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Proteome profiling in cerebrospinal fluid reveals
novel biomarkers of Alzheimer’s disease
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Abstract

Neurodegenerative diseases are a growing burden, and there is an
urgent need for better biomarkers for diagnosis, prognosis, and
treatment efficacy. Structural and functional brain alterations are
reflected in the protein composition of cerebrospinal fluid (CSF).
Alzheimer’s disease (AD) patients have higher CSF levels of tau, but
we lack knowledge of systems-wide changes of CSF protein levels
that accompany AD. Here, we present a highly reproducible mass
spectrometry (MS)-based proteomics workflow for the in-depth
analysis of CSF from minimal sample amounts. From three indepen-
dent studies (197 individuals), we characterize differences in
proteins by AD status (> 1,000 proteins, CV < 20%). Proteins with
previous links to neurodegeneration such as tau, SOD1, and PARK7
differed most strongly by AD status, providing strong positive
controls for our approach. CSF proteome changes in Alzheimer’s
disease prove to be widespread and often correlated with tau
concentrations. Our unbiased screen also reveals a consistent
glycolytic signature across our cohorts and a recent study. Machine
learning suggests clinical utility of this proteomic signature.

Keywords Alzheimer’s disease; cerebrospinal fluid; mass spectrometry;

neurodegeneration; proteomics

Subject Categories Biomarkers; Neuroscience; Proteomics

DOI 10.15252/msb.20199356 | Received 14 November 2019 | Revised 29 April

2020 | Accepted 30 April 2020

Mol Syst Biol. (2020) 16: e9356

Introduction

Alzheimer’s disease (AD) is the most common type of dementia,

and its prevalence is growing rapidly in aging societies (GBD 2016

Neurology Collaborators, 2019). In 2015, almost 47 million people

worldwide were estimated to be affected by dementia, and the

numbers are expected to reach 75 million by 2030, and 131 million

by 2050, with the greatest increase expected in low-income and

middle-income countries (Winblad et al, 2016). Patients with AD

typically present with memory impairment and difficulty performing

activities of daily living (Scheltens et al, 2016). However, symptoms

may manifest decades after the underlying pathology has initiated,

including the deposition of amyloid plaques and development of

neurofibrillary tangles (Jack et al, 2010).

Biomarkers have become important diagnostic tools to define the

presence and absence of dementia before onset of memory loss.

While a research framework for defining AD based on beta amyloid

1 Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
2 NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
3 Departments of Nutrition & Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
4 Institute of Clinical Chemistry, Faculty of Medicine, Kiel University, Kiel, Germany
5 Department of Neurology, Faculty of Medicine, Kiel University, Kiel, Germany
6 Department of Neurology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
7 Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
8 Experimental & Clinical Research Center (ECRC), Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, &

Berlin Institute of Health, Berlin, Germany
9 Department of Psychiatry, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin & Berlin Institute of Health, Charité Universitätsmedizin Berlin,

Berlin, Germany
10 German Center for Neurodegenerative Diseases, Berlin, Germany
11 Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
12 German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
13 Munich Cluster for Systems Neurology, Munich, Germany
14 Department of Public Health, University of Copenhagen, Copenhagen, Denmark
15 Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
16 Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
17 UK Dementia Research Institute at UCL, London, UK
18 Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK

*Corresponding author. Tel: +49 8985782557; E-mail: mmann@biochem.mpg.de
†These authors contributed equally to this work

ª 2020 The Authors. Published under the terms of the CC BY 4.0 license Molecular Systems Biology 16: e9356 | 2020 1 of 17

https://orcid.org/0000-0002-6575-0609
https://orcid.org/0000-0002-6575-0609
https://orcid.org/0000-0002-6575-0609
https://orcid.org/0000-0001-7980-4826
https://orcid.org/0000-0001-7980-4826
https://orcid.org/0000-0001-7980-4826
https://orcid.org/0000-0003-3454-2396
https://orcid.org/0000-0003-3454-2396
https://orcid.org/0000-0003-3454-2396
https://orcid.org/0000-0003-3320-6833
https://orcid.org/0000-0003-3320-6833
https://orcid.org/0000-0003-3320-6833
https://orcid.org/0000-0002-4794-4821
https://orcid.org/0000-0002-4794-4821
https://orcid.org/0000-0002-4794-4821
https://orcid.org/0000-0003-1292-4799
https://orcid.org/0000-0003-1292-4799
https://orcid.org/0000-0003-1292-4799


