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Abstract

Motivation: High-dimensional single-cell snapshot data are becoming widespread in the systems

biology community, as a mean to understand biological processes at the cellular level. However,

as temporal information is lost with such data, mathematical models have been limited to capture

only static features of the underlying cellular mechanisms.

Results: Here, we present a modular framework which allows to recover the temporal behaviour

from single-cell snapshot data and reverse engineer the dynamics of gene expression. The frame-

work combines a dimensionality reduction method with a cell time-ordering algorithm to generate

pseudo time-series observations. These are in turn used to learn transcriptional ODE models and

do model selection on structural network features. We apply it on synthetic data and then on real

hematopoietic stem cells data, to reconstruct gene expression dynamics during differentiation

pathways and infer the structure of a key gene regulatory network.

Availability and implementation: Cþþ and Matlab code available at https://www.helmholtz-

muenchen.de/fileadmin/ICB/software/inferenceSnapshot.zip.

Contact: fabian.theis@helmholtz-muenchen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Unraveling the dynamics of gene regulatory programs is a challeng-

ing problem, due to multitude of variables and mechanisms involved

in the gene control machinery. As genes represent fundamental units

in regulatory networks, the problem is commonly restricted to

understand how they interact and express themselves, to generate

specific biological functions. This gave rise to a variety of mathemat-

ical methods which, combined with experimental measurements,

provided a way to reconstruct gene regulatory processes and esti-

mate unknown kinetic parameters. Different classes of approaches

have been proposed, from ODE-based models (Honkela et al., 2010;

Sanguinetti et al., 2009) to stochastic models (Wilkinson, 2009),

and a number of optimization techniques have been developed for

inference and parameter estimation in gene regulatory models (Liepe

et al., 2014; Ocone et al., 2013; Stathopoulos and Girolami, 2012).

To learn network dynamics, all these models require temporal

data sources, such as mRNA or protein time-courses. However, as

recent advances in single-cell technologies offer the possibility to

analyse gene expression simultaneously in hundreds of individual

cells (Citri et al., 2012), time-course data are not always available

for massive single-cell dataset. This prevents from using elaborated

methods developed in the last decades on data coming from newest

technologies such as single-cell RNA sequencing or high-throughput

quantitative polymerase chain reaction.

Typically, data from such technologies are given in form of

single-cell snapshot data. Broadly, single-cell snapshot data consist

of gene expression measurements collected from multiple single cells

at a single time point. So defined, they represent static data which re-

flect single-cell states at a single time point. However, as cells may

have different stochastic behaviours during the same process

(Elowitz et al., 2002), a sort of temporal information is still retained

in snapshot data.

Here, we present a framework which allows to extract gene

regulatory dynamics directly from single-cell snapshot data. The

framework allows reconstruction of individual network nodes’ dy-

namics, estimation of kinetic parameters and computation of Bayes’

factors to determine how network nodes functionally interact.

The combination of dimensionality reduction with a clustering

method and an efficient algorithm to order single cells by time pro-

vides a way to reconstruct gene expression pseudo time courses

from different cellular processes. These are used to compare differ-

ent ODE-based transcriptional models and select the one which best
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explains the data. As transcriptional models incorporate structural

knowledge in form of Boolean logic gates and presence/absence of

regulatory edges, the model selection step represents indeed a way to

refine the gene network structure.

In contrast to recently developed frameworks (Bendall et al.,

2014; Trapnell et al., 2014), we show how dynamics extracted from

single-cell snapshot data can be used to recover quantitative aspects

about the underlying regulatory network. We first test our frame-

work on two simulated datasets. The first consists of a feed-forward

loop (FFL) network motif, which exhibits the behaviour of a pulse

generator. The other dataset is generated by a more complex regula-

tory network, including toggle switches, which mimics the dynamics

of cell differentiation process.

Finally, we present an application on hematopoietic stem cells

(HSCs) data generated by a high-throughput single-cell quantitative

polymerase chain reaction experiment during cell differentiation

(Moignard et al., 2013). We reconstruct both dynamics and struc-

ture of a key gene regulatory network (GRN) and show that our

framework provides biological insights not accessible through stand-

ard in silico analyses.

