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I. Single cell time lapse microscopy data sets 

In this study, we used four single cell data sets comprising multiple experimental 

conditions. An overview of the data sets is shown in Table S1. The table includes 

experimental conditions, corresponding figures, number of trajectories and number of 

discarded trajectories due to filtering. For the reference data set and the inhibitor data 

set a filter for trajectories reaching a detection limit was applied (section II.B). For the 

calibration data set and perturbation data set a filter for outliers regarding peak number 

and peak timing was applied (III.A) as well as a filter for clusters with a low number of 

cells (III.D). 

Table S1. Description of single cell data sets. 

label conditions description Figures number of discarded 

trajectories/overall 

trajectories (%) 

reference data 

IR+DMSO 

IR+TNFα 

IR+IKK2i (TPCA-1) 

impact of NF-κB 

activation status 

on p53 dynamics 

1a-d 

25/521 (5%) 

5/611 (1%) 

21/367 (6%) 

inhibitor data 

IR+DMSO 

IR+IKK2i (BMS) 

IR+DMSO 

IR+IKK2i (SC) 

testing 

consistency of 

changed features 

upon inhibition of 

IKK2 using 

different IKK2 

inhibitors 

S2c, 

S2d 

4/178 (3%) 

75/1011 (7%) 

37/780 (5%) 

24/1102 (2%) 

time-variant 

IKK2 inhibition 

data 

IR+DMSO 

IR+IKK2i  

(tInh=1.5h, tInh=1.5h, 

tInh=2.5h, tInh=3h, 

tInh=5h, tInh=5h) 

validation of 

model predictions 
5, S9 - 

calibration data 

perturbation 

data 

IR+DMSO 

IR+IKK2i (TPCA-1) 
parameter 

inference 

3, S7, 

S6a, S8 

93/374 (24.9%) 

118/348 (33.9%) 

 

II. Quantifying features of single cell dynamics 

Single cell trajectories were processed and filtered in order to improve the 

quantification of features of dynamics. 
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A. Smoothing of single cell trajectories 

In order to remove spikes in trajectories, a gaussian-weighted moving average with a 

window size of seven was applied to all trajectories, using the in-built function 

smoothdata() of Matlab. This way, identifying p53 peaks is less error-prone and 

evaluating dissimilarities between trajectories, which is important for clustering 

trajectories into subpopulations, is improved. As the window size of seven which 

corresponds to +/- 45 minutes is much smaller than the frequency of p53 oscillations 

(around 4.2h), high frequencies exhibited by spikes can be filtered out without affecting 

the pulses of p53 (Fig S1d). To assess the effect of the moving average on p53 

dynamics, we determined the peak timing of the first five peaks for raw and smoothed 

trajectories (Fig S1e). While the moving average slightly increases the peak timing, the 

inter-peak interval and therefore the frequency is hardly changed (averaged inter-peak-

interval: 4.15 hours (raw) compared to 4.18 hours). 

B. Filter for trajectories reaching detection limits 

Some data sets contain trajectories in which a fluorescent intensity threshold was 

reached. Such trajectories were excluded from further analysis, as it is not possible to 

detect peaks precisely. The trajectories were identified by checking for intensity values 

of a trajectory occurring multiple times and having identical numerical values. Such 

values were identified as intensity limit and affected trajectories were neglected. 

C. Quantification of features and determining statistical significance 

For quantification of features of dynamics we developed and used a custom-written 

Matlab script. It allows to detect minima and maxima of a trajectory by evaluating the 

sign of slopes of a trajectory (see also Fig S1c). In particular, the sign of a slope 

between two consecutive data points is determined by calculating the difference 

between absolute values of the two data points. After calculating the sign of slopes for 

all data points, extrema can be found by identifying a change in the sign of slopes. 