(Ab) deposition, pathologic tau, and neurodegeneration (ATN) has

been proposed (Jack et al, 2018), clinical criteria for AD are not

universally standardized and range from clinical presentation to

brain imaging by MRI and PET to clinical chemistry analysis of

Ab1–42/Ab1–40, total-tau (t-tau), and phosphorylated-tau (p-tau181) in

cerebrospinal fluid (CSF; Frisoni et al, 2010; McKhann et al, 2011;

Ferreira et al, 2014; Rice & Bisdas, 2017). Most research currently

focuses on Ab and tau, because they are the main components of

amyloid plaques and neurofibrillary tangles (Serrano-Pozo et al,

2011). However, the search for a disease-modifying therapy has yet

to show clinically relevant results and it is becoming increasingly

clear that many additional pathological changes in multiple path-

ways occur in dementia.

Thus, we propose an unbiased analysis of CSF proteins in partici-

pants with and without AD for a comprehensive search for novel

diagnostic biomarkers. A set of reliable protein biomarkers rather

than a single marker could also enable the development of highly

specific tests for early disease detection in at-risk segments of the

population. Ideally, such markers should identify unexpected

biological pathways and new potential therapeutic targets for future

development.

Mass spectrometry (MS)-based proteomics has become a very

powerful technology for the analysis of protein abundance levels,

modifications, and interactions, with important discoveries in

biological and biochemical research, including neuroscience (Aeber-

sold & Mann, 2016; Hosp & Mann, 2017). MS-based proteomics is

unbiased in the sense that it identifies and quantifies proteins in an

untargeted manner. Additionally, the identification is extremely

specific through the amino acid sequence information at the peptide

level. These inherent features differentiate MS-based from affinity-

based methods and should make MS an ideal tool for biomarker

discovery; however, in body fluids this long-standing goal has not

generally been realized so far. This has been due to a variety of

technological and conceptual limitations, compromising repro-

ducibility, the number of consistently quantified proteins and

throughput (Geyer et al, 2017). For instance, a general issue in body

fluid proteomics is the presence of highly abundant proteins such as

albumin that hamper efficient identification of less abundant

proteins. Previous workflows were laborious, typically quantified a

few hundred proteins at most per sample and required hundreds of

microliters of precious CSF, thereby limiting the availability of suit-

able samples (Dayon et al, 2018). Reproducibility was low with only

a minority of proteins having clinically accepted coefficients of vari-

ation (CV) of < 20%. Furthermore, many proteins were not quan-

tifiable in all study participants and validation in well-characterized

study populations was lacking. Therefore, entire databases have

been curated to navigate reported CSF proteome alterations across

studies in the field of neurodegeneration including AD (Guldbrand-

sen et al, 2017).

Recent technological advances enable substantially higher

proteome coverage and better and more comprehensive protein

quantitation. These developments include automated sample prepa-

ration, technological improvements in mass spectrometers, MS data

acquisition, and processing software that synergize to enhance the

overall analytical performance (Bruderer et al, 2017; Kelstrup et al,

2018). Based on these advances, we here developed a streamlined

and highly reproducible workflow from sample preparation to data-

independent MS acquisition (Ludwig et al, 2018) and an integrated

analysis of the results for CSF. This workflow enabled us to clearly

identify the established markers as well as a large number of consis-

tent and biologically meaningful proteome changes across several

independent cohorts.

Results

Overview of study populations

We recently proposed a shift in the study design of clinical discov-

ery proteomics termed “rectangular strategy” (Geyer et al, 2017).

In the previous “triangular strategy” study design, selected samples

were characterized with extensive workflows and a small number

of candidates were then assessed in a larger number of individuals

using targeted methods. However, these candidates often turned

out to be specific to the discovery population and could not be

validated in independent study populations. In contrast, in the

“rectangular strategy”, multiple studies are subjected to the same

high proteome depth workflow, moving the discovery to the popu-

lation-wide setting in order to discern pathological from study-

specific effects.

To implement the rectangular strategy, we analyzed three sepa-

rate study populations of about 30 AD patients and about 30 or 50

controls, amounting to 197 individuals in total (Fig 1A). We refer to

the study populations as cohorts throughout the manuscript,

because each cross-sectional study was slightly different, conducted

in distinct settings and geographical regions. One cohort originated

from western Sweden, another from the German cities Magdeburg

and Kiel (obtained through Harvard T. H. Chan School of Public

Health), and the third from Berlin. The overall median age was

70.0 � 12.1 years (� SD) (Fig EV1A). However, the 16 non-AD

control patients of the Kiel sub-cohort were younger (median

32.0 � 17.1 years). In each of our cohorts, patients were classified

as AD if the t-tau concentration was above 400 ng/l, and the Ab1–42
concentration below 550 ng/l or the Ab1–42/Ab1–40 ratio below

0.065 as determined by ELISA measurement at the clinical collection

site (Materials and Methods).