2 Modular framework for learning GRN dynamics

Our approach is based on a modular framework, depicted as a block

diagram in Figure 1. Gene expression single-cell snapshot data rep-

resent the input to the framework (Fig. 1A). The outcome of the

analysis is 2-fold: we estimate kinetic parameters for transcriptional

dynamics (Fig. 1H) and we refine the GRN topology (Fig. 1G).

Inferred GRN structure and parameters can eventually be used to

generate model predictions in presence of structural and/or dynam-

ical perturbations.

Each module in the framework performs a crucial function, which

is summarized below and described in detail in Supplementary

Information. The first module performs dimensionality reduction

(Fig. 1B), which allows to embed high-dimensional snapshot data into

a low-dimensional space. Here, we use a nonlinear method, known as

diffusion map (Coifman et al., 2005), which represents the probabilis-

tic version of spectral clustering techniques (Nadler et al., 2005). By

means of diffusion map, a large number of cells can be embedded and

visualized in a low-dimensional (i.e. 2D–3D) space, according to their

multivariate gene expression value. In this low-dimensional space,

similarity between cells is encoded by their Euclidean distance. In par-

ticular, by applying an ad hoc clustering method on the cells in low-

dimensional space (Fig. 1C), we are able to separate a number of

branches associated with different cellular processes (i.e. differenti-

ation pathways). The number and selection of branches depend on a

user-defined initial cell, therefore an approximate position of this cell

is required as prior information. Although this is generally not avail-

able, a prior knowledge of expression profile of key genes combined

with visual inspection in diffusion map embedding is generally suffi-

cient to locate an approximate initial cell.

As gene expression is a function of time, cells can potentially

also be ordered by time. We use a recently developed algorithm,

Wanderlust (Bendall et al., 2014), to order single cells along discrete

paths, in branches identified in the embedded data space. These

paths do not represent real time but rather a pseudo time variable,

which depends on the intrinsic cellular process. As a result, we re-

construct gene expression dynamics of different genes in form of

pseudo time-series (Fig. 1D).

As Wanderlust works only for non-branching processes, the ad

hoc clustering method is necessary to separate multiple branches be-

fore ordering the cells by time. Note that Wanderlust is applied dir-

ectly on high-dimensional data; on the other hand, performance of

the clustering method in low-dimensional diffusion map embedding

is better than directly in high-dimensional data (see details in

Supplementary Information).

To learn gene regulatory dynamics from pseudo time-series data,

we describe gene expression dynamics of individual network nodes

using mathematical models. The choice of right level of model ab-

straction is crucial to achieve a certain task. Our application re-

quires a mathematical model, which is flexible enough to explain

nonlinear gene expression dynamics and allows for an efficient and

Fig. 1. Diagram of the framework. High-dimensional single-cell snapshot data (static data) are used as input in two paths (A). The first is a combination of a dimen-

sionality reduction method [i.e. diffusion map algorithm (Coifman et al., 2005)] (B), clustering (C) and cell time-ordering [i.e. Wanderlust algorithm (Bendall et al.,

2014)], which provides pseudo time-series (dynamic data) (D). Axis labels DC in the low-dimensional space, represent the first few diffusion components, i.e.

eigenvectors. The second is a network inference algorithm [i.e. GENIE3 (Huynh-Thu et al., 2010)] generating a coarse GRN structure (E), which is used as prior

knowledge during model selection. A likelihood function, which links transcriptional models M to the pseudo time-series data D, is used in a Bayesian framework

to perform model selection and parameter estimation (F). Output is represented by a refined GRN structure (G) with corresponding posterior estimates of kinetic

parameters (H)
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accurate solution of the parameter estimation problem. To this aim,

we use the following ODE-based model to describe gene–gene

interaction:

_yðtÞ ¼ af ðxðtÞ; hÞ � ky ;

f ðxðtÞ; hÞ ¼

xh

xh þ jh
; if x is activating

jh

xh þ jh
; if x is inhibiting ;

8>>><
>>>:

(1)

where x and y represent mRNA concentrations of input and target

gene, respectively. Kinetic parameter a represents production rate and

k decay rate of target gene expression; h � ðj;hÞ are parameters of a

nonlinear Hill-type function f ðxðtÞ; hÞ (Hao and O’Shea, 2011),

where j and h are dissociation constant and Hill coefficient, respect-

ively. [We assume that mRNA concentration y of target gene can be

used as proxy for concentration level of its active transcription factor

(TF). This is valid by considering that post-transcriptional modifica-

tions occur on a faster timescale with respect to transcription and

translation process. As a direct consequence, kinetics parameters in

Equation (1) will take into account of both transcription and transla-

tion mechanisms. Alternatively, statistical models where protein states

are treated as latent variables could be adopted (Ocone et al., 2013).]

Generally, the expression of a target gene y is regulated by the

activity of a number M of inputs xi (with i ¼ 1; . . . ;M), which can

be combined according to different logical expressions. Therefore, a

wide range of possible models can be used to describe interactions

between M inputs on target y. The following models

_yðtÞ ¼ a
YM
m¼1

fmðxmðtÞ; hmÞ � ky ; (2)

_yðtÞ ¼ a
XM
m¼1

fmðxmðtÞ; hmÞ � ky ; (3)

encode different logical expressions to combine M input genes, re-

spectively AND and OR logic gates. Generalization to mixtures of

different logical expressions is straightforward.

For parameter estimation, we use an approximation method

based on Markov chain Monte Carlo (MCMC). In each MCMC it-

eration, a Gaussian likelihood is computed using the solution y of

model ODEs at observation pseudo times. As we are considering a

network of interacting genes, likelihood computation turns to be a

recursive system, which we solve by using Gaussian process emula-

tors for input gene functions xmðtÞ (O’Hagan, 2006). In other

words, parameter estimation of a GRN with N genes is decomposed

in N different optimization problems correspondent to N subnet-

works. Each subnetwork is composed of a single target gene, which

is regulated by a number of input genes. Given emulators for its in-

puts, each subnetwork is conditionally independent on the others

(Georgoulas et al., 2012). As the dimensionality of parameter space

is reduced in each subnetwork, this strategy turns to be very efficient

and scalable with GRN size.

To select which ODE model explains better pseudo time-series

data, parameter optimization is integrated with a model selection

step. In addition to more simple statistics as Akaike (AIC) and

Bayesian information criterions (BIC), we do Bayesian model com-

parison by computing Bayes’ factors through thermodynamic inte-

gration (Calderhead and Girolami, 2009).

As the number of ODE models to compare grows combinator-

ially with the number of genes, the amount of models is thinned out

by using a priori knowledge on GRN structure. We adopt GENIE3

(Huynh-Thu et al., 2010), an efficient method based on random

forest, to obtain a coarse network structure, which we then refine

through model selection (Fig. 1E).

As the framework represents a combination of multiple methods

and each method depends on user-provided parameters, it is relevant

to evaluate how its global performance depends on these param-

eters. For this reason, we perform multiple tests on simulated data

to validate robustness of results to different parameter choices (see

Supplementary Information).

In the following sections, before applying our framework on real

data, we assess its performance on two synthetic datasets.

3 Simulated data: FFL network motifs

FFLs are three-gene networks which have been of large interest in

the recent literature (Alon, 2006; Ocone and Sanguinetti, 2011).

They are composed by a master TF gX, regulating a slave gene gY

and a target gene gZ. The target gene is in turn regulated by the ac-

tivity of the slave TF gY. As TFs can activate or inhibit their targets,

there can be eight possible FFL types according to the sign of the

three edges. Here, we focus on the incoherent type-I (I1) FFL

(Fig. 2B), where the master TF activates both slave gY and target

gene gZ, so that a positive activity of gX determines an increasing ex-

pression for gY and gZ. However, as the target gene is repressed by

the slave TF gY, its expression starts decreasing to steady state level

as soon as gY expression is greater than a given threshold (which de-

pends on the parameters of gZ activation function). As a conse-

quence, gZ expression exhibits a pulse behaviour, which accelerates

the gene expression dynamics (Fig. 2D). This feature is so fundamen-

tal for accurate control of cellular processes that I1-FFL is one of the

two most common FFL types found in GRNs of Escherichia coli and

yeast (Mangan et al., 2006).

