysiological underpinnings are entirely clear.
Presumed mechanisms causing MME are vascular damage
with extracellular fluid accumulation, Mueller cell pathology,
and vitreous traction (242, 256, 257). A contentious issue in
vision research in NMOSD is the occurrence of subclinical and
progressive retinal thinning in NMOSD. In line with the clinical
experience that disability is almost exclusively attack-related
in NMOSD, some studies did not find progressive retinal
thinning independent of ON (258). However, recent work has
suggested that there is attack-independent ganglion cell loss
in NMOSD—a finding whose clinical relevance needs to be
further investigated (259). In addition, foveal changes have
been detected in NMOSD patients without clinical evidence of
optic neuritis of affection of the visual system, which suggests
that AQP4 ab may directly target astrocytic Mueller cells
in the retina, thus causing a primary retinal astrocytopathy
(188, 260, 261). This finding is backed by animal work and
human neuropathology data, both providing evidence for
complement-independent AQP4 loss in Mueller cells and a
retinal astrocytopathy (262, 263). Mathematical models to
investigate the foveal shape will help investigate whether fovea
changes may be used as a differential diagnostic feature for
NMOSD and how these change over time in conjunction with
functional visual outcomes (264).

In the past few years, a plethora of publications has
reported on serum antibodies to myelin oligodendrocyte
glycoprotein (MOG) in a subset of adult patients with an
NMOSD phenotype (with optic neuritis being the most frequent
clinical manifestation) and beyond (involvement of cranial and
peripheral nerves and encephalopathy with seizures have been
reported) using highly specific immunoassays (265–275). The
current discussion evolves toward recognizing this condition
as a disease entity distinct from AQP4 ab positive NMOSD
and MS for which the acronyms “MOGAD” (MOG antibody
associated disease) or “MOG-EM” (MOG antibody associated
encephalomyelitis) were proposed (15, 276–279).

Neuroimaging studies with MRI in MOGAD are scant, and
the few reports suggest that there is a broad overlap with AQP4
ab–positive NMOSD as to the presentation on conventional
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brain and spinal cord MRIs (279–284) although MOG patients
were reported to show a more frequent involvement of the
conus/lumbar spinal cord (285). From a clinical standpoint,
it is important to bear in mind that up to 27% of patients
with MOGAD may meet Barkhof criteria for MS (24). As in
AQP4 ab–positive NMOSD, an algorithmic approach combining
several criteria assessable on conventional brain MRIs (lesion
adjacent to the body of a lateral ventricle and inferior temporal
lobe lesion, U fiber lesion and Dawson’s fingers) was able to
discriminate between RRMS and MOGAD with good sensitivity
and specificity but failed to distinguish MOGAD from AQP4
ab–positive NMOSD (286). These findings were replicated in
Korean and Chinese populations in whom a distinction of MS
from AQP4 ab–positive NMOSD and MOGAD was achievable
with good sensitivity and specificity (287, 288); data on a
distinction between MOGAD and AQP4 ab–positive NMOSD
were not provided. Using principal component analysis on
conventional brain images, another study was also not successful
in accurately discriminating MOGAD from AQP ab–positive
NMOSD (289).

In contrast, orbital MRI seems to exhibit distinctive features.
A combined brain and optic nerve MRI study from Australia
in 11 AQP4 ab–positive, 19 MOGAD, and 13MS patients with
a first ON in the investigated eye found more frequent optic
nerve swelling inMOGAD andmore frequent bilateral optic tract
and chiasmal involvement in AQP4 ab–positive NMOSD (205).
A predominant affection of the anterior structures of the optic
nerve and bilateral involvement were also reported in MOGAD
patients from the United States (281).

Retinal OCT findings in MOGAD have been inconclusive.
Although some studies suggest that ON in MOGAD causes
less severe retinal damage in comparison to AQP4 ab–positive
NMOSD (206, 290, 291), others have found comparable thinning
of the RNFL and the GCIPL in MOGAD and AQP4 ab–positive
NMOSD, probably resulting from the higher ON attack rate
in MOGAD (292) (Figure 5). These studies are consistent in
suggesting that a single ON episode in MOGAD probably is
more benign regarding its effect on the retina than a single
ON attack in AQP4 ab–positive NMOSD. This is in line with
several other studies reporting a generally favorable outcome
from ON in MOGAD; however, exceptions to this rule with
poor outcome have also been published (293–296). Interestingly,
MOGAD patients seem to have better visual outcomes after
ON than AQP4 ab–positive NMOSD despite similar severity of
macular GCIPL thinning (297). The issue of subclinical retinal
involvement in MOGAD in the absence of ON has not been well-
explored. One cross-sectional study found pRNFL thinning in
MOGAD NON eyes and an MME prevalence of 26% (298), and
one longitudinal study with 38 eyes (18 without ON history, 20
with ON) from 24 MOGAD patients detected a higher rate of
annual RNFL thinning than in healthy subjects (299). However,
this was not accompanied by progressive GCIPL thinning and
the reduction of RNFL over time was driven by a subgroup of
patients with thicker RNFL at baseline so the question as to
whether progressive retinal thinning occurs in MOGAD requires
further investigation.