The degree of separation of AD cases and controls by clinical AD

CSF biomarker concentrations differed across cohorts. AD and non-

AD were best separated in the Sweden cohort but the Magdeburg

cohort also exhibited a good overall separation (Fig EV1B–K, Mate-

rials and Methods). In the Berlin cohort, however, AD and control

groups overlapped to some degree regarding CSF Ab1–42 and slightly

regarding t-tau.

Characterization of the CSF proteomics workflow

Previously, we developed a streamlined Plasma Proteome Profiling

pipeline, in which the proteins in one microliter of plasma are

digested to peptides and purified for MS analysis in an automated

system (Geyer et al, 2016). CSF contains much less protein than

plasma, with about 0.17–0.70 g/l and 60–80 g/l total protein

content, respectively (Seyfert et al, 2002; Laub et al, 2010). Never-

theless, we achieved a very robust workflow with high proteome

depth from only a few microliter of sample that was not depleted of

highly abundant proteins (Fig 1A and C). We adopted a data-inde-

pendent acquisition strategy (DIA), both because it can achieve high
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data completeness (Gillet et al, 2012) and because it has been

shown to perform excellently on the linear quadrupole-Orbitrap

instruments employed here (Kelstrup et al, 2018). A DIA library of

about 2,700 proteins was computationally merged from pooled AD

and non-AD samples after separation into 24 fractions each and a

direct-DIA search for all single-run samples (Materials and Meth-

ods). CSF proteomes were acquired by measuring single 100-min

gradient runs for each patient.

On average, we quantified 1,233 proteins per CSF sample

(Fig 1B, Datasets EV1–EV3). The data acquired with DIA had 100%

completeness for 385 proteins (26%), 75% for 1,050 proteins

(71%), and 50% for 1,288 proteins (87%) (Fig 1C). The quantified

protein intensities spanned over six orders of magnitude, in which

the top ten most abundant proteins contributed 65% of total protein

intensity of the entire 1,484 proteins in our dataset (Fig 1D). To

achieve such CSF proteome depth, extensive fractionation and

depletion of abundant proteins often combined with isobaric label-

ing were previously required, with its associated disadvantages

(preprint: Higginbotham et al, 2019; Sathe et al, 2019). For a single-

shot CSF proteomics workflow that is amenable to high-throughput

and large cohorts, this presents an unprecedented depth at high data

completeness.

We investigated intra- and inter-assay variability of our auto-

mated CSF pipeline by repeated sample preparation (Materials and

Methods), which revealed high reproducibility with over 1,000

proteins having inter-assay CVs below 20% (Fig EV2A and B, Data-

sets EV4 and EV5). This level of variability is much smaller than the

proteome differences between subjects, as assessed by calculating

the inter-individual variability within the cohorts. Here, only 225

proteins had a CV below 20% (Fig EV2C).

A

C D E

B

Figure 1. Study overview and CSF proteome characterization.

A Overview of the study populations (cohorts) and schematic proteomic workflow. The CSF of three cohorts comprising AD and control subjects was analyzed. The total
number of subjects per cohort group is depicted. Light and dark shades represent female and male subjects, respectively. “Ctrl” refers to non-AD control subjects.

B Number of proteins identified and quantified passing the 1% FDR cutoffs in each sample. Horizontal lines show the mean and the error bars � SD. The dashed line
indicates the level of the meta-median (1,233 proteins) of the group medians of quantified proteins. Number of samples per group as shown in A).

C Data completeness curve. The number of proteins in the dataset (Y axis) depending on the minimum number of samples in which the proteins have each been
quantified (X axis) is plotted. The arrows indicate 50%, 75%, and 100% data completeness.

D Median CSF protein abundance distribution as calculated from MS intensities of quantified peptides of each protein. The top ten most abundant proteins and
hemoglobins are highlighted.

