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1 Models and methods

We present our framework to reconstruct gene regulatory dynamics and refine GRN structure from
high-dimensional single-cell snapshot data. A block diagram of the framework is shown in Figure 1.

The first step represents a dimensionality reduction, obtained through diffusion map [1]. When
snapshot data embedded in a low-dimensional space presents multiple branching paths, then an
ad hoc clustering algorithm is used to separate branches. In each single branch, cells are used to
reconstruct pseudo time-series by means of Wanderlust [2], a cell time-ordering algorithm. Pseudo
time-series are then used to estimate kinetic parameter in ODE-based transcriptional models and
do model comparison. Different transcriptional models are based on a coarse network structure
obtained through network inference algorithm GENIE3 [3]. Details of each module composing our
framework are reported in the following sections.

Figure 1: Diagram of our framework.

1.1 Dimensionality reduction

Single-cell gene expression snapshot data consist of gene expression values for a set G of genes
in a number N of cells at a certain time point t. In other words, for each of the N cells, gene
expression for all of the G genes is measured at time t. Since gene expression is essentially a
stochastic process [4], the expression of a gene is different in each cell and can span on a wide
range, depending on the role of the gene in the GRN. Therefore, snapshot data reflect in some way
the GRN state at multiple stages during the network’s temporal evolution.

So defined, single-cell gene expression snapshot data represent high-dimensional data, where
the dimension is given by the number G of genes. A dimensional reduction method allows to embed
this high-dimensional data into a low-dimensional space. In such a way, N cells can be visualised
in a two or three dimensional space, where cell clusters can be identified according to their gene
expression value. As it will be clear later on, this step is required in order to learn GRN dynamics,
since it facilitates the process of cell clustering (e.g. separation of branches along differentiation
paths) and subsequent cell time-ordering.

Many dimensional reduction techniques are available, among which PCA, its probabilistic ver-
sion [5] and its nonlinear version [6]. Here we use a non-linear method known as diffusion map [1]
which has the advantage of preserving the global geometrical structure of the data as a continuum
as well as being remarkably robust to noise. In diffusion maps, the similarity between cells (in
terms of expression of their genes) is indicated by their Euclidean distance in the lower dimensional
space. Here, the coordinates of cells are given by the first few eigenvectors (i.e. diffusion com-
ponents) of a properly built N ×N Markovian transition matrix (with N as the total number of
cells). Figure 2 shows an application of diffusion map to snapshot data generated from the toggle
switch network described in main paper.
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Figure 2: Embedding of single-cell snapshot data generated from toggle switch network, after
application of diffusion maps. Colours encode gene expression levels for gene gC (top left), gD (top
right), gE (bottom left) and gF (bottom right). Bold letters indicate genes which are activated in
each of the branches, e.g. top left branch is generated by activations of genes gA and gC .

1.2 Branch clustering

Single-cell snapshot data can represent multiple cellular processes, e.g. both toggle switch syn-
thetic dataset and hematopoietic snapshot data, include multiple differentiation pathways. Diffu-
sion map provides a mean to identify and visualize developmental trajectories in single-cell gene
expression data [7]. For example, Figure 2 clearly shows the presence of multiple branches in the
low-dimensional space, each corresponding to a specific differentiation pathway.

In order to separate cells associated with different processes, we use an ad hoc clustering method
to separate an a priori defined number B of branches in low-dimensional space.

As different branches in the diffusion map can also share same cells, k-means or similar algo-
rithms could not work properly. We adopt a different strategy based on shortest paths. For each
branch we select a starting cell CS and a final cell CF and we run Dijkstra algorithm [9] to find the
shortest path between CS and CF along the diffusion map. Cells belonging to the shortest path
are considered part of the branch, together with their Nn nearest neighbours. For each branch b,
the algorithm is summarised as follows:

1: select starting cell CS and final cell CF
2: find shortest path using Dijkstra algorithm → [CS , Cs1, Cs2, . . . , CsN , CF ]
3: for C ∈ {CS , Cs1, Cs2, . . . , CsN , CF }
4: find Nn neighbours

5: branch b is defined by cells CS , Cs1, Cs2, . . . , CsN , CF and their Nn neighbours

Figure 3 shows application of the clustering algorithm to the 3D embedding obtained from
diffusion map on the toggle switch simulated snapshot data.

The number Nn of neighbours represents a user-defined parameter. We tested the performance
of our approach in terms of parameter estimation accuracy and inferred GRN structure on six
simulated pseudo time-series datasets obtained by using six different number Nn of neighbours, in
the range Nn = [5, 30]. Results reported in Section 2.2.4 show that no significant change occurs for
our simulated toggle switch network. We could not test on the FFL network, as branch clustering
was not used for that.

The number and selection of branches crucially depend on the choice of the initial cell CS . Prior
information is required to select an approximate position for CS , which is generally not available.
Visual inspection of diffusion map geometry together with prior knowledge about gene expression
profile of key genes, can be sufficient to approximately locate CS .

In the toggle switch network example, we might know that gene expression of gC , gD, gE and
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Figure 3: Application of clustering algorithm on 3D embedded snapshot data simulated from toggle
switch network. Axis labels DCi (with i = [1, 2, 3]) denote diffusion components, correspondent
to diffusion map eigenvectors. Plots represent application of clustering algorithm to four different
branches.

Figure 4: Diffusion map of hematopoiesis single-cell snapshot data set. Colours represent cell types
(left), GATA2 expression (centre) and GATA1 expression (right).

gF change from low gene expression values to high gene expression values in order to generate
different cell fates. As a consequence, by looking at the four plots in Figure 2, the only possible
initial cell position has to be approximately at the centre of the X shape geometry. This would
allow to select four possible branches, with final cells at the four different endings of the X shape
geometry, such that in each of the branches the expression of one single key gene (gC , gD, gE and
gF ) would change from low to high values.

For the hematopoietic data, assuming that we do not have information about cell types given
by cell surface markers, the reasoning is similar. From literature, we have information about gene
expression of key genes, e.g. GATA1 is known to be expressed at high levels in PreMegE lineage,
but not in HSC [10]. In addition we know that GATA2 is known to be expressed both in HSC

and in PreMegE lineage [11, 12]. By looking at gene expression patterns of GATA1 and GATA2 on
diffusion map embedding (Fig. 4), we can identify HSC region (i.e. where GATA1 is not expressed
and GATA2 is expressed). Initial cell CS location will be in this case set approximately at the
top-left ending of the X shape geometry, such that the developmental trajectory from HSC to the
other cell lineages is maximal.

Once the initial cell location is set, final cells (CF ) to define different branches are located at the
sharp endings of diffusion map geometry. Different geometries are also possible, e.g. a two-branch
structure was found through diffusion map in another dataset from blood precursors cells [7].
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1.2.1 Clustering with/without diffusion map

Here we test if the use of diffusion map improves results of the branch clustering algorithm. In
other words we test if diffusion map embedding is only useful for determining position of initial
and final cells in the clustering algorithm or also if the application of the algorithm on the diffusion
map low-dimensional space provides better results.

We do the comparison on toggle switch dataset, simulated with different observation noise levels.
Clusters are defined during realisation of stochastic simulation with Euler-Maruyama algorithm,
before adding observation noise and before generating snapshot data. In particular, 6 regions are
defined, according to expression of the genes, as showed in Figure 5. These six regions are used as
prior labels to define 4 true clusters. In particular, the 4 clusters are so defined: cluster 1 includes
blue and brown cells, cluster 2 includes blue and red cells, cluster 3 includes dark blue and cyan
cells, cluster 4 includes dark blue and yellow cells. The number of regions is 6 (and not 4 as the
number of clusters), because at early stage of stochastic simulation is not possible to distinguish
the exact cell fates.

We simulate three snapshot data with observation noise σε = 20 and three snapshot data with
higher observation noise σε = 80. For each snapshot data we run diffusion map algorithm and
on the low-dimensional diffusion map embedding we select initial cell and final cells for the four
branches. Using these initial and final cells, we run the clustering algorithm, once directly on
high-dimensional data and once on the embedded low-dimensional space.

Results reported in Table 1 show a misclassification error rate, calculated as the percentage
of false clustered cells on the total number of clustered cells (for each branch). In particular,
results represent average over all four branches and over the three datasets. Results confirm that
clustering algorithm performs better on the low-dimensional embedding, therefore diffusion map
is necessary to obtain a more precise clustering of the differentiation pathways and consequently
more reliable pseudo time-series through Wanderlust algorithm.

Figure 5: Diffusion map embedding of toggle switch snapshot data (with observation noise σε = 20).
Colours indicate six regions defined during stochastic simulations, used as labels to quantitatively
evaluate the performance of clustering algorithm.

low-dimensional high-dimensional
σε = 20 7.4 ± 1.8 9.9 ± 1.7
σε = 80 8.7 ± 2.5 14.1 ± 1.6

Table 1: Misclassification error rate obtained by running clustering algorithm on low-dimensional
data (on diffusion map embedding) and on original high-dimensional data, with different observa-
tion noise levels. Values represent average over four branches, over three different datasets.

5



1.3 Cell time-ordering

As the input to our framework is represented by high-dimensional static data and the output
by knowledge about GRN dynamics, an initial requirement for the method is the extraction of
dynamic information from static one. Since gene expression is a function of time, we assume that
cells can be ordered by time along paths in branches identified in the embedded data space.

