Age-of-onset information helps identify 76 genetic variants associated with allergic disease
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Potential impact of recall bias on SNP associations with age-of-onset of allergic disease
All UK Biobank participants included in our analyses were adults (aged 38 to 70) at the time of data collection. As such, we were concerned that recall bias might have affected the reported age-of-onset and so potentially the robustness of our findings. For example, older participants at the time of data collection might have recalled early onset of disease less reliably and/or less frequently than younger participants. To address this potential limitation, we (1) asked if allergic disease age-of-onset reported by UK Biobank participants was reliable and indeed likely to be affected by recall bias; and (2) performed two sets of association analyses for which recall bias was not a major concern and tested if results were consistent with our findings for the 50 sentinel variants described above. For simplicity and to help interpret results, we focused these analyses on age-of-onset of asthma (instead of allergic disease).

Reliability of self-reported asthma age-of-onset in UK Biobank participants and evidence of recall bias. We compared the reported age at which asthma was diagnosed by a doctor (field 3786: “What was your age when the asthma was first diagnosed?”) between two separate surveys, the initial assessment visit (completed between 2006 and 2010; instance 0, encoded in variable f.3786.0.0) and the first repeat assessment visit (completed between 2012 and 2013; instance 1, encoded in variable f.3786.1.0). A total of 1,650 individuals provided a valid age-of-onset (>=1) at these two time points, with a strong correlation between the two (r=0.93, P<2x10-16; Supplementary Figure 3). The two reported ages were exactly the same for 35% of individuals, within 2 years for 68%, and within 5 years for 86%. Thus, asthma age-of-onset information provided by most individuals had an effective resolution of at least 5 years. For an additional ~10% of individuals, age-of-onset information was less reliable (resolution of ~10-15 years), but still likely to be informative  to detect SNP effects on a broader age scale, for example, comparing childhood- versus adult-onset asthma. Lastly, for <5% of individuals self-reported asthma age-of-onset was not sufficiently reliable (>15 years difference between the two visits), and so their inclusion in our association analyses might have decreased power to detect true SNP associations with age-of-onset. 
We also tested if the (absolute) difference in age-of-onset reported at the two surveys described above was correlated with age at enrollment. We found a relatively modest but significant positive correlation (Pearson correlation 0.08, P=0.002), which indicates that older participants were slightly more likely to report a more unreliable age-of-onset. For example, 3.9% of participants aged 60 or older at enrolment (n=633) reported an age-of-onset that differed by >15 years between the two visits, compared to 1.4% of participants aged 50 or younger (n=422). 


To determine if recall bias was likely to have affected the asthma age-of-onset reported by UK Biobank participants, we tested if childhood-onset asthma, defined by disease onset at or before age 19, was less likely to be reported by older participants. When considering all asthmatics with available information on age-of-onset (n=51,679), we found that age at enrolment was strongly negatively associated with a report of childhood-onset asthma (odds ratio of 0.99 per year, SE=0.0002, P<2x10-16). For example, participants aged 60 or older (n=20,457) reported childhood-onset asthma 2-fold less frequently when compared to participants 50 or younger (n=15,523). It is likely that these results are explained by recall bias, that is, older participants did not recall childhood-onset asthma as accurately as younger participants. If this was the case, then misclassification of age-of-onset in older participants might have decreased the power to detect true associations with age-of-onset in our analyses. On the other hand, it is also possible that the increase in asthma prevalence documented in recent decades might have contributed, at least partly, to the higher frequency of childhood-onset asthma reported by younger participants. 
Association between sentinel variants and age-of-onset in a subset of individuals who reported developing asthma as a child. We performed two sets of association analyses for which the effect of recall bias on self-reported age-of-onset was minimized and so unlikely to be a major concern. In the first analysis, described in this section, we tested each of the 50 sentinel variants for association with asthma age-of-onset in a subset of 13,962 individuals from the UK Biobank study who reported developing asthma as a child (age 0 to 19). Results for asthma onset in this smaller but more homogeneous case group were highly consistent with results for allergic disease onset obtained when considering all 117,130 cases (Supplementary Figure 4A). Similar results were observed for the 26 sentinel variants identified in the multivariate GWAS (Supplementary Figure 4B), as well as when considering hay fever age-of-onset in individuals who were first diagnosed with hay fever as a child (n=10,840; Supplementary Figure 5). Hay fever age-of-onset was determined based on the UK Biobank field 22146: “age you were first diagnosed [with hayfever or allergic rhinitis] by a doctor”.  This analysis was not performed for eczema onset due to small sample size. 
Association between sentinel variants and age-of-onset in children from the ALSPAC study. In the second analysis, we tested if a consistent association with the 50 sentinel SNPs was observed when analyzing time to asthma onset in children in the independent ALSPAC study (n=3,420, mean age 13.9), as reported in detail previously
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. Forty SNPs were tested in that study (either directly or via a proxy with r2>0.8), of which 34 had a directionally consistent association (Supplementary Figure 6A), a statistically significant enrichment over the 50% null expectation (binomial P=7x10-7). Similar results were observed for the 26 sentinel variants identified in the multivariate GWAS (Supplementary Figure 6B).
Therefore, the 76 sentinel variants reported in our study show a consistent pattern of association with asthma age-of-onset in two analyses for which recall bias was not a major concern.