We simulate single-cell snapshot data sets using an I1-FFL where

input genes gX and gY interact on the common target gZ through an

OR logic gate. Stochastic realizations for N¼300 cells are generated

using Euler–Maruyama method and expression values for the three

Fig. 2. (A) Comparison of reconstructed pseudo tim-series with time-series

generated from true model. (B) Structure of incoherent type-I FFLs. (C) Three-

dimensional embedding of snapshot data generated from OR-gate I1-FFL.

Colours encode gZ expression levels. (D) Fit of AND-gate (solid green) and

OR-gate (solid red) I1-FFL models to pseudo time-series data (black circles)
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genes at a random time point are used to create the single-cell snap-

shot data.

Dimensionality reduction is not necessary for FFLs, as cells can

be embedded in a 3D space where each dimension represents a gene

(Fig. 2C). Application of Wanderlust algorithm in this case is

straightforward, as cells are distributed along a single non-branching

path. This is essentially due to the fact that FFLs are not bistable sys-

tems like the ones we will discuss later on, but they always evolve

according to a characteristic dynamics.

To quantify how well cell time-ordering performs, we compare

expression values from pseudo time-series to expression values

obtained from deterministic FFL model simulation. Results in

Figure 2A show a good agreement between pseudo time and real

time; small discrepancies are due to the fact that we compare sto-

chastic data with a deterministic simulation where intrinsic noise is

null. Gene gZ shows slightly larger discrepancies compared with gX

and gY, as its dynamics is more complex (i.e. overshoot dynamics in-

stead of monotonic functions) and time-ordering is less efficient.

Once a rough GRN structure is obtained through network infer-

ence, we aim to refine this structure. This is done by learning pres-

ence/absence of regulatory edges; uncertain regulatory edge signs

(i.e. activation/inhibition); logical interaction occurring between

master and slave TFs on target gene promoter. By using transcrip-

tional models with single/multiple inputs, with AND-gate and OR-

gate (Eq. 2 and 3), we estimate kinetic parameters and do model

selection.

Model selection results are reported in Supplementary

Information. For models with highest AIC/BIC values, marginal

likelihoods have also been computed for Bayesian model compari-

son. Bayes’ factor between OR-gate and AND-gate FFL results

ROR=AND > 100. According to Jeffrey’s interpretation (Jeffreys,

1961), a Bayes’ factor ROR=AND > 100 clearly shows that transcrip-

tional model with OR-gate can explain pseudo time-series recon-

structed from OR-gate I1-FFL snapshot data decisively better than

competitive AND-gate model. Results are validated by visual inspec-

tion through fitting with optimized parameters (Fig. 2D).

The goodness of fitting for favoured models is also reflected in

estimated parameter values. Parameter posterior distributions are re-

ported in Figure 3, together with true parameters used to simulate

snapshot data. Average of relative errors, computed using maximum

a posteriori estimates, is around 17%. However, parameter estima-

tion performance is mixed: mode of posterior distributions for some

parameters is very close to true values, whereas for other param-

eters, such as Hill coefficients h, it is not as good. Variations of Hill

coefficients h determine only small changes in the slope of gZ expres-

sion overshoot, therefore even small error sources in gene expression

values or pseudo time reconstruction make estimation of h nontri-

vial. Plots of bivariate marginal distributions (Fig. 3, left) show high

correlation between parameters a and k. Although we are not able

to recover their true values, nonetheless the ratio between their pos-

terior estimates is exactly the true one (Fig. 3, right). The problem

can be reduced by placing an informative Gaussian prior over decay

rate parameter k; in this case parameter estimation improves and re-

duce the average of relative errors to 14.5%.

To assess predictive power of our framework, we have used

inferred GRN structure and estimated parameters to generate pre-

dictions under different perturbed conditions. Perturbations can be

in the form of structural changes of the network and/or in the form

of dynamical changes, e.g. variation of kinetic parameters values.

