
Databases and ontologies

DigestiFlow: from BCL to FASTQ with ease

Manuel Holtgrewe 1,2,*, Clemens Messerschmidt1,2, Mikko Nieminen2,3 and

Dieter Beule3

1Core Unit Bioinformatics, Berlin Institute of Health, Berlin 10178, Germany, 2Charité — University Medicine Berlin, Berlin 10117,

Germany and 3Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany

*To whom correspondence should be addressed.

Associate Editor: Inanc Birol

Received on July 29, 2019; revised on October 29, 2019; editorial decision on November 8, 2019; accepted on November 13, 2019

Abstract

Summary: Management of raw-sequencing data and its pre-processing (conversion into sequences and demulti-
plexing) remains a challenging topic for groups running sequencing devices. They face many challenges in such
efforts and solutions ranging from manual management of spreadsheets to very complex and customized labora-
tory information management systems handling much more than just sequencing raw data. In this article, we de-
scribe the software package DigestiFlow that focuses on the management of Illumina flow cell sample sheets and
raw data. It allows for automated extraction of information from flow cell data and management of sample sheets.
Furthermore, it allows for the automated and reproducible conversion of Illumina base calls to sequences and the
demultiplexing thereof using bcl2fastq and Picard Tools, followed by quality control report generation.

Availability and implementation: The software is available under the MIT license at https://github.com/bihealth/
digestiflow-server. The client software components are available via Bioconda.

Contact: manuel.holtgrewe@bihealth.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Laboratories operating modern-sequencing facilities face a multi-
tude of challenges. These include sample tracking, raw data pre-
processing (conversion of raw sequencer output into sequences and
demultiplexing of pooled experiments which is usually done in the
same step), quality control of sequencing results and delivery to the
requesting party. Although there is no clear consensus of what com-
prises a Laboratory Information Management System (LIMS), the
term LIMS is often used to describe systems supporting these step.
Simple ‘pure peopleware’ implementations consist of spreadsheets
on network shares while comprehensive commercial packages such
as Illumina BaseSpace Clarity LIMS offer highly adjustable but very
expensive solutions. A number of academic and open solutions fall
in between, offering a variable number of features and degrees of
customizability.

The general lack of agreement of what a LIMS should cover or
not cover stems from the fact that sequencing laboratories alone dif-
fer greatly. Areas of difference include the types of samples accepted
(tissues/blood, DNA/RNA, final libraries/pools or a subset thereof),
and the type of data generated (raw base calls (BCLs), sequences,
aligned reads or bioinformatics analytical reports). In addition, the
surrounding information technology (IT) infrastructure varies great-
ly as does the degree of integration with such additional IT systems.

In this article we present our approach DigestiFlow (DF) that
addresses the different needs of organizations by focusing on a

small, well-defined subset of tasks: management of Illumina flow
cell and sample sheet information and orchestrating the step con-
verting BCLs to sequences and demultiplexing pooled sequencing
runs. To the best knowledge of the authors, in this domain DF offers
unparalleled functionality. Flow cells can be filled with an arbitrary
combination of libraries using any combination of index and mo-
lecular barcode reads. DF also supports the barcode being part of
the template sequence. DF provides extensive features for sanity
checking and comparison of expected indexing reads with those ac-
tually seen in the raw BCL data.

This is particularly important in an era where technologies such
as single cell and low input sequencing require an ever-growing
complexity of barcoding and indexing schemes and the amount of
sequencer throughput is growing dramatically. We have encoun-
tered flow cells with more than 600 libraries and expect this to grow
with increasing sequencer throughput.

A fundamental link to central IT is the integration with existing
authentication infrastructure via directory servers, e.g. Microsoft
ActiveDirectory (AD). DF supports linking accounts to central AD
instances as well as using user accounts that only exist within the
system. Beyond this, the system provides its functionality through a
REST API (representational state transfer application programmable
interface application programing interface) such that other services
can be easily integrated. Instead of covering all possible functionality
and sample tracking schemes, DF avoids the complexity of a mono-
lithic system and can be integrated as a part of a modular system.

VC The Author(s) 2019. Published by Oxford University Press. 1983

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 36(6), 2020, 1983–1985

doi: 10.1093/bioinformatics/btz850

Advance Access Publication Date: 14 November 2019

Applications Note

http://orcid.org/0000-0002-3051-1763
https://github.com/bihealth/digestiflow-server
https://github.com/bihealth/digestiflow-server
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz850#supplementary-data
https://academic.oup.com/

However, it can also just be standalone without integration with
any other system.

2 Materials and methods

DF consists of three major components. The architecture of the sys-
tem is shown in Figure 1. The figure also shows interaction with a
minimal set of external systems.