Potential impact on SNP associations of phenotypic misclassification amongst individuals reporting late onset disease
Another related consideration is that, proportionally, there were many individuals in the UK Biobank study with a reported late onset of allergic disease (e.g. 41% of asthmatics had an onset at age 40 or later), which again might reflect recall bias but also potentially phenotypic misclassification. We were specifically concerned about the possibility that many cases who reported late onset of allergic disease actually did not truly suffer from allergic disease, instead having been misclassified by a doctor, or incorrectly reported suffering from asthma, hay fever and/or eczema in the UK Biobank survey. We performed two sets of analyses to address this possibility, as described below. Again, we focused these analyses on asthma age-of-onset for simplicity and to facilitate interpretation.
Genetic correlation between adult-onset asthma in the UK Biobank study and previously published asthma GWAS. We reasoned that if many cases with adult-onset asthma in the UK Biobank study did not truly suffer from asthma (i.e. were misclassified), then we would not expect to observe a close agreement in SNP associations between a GWAS of adult-onset asthma in the UK Biobank study and previously published GWAS of asthma. 

UK Biobank individuals with asthma onset as an adult were identified based on (i) a report of asthma in field 6152 (self-reported medical conditions); and (ii) age-of-onset of asthma >=40 reported in field 3786. We used a cut-off of 40 years of age to minimize the overlap with UK Biobank cases who reported developing asthma as a child or young adult. A total of 19,332 cases were identified after applying the exclusion filters described in the Methods section (e.g. ancestry outliers). Controls were those who did not report suffering from asthma in field 6152, a total of 406,724 individuals. Approximately 9 million SNPs were tested for association with case-control status using BOLT-LMM, as described in the Methods section; the LD-score intercept of this analysis was 1.00. 

Next, we used the LD-score regression approach 


2 ADDIN EN.CITE  to determine the extent to which SNPs associated with adult-onset asthma in the UK Biobank study were collectively also associated with asthma risk in previous GWAS. Based on results from HapMap3 SNPs, we observed a high genetic correlation between the GWAS of adult-onset asthma in the UK Biobank study and the GWAS of asthma performed by the GABRIEL consortium 


3 ADDIN EN.CITE  (rg=0.62, P=7x10-11), which included 10,365 cases (65% with pediatric asthma, i.e. onset <=16 years of age) and 16,110 controls, tested for association with 446K array SNPs. A similarly high genetic correlation was obtained with the asthma GWAS reported more recently by Demenais et al. 