Based on the identified extrema, features of dynamics were calculated. The inter-peak-

interval (IPI), dampening factor (DF) and slopes (s) of peaks are calculated as follows: 

𝐼𝑃𝐼𝑛 = 𝑡𝑛+1
𝑚𝑎𝑥 − 𝑡𝑛

𝑚𝑎𝑥 

𝐷𝐹𝑛 =
𝐹1

𝑚𝑎𝑥

𝐹𝑛
𝑚𝑎𝑥 
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𝑠𝑛
+ =

𝐹𝑛
𝑚𝑎𝑥 − 𝐹𝑛

𝑚𝑖𝑛

𝑡𝑛
𝑚𝑎𝑥 − 𝑡𝑛

𝑚𝑖𝑛
 

𝑠𝑛
− =

𝐹𝑛
𝑚𝑎𝑥 − 𝐹𝑛+1

𝑚𝑖𝑛

𝑡𝑛
𝑚𝑎𝑥 − 𝑡𝑛+1

𝑚𝑖𝑛
 

where 𝑡𝑛
𝑚𝑎𝑥  is the timing of the nth maximum, 𝐹𝑛

𝑚𝑎𝑥  denotes the absolute value of the 

nth maximum. The positive slope ( 𝑠𝑛
+ ) is determined by the absolute values of the nth 

maximum and nth minimum (𝐹𝑛
𝑚𝑖𝑛) as well as the timing of these extrema (𝑡𝑛

𝑚𝑖𝑛 < 𝑡𝑛
𝑚𝑎𝑥). 

The amplitude of a maximum is defined as the difference between the absolute value 

of the maximum and the intersection of a line connecting the two surrounding minima 

and a vertical line going through the time point of the maximum (Fig S1c). The width of 

a peak is determined at the level of half the amplitude. In order to evaluate if an 

individual feature of dynamics is significantly changed, the Wilcoxon rank sum test was 

used [1,2]. For application of the rank sum test, the Matlab in-built function ranksum() 

was used. As multiple comparisons of features were performed, the calculated 

significance was corrected by applying the Bonferroni-Holm method [3]. For the 

correction, we used an open-source script for Matlab: Groppe, David (2010). 

Bonferroni-Holm Correction for Multiple Comparisons 

(https://de.mathworks.com/matlabcentral/fileexchange/ 28303-bonferroni-holm-

correction-for-multiple-comparisons), Matlab Central File Exchange. 

III. Clustering of single cell trajectories 

For the subpopulation-based modeling approach, the single cell trajectories were 

clustered into subpopulations based on similarity of dynamics. After processing and 

filtering the trajectories, the similarity was determined and clustering was performed. 

A. Processing and filtering of trajectories 

In order to improve clustering, the trajectories of the calibration data set were smoothed 

(II.A), features of dynamics were quantified (II.C) and a filter was applied to detect 

outliers regarding peak number and peak timing. In particular, to promote small within-

cluster variances while preventing high number of clusters, trajectories with strongly 

deviating numbers of peaks or strongly deviating timings of peaks compared to mean 

values of the population, were excluded from further analyses. Trajectories were 

excluded if: 

𝑛𝑖 < 𝜇 − 2𝜎 
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where n is the number of peaks of trajectory i, µ is the mean number of peaks of all 

trajectories with the standard deviation σ. 

To exclude trajectories with deviating timing of peaks, the timing of maxima for each 

trajectory was analyzed: 

−2𝜎 + 𝜇 < 𝑡𝑖,𝑛
𝑚𝑎𝑥 < 2𝜎 + 𝜇 

where µ represents the mean timing of maxima (𝑡𝑛
𝑚𝑎𝑥) for trajectory i and peak n. The 

standard deviation of timing of maxima is represented by σ. The number of excluded 

cells for each data set is shown in Table S1. 

B. Determining dissimilarities between single cell trajectories 

Inspired by Strasen et al. [4], we applied dynamic time warping (DTW) [5] to determine 

the dissimilarity between trajectories. By employing DTW, two trajectories are aligned 

by nonlinear scaling which allows to compensate time shifts between two trajectories. 