2.1 DF server
DF Server is a web app implemented with the SODAR-Core (https://
github.com/bihealth/sodar_core) and Django frameworks in the
Python programing language. It uses a PostgreSQL database system.
It allows for the curation of flow cells and libraries together with ar-
bitrarily complex index and barcoding schemes. Barcodes can be
organized in barcode sets such that their sequence can be entered
once and subsequently be referred to by name. Furthermore,
sequencing machines can be registered with their main properties
(e.g. whether the second barcode read needs to be reverse-
complemented, depending on the paired indexing workflow used).
DF Server allows the visualization of barcodes detected by DF Client
in the BCL files (see Fig. 2) and compares them to the libraries and
barcodes entered by the users into the flow cell sample sheet. DF
Server provides a number of sanity checks for both barcodes from
raw-sequencing data, including a barcode frequency distribution
and recognizing expected spike-ins such as PhiX sequence. It can
also cross check between sample sheets and barcodes in the raw
sequences, detecting barcodes present in one but missing in the
other. Furthermore, users can add comments to flow cells and attach
arbitrary files, which is useful for exchanging spreadsheets or con-
centration measurement reports from the wet lab.

2.2 DF client
DF Client is meant to be called periodically via a cron job to moni-
tor the storage volume where sequencer(s) write output data. It
reads the metadata files and registers any new flow cell with DF
Server (or alternately, flow cells can be pre-registered in DF Server
and their properties are then updated by DF Client). Once the barco-
des have been sequenced completely, the DF Client extracts and
evaluates their sequences and posts this information to DF Server.
The client also detects when sequencing has succeeded (and various
failure conditions) and updates the information in the server. DF
Client is written in the Rust programing language.

2.3 DF Demux
DF Demux is also meant to watch the storage volume where the
sequencers write their output data. Once sequencing of a flow cell is
complete and marked as ready in DF Server, it starts the pre-process-
ing by first obtaining the flow cell information from DF Server.
Flow cells can be marked for delivery as BCL files, (possibly)

demultiplexed sequences, or both. If raw BCL files are to be deliv-
ered, DF Server simply creates a TAR (tape archive) file for each
lane that contains all the information required for demultiplexing
this one lane.

For pre-processing, it first checks whether the flow cell can be
processed by simply calling the Illumina vendor software bcl2fastq
(version 1 or 2, depending on the needs of the raw data) and calls
the program accordingly. Otherwise, it generates a series of calls to
bcl2fastq and Picard Tools (http://broadinstitute.github.io/picard/)
to perform the required pre-processing. An example for this is the
Agilent XT protocol where molecular barcode sequences are stored
in the second barcode read which bcl2fastq does not support. We
refer to homogenous flow cell loads that can be processed with the
bcl2fastq as basic pre-processing while flexible pre-processing
allows arbitrary combination of library indexing and barcoding
schemes.

Once pre-processing is complete, FastQC (https://www.bioinfor
matics.babraham.ac.uk/projects/fastqc/) is run on the results and the
quality control results are be collected with MultiQC (Ewels et al.,
2016). Finally, the MultiQC report is posted as a message to the
flow cell in DF Server using the REST API together with the log files
as attachment. This then allows the sequencing staff to review the
results and react accordingly. DF Demux is implemented in the
Python programing language with a Snakemake (Köster and
Rahmann, 2012) workflow using Bioconda (Grüning et al., 2018)
for software package management.

3 Results

3.1 The states of a flow cell
DF tracks three components of sequencing: (i) the sequencing pro-
cess itself, (ii) pre-processing and (iii) data delivery. The possible
state values differ for each of these three steps. See the manual in the
Supplementary Material for full details, but they can be summarized
as follows.

Diges�flow Server Diges�flow Client Diges�flow Demux

User eliFnoitcaretnI Storage Illumina Sequencing

Web Front-End

RE
ST

 A
PI

as interac�ve or
cron job

as interac�ve or
cron job

Network
Share

Sequencing
Device

sample sheet
cura�on,
checking

browse,
search,

view
detect new

flow cell
extract index

sequences

write data

update

load sample sheet/upload QC report

Fig. 1. Architectural overview. Sequencing instruments write data to a specified file

system storage. A periodically running DF Client detects new flow cells and registers

them with the DF Server. Once sequencing is complete and sample sheet informa-

tion has been approved by the operator, DF Demux performs the conversion to

FASTQ files and creates all QC reports. Users can not only browse and view, but

also manage and curate flow cells and their sample sheets through DF Server

Fig. 2. When adding the sample sheet (not shown), the operator made a small mis-

take. The adapter P37 is given twice for the same lane in the sample sheet while the

adapter sequence ‘AAGACCGT’ occurs in the raw BCLs but not in the sample sheet.

This information can then be used for debugging sample sheet information. This is

highlighted in the sample sheet (a) and the display of the adapters read from the raw

BCL data (b)

1984 M.Holtgrewe et al.

http://broadinstitute.github.io/picard/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz850#supplementary-data

Each step starts in the initial state. For pre-processing, an oper-
ator has to set the state of the pre-processing step to ready which sig-
nals DF Demux to start. Once the client detects that the sequencing
of a flow cell has started the sequencing state changes to running.
Similarly, once DF Demux has started, the pre-processing state
changes to running. If sequencing or demultiplexing fails or suc-
ceeds, the corresponding state is updated accordingly (failed/suc-
cess). For both, a human operator can set a special confirmed
failure/success state manually. For example, a confirmed failure
state will be set manually after they determine pre-processing failed
due to overall low sequencing quality and it is not possible to ‘res-
cue’ pre-procesisng by fixing a sample sheet. Or a confirmed success
state may be set after a human operator determines that QC passes
visual inspection. A special success with warning state allows users
to flag situations such as sequencing which succeeded for all but one
lane due to technical issues.