4 ADDIN EN.CITE  (rg=0.66, P=8x10-25), which included 19,954 cases (36% with pediatric asthma) and 107,715 controls tested for association with ~2 million HapMap SNPs. From these results we conclude that, even if present, phenotypic misclassification amongst individuals with self-reported adult-onset asthma in the UK Biobank study was not sufficiently common to prevent the identification of true-positive SNP associations with asthma.
Genetic correlation between adult-onset asthma in the UK Biobank study and adult-onset asthma in the HUNT study. A limitation of the previous analysis was that the two published asthma GWAS considered included a mixture of both childhood- and adult-onset asthma cases, which might have confounded the observed genetic correlations. To address this possibility, we performed a GWAS of adult-onset asthma in the Norwegian HUNT study and then estimated its genetic correlation with the GWAS of adult-onset asthma in the UK Biobank study.

To minimize the impact of recall bias, we used longitudinal information on asthma status (rather than self-reported age-of-onset) collected in two HUNT surveys conducted 11 years apart (on average), as described recently


5 ADDIN EN.CITE . Briefly, we identified 1,365 cases who answered “No” to the question “Do you have or have you had asthma?” at the HUNT2 survey (mean age 47.8, SD 13.5, range 19.2-79.5) but then answered “Yes” to the same question at the HUNT3 survey (mean age 59.0, SD 13.4, range 30.5- 89.9). Asthma-free controls were those who answered “No” to this question both at the HUNT2 (mean age 46.9, SD 13.3, range 19.2-89.8) and HUNT3 (mean age 58.1, SD 13.3, range 29.3-100.8) surveys, a total of 31,673 individuals. A total of 8,464,124 SNPs that were common (MAF>0.05), well imputed (info score >0.3) and present in the 1000 Genomes Project were tested for association with adult-onset asthma using SAIGE; the LD-score intercept of this analysis was 1.00. 
Using the LD-score regression approach 
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, we observed a significant genetic correlation between the HUNT and UK Biobank analyses of adult-onset asthma: rg=0.69 (SE=0.269, P=0.011), consistent with the estimates obtained when considering the GABRIEL and Demenais et al. asthma GWAS. These results further support the notion that misclassification of disease status is unlikely to have been a major contributing factor to the disproportionally large number of individuals in the UK Biobank study with a reported late onset of allergic disease. 
Ten genes that are predicted targets of novel allergic disease variants and that have a known function that is directly relevant to disease pathophysiology
A disintegrin and metalloproteinase 15 (ADAM15) was identified as a likely target of a sentinel variant (rs4971089) identified in the age-of-onset GWAS. Our directional effect analysis indicated that the rs4971089:A allele that delays the onset of allergic disease was associated with increased ADAM15 expression in blood. This protective effect of genetically-determined increased gene expression on disease onset is consistent with the anti-inflammatory role described for this molecule by in vitro studies. For example, ADAM15 was found to cleave the toll like receptor (TLR) adaptor molecule TRIF from the cell membrane, thereby reducing the production of pro-inflammatory mediators induced by TLR3 or TLR4 activation 
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. ADAM15 also cleaves the low affinity IgE receptor (FCER2 or CD23) 
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7
, suggesting another mechanism by which the rs4971089:A allele might lead to a delayed onset of allergic disease. In contrast to these findings, Sun et al. reported that Adam15 knock-out mice had reduced LPS-induced inflammation 
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. In the GTEx study 
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9
, ADAM15 is most highly expressed in the skin, with high expression also detected in lung; murine T cells have also been reported to express ADAM15 10. 

Fos-like antigen 2 (FOSL2), which was also identified as a target of an age-of-onset sentinel variant, is part of the transcription factor complex AP-1 11. The expression of FOSL2 is induced by IL-2 in activated CD4+ T-cells through a STAT5-dependent mechanism 
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, and is up-regulated during early Th2 cell polarization 
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. FOSL2 is also involved in B cell and epidermal differentiation 
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, and has a critical yet complex role in Th17 differentiation and function 
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.

Tripartite motif-containing protein 8 (TRIM8) was one of five genes predicted as targets of rs12572775, which is located in the SUFU gene on chromosome 10q24. TRIM8 targets TRIF (as noted for ADAM15), and so TLR3- and TLR4-mediated innate immune responses are up-regulated in Trim8 knock-out mice 
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. The latter findings support a protective role for increased TRIM8 expression in allergic disease risk. Consistent with this possibility, we observed that the rs12572775:T allele that delayed age-of-onset was associated with increased expression of TRIM8.