This way, minor shifts in dynamics do not corrupt the calculated dissimilarities but 

promote the identification of similar patterns in dynamics. Without restricting DTW, 

alignment of two highly different trajectories can result in a strong adaption of 

trajectories. Such alignments are inconsistent with physiological differences in pulsatile 

dynamics of p53 which are assumed to be in a time frame of a few hours. Therefore, 

we used a Sakoe-Chiba band for DTW which restricts the alignment to a specified 

value and thereby ensures to identify similar patterns of dynamics in a certain time 

frame. A band width of five data points was chosen for the Sakoe-Chiba band, 

corresponding to a delay of 75 minutes. Using DTW, dissimilarities of all trajectories 

were determined in a pair-wise manner. The resulting dissimilarity matrix can then be 

used to cluster trajectories. 

C. Clustering 

For clustering, an agglomerative hierarchical clustering algorithm was used. It is a 

bottom-up approach starting with each provided data point (i.e. difference between two 

trajectories) as a cluster. We used Ward’s method [6] which was shown to perform well 

in clustering single cell dynamics [4]. The Matlab in-built function linkage() was used to 

generate a hierarchical tree of the data. Subsequently, the hierarchical tree was 

passed to the function cluster(). 

In order to identify the number of clusters in the calibration data set, we used the 

Calinski-Harabasz index [7]. By evaluating the between-cluster and within-cluster 
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variance the Calinski-Harabasz index allows to identify the optimal number of clusters. 

We determined the index for 1 to 40 clusters by using the Matlab in-built function 

evalclusters(). The highest value for the index, indicating the optimal number of 

clusters, was found to be 23 in the calibration data set. We also tested the silhouette 

value [8] and the jump method [9] to identify the optimal number of clusters. However, 

calculating the silhouette value suggested 2 clusters which results in a high within-

cluster variance and therefore a poor representation of single cell dynamics. The jump 

method suggested 38 clusters which would result in high computational costs for our 

modeling effort as the number of subpopulation-specific parameters is dependent on 

the number of clusters. 

D. Filter for clusters with a low number of assigned cells 

After clustering the trajectories into 23 different clusters, the number of trajectories 

which are assigned to a cluster can be very different. To reduce the number of 

subpopulation-specific parameters and therefore the computational costs, we excluded 

clusters with less than ten assigned trajectories from further analyses. For parameter 

inference the averaged dynamics of clusters were weighted based on the number of 

assigned cells (IV.F). Hence, the excluded clusters and trajectories would only have a 

minor effect on parameter inference. 

E. Determining the peak-based mean 

Upon clustering of trajectories, an appropriate measure had to be used to represent 

the clustered dynamics. Due to phase shifts in oscillations of p53, the mean or median 

is a poor representation of the clustered trajectories. Thus, we calculated a mean of 

dynamics which is not based on time points but on the peaks of single cell trajectories. 

In particular, we determined the maxima and minima of each trajectory of a cluster and 

calculated the mean of the timing of the extrema and the mean of absolute values of 

the extrema. Additionally, we identified time points between timings of maxima and 

preceding minima (𝑡0.5
− ) and between timings of maxima and subsequent minima (𝑡0.5

+ ): 

𝑡0.5
− = 𝑡max − 0.5(𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛

− ) 

𝑡0.5
+ = 𝑡max + 0.5(𝑡𝑚𝑖𝑛

+ − 𝑡𝑚𝑎𝑥) 

where 𝑡0.5
−  represents the time point which is in between the timing of a maximum (tmax) 

and a preceding minimum (𝑡𝑚𝑖𝑛
− ). In contrast, 𝑡0.5

+  denotes the timing between a 

maximum and a subsequent minimum (𝑡𝑚𝑖𝑛
+ ). After identifying the timings between 
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maxima and minima, the corresponding absolute values of the trajectory at these time 

points were identified. Again, the mean of timings and absolute values was determined. 

Finally, all calculated mean data points were combined and resulted in a trajectory, 

representing the dynamics of single cell trajectories assigned to a cluster and denoted 

as peak-based mean. 

IV. Subpopulation-based modelling 

A. Model describing p53 signaling 

The model which was used for subpopulation modeling is based on the model of 

Batchelor et al. [10,11]. It is a delay differential equation (DDE) model, in which 

transcription and translation of p53 target genes are described by delay differential 

equations. As we were interested in a detailed description of processes affecting the 

regulators of p53 and parameter inference is computationally more efficient for an ODE 

model, we replaced the DDEs by ODEs. In particular, we included variables for Mdm2 

mRNA and Wip1 mRNA as well as transcription and translation processes for Mdm2 

mRNA and Wip1 mRNA. In addition, we also introduced a basal transcription of the 

Wip1 gene to account for a basal amount of Wip1 in steady state. 