For delivery, a human user has to set the state explicitly. This
built-in system for keeping track of the delivery state is particularly
useful if more than one user is handling data delivery, especially
when used in conjunction with the message feature for leaving notes
on flow cells.

3.2 Comparison with existing methods
Existing methods include the following: openBIS ELN-LIMS
(Barillari et al., 2016), which builds on top of openBIS (Bauch et al.,
2011) and has a high number of features for sample submission and
-tracking yet also has a large number of dependencies, MendeLIMS
(Grimes and Ji, 2014) which has basic sample tracking functionality
yet is bound to a rigid data processing workflow, Managing
Information for Sequencing Operations (MISO)-LIMS (https://
github.com/miso-lims/miso-lims) which offers basic sample tracking
functionality yet does not include features for pre-processing, and
Parkour LIMS (Anatskiy et al., 2019) which provides extensive sam-
ple tracking and advanced lab notebook features yet also does not
integrate automated pre-processing. Although being out of scope of
this article, we note that DF could be integrated with other software
packages as long as they provide an API with additional code. The
integration with Parkour LIMS appears particularly appealing as it
is based on the same technology as DF (Python/Django) and has few
other dependencies itself. Table 1 contains a comparison of the listed
tools given some important features.

3.3 Features for improving sequencing results
3.3.1 Sample sheet validation

Based on practical experience, we greatly appreciate the automated
comparison of observed adapter sequence content and sample sheet.
Unexpected sequence in either set is an indication for possible errors.
DF Server provides fine-grained control to acknowledge and sup-
press inconsistency warnings (after either fixing errors or accepting
errors and then excluding corresponding data). Furthermore, com-
mon artifacts such as PhiX sequence are automatically recognized

and show up as information rather than warnings or errors. Figure 2
shows an example.

3.3.2 Reproducibility, automation and quality control

The DF Client and Demux components are available from Bioconda
as Conda packages and Docker images, thus allowing for future
proof installations and creating reproducible workflows. By offering
REST APIs and two useful client applications, DF greatly supports
sequencing and demultiplexing operators in automating their work.
Further automation can be added later as the APIs are open.
Automated quality control using FastQC and aggregation using
MultiQC also allows users to spot problems earlier (together with
the sample sheet adapter checks described earlier). In our experience
this allows for the early detection of many common issues. For ex-
ample, from time to time, it occurs that the same adapter was used
for two different libraries in the same lane. This error might be hard
to spot on paper or in spreadsheets but applications such as DF
Server can easily detect and report such problems similar to the ex-
ample shown in Figure 2.

Acknowledgements

We thank all members of the sequencing facilities of BIH, Charité and MDC,

especially Tatiana Borodina and Marten Jäger for their valuable input and

feedback on DigestiFlow functionality and design. We thank Nina Thiessen

for language editing.

Funding

All authors were funded as staff of the Berlin Institute of Health (BIH).

Conflict of Interest: none declared.

References

Anatskiy,E. et al. (2019) Parkour LIMS: high-quality sample preparation in

next generation sequencing. Bioinformatics, 35, 1422.

Barillari,C. et al. (2016) openBIS ELN-LIMS: an open-source database for aca-

demic laboratories. Bioinformatics, 32, 638–640.

Bauch,A. et al. (2011) openBIS: a flexible framework for managing and ana-

lyzing complex data in biology research. BMC Bioinformatics, 12, 468.

Ewels,P. et al. (2016) MultiQC: summarize analysis results for multiple tools

and samples in a single report. Bioinformatics, 32, 3047–3048.

Grimes,S.M. and Ji,H.P. (2014) MendeLIMS: a web-based laboratory infor-

mation management system for clinical genome sequencing. BMC

Bioinformatics, 15.

Grüning,B. et al. (2018) Bioconda: sustainable and comprehensive software

distribution for the life sciences. Nat. Methods, 15, 475–476.

Köster,J. and Rahmann,S. (2012) Snakemake–a scalable bioinformatics work-

flow engine. Bioinformatics, 28, 2520–2522.

Table 1. Comparison important properties and features in commercial and free software for the management of Illumina flow cells informa-

tion popular in the sequencing community based

Metric DigestiFlow BaseSpace Clarity LIMS OpenBIS LIMS-ELN MendeLIMS MISO Parkour LIMS

License MIT commmercial free for non-commercial free for non-commercial GPL GPL

Self-hosted � — � � � �

LDAP auth � � � � � —

(REST) API � � � — � �

Sample tracking minimal advanced basic basic basic advanced

Basic pre-proc. � � � � — �

Flexible pre-proc. � — — — — —

Sheet checks � — — — — —

BCL checks � — — — — —

pre-proc., preprocessing

DigestiFlow 1985

	btz850-TF1