Here, we order the cells by time using Wanderlust algorithm [2]. Wanderlust is able to robustly
map single cells from multidimensional data onto a one-dimensional developmental trajectory. By
assuming cells represent nodes in a k-nearest neighbour graph, it computes distances between cells
and their k neighbours, as edge weights defined by a similarity measure. The trajectory is finally
computed by following the shortest-path distances between nodes in the graph, which are defined
by the minimum sum of graph edge weights. In order for the algorithm to work correctly, a starting
cell from which shortest-path distances are computed has to be defined a priori. This information
is generally not available, but, as described above, diffusion map embedding is useful to recover an
approximate location of the starting cell. While an approximate starting cell is required as prior
information, small variation in the position of the starting cell do not affect much Wanderlust’s
performance [2]. A detailed description is beyond the scope of this work and can be found in [2].

One drawback of Wanderlust algorithm is that it assumes a non-branching developmental tra-
jectory. As in both toggle switch simulated dataset and hematopoietic snapshot data we are dealing
with multiple differentiation branches, we overcome the non-branching assumption by combining
Wanderlust algorithm with the branch clustering algorithm. In other words, we first use the clus-
tering to separate an a priori number of branches on the diffusion map embedding. Within each
branch, cells are ordered by time using Wanderlust algorithm. Note that Wanderlust is applied
directly on high-dimensional single-cell data, after single cells have been clustered (in different
branches) in the low-dimensional embedding. In the case of real hematopoietic data, the cluster-
ing step was not necessary, as information about different cell populations was already available
through cell surface markers [8].

The clustering algorithm allows to include in the Wanderlust algorithm only cells belonging to
a single (i.e. non-branching) differentiation path, therefore it prevents outliers in reconstructed
pseudo time-series.

In order to measure quantitatively how pseudo time-series would differ in case Wanderlust was
applied on low-dimensional data instead of high-dimensional data, we follow this procedure. We
run Wanderlust on high-dimensional data, as usual, and on low-dimensional data (after diffusion
map), to produce two different sets of pseudo time-series. Then we compute the correlation between
the two sets of pseudo time-series. As an example we use snapshot data simulated from toggle
switch network and we apply Wanderlust on two different branches, producing ten replicates for
each branch. Note that when applying Wanderlust on the low-dimensional data, we consider a
number of dimensions equal to the number of diffusion map significative eigenvalues1. Results of
correlation averaged over all replicates is 92%, showing that in this case pseudo time-series obtained
after diffusion map are very similar to pseudo time-series obtained by applying Wanderlust directly
on high-dimensional data.

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

Eigenvalues

Figure 6: Diffusion map eigenvalues for toggle switch network.

1Eigenvalues are considered significative before a cutoff value which is detected by visual inspection (Fig. 6). In
the case of toggle switch snapshot data, this cutoff occurs after the first four eigenvalues, therefore Wanderlust in
low-dimension is applied on the low-dimensional space defined by the first four diffusion components.
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1.4 Network inference

Once pseudo time-series have been reconstructed, they can be used to infer kinetic parameters
in ODE-based transcriptional models. ODE models include network structure knowledge in form
of: different numbers and combinations of inputs for a given target gene; types of regulation
(i.e. activating/inhibiting input); logical functions in the transcriptional activation function (i.e.
AND/OR gates or their mixtures). For this reason, the number of possible ODE models increases
combinatorially with the number of genes in the network. In order to limit model selection step to
a relatively low number of models to compare, we use a network inference method. This method
predicts a coarse GRN representing a basis for which we build our transcriptional ODE models.

Here we use GENIE3 [3], an algorithm which decomposes the structural inference problem of
a network with N genes into N regression problems. In each regression problem, the expression
of target gene is represented as a nonlinear function of expressions of all the other N − 1 genes.
The single regression problem is solved using a method based on random forest. A regulatory edge
for a given target gene is predicted when the weight assigned to that edge (representing input’s
importance for the target gene) is greater than a given threshold.
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Figure 7: Edge weights obtained from GENIE3 network inference method on FFL dataset (left)
and toggle switch dataset (right). Solid red lines represent possible threshold values: 0.3 and 0.7
for FFL network; 0.1 and 0.3 for toggle switch network. Order of points on x-axis is arbitrary.
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Figure 8: Left plot: edge weights obtained from GENIE3 network inference method on real
hematopoietic data. Solid red lines represent possible threshold values: 0.08 and 0.11. Remaining
plots: edge weights for specific target gene (GATA2, left, GFI1, centre, GFI1B, right). Order of
points on x-axis is arbitrary.

Definition of the threshold for this method represents an open problem [3]. In this work we
chose a threshold in an empirical way, which depends on the resulting set of edge weights and
on sparsity constraints. In other words, we look at resulting edge weight values and we set the
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threshold where a gap between the values is present. Figure 7 reports edge weight values obtained
by running GENIE3 on the FFL and toggle switch network snapshot data. Each plot shows a
number of N2 values (where N is the number of genes in the network), representing all possible
network edges. For both datasets we can identify two gaps between the edge weights, represented
by solid red lines in Figure 7. Of course, a lower threshold value means that we are considering
more ODE models to compare in model selection. However, in order to avoid a combinatorial
explosion of the number of ODE models to compare, we keep the number of input edges to each
target network node around 2-3. Figure 7 does not show how many input edges are present for each
target gene, but only the total number of edges with correspondent weight. This sparsity constraint
represents a requisite for our approach. In order to cope with a larger number of dynamical models
(i.e. a lower threshold value in the network inference), a greedy-type strategy could be adopted in
model selection, but this is not taken into account in this work.

In main paper, while for the FFL we have reported results using the lower threshold value at
0.3, for the toggle switch network we have used the higher threshold value, still at 0.3. In Section
2.2.5 we also report results for toggle switch network using the lower threshold value at 0.1. In this
case, the final inferred network still represents the correct one; however, results have been obtained
comparing a total of 94 ODE models, for a single subnetwork including target gene gC .

For real data, it is harder to decide for a threshold value based on a gap: the only visible gap is
given at a value 0.11 (Fig. 8, left), which results in an inferred network where the number of edges
is smaller than the number of network nodes. Therefore, we select a threshold value by following
only the sparsity constraint. The resulting threshold (0.08) represents the lowest possible value
before having combinatorial explosion in model comparison.

Figure 9: Application of GENIE3 on snapshot data generated from toggle switch network. In-
ferred network (top centre) represents a directed graph. After correlation analysis on expression
snapshot data, regulatory signs are associated to the inferred network (bottom centre). Generated
subnetwork structures for target gene gC (right) are based on the inferred network.

In addition to be very fast and scalable, the method was best performer in one of the well
known crowdsourcing challenges for network inference [13]. Furthermore, as the method does not
take into account of temporal information in gene expression data, it suits to high-dimensional
single-cell snapshot data.

Figure 9 shows application of GENIE3 to snapshot data simulated from the 6-gene toggle switch
network described in main paper. In order to further reduce the number of ODE models for model
selection, after network inference we perform a correlation analysis on gene expression snapshot
data. As a result, a regulatory sign (e.g. activation/inhibition) is associated to each directed edge
in the inferred network, when a Pearson correlation coefficient is significative.

In synthetic data, we consider a correlation coefficient significative when its absolute value is
larger than a threshold 0.5. We also evaluate the framework performance by considering higher
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threshold values. For example, in the synthetic toggle switch network, we tried to increase this
threshold value to 1 (i.e. no correlation analysis) and considered a larger quantity of ODE models
to be compared (see Section 2.2.5). Results show that even in this case the correct ODE model is
selected. On the other hand, for real data we follow [8]: we do not set a threshold value for the
correlation coefficient, but we compute a p-value and consider the correlation significative when
its p-value is less than 0.01.

1.5 Parameter estimation

Pseudo time-series resulting from application of the time-ordering algorithm on diffusion map
embeddings, are used to learn GRN dynamics. A GRN is defined by a set of nodes (i.e. genes),
connected by a number of edges, representing interactions between nodes. Interactions between
nodes, representing the gene expression process, involve two main mechanisms: transcription of
gene into mRNA and translation of mRNA into protein. Subsequent fast post-transcriptional
modifications convert the protein into an active transcription factor (TF), controlling transcription
of its target gene(s).

1.5.1 Mathematical models

When describing gene expression mechanisms through mathematical models, the choice of right
level of model abstraction is crucial to achieve a certain task. Our application requires a mathe-
matical model which is flexible enough to explain nonlinear gene expression dynamics and allows
for an efficient and accurate solution of the parameter estimation problem. To this aim, we use
the following ODE-based model to describe gene-gene interaction:

ẏ(t) = αf(x(t), θ)− λy ,

f(x(t), θ) =


xh∫

xh + κh
∫ , if x is activating

κh∫
xh + κh

∫ , if x is inhibiting ,

(1)

where x and y represent mRNA concentrations of input and target gene, respectively. Kinetic
parameter α represents production rate and λ decay constant of target gene expression; θ ≡ (κ, h)
are parameters of a nonlinear Hill-type function f(x(t), θ) (κ and h are dissociation constant and
Hill coefficient, respectively).

With Equation 1, we are assuming that mRNA concentration y of target gene can be used as a
proxy for concentration level of its active TF. This is valid by considering that post-transcriptional
modifications occur on a faster timescale with respect to transcription and translation process. In
case this condition is not verified, alternative methods could be used where TF activity is modelled
as a latent variable [14]. The combination of transcription and translation in the same process is
also reasonable in absence of protein expression data; the presence of a translation model would
require an inference step, which would be nontrivial due to the model nonlinearity. As a direct
consequence, kinetics parameters in Equation 1 will take into account of both transcription and
translation mechanisms.