B. Model parameters 

The units of the parameters are given in arbitrary concentration c and hours h. The 

boundaries of kinetic parameters were set to -10 and 4 on a log10 scale if not stated 

otherwise. The Hill coefficients ns and nw were not fitted to the data but fixed to the 

values which were used by Batchelor et al. [10,11]. The boundaries of parameters 

describing the degradation of Mdm2 mRNA, Wip1 mRNA, Mdm2 and Wip1 were set 

according to literature data. Porter et al. [12] and Hafner et al. [13] reported for MCF7 

cells a degradation rate for Mdm2 mRNA of 0.29 h-1 and 0.5 h-1, respectively. 

Schwanhausser et al. [14] quantified the half-life of Mdm2 mRNA in mouse embryonic 

fibroblasts and reported a half-life of 3.5 h which corresponds to a degradation rate of 

0.2 h-1. Consequently, the boundaries for parameter αmt were set to 0.1 h-1 and 1 h-1. 

The degradation rate of Wip1 mRNA, which corresponds to parameter αwt, was 

determined by Porter et al. [12] in MCF7 cells to be 0.65 h-1. Again, the boundaries 

were set to 0.1 h-1 and 1 h-1.  
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Chang et al. [15] and Finlay et al. [16] quantified 0.5 h as half-life for Mdm2 in HeLa 

cells and rat embryonic cells, respectively. The corresponding degradation rate is  

1.4 h-1 and therefore the boundaries for parameter αm were set to 1 h-1 and 5 h-1.  

The half-life of Wip1 was reported by Choi et al. [17] and Kleiblova et al. [18] to be in 

the range of 1 h and 2 h in HCT116 and U2OS cells, corresponding to a degradation 

rate of 0.69 h-1 and 0.35 h-1 respectively. Thus, the boundaries for parameter αw were 

set to 0.1 h-1 and 1 h-1. The estimated parameter values and parameter boundaries 

from the calibrated model pool are shown in Fig S11. 

C. Generating pool of ODE models 

A pool of ODE models was generated by defining subpopulation-specific parameters 

for processes assumed to be susceptible to noise. The models can have different 

parameter values for these processes and therefore allow to simulate different p53 

dynamics. As it could be shown that cell-to-cell variability can be explained by 

differences in protein and mRNA levels [19,20], we defined the parameters of RNA and 

protein synthesis rates as subpopulation-specific. The number of models in the model 

pool depend on the number of identified subpopulations in the data set. As we identified 

ten subpopulations in the calibration data set, we generated ten models which differ in 

the values of the subpopulation-specific parameters (Fig 2a,b). These parameters 

were implemented as a fold change which is multiplied with a parameter that is shared 

among all models. This way, the magnitude of variations across subpopulation-specific 

parameter values can be controlled and limited to a physiological range. The 

boundaries of fold change parameters were set to 10−1.5 and 101.5. Subpopulation-

specific fold change parameters are indicated by the suffix fc and a character from a 

to j representing the subpopulation. 

The following ODE system describes one model of the model pool which is specific for 

subpopulation a. The remaining models of the model pool contain the same ODEs but 

differ in the subpopulation-specific parameters.  

In order to simulate inhibition of IKK2 at different time points and thereby reflect the 

experimental setting of time-variant IKK2 inhibition, the inhibition was simulated by 

implementing a sigmoidal increasing effect of the inhibitor. 