The bone morphogenetic protein receptor type II (BMPR2) gene was one of two predicted targets of sentinel variant rs72926957. Mutations in BMPR2, which encodes a receptor that binds proteins of the TGF-beta superfamily (e.g. BMP4 and BMP7)
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, cause pulmonary arterial hypertension
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, partly by inhibiting Smad-mediated signaling pathways 
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. Of more obvious relevance to allergic disease, BMPR2 is expressed in the thymus and BMP4 treatment inhibits the differentiation of CD4-CD8- cells long the T cell lineage 
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. The second predicted target of rs72926957 was the family with sequence similarity 117 member B (FAM117B); this target was predicted based on correlated (r2>0.9) sentinel eQTLs identified in whole-blood as well as in multiple immune cell subsets (e.g. monocytes and neutrophils). To our knowledge, the function of FAM117B is unknown; relevant tissues with highest expression in the GTEx study included skin and spleen. Of note, variants in high LD (r2>0.9) with rs72926957 have been reported to associate with total cholesterol 
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 and sarcoidosis 
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.

The CD200 receptor 1 gene (CD200R1) was found to contain four non-synonymous variants and one eQTL in complete LD (r2=1) with a sentinel variant identified in the multivariate GWAS (rs9870568). These results indicate that both variation in CD200R1 protein sequence and mRNA levels influence allergic disease risk and age-of-onset. CD200R1 encodes a surface glycoprotein that interacts with CD200 24, being highly expressed in dendritic cells polarized Th2 cells, mast cells, neutrophils and basophils 
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. Engagement of CD200R1 by CD200 has been shown to suppress the activation of various immune cells, including macrophages 
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, mast cells 
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, monocytes 28 and dendritic cells 
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. Given these findings, drugs that activate CD200R1 might be expected to increase immune suppression and so improve allergic disease symptoms, as suggested recently in experimental asthma 
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. In contrast to these studies, however, our results indicate that genetically determined lower CD200R1 expression – which is expected to result in increased immune activation – was associated with lower disease risk and delayed age-of-onset, the opposite effect of that suggested by functional studies. There are a number of possible explanations for this apparent discrepancy. First, the sentinel variant might affect allergic disease pathophysiology because of its effect on CD200R1 protein sequence and not gene transcription levels. Of interest, the four non-synonymous variants that were in LD with the sentinel variant affected amino-acids located in the extracellular (three variants) or cytoplasmic (one variant) domains. Second, a soluble form of CD200R1 has recently been recognized 
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, and so it is possible that the sentinel variant has opposing effects on CD200R1 mRNA and soluble CD200R1 levels, as described for example for IL6R eQTL 
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. Third, lower CD200R1 expression might result in stronger anti-viral responses in early life 33, which could potentially decrease allergic disease risk and delayed its onset. Lastly, CD200R1 might not be the actual target of the allergy sentinel variant identified. We note that other relevant genes are located nearby (<1 Mb), including CD200 and CD200R1L. 

The protein kinase C theta gene (PRKCQ) encodes a protein kinase with a critical role in T-cell activation 
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. In the context of allergic disease, PRKCQ is required for the development of Th2 responses in the lung 
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, at least partly through its role in the activation of type 2 innate lymphoid cells 
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. PRKCQ also promotes Th17 differentiation 38. In contrast, PRKCQ knock-out mice have reduced numbers of Treg cells 
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39
, suggesting that this gene might have both pro- and anti-inflammatory roles in allergic disease. Of note, results from our eQTL analysis indicate that increased PRKCQ expression in leukocytes is associated with decreased allergic disease risk and delayed onset.