Generally, in GRNs the expression of a target gene y is regulated by the activity of a number M
of inputs xi (with i = 1, . . . ,M). These can be combined according to different logical expressions,
e.g. by combining logical conjunction and disjunction operations (i.e. AND and OR gate, respec-
tively), with identity and negation operation (i.e. activating and inhibiting inputs). Therefore, a
wide range of possible models can be used to describe interactions between M inputs on the target
y. The following models:

ẏ(t) = α

M∏
m=1

fm(xm(t), θm)− λy , (2)

ẏ(t) = α

M∑
m=1

fm(xm(t), θm)− λy , (3)
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encode different logical expressions to combine M input genes, respectively AND and OR logic
gates. Mixtures of different logical operations are also possible, when the number of inputs is
greater than two. For example, with M = 3 inputs, the following combinations are possible:

ẏ(t) = α [f1(x1(t), θ1) + f2(x2(t), θ2)] · f3(x3(t), θ3)− λy , (4)

ẏ(t) = α1 [f1(x1(t), θ1) · f2(x2(t), θ2)] + α2 f3(x3(t), θ3)− λy . (5)

In Equation 4, two inputs are combined through an OR gate function, which is in turn combined
through an AND gate with the third input. In a similar way, two inputs in Equation 5 are combined
through an AND gate function, which is in turn combined through an OR gate with the third input.

1.5.2 Optimisation

In the following sections we describe how we optimize kinetic parameters for a GRN. Here we
assume that ODE transcriptional models for all target genes in the network are known. Model
selection for different ODE models is treated in Section 1.6.

1.5.2.1 Metropolis MCMC

For the parameter estimation we use an approximation method based on Markov chain Monte
Carlo (MCMC). Monte Carlo methods make use of numerical sampling to explore efficiently the
parameter space. The idea is to obtain a set of independent samples, from a simpler proposal
distribution, which we can use to reconstruct the intractable posterior density p(Θ) over the pa-
rameter space. Compared with Monte Carlo methods, such as rejection and importance sampling,
MCMC methods can easily cope with high dimensional sample spaces [15]. However, since samples
are drawn from a Markov chain, they are correlated; this means that long simulations are needed
to obtain independent samples [16]. There are several possible MCMC methods [17]; here we use
a Metropolis MCMC method [18], as summarised below:

1: initialise parameters set Θ
2: solve model ODEs → y(Θ)
3: compute initial likelihood L(y(Θ))
4: for t = 1 to (max iteration number)

5: draw new sample Θ? ∼ N (Θt,Σ)
6: solve model ODEs → y(Θ?)
7: accept Θ? with probability min(1, α)

4: where α = L(y(Θ?)) [L(y(Θt))]
−1

8: if Θ? is accepted

9: Θt+1 = Θ?

10: else

11: Θt+1 = Θt

The proposal distribution is a multivariate Gaussian, with mean at the current state Θt and
diagonal covariance matrix Σ. The Gaussian likelihood function L(y(Θ)) is computed using the
solution y(Θ) of model ODEs at observation pseudo times:

L(y(Θ)) ∝
T∏
i=1

exp

[
− (Di − y(ti,Θ))

2

2σ2
i

]
, (6)

where Di and σ2
i represent observation and likelihood variance at pseudo times ti, respectively;

y(ti,Θ) is the solution of ODE model for parameter set Θ at pseudo time ti. It is possible to
show that drawing samples from the proposal distribution and accepting them with probability
min(1, α), ensures that we are taking samples from a Markov transition density whose stationary
distribution is p(Θ) [19].

In order to efficiently explore the parameter space, in our MCMC we use a Gaussian random
walk on the log scale. At every iterations, ODEs are solved using a classical Runge-Kutta method.
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As in our application all parameters must have positive values, we use a positive uniform prior
over Θ. In particular we use a uniform distribution U(0, 2000) for synthesis rates and dissociation
constants and a uniform distribution U(0, 30) for Hill coefficients. For decay rate λ, we also use a
uniform distribution U(0, 50) or, where explicitly stated, an informative Gaussian prior.

1.5.2.2 Gaussian processes emulators

Computation of the likelihood function for target gene y requires the solution of ODE for y(t). In
order to solve ODE for y(t), the values of input genes xi(t) (with i = 1, . . . ,M) at all time points
are needed, which can in turn be obtained by solving ODEs for xi(t). The optimisation process so
defined represents a recursive system, which requires many model runs at every MCMC iteration.
This makes the sampling algorithm impractical for our purpose.

We bypass the problem by using emulators for input genes functions xi(t) [20]. An emulator
of a function x(t) is a statistical model which provides a probability distribution over the function
x(t) [21]. The mean of the distribution represents the approximation to the function x(t), while
its covariance function describes the error introduced by the approximation with respect to the
true function x(t). To obtain emulators for input genes xi(t), we use a nonparametric regression
method based on Gaussian processes (GPs), which provide a natural way to describe probability
distribution over functions.

Figure 10: Emulators obtained from pseudo time-series reconstructed from a single diffusion map’s
branch in toggle switch simulated data set. GP means (solid red) are used as interpolators of
observations at pseudo times (black circles). Shaded areas represent 95% confidence intervals.

A GP is a stochastic process, whose any finite number of samples is distributed according to
a multivariate Gaussian distribution [22]. In general, it can be seen as a probability distribution
over functions f(x), such that any finite subset of function values, [f(x1), f(x2), . . . , f(xN )], have
a joint Gaussian distribution. As a Gaussian distribution is specified by its mean and covariance
matrix, a GP is completely defined by its mean m(x) and covariance function k(x,x′). To denote
that a function f(x) is distributed according to a GP, we use the following notation

f(x) ∼ GP (m(x), k(x,x′)) ,

where

m(x) = E [f(x)] ,

k(x,x′) = E [(f(x)−m(x)) (f(x′)−m(x′))] ,

Given a set of data points y = f(x) corresponding to inputs x, and assuming a zero-mean Gaussian
noise model

p(y|f) ∼ N (f , σ2I) , (7)
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we can compute a posterior distribution over the function values corresponding at inputs x using
Bayes’ theorem:

p(f |y,x) =
p(y|f ,x) p(f |x)

p(y|x)
, (8)

where the prior distribution over the latent function f is given by a GP. Generalisation to new
inputs x? is done by computing the predictive distribution of the latent function at the new inputs

p(f?|x,y,x?) =

∫
p(f?|f ,x,x?) p(f |y,x) df , (9)

whose mean represents our interpolation curve. By using emulators for all M inputs xi (with
i = 1, . . . ,M) of a target gene y, we are able to solve the ODE for a given logical model (e.g. AND
or OR gate) and compute the likelihood given by Equation 6 in the Metropolis MCMC algorithm.

Figure 10 shows GP emulators obtained from pseudo time-series in a single branch of the toggle
switch network. GP regressions have been performed using GPML Code [23]. Although strong
smoothness assumptions are not very realistic for biological processes [24], we adopt the commonly
used squared-exponential kernel as pseudo time-series data can be highly noisy.

1.5.2.3 Subsystem optimization approach

As described in main paper, optimisation of GRN kinetic parameters is done by using a subnetwork
approach [20]. Considering a GRN with N genes, estimation of kinetic parameters is obtained by
decomposing the network into N different subnetworks and solving N optimization problems. Each
subnetwork includes one of theN target gene y and its regulators (i.e. inputs xi, with i = 1, . . . ,M).
Given emulators for input genes xi of a given target y, each subnetwork is conditionally independent
on the others. At a second stage, emulators can be replaced by fittings obtained for target genes
yi (with i = 1, . . . , N) during a first stage, until kinetic parameter for the full network converge.

As the dimensionality of parameter space is reduced in each subnetwork, this strategy turns to
be very efficient and scalable with GRN size. Figure 11 shows how a given GRN with N = 6 genes
is decomposed in N different subnetworks.

Figure 11: Decomposition of a GRN with N = 6 genes into N subnetworks. Each subnetwork is
composed of a target gene y (pink circle) and a number of inputs xi (green circles).

1.6 Model selection

In the last step of our framework we select which logical model explains better the pseudo time-
series data. This is done for every subnetwork. In order to get a rough idea of which ODE models
best fit pseudo time-series we first compute AIC and BIC statistics as follows [16]:

AIC = log p(D|θ)−W

BIC = log p(D|θ)− 1

2
W log(Nobs)
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where log(p(D|θ)) is the log-likelihood for the best fit (i.e. with optimized parameters θ), W is the
number of model parameters and Nobs the number of observations.

When results from AIC and BIC are not enough to select a model rather than another, we do
Bayesian model comparison by computing the ratio between posterior distribution over different
models. Considering models M1 and M2 (e.g. AND and OR gate), ratio between their posterior
distribution is given by:

p(M1|D)

p(M2|D)
=
p(D|M1)

p(D|M2)

p(M1)

p(M2)
(10)

where D represent the data. The ratio between likelihoods of data given the models is called Bayes’
factor R. Generally, prior distributions over different models are the same (i.e. p(M1) = p(M2));
in this case, R represents the ratio of posterior probabilities over the models.

In order to compute R, we need to compute the marginal likelihood p(D|M), given by an
integral over all parameter space

p(D|M) =

∫
θ

p(D|θ,M)p(θ|M)dθ (11)

which is intractable except in simple cases. Therefore, in ordered to compute it, we need to resort
to numerical methods.

1.6.1 Thermodynamic integration

In order to compute the integral in Equation 11, different numerical methods can be used. Here
we adopt thermodynamic integration, which provides a better approximation compared to other
methods [25].