E Global correlation map of proteins generated by clustering the Pearson correlation coefficients of all possible protein combinations. The abundance of proteins with
common regulation correlates across samples, and they therefore form a cluster. Prominent clusters are annotated with functional terms obtained from
bioinformatics enrichment analysis. The position of tau (gene name MAPT) is labeled on the Y axis. The inset shows the color code for Pearson correlation coefficients.
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The availability of a large set of 197 CSF samples prompted us to

investigate the relationship between different proteins in order to

functionally interpret co-regulation of proteins that cluster with each

other or with clinical parameters. The global protein correlation

map (Wewer Albrechtsen et al, 2018) resulting from more than a

million protein–protein comparisons highlighted eight main clusters

of proteins which follow common functions or themes (Dataset

EV6). For instance, neuronal annotation terms such as the gene

ontology cellular compartments (GOCC) terms neuron projection,

axon, and synapse were selectively enriched in the second largest

cluster (Figs 1E and EV2D). Identification of neuronal proteins in

the CSF highlights that proteins originating in the central nervous

system accumulate in the CSF, thus making the CSF reflective of

physiological or pathological proteome alteration in this organ.

Another cluster was enriched in blood plasma proteins relating

to humoral immunity, the complement system or coagulation.

Vascular proteins have been reported to be increased in AD brains

while decreased in AD CSF (preprint: Higginbotham et al, 2019).

However, apart from disease-associated effects such as a modula-

tion of the blood–brain barrier, apparent alterations of blood protein

abundances in CSF may be caused by blood contamination during

CSF sampling which is hard to avoid entirely. Proteins are likely

blood contaminants in CSF if they exhibit the same abundance pro-

file across samples as known blood proteins and occur in the same

abundance ratio to these blood proteins in CSF as in blood. Conver-

sely, if a protein also found in blood does not correlate with the

blood proteins, it may still be a genuine biomarker for AD. The

global correlation map presents an efficient approach to distinguish

biomarkers from contaminants (Geyer et al, 2019). Here, CSF signa-

tures of proteins biologically relevant to AD clearly separated from

protein clusters that are at higher risk to be contamination-asso-

ciated (Fig 1E).

Proteomics detects differences in CSF t-tau in individuals with
or without AD and neuronal and widespread novel
proteome alterations

In the Sweden and the Magdeburg/Kiel cohorts, AD was associated

with drastic CSF proteome alterations, with 540 and 453 proteins

significantly (P < 0.05) differing by AD status, respectively. These

changes encompassed up- and down-regulated proteins, and signifi-

cant proteins had a median absolute fold change of about 1.3-fold in

both studies. The extensive brain atrophy apparent upon autopsy

and the widespread brain proteome alterations harmonize well with

the observed substantial alterations in the CSF proteome in AD and

other neurodegenerative diseases (Hosp et al, 2017; preprint:

Higginbotham et al, 2019). In all three cohorts, tau (gene name

MAPT) was the most significantly or among the most significantly

altered proteins between individuals with or without AD, with

higher levels in AD (Fig 2A–C, Appendix Fig S1A–E). The fact that

tau levels are elevated in AD CSF has been known for more than

two decades but this important protein is not easily quantified in

large proteomics discovery cohorts. Typically, tau quantitation by

mass spectrometry has required extensive fractionation and deple-

tion of abundant proteins, limiting throughput (preprint: Higgin-

botham et al, 2019; Sathe et al, 2019). Alternatively, targeting

instead of discovery strategies can in principle quantify proteins

such as tau in larger sample numbers (Barthélemy et al, 2016).

Cerebrospinal fluid is expected to reflect pathological alterations

in functional classes of proteins. AD is characterized by synaptic

dysfunction and neuronal cell death. Proteins associated with the

gene ontology (GO) term “neuron projection” were indeed enriched

in AD CSF compared with non-AD CSF (P < 0.01 in the all three

cohorts; Fig 2A–C, Appendix Fig S1F). Likewise, proteins of the GO

term “synapse part” were significantly enriched in AD CSF in the

Sweden and Berlin cohorts (P < 0.01).

In the Berlin cohort, proteome alterations between AD and non-

AD CSF were smaller with only 168 proteins exhibiting significantly

(P < 0.05) different abundances (Figs 2C and 3A, Appendix Fig S1D

and E). This finding concurs with the reduced biochemical separa-

tion of the AD and non-AD groups in the Berlin cohort based on

clinical AD CSF biomarkers (Fig EV1B–K).

Despite fewer significantly different proteins, the Berlin cohort

exhibited the same key features of the two other cohorts such as tau

being a top outlier and the enrichment of neuronal and synaptic

proteins. The second dominant outlier 14-3-3c (gene name YWHAG)

in the Berlin cohort was likewise enriched in AD CSF in the other

cohorts. The family of 14-3-3 proteins is very abundant in the brain

and has been implicated in neurodegenerative diseases, and

increased levels of 14-3-3c have been reported in AD brain tissue

and CSF (Fountoulakis et al, 1999; Foote & Zhou, 2012; Sathe et al,

2019). Together, this shows a reduced but equivalent AD-associated

effect on the CSF proteome in the Berlin cohort.