The nucleotide-binding oligomerization domain protein 2 gene (NOD2) was the first genetic risk factor identified for Crohn’s disease 
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. To our knowledge, Sarnowski et al. 
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 were the first to report an association between variants near NOD2 and allergic disease, specifically variation in asthma age-of-onset. However, as indicated above, we did not find any evidence for association with age-of-onset in our analyses with the specific variant reported by Sarnowski et al. Instead, we identified two independent associations in the multivariate GWAS that point to NOD2 as an important player in allergic disease pathophysiology. Both variants are relatively uncommon, with a minor allele frequency <5%. The first association was with rs2066844, a non-synonymous variant in NOD2 (R702W) previously reported to associate with Crohn’s disease 
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42
: the directional effect was the same in both diseases, with the minor allele (T, corresponding to 702W, which is predicted to inhibit NOD2 signaling) associated with increasing disease risk (and decreasing age-of-onset of allergic disease). The second association was with rs8056255, an intergenic variant that is in LD with a sentinel eQTL for NOD2 in whole-blood. Based on results for this eQTL, decreased NOD2 expression was associated with increase disease risk and early age-of-onset. NOD2 encodes an intracellular pattern recognition receptor that binds bacterial peptidoglycans 
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. Activation of NOD2 then promotes host defense through the production of inflammatory cytokines 
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 and anti-microbial peptides 
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. On the other hand, NOD2 is also essential for host defense against viral infection. For example, Sabbah et al. 
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 reported that Nod2-deficient mice infected with respiratory syncytial virus (RSV) had lower IFN-beta production in the respiratory tract and higher viral titers than wild-type mice. Thus, it is possible that variants that inhibit NOD2 signaling result in an increased risk of allergic disease because of their detrimental effect on anti-viral immunity.

The mothers against decapentaplegic drosophila homolog 4 gene (SMAD4) encodes a central mediator of TGF-beta signaling, transducing signals from the activated TGF-beta receptor into the nucleus
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. Of relevance to allergic disease, Smad4-/- murine T cells have increased production of Th2 cytokines 
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, impaired polarization into Tregs 
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 and can differentiate into Th17 cells in the absence of TGF-beta signaling 
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. In contrast, Smad4-/- murine T cells have decreased TGF-beta-induced expression of selectin ligands 52, which are required for T cells to migrate to inflamed tissues, and impaired expression of IL-9, a pro-allergic cytokine 
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. Given these opposing effects of SMAD4 inhibition on disease-relevant cellular mechanisms, it is not clear if drug development for allergic disease should focus on drugs that decrease or increase SMAD4 expression/function. We suggest that the former and not the latter are likely to attenuate disease symptoms, given our observation that genetically-determined lower SMAD4 expression in blood was associated with reduced risk and increased age-of-onset of allergic disease.

The ATP-binding cassette subfamily A  member 7 gene (ABCA7) encodes a transported protein that moves lipids across membranes 54, being highly expressed in leukocytes, thymus and spleen 
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. ABCA7 has been shown to enhance phagocytosis of apoptotic cells by macrophages 
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 and NKT cell development and function 57. It has also been suggested to play a role in the terminal differentiation of keratinocytes 
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. Loss-of-function variants in ABCA7 increase the risk of Alzheimer’s disease 
 ADDIN EN.CITE 
59
, as do nearby common variants 
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. The variant identified in our multivariate GWAS is not in LD with the latter (r2=0.02) and so does not represent a risk factor shared between allergic disease and Alzheimer’s disease.

The ubiquitin-conjugating enzyme E2L 3 gene (UBE2L3) encodes an essential component of the post-translational protein ubiquitination pathway, which plays a major role in the regulation of inflammatory responses 61. UBE2L3 has been suggested to promote TNF-alpha induced IL6 and IL8 expression, through its effect on NF-kB signaling 62. Increased NF-kB translocation has been suggested to underlie the association between alleles that increase the expression of UBE2L3 and the risk of multiple auto-immune diseases, including systemic lupus erythematosus 
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. In contrast, UBE2L3 has also been reported to negatively regulate T cell activation 
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 and to act as an adaptor for NDFIP1 
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, another risk gene for allergic disease 
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 that is a negative regulator of pro-inflammatory cytokines 
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. UBE2L3 was also recently reported to promote the production of pro-interleukin 1 beta 
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. As observed for auto-immune diseases, the rs5754217:T allele that was associated with increased disease risk was in LD with alleles that increased UBE2L3 expression in multiple tissues or cell types, including whole-blood and leukocytes. 
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