We define the power posterior as

pt(θ) =
p(D|θ,M)tp(θ|M)

Zt
(12)

where t is the temperature and the partition function Zt is given by

Zt =

∫
θ

p(D|θ,M)tp(θ|M)dθ . (13)

At temperature t = 0, we have that Z0 = 1; on the other hand, when t = 1, the partition function
is exactly the marginal likelihood. As a consequence, the following equivalence is valid

log
Z1

Z0
= logZ1 − logZ0 = log p(D) (14)

and the marginal likelihood can be computed as2

log p(D) = log
Z1

Z0
=

∫ 1

0

Eθ|D,t log p(D|θ)dt . (15)

In practice, we need to run the Metropolis MCMC for a range of different temperatures, compute
the expectation of log-likelihood using samples from the posterior and finally calculate numerically
the integral. We follow the algorithm below [27]:

1: discretise t ∈ [0, 1]: 0 = t0 < t1, . . . , tn = 1
2: for each ti (i = 0, . . . , n)
3: draw samples from power-posterior: θ1, θ2, . . . , θN ∼ p(θ|D, t)

4: compute elements Ei = Eθ|D,ti log p(D|θ) as
1

N

N∑
n=1

log p(D|θn)

5: estimate numerically marginal likelihood using trapezoidal rule:

2Proof can be found in [26].
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5: log p(D) =

n∑
i=1

(ti − ti−1)

(
Ei−1 + Ei

2

)
Once marginal likelihoods are available, it is trivial to compute ratio R between them and

interpret the result according to Jeffrey’s scale [28] (Tab. 2).

R log10(R) Jeffrey’s interpretation

1 to 3.2 0 to 0.5 Not worth more than a bare mention
3.2 to 10 0.5 to 1 Substantial
10 to 100 1 to 2 Strong
>100 >2 Decisive

Table 2: Jeffrey’s interpretation of Bayes’ factor. R represents the ratio between marginal likelihood
of model M1, p(D|M1), and marginal likelihood of model M2, p(D|M2). Higher is R, higher is the
evidence that model M1 is better that model M2.

2 Simulation details and additional results

2.1 Feed-forward loop network motifs

2.1.1 Single-cell snapshot data generation

Simulations for OR-gate I1-FFL have been obtained using Euler-Maruyama method on N = 300
cells (or realisations), using the following recursive system of equations:

gY (t+ 1) = gY (t) + ∆t

[
α

gX(t)h+

gX(t)h+ + κ
h+

+

− λgY (t)

]
+ σs
√

∆t∆w(t) ,

gZ(t+ 1) = gZ(t) + ∆t

[
α

(
gX(t)h+

gX(t)h+ + κ
h+

+

+
κ
h−
−

gY (t)h− + κ
h−
−

)
− λgZ(t)

]
+ σs
√

∆t∆w(t) ,

where input gX(t) is a sigmoid-shape stochastic function. ∆t is the simulation time step, ∆w(t) ∼
N (0, 1) are i.i.d. normal random variables and σs represents the system noise variance. True
kinetic parameters are reported in Table 3. Final time tstop of simulations is set when gX(t) > 960.
Snapshot data were then created by selecting arbitrary times ta and collecting expression values
for all genes at those times (Fig. 12).

As FFLs consist of only three genes, dimensionality reduction is not needed. Time-ordering
through Wanderlust algorithm produces pseudo time-series which can be compared with time-series
(Fig. 2, main paper). As FFL model is stochastic, realisations differ from each other, therefore
we compare reconstructed pseudo time-series with time-series resulting from a deterministic FFL
model (by simply setting system noise to zero). Final time for the deterministic simulation is set
by averaging times tstop for a large number of stochastic realisations.

synthesis rate α 100

decay rate λ 0.25

dissociation constant (activation) κ+ 400

Hill coefficient (activation) h+ 20

dissociation constant (inhibition) κ− 200

Hill coefficient (inhibition) h− 10

Table 3: Kinetic parameters used to simulate OR-gate I1-FFL data.
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Single−cell snapshot data

Figure 12: Simulation of snapshot data for OR-gate I1-FFL. Left: gene expression activity in four
different cells (i.e. four realisations) for gene gX (blue), gY (red) and gZ (green). Vertical black
lines represent arbitrary times ta. Right: expression of all genes at times ta in all N = 300 cells
are collected to produce single-cell snapshot data.

2.1.2 Model selection results

By applying GENIE3 algorithm on single-cell snapshot data generated from OR-gate I1-FFL, we
obtain the GRN in Figure 13 (centre), where each edge is associated with a weight w. Regulatory
links with weight w < 0.3 are not considered. Correlation analysis between expression of genes
in the network, reveals high positive correlation (correlation coefficient r = 0.9) between master
TF gX and slave gene gY . However, coefficients |r| < 0.5 are not informative for the other two
regulatory edges.

Figure 13 (right) shows the GRN after correlation analysis. From this GRN, multiple ODE
models are generated for target gene gZ and compared through model selection (Fig. 14). Com-
putation of AIC and BIC statistics for all ODE models are reported in Figure 14. The favoured
model is the same from which data are generated, where activating input gX and inhibiting input
gY are combined through a logic OR gate into gZ activation function.

Figure 13: Application of GENIE3 network inference algorithm and correlation analysis to single-
cell snapshot data generated from OR-gate I1-FFL model.

Also model with inhibiting input gX and activating input gY (combined through OR gate)
presents high values for AIC and BIC. Fitting of this model to pseudo time-series are also good
(Fig. 15). For this reason, we compute Bayes’ factor between models gX → gZ ` gY (OR gate)
and gX a gZ ← gY (OR gate), to check which one best explains pseudo time-series. Log-evidence
computed through thermodynamics integration is log p(D|MA) = −400 for model gX a gZ ← gY
(OR-gate) and log p(D|MB) = −385 for model gX → gZ ` gY (OR-gate). As a consequence,
Bayes’ factor R = exp [log p(D|MB)− log p(D|MA)] > 100 decisively favours model MB .

Another competitive model is gX → gZ ` gY (AND gate). As described in main paper, also
for this model a Bayes’ factor R > 100 favours model gX → gZ ` gY (OR gate).

Note that GENIE3 predicts a false positive edge between slave TF gY and master TF gX .

15



Figure 14: Transcriptional ODE models used in model selection for OR-gate I1-FFL data. Marginal
likelihoods are computed for best model (red square) and competitive models (green squares).
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Figure 15: Fitting of models gX a gZ ← gY (dashed blue, MA) and gX → gZ ` gY (solid, redMB)
to pseudo time-series data (black circles).

Through model selection we can compare ODE models where a single input or multiple inputs are
present, but not ODE models without any input genes. For such a comparison, a latent variable
model could be used to infer the presence of an unknown external input [14] followed eventually by
model selection, but this lies beyond the scope of this work. For this reason, in the final network
we retain regulatory link gY → gY . However, this does not affect our model selection results on
target gene gZ or our model predictions.

2.1.3 Model predictions

Once we have inferred a refined GRN structure and estimates of kinetic parameters, this knowl-
edge is used to generate predictions under perturbation conditions. We use the following procedure:

1: run a large number of stochastic simulations from true perturbed system

1: and store final times tstop
2: compute average final simulation time Tf, by averaging times tstop
3: run simulations until Tf using deterministic version of true perturbed

3: system to produce time-series data

4: produce observations D = {DgX , DgY , DgZ} by adding measurement noise to

4: time series data

5: generate GP emulator GPX for input gene gX using noisy data DgX

6: generate prediction using inferred GRN, estimated parameters and input

4: GPX, under perturbation

7: compare generated prediction for target gene gZ to observations DgZ

To simulate the whole GRN dynamics, also parameters for gY ’s activation function have been
estimated, by considering input gene gX as activating regulator (Fig. 13, right). Table 4 reports
estimated parameters for gene gY and gZ used to generate predictions.

16



gY gZ
synthesis rate α 99.1890 96.9701

decay rate λ 0.2489 0.2490

dissociation constant (activation) κ+ 420.0862 417.1350

Hill coefficient (activation) h+ 14.7256 14.1570

dissociation constant (inhibition) κ− 264.2697

Hill coefficient (inhibition) h− 8.1481

Table 4: Mode of estimated kinetic parameters posteriors, used to generate predictions. Parameters
for gZ are obtained using an informative prior over λ, so that average of relative errors is 14.5%.

2.2 Toggle switch network

2.2.1 Single-cell snapshot data generation

Single-cell snapshot data for the toggle switch network are obtained in the same way as for the
FFL case. Realisations through Euler-Maruyama method have been obtained for N = 400 cells
from the following recursive system of equations:

gA(t+ 1) = gA(t) + ∆t

[
α

κ
h−
−

gB(t)h− + κ
h−
−
− λgA(t)

]
+ σs
√

∆t∆w(t) ,

gB(t+ 1) = gB(t) + ∆t

[
α

κ
h−
−

gA(t)h− + κ
h−
−
− λgB(t)

]
+ σs
√

∆t∆w(t) ,

gC(t+ 1) = gC(t) + ∆t

[
α

(
gA(t)h+

gA(t)h+ + κ
h+

+

·
κ
h−
−

gD(t)h− + κ
h−
−

)
− λgC(t)

]
+ σs
√

∆t∆w(t) ,

gD(t+ 1) = gD(t) + ∆t

[
α

(
gA(t)h+

gA(t)h+ + κ
h+

+

·
κ
h−
−

gC(t)h− + κ
h−
−

)
− λgD(t)

]
+ σs
√

∆t∆w(t) ,

gE(t+ 1) = gE(t) + ∆t

[
α

(
gB(t)h+

gB(t)h+ + κ
h+

+

·
κ
h−
−

gF (t)h− + κ
h−
−

)
− λgE(t)

]
+ σs
√

∆t∆w(t) ,

gF (t+ 1) = gF (t) + ∆t

[
α

(
gB(t)h+

gB(t)h+ + κ
h+

+

·
κ
h−
−

gE(t)h− + κ
h−
−

)
− λgF (t)

]
+ σs
√

∆t∆w(t) ,

where ∆t is the simulation time step, ∆w(t) ∼ N (0, 1) are i.i.d. normal random variables and σs
represents the system noise variance. Kinetic parameters used in the simulation are reported in
Table 5. Figure 16 shows realisations of toggle switch network correspondent to the four different
cell fates. Note that, due to stochasticity, final times change in different realisations.

synthesis rate α 250

decay rate λ 0.25

dissociation constant (activation) κ+ 400

Hill coefficient (activation) h+ 20

dissociation constant (inhibition) κ− 200

Hill coefficient (inhibition) h− 2

Table 5: Kinetic parameters used to simulate toggle switch data.