Furthermore, single perturbations can be combined to obtain simul-

taneous perturbations. Here, we consider three perturbations: dele-

tion of slave gene gY; gene knockdown to achieve 3-fold increase in

degradation rate k; simultaneous change of dissociation rate jþ
(10x decrease) and j� (5x decrease). Time-series were simulated

using the true system under each perturbation and compared with

dynamics generated (under same perturbations) by inferred GRN

and estimated parameters. A detailed procedure is reported in

Supplementary Information. Predicted dynamics under perturbation

conditions fit very well to observations from true perturbed system

(Fig. 4), proving that dynamic information extracted from snapshot

data of FFLs can be used to generate useful predictions.

Our results show that, using high-dimensional single-cell snapshot

data, our framework provides a way to reconstruct gene expression

dynamics and learn logic gates in FFL network motifs. FFLs represent

a simple example; in the next section we demonstrate the power of

our framework on a more complex regulatory network.

4 Simulated data: toggle switch network

A toggle switch is a double-negative loop motif composed by two

genes repressing each other (Gardner et al., 2000). Because of its ro-

bust bistable dynamics, this motif is useful in systems such as the

lysis-lysogeny switch in k-phage (Ptashne and Gann, 2002) and it is

believed to be actively present in GRNs regulating stem cells differ-

entiation (Wang et al., 2009).

Here we consider a six-gene network which mimics the process

of decision making during stem cells differentiation (Fig. 1G). The

network includes three toggle switches in a symmetrical hierarchical

structure: toggle switch gA � gB, at an early differentiation stage,

controls the state of two toggle switches gC � gD and gE � gF, at a

Fig. 3. Left: posterior parameter distributions, represented as univariate and

bivariate marginal distributions, using OR-gate I1-FFL. True parameters used

to simulate data are the following: a¼100, k¼0.25, jþ ¼400, hþ ¼20,

j� ¼200, h� ¼10. Right: ratio distribution obtained from posterior distribu-

tions over a and k. True parameters ratio is given by a=k¼400
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Fig. 4. Predictions generated by GRN inferred from snapshot data, under

three different perturbation conditions. Noisy data generated from perturbed

true OR-gate I1-FFL system (black dots), compared with predictions gener-

ated using inferred GRN and estimated parameters (solid red lines)
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late differentiation stage. Expression of late stage genes, gC, gD, gE

and gF, reflects the commitment to four different cell fates. For each

differentiation path, only a single late stage gene is expressed, de-

pending on the state of upstream toggle switches. For example,

when toggle switch gA � gB activates gA transcription, then gA and

gB expressions will increase and decrease, respectively. As a conse-

quence, genes gC and gD will both start to be transcribed, until tog-

gle switch gC � gD will keep activating only one gene and repressing

the other one. This mechanism of expressing only gC (or gD) works

because edges on late stage genes are combined through logic AND

gates.

We again reconstruct GRN dynamics and refine its structure, by

using simulated single-cell snapshot data and prior GRN structural

information obtained though network inference. Snapshot data are

simulated with 400 cells and same kinetic parameters for all three

toggle switches. Application of diffusion map algorithm and selec-

tion of first three eigenvectors produces an embedding where four

branches correspondent to the different cell fates can be clearly iden-

tified (Fig. 1B). Pseudo time-series are finally reconstructed for each

branch, through Wanderlust algorithm (Fig. 5).

As kinetic parameters are the same for each toggle switch, we

focus only on a single gene, gC, and learn how inputs genes (i.e. gA

and gD), are combined on gC activation function. We compare all

possible transcriptional models, with single or double inputs and

with different logic gates (Fig. 6, left). During model selection, par-

ameters are optimized by using pseudo time-series from branches

where gC expression exhibits a dynamic behaviour (Fig. 6, right), i.e.

two branches where gA has high expression levels. Model selection

results (Fig. 6, left) show that the transcriptional model with activat-

ing input gA and inhibiting input gD, combined through AND gate,

is clearly favoured with respect to all the other models. Analogous

results have been obtained for gene gD (reported in Supplementary

Information).