D. Ordinary differential equations 

𝑑(𝑝53)

𝑑𝑡
= 𝑣1 + 𝑣2 − 𝑣3 − 𝑣4 − 𝑣5 
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𝑑(𝑝53𝑎)

𝑑𝑡
= −𝑣2 + 𝑣5 − 𝑣6 

𝑑(𝑀𝑑𝑚2𝑚𝑅𝑁𝐴)

𝑑𝑡
= 𝑣7 + 𝑣8 − 𝑣9 

𝑑(𝑀𝑑𝑚2)

𝑑𝑡
= 𝑣10 − 𝑣11 − 𝑣12 

𝑑(𝑊𝑖𝑝1𝑚𝑅𝑁𝐴)

𝑑𝑡
= 𝑣13 + 𝑣14 − 𝑣15 

𝑑(𝑊𝑖𝑝1)

𝑑𝑡
= 𝑣16 − 𝑣17 

𝑑(𝐴𝑇𝑀𝑝)

𝑑𝑡
= 𝑣18 − 𝑣19 − 𝑣20 

E. Reaction rates for model fitted to calibration data 

𝑣1 = 𝛽𝑝 ⋅ 𝛽𝑝_𝑓𝑐𝑎 

𝑣2 = 𝛼𝑤𝑝𝑎 ⋅ 𝑊𝑖𝑝1 ⋅ 𝑝53𝑎 

𝑣3 = 𝛼𝑝𝑖 ⋅ 𝑝53 

𝑣4 = 𝛼𝑚𝑝𝑖 ⋅ 𝑀𝑑𝑚2 ⋅ 𝑝53 

𝑣5 = 𝛽𝑠𝑝 ⋅ 𝑝53 ⋅
𝐴𝑇𝑀𝑝𝑛𝑠

𝐴𝑇𝑀𝑝𝑛𝑠 + 𝑇𝑠
𝑛𝑠 

𝑣6 = 𝛼𝑚𝑝𝑎 ⋅ 𝑀𝑑𝑚2 ⋅ 𝑝53𝑎 

𝑣7 = 𝛽𝑝𝑎𝑚𝑡 ⋅ 𝑝53𝑎 

𝑣8 = 𝛽𝑚𝑡 ⋅ 𝛽𝑚𝑡_𝑓𝑐𝑎 

𝑣9 = 𝛼𝑚𝑡 ⋅ 𝑀𝑑𝑚2𝑚𝑅𝑁𝐴 

𝑣10 = 𝛽𝑚𝑡𝑚 ⋅ 𝛽𝑚𝑡𝑚_𝑓𝑐𝑎 ⋅ 𝑀𝑑𝑚2𝑚𝑅𝑁𝐴 

𝑣11 = 𝛼𝑠𝑚 ⋅ 𝑀𝑑𝑚2 ⋅ 𝐴𝑇𝑀𝑝 

𝑣12 = 𝛼𝑚 ⋅ 𝑀𝑑𝑚2 

𝑣13 = 𝛽𝑝𝑎𝑤𝑡 ⋅ 𝑝53𝑎 

𝑣14 = 𝛽𝑤𝑡 ⋅ 𝛽𝑤𝑡_𝑓𝑐𝑎 

𝑣15 = 𝛼𝑤𝑡 ⋅ 𝑊𝑖𝑝1𝑚𝑅𝑁𝐴 

𝑣16 = 𝛽𝑤𝑡𝑤 ⋅ 𝛽𝑤𝑡𝑤_𝑓𝑐𝑎 ⋅ 𝑊𝑖𝑝1𝑚𝑅𝑁𝐴 

𝑣17 = 𝛼𝑤 ⋅ 𝑊𝑖𝑝1 

𝑣18 = 𝛽𝑠 ⋅ 𝛽𝑠_𝑓𝑐𝑎 

𝑣19 = 𝛼𝑤𝑠 ⋅ 𝐴𝑇𝑀𝑝 ⋅
𝑊𝑖𝑝1𝑛𝑤

𝑊𝑖𝑝1𝑛𝑤 + 𝑇𝑤
𝑛𝑤

 

𝑣20 = 𝛼𝑠 ⋅ 𝐴𝑇𝑀𝑝 
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F. Fit of model pool to subpopulation data 

For parameter inference, the open source toolbox Data2Dynamics (D2D) for Matlab 

(R2017b, The Mathworks Inc., Natick, MA) was used [21,22]. The optimization is based 

on the deterministic lsqnonlin algorithm which is implemented in Matlab. Multi start 

optimization was performed by sampling start values of parameters using latin 

hypercube sampling [23,24]. By defining the subpopulation-specific parameters in the 

toolbox as condition-specific, it is possible to fit simultaneously shared and specific 

parameters to the experimental data. In order to include the information on the number 

of assigned cells to a cluster, we weighted the peak-based mean for each 

subpopulation accordingly. This was done by adapting the number of data points for 

each peak-based mean in accordance to the number of assigned cells. 