FUTURE DIRECTIONS

Although previous research in advanced neuroimaging led
to a tremendous amount of new methods, parameters, and
insights into MS and NMOSD diagnostic approaches and
pathophysiological processes, further efforts are highly required
to make these advances applicable to the clinical setting.
Main short- to mid-term aims are (1) standardization of
MRI and OCT parameters related to image acquisition
and post-processing, (2) transfer and integration of non-
conventional techniques into clinically usable procedures,
and (3) validation by comparing these readily accessible
techniques with current standards within the framework of
large patient cohort studies and real-world research. The
ultimate goal is to provide the most accurate and most cost-
and time-effective markers for clinical diagnostics, therapeutic
monitoring, and prognostic forecasting in individual MS and
NMOSD patients.

Among the multitude of potential candidates, a selection of
promising markers to be introduced into the clinical setting in
the near future are the central vein sign at 3 Tesla MRI that has
proven to substantially increase specificity of current McDonald
2017 diagnostic criteria in the detection of MS (58), global
cerebral and specific regional cortical and deep-gray matter
atrophy for monitoring and predicting disease progression and
cognitive dysfunction in MS (73), OCT retinal ganglion cell
layer thickness as a prognostic marker for future disease activity
in patients with clinically isolated syndrome (168), and spinal
cord atrophy markers for diagnostic discrimination between
AQP4 ab-positive NMOSD andMOGAD and to monitor disease
activity in these entities (239). However, strong efforts in terms of
observational studies and testing of thesemarkers in clinical trials
are necessary to foster their establishment in clinical research
and routine.

Because availability of ultra-high field (7 T) scanners has
gradually increased during recent years, a noticeable shift of
neuroimaging research to higher field strengths will take place
in the future. By use of its higher spatial resolution and
benefits to imaging contrasts inherent to higher field strengths,
7 T MRI may be used to advance quantitative neuroimaging
that may have reached its technical limits at 3 T (131, 300).
Moreover, readily accessible 7 T MRI markers, i.e., central
vein sign, lesional hypointense rim structures, and gray matter
lesion detection might aid to establish accurate diagnoses of
MS, especially in patients with conflicting neuroinflammatory
disease presentation, when introduced into clinical work-up
(52). However, thorough research efforts are necessary to
prove potential benefits of ultra-high field MRI compared to
conventional MRI in the clinical setting.

Another steadily expanding field of research in MS and
NMOSD that will be of interest in the long-term future of
neuroimaging, is the emerging application of MRI functional
and structural connectome analyses. These techniques provide
novel measures by assessing the integrity and functionality
of the entire CNS system rather than evaluating separate
regional or qualitative alterations in isolation (301). Pathological
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changes in the functional network integrity in terms of network
disruption or even “network collapse” show close correlations
to higher order dysfunctions, i.e., predominantly cognitive
deficits, in patients with MS (302). Analogously, ON status
of CIS and NMOSD patients is associated with decreased
connectivity in visual network density as revealed by recent
application of graph theory–based tools to analyze functional
imaging data (303). These findings are complemented by similar
evidence in structural connectome disruption with associations
to disease burden in CIS and MS (304). In addition, recent
graph theory–based investigations that showed associations
between decreased nucleus accumbens and caudate nucleus
volumes with higher combined attack type count and longer
disease duration in NMOSD lend support to the notion
that multimodal network analyses including OCT and MRI
parameters may help to identify subsets of promising useful
imaging markers (305). However, because validity and potential
clinical usefulness of these methods are still unclear, future
studies will be undertaken to assess the true capacity of modern
neuroimaging connectomics and graph theory–basedmethods to
explain pathological mechanisms and to aid in monitoring and
predicting specific disease activity in MS and NMOSD patients.

CONCLUSIONS

Imaging research in autoimmune inflammatory CNS disease
has made impressive progress over the past 20 years. Yet,
although we are able to deploy structural and functional imaging

techniques even in patients at almost subcellular resolution
that have significantly contributed to our understanding of
mechanisms of tissue damage in these conditions, most of
these technologies still await a validated implementation in
clinical practice. This, however, is an indispensable prerequisite
to make use of these advances to inform treatment decisions
and monitor disease activity in individual patients. Because this
has remained an unmet need from our patients’ perspective,
this task will hopefully be tackled despite further thrilling
developments in the field of neuroimaging in autoimmune
neuroinflammation, for example, OCT angiography, improved
post-processing and segmentation techniques, and the use of
deep learning and artificial intelligence algorithms (264, 306,
307). Similar endeavors are underway in magnetic resonance
imaging that will likely revolutionize our approaches to visualize
the brain (128).
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