Due to bistability of toggle switches, we cannot directly compare pseudo time-series with deter-
ministic simulations. In fact, in order to get a dynamics in gene expression, the initial state must
be perturbed from its stationary level. An initial perturbation can only be achieved by system
noise or, in a deterministic case, by setting an initial gene expression value which differs from its
stationary one. By setting a fixed initial value, deterministic simulations will evolve according to
this initial gene expression state. Therefore we cannot compare deterministic simulations (for a
single specific initial value) with reconstructed pseudo time-series.
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Figure 16: Different cell fates in toggle switch network.

2.2.2 Model selection results

Application of GENIE3 algorithm on single-cell snapshot data generated from toggle switch net-
work, produces the GRN shown in Figure 17 (centre), where again we consider only regulatory links
with weight w ≥ 0.3. After correlation analysis, we obtain GRN shown in Figure 17 (right), from
which we can generate transcriptional ODE models for model selection. These models, together
with model selection results, are reported in Figure 3 in main paper for gene gC and in Figure 18
for gene gD.

Figure 17: Application of GENIE3 network inference algorithm and correlation analysis to single-
cell snapshot data generated from toggle switch model.

2.2.3 Robustness to noise

Here we test how well our framework performs in presence of different levels of measurement noise.
We use the same system of stochastic differential equation to generate single-cell realisations and
then add observation noise before producing snapshot data. We test robustness to two different
observation noise models, additive and multiplicative, mathematically described as

ĝ(t) = g(t) + ε+(t) ,

ĝ(t) = g(t) · ε×(t) ,

where variables ĝ(t) and g(t) represent gene expression values with and without observation noise,
respectively. Observation noise terms ε+(t) and ε×(t) represent Gaussian random variables with
mean 0 and 1, respectively, and variance σ2

ε :

ε+(t) ∼ N
(
0, σ2

ε

)
,

ε×(t) ∼ N
(
1, σ2

ε

)
.

In particular, we generate single-cell snapshot data using two different σε values for additive noise
terms (i.e. σε = 20 and σε = 40) and two different values for multiplicative noise terms (i.e.
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Figure 18: Model selection results for gene gD in toggle switch network.

σε = 0.04 and σε = 0.12). Figure 19 (upper plots) shows realisations for the six genes in toggle
switch network with different levels of additive or multiplicative observation noise. Snapshot data
are then generated using N = 400 cells. Diffusion maps applied to snapshot data for different
observation noise levels are showed in Figure 19 (bottom plots). Through clustering of diffusion
maps branches and application of Wanderlust algorithm, we generate pseudo time-series, which we
use to learn kinetic parameters.
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Figure 19: Upper plots: stochastic realisations of toggle switch network, using different levels of
observation noise. Bottom plots: 3D embedding (after diffusion map) of snapshot data generated
from toggle switch model, using different levels of observation noise. Orientations for 3D embedding
is the same in all plots and colours encode for gene gC expression levels.

In order to test the performance of our framework to recover gene expression dynamics, we
assume the gene regulatory network structure is known. We learn kinetic parameters for gene
gC activation function, considering the correct logic gate model (i.e. AND-gate model) and using
pseudo time-series from two branches where gC expression exhibits a dynamical behaviour. Fittings
of transcriptional models are good for pseudo time-series data from both branches and for different
noise levels and noise models (Fig. 20).

To quantitatively evaluate parameter estimation results, we compute relative errors averaged
over all kinetic parameters (i.e. α, λ, κ+, h+, κ−, h−) for the different data sets (Tab. 6). Error in
parameter estimation increases only slightly with the increasing of observation noise, both additive
and multiplicative. In some cases it can also slightly decrease with the increasing of noise level.
This may be due to the fact that we do not use enough pseudo time-series replicates or also it may
be due to different performances of the time-ordering algorithm.
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Figure 20: Fitting of toggle switch model to pseudo time-series obtained from snapshot data
generated with different observation noise levels. Pseudo time-series data (black circles) compared
with model fitting (solid red line), for branch 1 (top) and branch 2 (bottom).

σε = 0 σε = 20 (+) σε = 40 (+) σε = 0.04 (×) σε = 0.12 (×)
Average relative error (%) 6.8 7.6 9.1 5.1 8.2

Table 6: Average relative errors for parameter estimation, obtained during optimisation with an
informative prior distribution over λ. Relative errors are computed as |θ̂ − θ| · θ−1, where θ̂ and θ
are estimated and true kinetic parameter values, respectively.

As expected, increasing observation noise to large values, we observe progressive failures at
different stages of the framework. With an additive observation noise σε = 200, model selection is
still able to select the right model through AIC/BIC statistics (considering a threshold 0.3 for the
network inference, as in main paper), but parameter estimation completely fails. By increasing
additive observation noise to σε = 300, also model selection fails. In this case, the diffusion map
can still produce a definite geometrical structure but where the four branches are not recognisable
anymore (Fig. 21).

Figure 21: Diffusion map embedding of toggle switch snapshot data generated with very large
additive noise (σε = 300).
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2.2.4 Robustness to parameters of clustering algorithm

Here we test our framework performance by changing the settings of the clustering algorithm.
Branch clustering in the diffusion map embedding is essential in order to separate single cells
belonging to different differentiation pathways, prior to running of Wanderlust algorithm. We
take into account the following two fundamental user-defined settings: the number Nn of nearest
neighbours along the shortest path and the location of the starting cell CS .

Changing Nn

In order to test the number Nn of nearest neighbours along the shortest path, we run the
clustering algorithm by using six different Nn values: Nn = [5 , 10 , 15 , 20 , 25 , 30]. In this case,
the initial cell CS is set at the correct approximate position. Results show that the correct ODE
model is still selected in all cases. Accuracy of parameter estimation is not affected and does not
show a monotonic improvement with the increasing or decreasing of Nn. Average of relative errors
(considering all Nn cases) is around 10%.

To obtain these results, we have used snapshot data generated with an additive noise observation
model (σε = 20). Parameter estimation has been performed using uniform prior distribution over
all kinetic parameters, including decay rate λ.

Changing CS position

Given an approximate correct location of CS , we consider two different cases: one, where CS
is taken ahead along the correct branch which has to be selected, and another, where CS is taken
before the correct branch starts. In the second case, CS is located on another branch, such that
the final selected branch will include also some cells belonging to another differentiation pathway.
We refer to the first case as forward and to the second case as backward (Fig. 22). For each
case we repeat three times the whole process (i.e. clustering, time-ordering, parameter estimation
and model selection), for three different choices of initial cell (at different distances from the
approximate correct CS location), in order to select an ODE model for the subnetwork with target
gene gC , as described in the main paper.

Figure 22: Single-cell snapshot data from toggle switch network after diffusion map embedding.
Black cells represent the approximate correct CS position and CF position for the bottom-left
branch. Considering this branch we select different initial cell positions: forward CS , not taking
initial branch cells, and backward CS , including also cells from another branch.

While the framework is still able to select the correct model in both forward and backward
case (i.e. activator gA and inhibitor gD both regulate gC through an AND logic gate), parameter
estimation performs slightly different. Average of relative errors, computed using maximum a
posteriori estimates, is around 12% and 17%, respectively in forward and backward case. As
expected, in both cases it is slightly larger compared to the error obtained using the correct
approximate initial cell position (i.e. around 10%). Figure 23 and 24 show fitting results to pseudo
time-series from forward and backward case, respectively, using the correct AND gate model. Note
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how expression of genes gA and gB is slightly cut in the forward case, while it includes also spurious
initial cells from another branch in the backward case.

In this robustness analysis, we have not considered different number of branches as varying
parameter. As described above, information about the number of branches is required by the
algorithm as prior information, together with an approximate position of starting cell CS . We
already described how diffusion map helps to visually locate an approximate CS position and
consequently the number of branches. We also described how final cells CF are located, once the
branches have been defined.
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Figure 23: Top: fitting of gC with AND gate model, for two different branches, in forward case.
Bottom: pseudo time-series obtained after clustering with initial cell CS in forward case.
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Figure 24: Top: fitting of gC with AND gate model, for two different branches, in backward case.
Bottom: pseudo time-series obtained after clustering with initial cell CS in backward case.
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2.2.5 Robustness to threshold for network inference

In previous analyses we have considered a single threshold value at 0.3 when applying network
inference method GENIE3 on toggle switch dataset. By using this particular threshold value we
infer the initial rough network structure in Figure 17 (centre). After correlation analysis and
selection of significative correlations with threshold 0.5 we finally obtain the network structure in
Figure 17 (right).