Parameter estimation is performed using simultaneously gC and

gD pseudo time-series, with transcriptional AND-gate models for

both gC and gD activation function. Means of parameter posterior

distributions (Fig. 1H) reflect true parameter values (average of rela-

tive errors is around 6.8%), except again for Hill coefficients. By

using more than a single branch for the optimization, the problem of

correlation between parameters a and k is reduced. To improve the

accuracy of parameter estimation, our approach should be com-

bined with a specific experimental design (Silk et al., 2014), but this

is out of the scope of this work.

As mentioned above, these results have been obtained using

pseudo time-series from two (out of four) branches. By using all four

branches, the estimation accuracy should further increase, but that

is nontrivial, as gene gC expression in the remaining two branches is

just noise.

Another way to improve parameter estimation would be to con-

sider a time-shift error produced by the time-ordering algorithm. An

adjusted time-ordering method would require a study on the diffu-

sion maps topology, which will be deferred to a further work.

However, the accuracy of pseudo time-series reconstruction per-

formed here is adequate for both model selection and reconstruction

of transcriptional dynamics.

To assess the robustness of the framework, we performed ana-

lyses on different simulated dataset obtained by changing both ob-

servation noise level and noise model. Results show that parameter

estimation accuracy is consistent over the different datasets (full de-

tails in Supplementary Information).

Here, we showed how our framework is able to get rid of bi-

modal gene expression (due to presence of multiple toggle switches)

and recover dynamics of a more complex 6-gene GRN. As in the

FFL case, by using reconstructed pseudo time-series and ODE-based

transcriptional models, we were also able to select correct logics in

the transcriptional activation function.

5 Logic learning in a hematopoietic GRN

Understanding stem cell differentiation is fundamental for advances

in cell reprogramming research, with potentially practical applica-

tions in regenerative medicine and drug development (Cherry and

Daley, 2012; Inoue and Yamanaka, 2011). In particular, mechan-

isms of cellular decision making are regulated by multiple dynamics

of underlying GRNs. A paradigm for studying how these dynamics

give rise to different cells fates is represented by blood cell formation

process, known as hematopoiesis (Orkin and Zon, 2008).

Recently, Moignard et al. (2013) analyzed the expression of 18

key genes in 597 single cells isolated from mouse bone marrow.

Cells were belonging to multiple stages during differentiation

(Fig. 7A), from HSCs to four different progenitor cell populations:

pre-megakaryocyte/erythroid progenitors (PreMegE), lymphoid-

primed multipotent progenitors (LMPP), granulocyte-macrophage

progenitors (GMP) and common lymphoid progenitor (CLP). They

clustered cells according to expression states characteristic of each

cell population and performed correlation analysis to infer GRN

regulatory links. In particular, they predicted strong correlations be-

tween TFs GATA2, GFI1 and GFI1B, which were then validated

using transcription and transgenic assays.

Fig. 5. Left: application of Wanderlust algorithm on one diffusion map’s

branch from toggle switch simulated snapshot data. Colours encode time

progression along the resulting trajectory. Right: reconstructed pseudo time-

series, obtained by plotting gene expression values in time-ordered cells

Fig. 6. Left: model selection results for target gC. Model score in interval ½0; 1�
represents a normalized AIC value: score ¼ ðAIC�mÞ=maxðAIC�mÞ, where

m represents minimum AIC among all models. Right: fit of selected model

(solid red) to gC pseudo time-series data reconstructed from two different

branches (black circles)
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Here, we focus on this regulatory triad (GATA2, GFI1 and

GFI1B) and refine the subnetwork underpinning its dynamics during

differentiation.

Figure 7B shows the embedding of single cells after dimensional-

ity reduction with diffusion map algorithm and selection of first, se-

cond and third eigenvectors (i.e. diffusion components). Colours

indicate different cell types, identified using cell surface markers

(Cell surface markers are also used to separate branches, without

need of a clustering method.). Two features can be observed: first,

diffusion map is able to separate different cell types; second, the

3D embedding consists of three noisy but well-defined branches.