G. Using L1 regularization to identify parameters with a major impact on 

heterogeneity 

In the model, six processes were defined as subpopulation-specific. Defining for each 

subpopulation and each subpopulation-specific process a fold change parameter 

allowed to reproduce the heterogeneous dynamics of the different clusters. However, 

it is not clear if all of the subpopulation-specific fold change parameters are required to 

reproduce the data. In order to identify crucial subpopulation-specific parameters and 

processes to reproduce the heterogeneous dynamics, we applied L1 regularization 

[25]. Steiert et al. implemented this method in the D2D toolbox and successfully used 

this approach to identify cell type-specific parameters. 

By including a penalty term for the parameter value of fitted parameters in the objective 

function of the optimization, regularization allows to detect parameters with a low or no 

impact on fit quality. Steiert et al. implemented the penalty term by introducing a 

logarithmic ratio of parameter values for each cell type-specific reaction. Consequently, 

by minimizing the objective function and thus the penalty term during optimization, the 

value of a logarithmic ratio is minimized. An optimal solution for a logarithmic ratio of 

zero indicates that the according reaction is not cell type-specific. The contribution of 

the penalty term to the objective function is regulated by a weight (λ) in order to control 

the balance between number of neglected parameters and goodness of fit.  

To identify the optimal value for λ, Steiert et al. suggested to perform a likelihood ratio 

test. We tested 31 values for λ ranging from 10-20 to 106, and found an optimal value of 

102.7 for the weight λ. 
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For the optimal value of λ, 20 out of the 60 subpopulation-specific parameters were 

identified as unspecific. For basal transcription of the Wip1 gene (βwt), all 

subpopulation-specific fold change parameters were estimated to be zero, indicating 

that this process is unspecific and thus not driving heterogeneity (Fig 3b).  

Performing a profile likelihood estimation for the 40 identified subpopulation-specific 

fold change parameters revealed that all fold change parameters corresponding to 

activation of ATM (βs) and translation of Wip1 mRNA (βwtw) are structurally non-

identifiable. Consequently, one parameter of each process can be fixed to zero without 

changing the overall goodness of fit. We selected βs_fcb and βwtw_fcb to be fixed to 

zero. The profile likelihood was again performed and showed that fixing the two 

parameters rendered all remaining subpopulation-specific parameters of activation of 

ATM and translation of Wip1 mRNA identifiable. 

Taken together, L1 regularization in combination with profile likelihood analysis 

revealed that 22 out of the 60 defined subpopulation-specific fold change parameters 

are not crucial to reproduce the data and are therefore not driving the simulated 

heterogeneity (Fig 3b). 

V. Sensitivity analysis 

In order to assess the effect of a parameter on a specified feature of dynamics, e.g. 

timing of peak maxima, the model parameters were perturbed by +1% (or +30%, -30%) 

and the relative change in the feature for each peak was quantified. This way, a 

sensitivity coefficient (sc) can be computed, quantifying the effect of the analyzed 

parameter on the feature. 

𝑠𝑐𝑖 =

Δ𝑓𝑖

𝑓𝑖

Δ𝑝
𝑝

 

where p represents the analyzed parameter and f  is the quantified feature for peak i. 

To condense the sensitivity coefficients of multiple peaks, two thresholds were defined. 

One threshold was used to determine if a sensitivity coefficient is sensitive, i.e. the 

applied parameter perturbation has a considerable impact on the respective feature: 

|𝑠𝑐𝑖| ≥ 1 ⋅ 10−3 
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If the sensitivity coefficients of all peaks of a feature cross this threshold, the 

corresponding subpopulation is considered sensitive for the analyzed feature and 

parameter. In contrast, if the absolute value of sensitivity coefficients of all peaks are 

below the second threshold, the analyzed parameter perturbation is considered 

ineffective in changing a feature: 

|𝑠𝑐𝑖| ≤ 1 ⋅ 10−4 

For the sensitivity analysis of parameter pairs, both parameters of a combination were 

perturbed by +1%, or one parameter was perturbed by +1% and the second one by  

-1% to account for opposing effects of IKK2 on two processes.  