Figure 25: Toggle switch network inferred using GENIE3 with weight threshold 0.1 (left). Subnet-
work for target gene gC , obtained after network inference with GENIE3 (right).

ODE model |BIC| / |AIC| ODE model |BIC| / |AIC| ODE model |BIC| / |AIC|
and(A+,D-) 590.0 / 581.8 and(or(A-,D-),B+) 3764 / 3753 or(and(A+,B-),D+) 6297 / 6284
and(or(A+,B-),D-) 592.1 / 581.3 and(or(A-,B+),D-) 3765 / 3754 or(and(A-,D-),B-) 6298 / 6285
and(or(B+,D-),A+) 594.7 / 583.8 or(and(A-,B+),D-) 3766 / 3754 and(A+,D+) 6401 / 6396
and(A+,B+D-) 594.8 / 583.9 or(and(B+,D-),A-) 3767 / 3754 and(A+,B+,D+) 6411 / 6400
and(or(B-,D-),A+) 594.9 / 584.0 and(or(A+,B-),D+) 3843 / 3832 or(B+,D+) 6426 / 6418
and(A+,B-,D-) 596.5 / 585.7 and(A-,B+,D-) 3949 / 3938 and(or(B+,D+),A-) 6457 / 6447
or(and(A+,D-),B+) 596.9 / 584.7 or(A-,B+,D-) 4227 / 4217 and(A-,D+) 6481 / 6473
or(and(A+,D-),B-) 597.2 / 584.9 and(or(B-,D+),A+) 4478 / 4467 or(and(A-,D+),B+) 6487 / 6475
and(or(A-,D-),B-) 599.9 / 589.0 and(A-,B+,D+) 4478 / 4467 D+ 6492 / 6487
and(or(A+,D-),B-) 599.9 / 589.0 or(A+,B-) 4549 / 4541 or(A-,D+) 6497 / 6489
or(and(B+,D-),A-) 602.2 / 589.9 or(B-,D+) 4706 / 4698 and(B+,D+) 6497 / 6489
and(A-,B-,D-) 603.5 / 592.6 or(A+,B-,D+) 4710 / 4699 and(or(A-,D+),B+) 6501 / 6491
and(B-,D-) 614.8 / 606.6 or(A-,B-,D+) 4710 / 4700 or(and(A+,B+),D+) 6504 / 6492
and(or(A-,B-),D-) 619.6 / 608.7 and(or(B-,D+),A-) 4713 / 4702 or(and(A-,B+),D+) 6504 / 6492
or(and(B-,D-),A+) 622.0 / 609.7 or(B+,D-) 5185 / 5177 or(and(B+,D+),A-) 6504 / 6492
and(or(A+,B+),D-) 2025 / 2014 and(or(B+,D-),A-) 5208 / 5197 and(or(B+,D+),A+) 6555 / 6544
or(and(A+,B-),D-) 2556 / 2543 and(or(A-,D+),B-) 5531 / 5520 A+ 6572 / 6567
or(and(A-,B-),D-) 2565 / 2553 and(A-,B-,D+) 5828 / 5817 and(A+,B+) 6577 / 6569
or(and(A-,D+),B-) 2865 / 2853 or(and(B-,D+),A-) 5881 / 5869 or(A-,B+,D+) 6580 / 6569
and(or(A-,B-),D+) 3007 / 2996 and(B-,D+) 5932 / 5924 or(and(A+,D+),B+) 6584 / 6572
or(B-,D-) 3189 / 3181 and(A+,B-,D+) 5937 / 5926 or(and(B+,D+),A+) 6584 / 6572
or(A-,B-,D-) 3194 / 3183 and(or(A+,D+),B-) 6006 / 5995 or(and(B-,D+),A+) 6584 / 6572
and(or(B-,D-),A-) 3194 / 3183 and(or(A-,B+),D+) 6131 / 6120 or(A+,B+) 6631 / 6623
or(A+,B-,D-) 3566 / 3555 and(A-,B-) 6131 / 6123 D- 6666 / 6661
or(and(A+,B+),D-) 3616 / 3604 or(and(A-,B-),D+) 6139 / 6126 B- 6666 / 6661
or(A+,D-) 3648 / 3639 or(A+,D+) 6188 / 6180 B+ 6666 / 6661
or(and(B+,D-),A+) 3649 / 3637 and(or(A+,D+),B+) 6193 / 6182 and(A-,B+) 6671 / 6663
or(A+,B+,D-) 3652 / 3641 or(A+,B+,D+) 6193 / 6182 or(A-,B+) 6671 / 6663
and(or(A+,D-),B+) 3664 / 3653 and(or(A+,B+),D+) 6194 / 6183 or(and(A-,D-),B+) 6678 / 6666
or(A-,D-) 3759 / 3751 or(A-,B-) 6288 / 6280 A- 6722 / 6717
and(B+,D-) 3759 / 3751 and(A+,B-) 6289 / 6280
and(A-,D-) 3759 / 3751 or(and(A+,D+),B-) 6296 / 6284

Table 7: Model selection results in toggle switch network. First, third and fifth columns represent
ODE models, with corresponding absolute values of BIC/AIC statistics in second, fourth and sixth
columns, respectively.

Here we show that by decreasing GENIE3 threshold value and considering all possible regulation
signs (i.e. no correlation analysis), our framework is still able to select the correct logical model. By
selecting a threshold value 0.1 in GENIE3, we obtain network structure in Figure 25 (left). As the
structure is symmetrical, we consider only the subnetwork including gC target gene, whose input
genes are gA, gB and gD. We consider all possible 94 ODE models and do model selection. Results
are reported in Table 7, where ODE models are given with BIC values in descending order. The
model which can best explain pseudo time-series is and(A+, D−), where gA (as activator) and gD
(as inhibitor) combine through an AND gate to regulate gC expression. AIC statistics show that
another ODE model, and(or(A+, B−), D−), is also able to explain well the data. By computing log
marginal likelihood for the two models with thermodynamic integration, we obtain log(D|M1) =
−566.195 for model and(A+, D−) and log(D|M2) = −567.455 for model and(or(A+, B−), D−).
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Computation of Bayes’ factor, R = exp(log(D|M1) − log(D|M2)) = 3.53, reveals that model
and(A+, D−) can explain data substantially better than the competitive model.

Furthermore, analysis of parameters (not shown) of other models with large AIC/BIC values,
also reveals that kinetic parameters for gB in these models are such that gene gB has not influence
on gC regulation. In other words, by removing gene gB , the fit to gC pseudo time-series does not
change, and the models collapse to model and(A+, D−).

As the network is symmetric (Fig, 25, left), similar results can be obtained for gene gD, gE and
gF . On the other hand, inference for subnetwork of target gA (not reported) has trivial results. In
Figure 25 (left), gA is regulated by three inputs: gB , gC and gD. As gA shows a proper dynamics
in all of the four diffusion map branches (Fig. 16), we can use pseudo time-series from all branches
for model selection. However, as in two out of four branches, gC and gD have no dynamics, it is
easy to predict that the only possible input gene for gA will result gB .

As described above, our approach still requires a certain sparsity of the GRN in order to do
model selection. For this reason, in the case of toggle switch network we do not attempt to decrease
the threshold value below 0.1, as this would generate a combinatorial explosion in the number of
ODE models to compare.

2.2.6 Robustness to parameters of Wanderlust algorithm

We do not test here robustness of Wanderlust algorithm to user-defined parameters as extensive
tests have been previously performed [2]. Wanderlust has been proved to be a robust algorithm,
able to provide a consistent output over multiple runs on the same dataset.

As mentioned above, Wanderlust requires an absolute starting point for the initial cell, which is
obtained through prior knowledge. However, the performance of the algorithm has been evaluated
with a wide range of starting cell choices and it has been shown that only an approximate starting
cell is needed.

More importantly, in order to reduce uncertainty due to the choice of the initial starting cell,
in our analysis we always run Wanderlust three times to produce three replicates where initial cell
position slightly change. All replicates are simultaneously used in parameter estimation and model
selection steps.

Other user-defined parameters are the number of nearest neighbours k and the neighbour subset
size I. Each cell (i.e. graph node) in the network is connected to a number of initial neighbours
k. However, for each node, only a number I of random neighbours is retained. Additional tests
showed that Wanderlust output was consistent over multiple choices of these two parameters. In
particular, the algorithm provides accurate trajectories as long as k is greater than I. More details
can be found in [2] (supplementary information).

In our framework we have always used combinations of k and I values, such as I = k/3.

2.2.7 Robustness to different sampling strategies

So far we have generated synthetic single-cell snapshot data using a uniform sampling distribution.
In other words, arbitrary times ta (Fig. 12) were selected along the time axis with a uniform
distribution.

Here we test the performance of our framework by generating snapshot data using different
sampling strategy. In particular, we sample single cells by using three different sampling functions,
obtained from mixtures of Gaussian distributions (Fig. 26, top). The first function generates high
cell density from three different areas along the time axis and low cell density from other two areas;
the second function generates high cell density only in two areas along the time axis and low cell
density in the remaining areas. Finally, the last sampling function generates high cell density in
three different areas and no samples along two areas of time axis.

Figure 26 (bottom) shows diffusion map embeddings for datasets generated with the three
different sampling functions. Note that diffusion maps are not affected by different sampling
strategies. This is due to a density normalisation in diffusion map algorithm, such that density
heterogeneities in data sampling do not affect how cells are close in the diffusion metric [29].