Although it may wrongly seem that four branches are present in the

embedding, in reality the fourth branch is composed of HSC

cells and represents the starting point of the process. The three

branches clearly show the three cell differentiation pathways as

reported in Figure 7A: HSC ! PreMegE, HSC ! LMPP ! GMP

and HSC ! LMPP ! CLP. For sake of clarity, in the following we

refer to these pathways as PreMegE, GMP and CLP, respectively.

Among these pathways, we consider only pathways GMP and

CLP, since reconstructed GFI1 pseudo time-series exhibit no dynam-

ical behaviour during differentiation to PreMegE (Supplementary

Fig. S19).

Network inference through GENIE3 algorithm and correlation

analysis generate GRN in Figure 7C, where TFs of interest are high-

lighted by a yellow circle. For each of these TFs, we aim to compare

different ODE models by combining different features: presence of

single/multiple inputs on target gene; positive/negative edge sign and

logical interactions (AND/OR gates and their combinations). A

comprehensive list of all tested models is reported in Supplementary

Information.

Results for target GATA2 have been obtained using pseudo

time-series from pathway CLP. In fact, in dynamics reconstructed

using pathway GMP, SCL exhibits residual bimodal expression and

NFE2 a nearly flat profile. On the other hand, expression of GATA1

remains always at very low values in both pseudo time-series from

CLP and GMP, therefore we do not take it into account.

Model selection favours two inputs influencing GATA2 expres-

sion: the first is a direct activation by SCL and the second is a direct

inhibition by GFI1. Results are promising, as these interactions have

been known or experimentally validated (Moignard et al., 2013).

On the other hand, a third predicted input, given by logical AND

gate between GFI1 and NFE2, opens new questions to be investi-

gated in laboratory.

Model selection for targets GFI1 and GFI1B have been per-

formed using only pseudo time-series from pathway GMP, as input

GFI1B exhibits bimodal expression in pathway CLP.

Results for target GFI1 show that only inhibitor GFI1B influ-

ences GFI1 expression. This interaction is part of a toggle switch be-

tween GFI1 and GFI1B (Moignard et al., 2013).

The structure of this toggle switch is fully predicted, since also

model selection for target GFI1B favours negative regulation of

GFI1B by GFI1. Furthermore, results for target GFI1B predict also

positive regulation of GFI1B by GATA2, so that GATA2 carries out

a modulating function for the toggle switch, as experimentally vali-

dated in (Moignard et al., 2013). However, a combinatorial model

involving both GFI1 and GATA2 to regulate GFI1B is not predicted.

Possibly, toggle switch GFI1-GFI1B represents such a central role in

hematopoietic differentiation, that influence of a third regulator (i.e.

GATA2) is included through a function more complex than AND/

OR logic gates.

Figure 8 (left) shows a summary of the refined subnetwork: for

each TF, selected edges are reported with corresponding data set

from which results have been obtained. Fitting results are showed in

Figure 9 and full details of transcriptional models are reported in

Supplementary Information.

Fig. 7. Hematopoietic data. (A) Differentiation lineages of HSCs. (B) Diffusion map of hematopoiesis single-cell snapshot data set. (C) GRN obtained after network

inference on snapshot data

Fig. 8. Refined subnetwork using reconstructed pseudo time-series data (left)

compared with experimental validated network in (Moignard et al., 2013)

(right). Text label on each edge indicates the differentiation pathway used to

predict that edge. In the experimental validated network, the known relation-

ship between SCL and GATA2 (Moignard et al., 2013) is not shown; on the

other hand, NFE2 is only predicted to be positively correlated with GATA2 in

(Moignard et al., 2013)
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Fig. 9. Fitting of pseudo time-series from hematopoietic snapshot data with

selected models. Observations from pseudo time-series (black circles), com-

pared with model fitting (red lines)
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In summary, using dynamical information from GMP and CLP

pathways, we are able to reconstruct gene expression dynamics dur-

ing haematopoiesis. Pseudo time-series show how TFs behave during

differentiation along pathways GMP and CLP. This reflects know-

ledge about gene expression of key TFs: for example GATA2 is

known to be expressed at high levels in HSCs but at lower levels in

LMPPs and GMPs. Furthermore, we are also able to refine the key

subnetwork for the regulatory triad GATA2, GFI1 and GFI1B.