VI. Parameter inference of parameter pairs and parameter triplets 

to reproduce the perturbation data 

After calibrating the subpopulation-based model pool, it can be used to evaluate 

parameters regarding their capability to reproduce the IKK2 inhibitor-induced effects 

on p53 dynamics. In order to analyze parameter pairs and parameter triplets in a 

quantitative manner, parameter inference was used. In particular, parameter 

combinations were fitted to the perturbation data while remaining parameters were 

fixed to their calibrated values. The resulting fit quality, assigned to each parameter 

combination, allowed to rank the combinations based on their capability to reflect the 

IKK2i-induced alterations in p53 dynamics. However, before the parameters can be 

fitted, the perturbation data had to be processed and single cell trajectories had to be 

assigned to clusters of the calibration data. 

A. Processing of perturbation data 

The perturbation data set in which cells were treated with IR and the IKK2 inhibitor 

were processed like the calibration data set. The trajectories were smoothed and filter 

for outliers regarding peak number and peak timing were applied (II.A and III.A). 

B. Allocating trajectories of perturbation data to clusters of the calibration 

data 

The calibration data was clustered into smaller subpopulations to preserve 

characteristics of single cell dynamics. The same was desired for the perturbation data. 

To track the effect of the inhibitor on the level of the subpopulations, the trajectories of 

the perturbation data were assigned to clusters of the calibration data. In particular, we 

quantified features of p53 dynamics of the calibration data and compared it to the 
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quantified features of the perturbation data. Based on the changes in features, we 

defined nine criteria (Table S2). By comparing features of single trajectories of the 

perturbation data to features of the peak-based mean of each cluster of the calibration 

data, the clusters can be ranked for each trajectory based on the defined criteria. The 

first eight criteria were used for the assignment to ensure that the observed effect of 

IKK2 inhibition on p53 dynamics are still represented on the subpopulation level. As 

multiple clusters can fulfill the first eight criteria for a trajectory, a ninth criterion was 

defined to unambiguously assign a trajectory to a cluster. The ninth criterion captures 

the difference between absolute values of the first maxima of p53 peaks between 

calibration and perturbation data. In particular, IKK2 inhibition did not change the 

absolute value of the first maximum significantly. Consequently, calculating the 

difference between the absolute value of the first maximum of a trajectory and the 

peak-based mean of each cluster allows to rank the clusters according to the quantified 

difference. The cluster exhibiting the smallest difference is assumed to be the most 

appropriate cluster for the analyzed trajectory based on the ninth criterion. 

Assigning trajectories to clusters solely on basis of the ninth criterion, i.e. only the best 

ranked cluster is considered, would result in an unambiguous assignment but the 

respective trajectories would not necessarily reproduce the experimentally observed 

effects, defined by the first eight criteria. Thus, more than the best ranked cluster has 

to be considered. Moreover, applying all of the first eight criteria results in trajectories 

that cannot be assigned to a cluster due to unmet criteria and are therefore neglected 

for the assignment. Thus, it is important to choose an appropriate threshold for the 

number of fulfilled criteria to ensure that the IKK2-induced effect on dynamics is 

reflected while the number of neglected cells is small. To determine a threshold for i) 

the first eight criteria that have to be fulfilled and ii) a number of ranks, derived from 

the ninth criterion, that have to be considered we analyzed the effect of first eight 

criteria and the ninth criterion on the composition of assigned trajectories to clusters. 