We create three datasets for each of the three different sampling functions, using an additive
observation noise model (σε = 20), and use our framework to do parameter estimation in the correct
ODE model, and(A+, D+), for gene gC subnetwork. Results of parameter estimation, measured
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Figure 26: Top: sampling functions. X-axis values represent arbitrary measures to be scaled to
every single stochastic realisation when generating snapshot data. E.g. if final time of a given
realisation is Tf , then the sampling function will span in range [0, Tf ]. Bottom: diffusion map
embedding of toggle switch single-cell snapshot data generated with respective sampling functions.

as average of relative errors (among all datasets) is (9.8±4.2)%, for both first and second sampling
strategy. This is the same obtained with a dataset generated with uniform sampling.

However, for the third sampling strategy, parameter estimation fails and the average of relative
errors increase to (92.5±9.2)%. The reason may be due to cell time-ordering, through Wanderlust,
which is not able to take into account absolute distances along diffusion map branches, but only
relative distances between cells. For example, by looking at the embedding in Figure 26 (bottom,
right), we note that groups of cells at the end of top-right and top-left branches maintain a certain
distance to the main diffusion map part. Wanderlust is not able to detect this feature and therefore
time-ordering results biased. This problem can be of course reduced by correcting Wanderlust
algorithm, but we do not do it in this work.

We can conclude that our framework is robust to different sampling strategies (i.e. with different
non-uniform densities), but, at the present state, it still requires that samples are taken from all
parts of the state-space.

Finally we evaluate the framework performance to a reduced number of cells. We use snapshot
data simulated from toggle switch network, generated with the second sampling strategy (Fig. 26,
top-centre), by using 200 cells (i.e. realisations) instead of the usual 400 cells as in the rest of this
work. Results on parameter estimation show that average of relative errors (among three datasets)
is (32.3± 8.6)%, that is around three times worse compared to inference on snapshot dataset with
400 cells. This represents a limitation of the model. However, we have to consider that in toggle
switch we also use the clustering algorithm to separate four branches; this means that the effective
number of cells for each branch is usually not more than 200/4, which is a relative small number.

2.3 Blood stem cells data

2.3.1 Branch clustering

As described in main paper we do not need the branch clustering algorithm for hematopoietic real
data. As cell surface markers have been used to distinguish cell types [8], branches are simply
separated by selecting only cells of interests belonging to a particular differentiation pathway.

25



Here we try to use the clustering algorithm to separate branches without information about cell
types. As described above, using diffusion map embedding and prior information about dynamics
of some key genes, we are able to locate the approximate position of starting cell CS (top-left
corner of left diffusion map in Figure 4).

Using this starting cell CS we run the clustering algorithm to separate three branches corre-
sponding to the three differentiation pathways HSC → PreMegE, HSC → LMPP → GMP and HSC

→ LMPP → CLP. Final cell positions for the three branches is set at the three remaining sharp
corners of diffusion map. By using now information about cell types, for each clustered branch
we calculate how many cells belongs to the experimentally measured pathway. For example, once
cells along pathway HSC → LMPP → GMP have been separated in one of the branch, we calculate
how many of these cells have been associated with surface markers for HSC, LMPP or GMP. Re-
sults (obtained by using Nn = 15 nearest neighbours) show that our algorithm is able to correctly
cluster cells with error 1.3%, 7.4% and 10.3%, respectively for differentiation pathways PreMegE,
GMP and CLP.

2.3.2 Data pre-processing

After cell time-ordering through Wanderlust algorithm, we obtain pseudo time-series as showed in
Figure 27. Values on y-axis represent CT values (i.e. number of qPCR cycles needed to detect a
signal), which are inversely proportional to the quantity of transcribed mRNAs for a given gene.
For example, a value CT = 5 for a given gene at a given pseudo time (i.e. in a given cell) means
that 5 qPCR cycles were necessary in order to obtain a sufficient amount of mRNAs to produce
a detectable signal. In particular, since the number of mRNA transcripts increases exponentially
with number of cycles, the quantity of gene expression in proportional to 2 to the power of Cmax−
CT, where Cmax is the maximum number of possible cycles (e.g. Cmax = 15 in Figure 27).
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Figure 27: Pseudo time-series for genes GATA2, GFI1 and GFI1B obtained from differentiation
branch HSC → LMPP → GMP. Black circles represent cells; thick red lines show outputs obtained
through a moving window of length L = 18.

As mentioned in main paper, we focus on the triad composed of GATA2, GFI1 and GFI1B.
After time-ordering with Wanderlust, we obtain pseudo time-series as showed in Figure 27. Here,
it is possible to observe not only noise in expression profiles but especially a switching behaviour
between cells with very small expression values (CT=15) and high expression values (small CT

value). This switching behaviour does not appear at all pseudo times but it is dominant at border
regions where the average gene expression behaviour changes from high to low values (or vice versa).
The switching may be due to two main reasons: 1) cell ordering errors due to Wanderlust algorithm
and 2) errors due to the cell labelling process (through cell surface markers). In particular, some
of the cells belong to plasticity regions, where cells are not fully committed: in this case, they are
assigned from the biologists to one or another cell lineage, with a certain error. Therefore, when
we order cells through Wanderlust along a certain differentiation pathway, we also erroneously
consider misclassified cells (i.e. belonging to other pathways). Hill-function based ODE models
we use in this work do not allow to fit these regions with highly dense switching. Therefore we do
some data pre-processing in order to remove outliers present in such regions.

To remove these outliers, we simply use a sample window, which moves along the pseudo time
axis to count for cells with small/large CT value. The output, showed as thick red lines in Figure 27,
represents areas where most cells have small or large CT value, respectively with lines at ordinates
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CT= 0 and CT= 15. Based on this result, we define pseudo times at the intersection between the
two discontinuous red lines parts to identify transition times from high to low (or low to high)
expression. In this way, cells with low CT value at pseudo times after transition from high to low
gene expression will be filtered out, and vice versa. We have run this pre-processing step by using
different sample window sizes in a range between 22 and 28 cells (such that the pseudo time axis
results divided in only two areas, without further fragmentation). Different sample window sizes
can enlarge or reduce the intersection area of 2-3 cells, therefore final pseudo time-series change
only slightly without affecting model selection results.

After remotion of outliers, we replace values at CT=15 with samples from a Gaussian density.
The rationale is that Cmax = 15 represents a technical threshold, therefore genes in some cells may
need a larger number of cycles to have a detectable fluorescent signal in qPCR. The variance of
the Gaussian density is chosen to be similar to data variance in areas with small CT values.

Finally, CT values data are transformed in gene expression data. We work with logarithm of
expression, obtained through the following transformation: log(expression) = 20−CT. A Cmax = 20

(instead of Cmax = 15) prevents values below zero (Fig. 28).
Differently from FFL and toggle switch networks, we do not use GP emulators as they do

not provide a good interpolation for this data set. Instead we use interpolators based on simple
piecewise linear regression.
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Figure 28: Pseudo time-series for genes GATA2, GFI1 and GFI1B obtained from differentiation
branch HSC → LMPP → GMP, after remotion of outliers and transformation from CT values to
log(expression).

2.3.3 Parameter estimation and model selection results

By applying GENIE3 network inference method to the hematopoietic single-cell snapshot data,
we obtain the GRN in Figure 29 (centre), where only regulatory edges with weight w > 0.08 have
been retained3. Further application of correlation analysis gives GRN in Figure 29 (right), from
which we then generate transcriptional ODE models for model comparison.

Figure 29: Application of GENIE3 network inference algorithm and correlation analysis to
hematopoietic single-cell snapshot data.

3As explained above, the threshold weight has been chosen to keep the GRN sparse, such that model selection
is still possible without a combinatorial explosion problem.
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Tables 8 and 9 show ODE models compared for each of the target gene (i.e. GATA2, GFI1 and
GFI1B ). ODE models have been interpreted by looking at median of estimated posterior parameter
distributions. In particular, most of Hill coefficient and dissociation constant collapse to zero, so
that one or more genes in the activation function represent just constant values in time (i.e. they
cannot be considered regulating inputs). In other words, by replacing Hill function for those genes
with a constant (e.g. 0.5 if both Hill coefficient and dissociation constant are zero), fittings to
pseudo time-series data does not change. Last columns of Tables 8 and 9 report effective ODE
models, where only non-collapsing regulating genes are considered.
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Figure 30: Pseudo time-series of TFs in our target network, obtained by using Wanderlust algo-
rithm along different differentiation pathways.

For target GATA2 we compare seventeen models (Tab. 8), using data from differentiation path-
way HSC → LMPP → CLP . As explained in main paper, GATA1 is not considered in the analysis
as its expression is flat at low values (Fig. 30). A graphical visualisation of model selection results
in given in Figure 31, which shows the four effective interactions with a score based on AIC/BIC
statistics. Among these interactions, three interactions (i.e. direct activation by SCL, direct in-
hibition by GFI1, combinatorial interaction (through AND gate) between GFI1 and NFE2) have
a comparable score and all of them can explain well pseudo time-series data for GATA2. The
remaining model has not been reported in Figure 5 (main paper), because it has lower AIC/BIC
values with respect to the other three interactions.

Model selection results for target GFI1 (Tab. 8, top) show that GFI1 is likely to be regulated
by GFI1B but not to GATA2. Three ODE models with comparable AIC/BIC values collapse to
the simple model where GFI1 is regulated by GFI1B . On the other hand, model with GATA2 as a
positive regulator results with a lower AIC/BIC score.

Finally, results for target GFI1B show that inputs GFI1 and GATA , can separately influence
GFI1B expression. All of combinatorial ODE models collapse to a model with single input, therefore
no logical AND/OR gate are predicted.