Regulatory edges were not only evaluated in terms of sign but also

directionality. On the other hand, directed edges were not predicted

in Moignard et al. (2013) but only experimentally validated. Our

framework also provides new testable hypothesis regarding inter-

actions of TFs on target genes promoters, as in the case of TFs NFE2

and GFI1 for target GATA2.

6 Discussion

As mathematical modelling is becoming more and more crucial in

supporting experimental research in systems biology, computational

frameworks need to constantly evolve and adapt to new technolo-

gies. In this context, recent advances in high-dimensional single-cell

technologies are providing massive amount of data in form of sin-

gle-cell snapshot data. Although a number of statistical tools have

been developed to model gene expression in snapshot data, they

were only able to provide limited insights into biological mechan-

isms. In particular, as snapshot data do not directly represent how

concentration of molecular species changes over time, present meth-

ods are only able to extract static information from data.

Here, we have presented a framework which allows to recon-

struct dynamics of gene network nodes from single-cell gene expres-

sion snapshot data. By combining a dimensionality reduction

method with an algorithm to time-order single cells, we are able to

reconstruct pseudo time-series which provide a good approximation

to time-series simulated from the real system. Through an efficient

optimization strategy, pseudo time-series are then used to calibrate

nonlinear ODE models which explain complex transcriptional dy-

namics. Furthermore, by computing Bayes’ factors, we are also able

to refine GRNs structures by selecting among transcriptional models

with different structural information, i.e. different logic gates in acti-

vation functions.

The framework is modular and requires a number of sequential

steps, which are independent on each other. This has the advantage

that each step can be independently improved, without reducing the

efficiency of the entire workflow. Many of these steps, especially

dimensionality reduction techniques and parameter estimation

methods, have already been studied in great detail. However, to the

best of our knowledge, similar comprehensive frameworks have not

been yet developed: our idea represents the first example of quanti-

tative modelling GRNs dynamics without using protein or gene ex-

pression time-courses but only high-dimensional single-cell snapshot

data. Only recently, some approaches have been developed to ana-

lyse high-dimensional biological data (Amir et al., 2013) and their

underlying dynamics (Amat et al., 2014; Bendall et al.., 2014;

Trapnell et al.., 2014) but purely for a visualization purpose or

qualitative analyses.

Analysis on multiple simulated data sets demonstrates that we

are able to infer kinetic parameters describing the underlying dy-

namics and recover logic gates in activation functions. Results on

single-cell snapshot data obtained during blood stem cell differenti-

ation show that we can reconstruct gene expression dynamics along

differentiation pathways. Compared with competing strategies, we

can not only determine correlations among genes in the GRN but

also predict edge directions. In particular, GATA2 was predicted to

be inhibited by GFI1 and to activate GFI1B, thus possibly working

as a modulator of the known toggle switch between GFI1 and

GFI1B. Gene GATA2 has been found to be involved in myeloid leu-

kaemia (Hahn et al., 2011); a better understanding of its role will

not only help to get more insights into cell decision making but also

to gain more knowledge about cancer pathologies.

From the computational point of view, our work opens possibil-

ities to several further developments. Although diffusion maps

have been proved to resolve nonlinear differences in single-cell ex-

pression data (Moignard et al., 2015), an improvement in the time-

ordering algorithm would substantially reduce the error in pseudo

time-series. In addition, at the statistical modelling level, we have

considered ODE-based transcriptional models without taking into

account of intrinsic stochasticity of gene expression. Single cells pro-

vide more information with respect to cell populations, but such in-

formation could be retrieved only by using stochastic models of gene

expression. On the other hand, parameter estimation and model se-

lection with stochastic models are challenging and will require more

advanced methods compared with those used in this work (Liepe

et al., 2014).

Despite we restricted the analysis to small/medium size GRNs,

we believe that our work may evolve to the analysis of larger net-

work and with more complex dynamics, e.g. including feedback

loops. A greedy-type strategy could be adopted in model selection to

cope with a larger number of dynamical models. However, an inte-

gration of structure inference and dynamics modelling would remain

challenging in the case of larger networks (Oates et al., 2014).
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