This was done by calculating the adjusted rand index [26]. It is based on the rand index 

[27], a measure to compare compositions of two clustering realizations. For calculation 

of the adjusted rand index, we used an open-source script for Matlab: McComb, Chris 

(2015). Compute the adjusted rand index using compAdjRandIndex(), 

(https://de.mathworks.com/matlabcentral/fileexchange/49908-adjusted-rand-index), 

Matlab. 
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To compare all possible combinations of thresholds regarding their impact on the 

assignment of trajectories to a cluster, we defined one particular assignment as 

reference and compared all other assignments to this reference. The reference 

assignment is obtained by setting the threshold for the ranking to one (only best ranked 

cluster is used) and the threshold for the number of criteria to eight (each of the first 

eight criteria has to be fulfilled). By calculating the adjusted rand index between the 

tested thresholds and the reference realization we analyzed all possible thresholds. An 

adjusted rand index of one indicates a similar composition between two clustering 

realizations. The best setting resulting in a high number of the adjusted rand index and 

a low number of neglected cells was found by taking the first and second ranked cluster 

for a trajectory into account and setting the number of criteria that have to be fulfilled 

for the first eight criteria to four. The corresponding adjusted rand index was 0.64 while 

23% of trajectories were neglected. With these settings it was possible to assign 77% 

of the trajectories of the perturbation data to the clusters of the calibration data. To test 

if the IKK2i-mediated changes in features are reflected by the determined peak-based 

mean, we compared the features of the peak-based mean of the calibration and 

perturbation data. Only subpopulation b failed to reflect the changes in features upon 

IKK2 inhibition (Fig S6b). This is due to a low number of assigned cells resulting in a 

higher variance in the quantified features. However, for fitting the model pool to the 

data, the peak-based mean of each subpopulation is weighted based on the number 

of assigned cells. Thus, subpopulation b has only a small impact on parameter 

inference compared to the other subpopulations. 

Table S2. Criteria for trajectory assignment. 

criteria description valid for 

1 timing of maxima increased all peaks 

2 inter-peak-interval increased all peaks 

3 dampening factor increased all peaks 

4 absolute value of maxima decreased peak 2 to 4 

5 absolute value of minima decreased peak 2 to 4 

6 width increased peak 1 and 2 

7 positive slope decreased all peaks 

8 negative slope decreased peak 2 to 4 

9 absolute value of maxima unchanged (minimal 

difference) 

peak 1 
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C. Parameter inference 

After assigning trajectories of the perturbation data to the clusters of the calibration 

data, the calibrated model pool can be fitted to the peak-based mean of the assigned 

trajectories. The peak-based mean of subpopulations was weighted by taking the 

number of cells into account that were assigned to a subpopulation. This was done the 

same way as described for the peak-based mean of subpopulations of the calibration 

data (IV.F). Parameter inference was performed for all 231 possible combinations of 

22 parameters pairs, as well as 1540 parameter triplets. In order to control the 

magnitude of inferred parameter values, a fold change parameter was introduced and 

multiplied with the parameter of interest. By fitting the fold change parameter and fixing 

all remaining parameters to their calibrated value, the fold change was inferred and 

restricted to be in a range between 10−5 and 105. 

VII. Weighted χ2 value 

In order to quantify the difference between the validation data set of time-variant IKK2 

inhibition and simulations of the model pool, the weighted χ2 value was calculated. The 

χ2 value was determined for each data set i and time point j: 

𝜒2(𝑡𝑗 , 𝑝) =
(𝑦̃𝑖𝑗 − 𝑦𝑖(𝑡𝑗 , 𝑝))

2

𝜎𝑖
2(𝑡𝑗)

 

where 𝑦̃ defines the experimental data. The simulation data is denoted by y for 

parameters p. Note, the standard deviation σ is calculated for each measurement and 

time point tj. For a better comparison of data sets, the χ2 value of each data set was 

normalized to the smallest value of all time points t of this data set. The χ2 value of a 

data set is given by the normalized sum of χ2 values for all time points: 

𝜒̅𝑖
2(𝑝) = ∑

𝜒𝑖𝑗
2 (𝑡𝑗, 𝑝)

min 𝜒𝑖𝑗
2 (𝑡𝑗 , 𝑝)

𝑛

𝑗=1

 

The χ2 values of two data sets with similar time points of IKK2 inhibition (1.5h/1.5h, 

2.5h/3h and 5h/5h) were summarized by adding their normalized χ2 values ( 𝜒̅𝑖
2(𝑝)). 
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