Optimization was performed in logarithmic expression scale as well as diffusion map algorithm.
For this reason, kinetic parameters parameters for hematopoietic data cannot be interpreted in the

Figure 31: Model selection results for target GATA2 . As many ODE models collapse to the same
model, we take those with highest AIC/BIC values.
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same way as for the synthetic data examples.
Using pseudo time-series from multiple branches simultaneously, as we have done for the toggle

switch network, is nontrivial for real data. In fact, while in simulated data we know exactly that
length of different branches is the same in terms of time, for real data we do not know a priori
if one of the differentiation pathway is longer (i.e. it lasts more time) than another pathway.
A solution to the problem could be given by looking at densities of cells along branches, which
in simulated data are directly proportional to time intervals. However, this hypothesis should
be tested experimentally, therefore in this work we do not attempt to combine information from
multiple branches during optimization.

ODE model AIC / BIC α λ κ h κ h κ h Effective

GFI1 -214 / -219 12 0.61 13 3.6 GFI1
NFE2 -302 / -308 1.5 0.03 21 29.4 NFE2
SCL -223 / -229 424.8 1.77 172 1.1 SCL
and(GFI1,NFE2) -211 / -219 751.3 0.70 8.0 1.7 144 1.9 and(GFI1,NFE2)
or(and(GFI1,NFE2),SCL) -215 / -227 0/425 1.77 0.0 0.0 0.0 0.0 352 1.1 SCL
and(GFI1,SCL) -228 / -236 460.8 2.33 0.0 0.0 74.1 1.1 SCL
or(and(GFI1,SCL),NFE2) -213 / -225 72.3/0 2.61 559 19.1 44.2 1.2 0.0 3.4 and(GFI1,SCL)
and(GFI1,NFE2,SCL) -217 / -228 1864.5 2.29 0.0 0.0 0.0 0.0 158 1.1 SCL
and(NFE2,SCL) -210 / -218 1525.4 2.65 0.0 0.4 486 1.0 SCL
or(and(NFE2,SCL),GFI1) -213 / -225 106/0 2.74 0.0 8.4 72.1 1.2 0.0 0.0 SCL
or(GFI1,NFE2) -211 / -219 26.1 2.78 13.0 23.8 0.0 0.0 GFI1
and(or(GFI1,NFE2),SCL) -212 / -223 195.5 1.71 0.0 0.1 0.0 0.0 65.4 1.1 SCL
or(GFI1,SCL) -211 / -219 368.4 1.92 0.0 1.2 148 1.1 SCL
and(or(GFI1,SCL),NFE2) -212 / -223 515.7 1.85 0.0 21.6 203 1.1 0.0 0.0 SCL
or(GFI1,NFE2,SCL) -213 / -224 72 2.03 0.0 29.8 641 0.7 21.5 2.2 SCL
or(NFE2,SCL) -210 / -218 26.6 2.78 0.0 0.0 13.1 15.6 SCL
and(or(NFE2,SCL),GFI1) -212 / -223 151.9 1.84 27 26.7 48.0 1.2 0.0 0.0 SCL

Table 8: Model selection and parameter estimation for GATA. Values represent mode of posterior
distributions for estimated parameters. Parameters from left to right are: synthesis (or production)
rate (α), decay constant (λ), dissociation constant (κ) and Hill coefficient (h). When multiple
dissociation constants and Hill coefficients are present, they refer to different TFs in the order they
are given in the model (first column). When multiple synthesis rates are presents, the first refers
to the AND part of the model, whereas the second to the third gene, according to model given by
Equation 5. Sign of regulatory edges are the same as reported in Figure 29 (right).

ODE model AIC BIC α λ κ h κ h Effective

and(GATA2,GFI1B) -198 -206 555.6 0.70 0.02 0.0 0.24 1.0 GFI1B
or(GATA2,GFI1B) -191 -199 11.0 0.80 0.00 0.0 6.17 16.6 GFI1B
GATA2 -213 -218 1940.2 0.54 0.01 0.8 GATA2
GFI1B -193 -199 379.2 0.54 0.13 1.0 GFI1B

ODE model AIC BIC α λ κ h κ h Effective

and(GATA2,GFI1) -220 -228 47.5 2.77 0.0 2.4 17.5 28.0 GFI1
or(GATA2,GFI1) -216 -224 20.4 1.44 6.5 22.8 0.0 0.0 GATA2
GATA2 -212 -218 19.0 0.99 6.2 4.6 GATA2
GFI1 -219 -224 48.2 2.76 17.5 29.0 GFI1

Table 9: Model selection and parameter estimation for GFI1 (top) and GFI1B (bottom). Values
represent mode of posterior distributions for estimated parameters. Parameters from left to right
are: synthesis (or production) rate (α), decay constant (λ), dissociation constant (κ) and Hill
coefficient (h). When multiple dissociation constants and Hill coefficients are present, they refer
to different TFs in the order they are given in the model (first column). Sign of regulatory edges
are the same as reported in Figure 29 (right).

2.4 User-defined parameters and time constraints

In this section we report user-defined parameters used for the two synthetic dataset and for the
real hematopoietic data (Tab. 10).

For diffusion map, the Gaussian kernel width (σ) is the only parameter used in the method.
For optimal determination of this parameter we use heuristics as described in [29]. The argument
is that since cell differentiation is generally a highly nonlinear process, the Euclidean distances
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between cells in the Gaussian kernel are only valid within small neighbourhoods in the high-
dimensional space and the radius of this neighbourhood is defined by the characteristic length
scales of the manifold. According to [29], the local maxima of the average intrinsic dimensionality
curve 〈d〉 indicate the characteristic length scales of the data manifold and hence the optimal σ.
Figure 32 and 33 show that, close to the characteristic length scales, the diffusion map is robust
to σ variations for real (qPCR) and synthetic data, respectively. Consequently we choose σ in this
robustness regions.

As described in previous sections, clustering algorithm is only used for the toggle switch network
data, since FFL represents a non-branching process and in real data we have information from cell
surface markers. The main parameter used in clustering algorithm is the number of neighbours.
For the toggle switch dataset we have used a value Nn = 15; however, as we have described in
Section 2.2.4, the algorithm is robust to a wide range of values. In order to run the clustering
algorithm, the position of a starting cell is also necessary. In Section 1.2 we described how an
approximate starting cell position can be retrieved by using prior information. Once the starting
cell position has been decided, the number of branches (with their final cell position) is decided by
direct visual inspection of diffusion map geometry, as explained in Section 1.2.

Once the branches have been defined from a starting cell position, the same approximate start-
ing cell position is used also in Wanderlust algorithm. Together with the starting cell position,
Wanderlust relies on three main parameters: the number of nearest neighbours k, the neighbour
subset size I and the number of dimensions of the dataset. As described in Section 2.2.6, Wander-
lust is robust to different choices of the number of nearest neighbours k. Here we report parameters
which we have used to produce results in main paper. In FFL and toggle switch data we use a larger
value k = 18 compared to the one used in real data (k = 15), otherwise the k-nearest neighbour
graph results disconnected with a consequent error of the algorithm [2]. Neighbour subset size I
is simply set to k/3, such that I < k, as explained in Section 2.2.6. The number of dimensions is
given by the dimensionality of the snapshot data (i.e. the number of genes).

Threshold for edge weights in GENIE3 depends on the specific dataset. In Section 1.4 we
clarified how this threshold can be chosen empirically, by directly looking at the values of all the
resulting network edge weights.

Finally, threshold for correlation analysis has been only used for simulated data with a default
value 0.5. As we showed in Section 2.2.5, correlation analysis is used to reduce the number of ODE
models to compare in model selection: model selection in toggle switch data was also performed
without using correlation analysis (i.e. using a threshold value equal to 1), without affecting the
results. In real data, we have followed [8] and computed a p-value for the significance of correlation
coefficient, instead of using a threshold value 0.5.

Diffusion maps parameters Feed-forward loop Toggle switch network Hematopoietic data

Gaussian kernel width σ 1000 100.9

Clustering parameters Feed-forward loop Toggle switch network Hematopoietic data

Nn 15
number of branches 4

Wanderlust parameters Feed-forward loop Toggle switch network Hematopoietic data

k (nearest neighbours) 18 18 15
I (neighbour subset size) k/3 k/3 k/3

number of dimensions 3 6 18

GENIE3 parameters Feed-forward loop Toggle switch network Hematopoietic data

weights threshold 0.3 0.1 - 0.3 0.08

Correlation analysis parameters Feed-forward loop Toggle switch network Hematopoietic data

threshold 0.5 0.5
p-value significance level 1%

Table 10: User-defined parameters used in our framework
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Figure 32: (A) Average intrinsic dimensionality 〈d〉 for real (qPCR) data as a function of log10(σ)
shows maximum at log10(σ) = 0.9. (B-F) Diffusion map for different values of σ.
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Data generation for simulated data, diffusion maps, branch clustering, network inference with
GENIE3, Wanderlust algorithm are all performed very fast (each of them runs within 30 sec on a
standard 2,5 GHz Intel Core i5, 4 GB RAM). Parameter estimation and model selection represent
the most time consuming, especially when thermodynamic integration is needed. For a subsystem
including a target and two input genes, parameter estimation needs around 2h with 6 pseudo time-
series (i.e. 3 replicates × 2 branches), each with around 100 cells. However, as the subsystems
optimisation approach can be parallelised, in 2h we can compare as many ODE models as possible
(depending on computational resources). For real data, the process took several hours (∼10h); in
this case, the largest subnetwork is composed of a target and three input genes and the number of
cells in each branch is larger.
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