Replication of AD-associated proteins across cohorts

As it had previously been challenging to establish biomarker panels

that could be replicated across cohorts, we next assessed the consis-

tency of AD-associated protein changes in this multi-cohort study.

Of the significantly changed proteins described above, large propor-

tions were consistent in their AD/non-AD association (Fig 3A and

B, Dataset EV4). Comparing the Sweden and Magdeburg/Kiel

cohorts, 89% (172/194 proteins) and 95% (102/107) were consis-

tent at significance levels of P < 0.05 and q < 0.05, respectively.

Likewise, comparing the Sweden and Berlin cohorts 95% (70/74)

and 100% (16/16) were consistent applying the same criteria,

respectively, equivalent to 93% (64/69) and 100% (14/14) compar-

ing the Magdeburg/Kiel and Berlin cohort.

Furthermore, quantitative alterations of protein levels between

AD and non-AD CSF were very consistent across the cohorts. AD/

non-AD fold changes of proteins were highly correlated with Pear-

son’s correlation coefficients at r = 0.91, r = 0.80, and r = 0.90 for

the comparisons of Sweden and Magdeburg/Kiel, Sweden and

Berlin, and Magdeburg/Kiel and Berlin, respectively (Fig 3C–E).

We assessed whether AD and non-AD samples clustered

together independent of the cohort, based on either the global

unfiltered CSF proteome profile, the less stringent (P < 0.05) inter-

section, or the more stringent (q < 0.05) intersection set of

proteins significant in all three cohorts. After Z-scoring protein

intensities within cohorts, unsupervised clustering clearly sepa-

rated AD from non-AD groups in all three cases (global proteome,

both intersection sets; Fig 3F and G, Appendix Fig S2A and B). In

the P < 0.05 intersection set, 40 out of 43 proteins (93%) differed

consistently in abundance by AD status, 35 of which had an

elevated abundance in AD CSF and five an elevated abundance in

non-AD CSF (Fig 3F, Appendix Fig S3A and B). We discuss these
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proteins as “the 40-protein signature” of AD in the remainder of

this paper.

Next, we investigated if our results depended on the control

groups in the Magdeburg/Kiel cohort and the Berlin cohort. The

former controls were collected in Magdeburg or in Kiel, and in

Berlin, the controls comprised subjective cognitive impairment

patients and depression patients. Furthermore, the Kiel controls

were younger than other cases or controls, and accordingly, their

proteomes separated from the other non-AD controls (Fig EV1A,

Appendix Fig S2A and B). Despite these differences, AD vs. non-AD

fold changes of our 40-protein signature were independent of the

specific non-AD control group subtype in these cohorts (Fig EV3A

and B). To specifically investigate the effect of age and sex on the

AD regulation of the 40-protein signature, we employed a linear

regression model. After correction for age and sex in this way, the

CSF abundance of all 40 proteins still significantly depends on AD

status (Fig EV3C, Dataset EV7). Interestingly, CSF proteome alter-

ations were of smaller magnitude in males compared to females in

this study population.

Taken together, the “rectangular strategy” was able to discern

AD-related alterations that reflect a small subset of the CSF

proteome (< 50 proteins) from other cohort-specific effects compris-

ing larger parts of the quantified CSF proteome (> 1,000 proteins)

even in cohorts partially constrained by other biases such as age dif-

ferences.

AD-associated proteins in CSF are linked to neurodegeneration

Many proteins among our 40-protein signature have known or

suspected links to AD or other neurodegenerative diseases (Fig 3F).

For instance, PARK7 (protein/nucleic acid deglycase DJ-1) and

SOD1 (superoxide dismutase 1) are risk genes for Parkinson’s

disease and amyotrophic lateral sclerosis, respectively (Bonifati

et al, 2003; Renton et al, 2014). Notably, the two cellular superox-

ide dismutases SOD1 and SOD2 were more abundant in AD CSF

than in non-AD CSF, whereas the extracellular SOD3 was more

abundant in non-AD CSF. Moreover, a genetic interaction of

YWHAZ (14-3-3 protein f/d) and BChE (buturyl cholinesterase)

modulates the risk for AD (Mateo et al, 2008). CHI3L1 (protein

YKL-40/chitinase-3-like protein 1), an astrocyte-derived protein, is

elevated in AD CSF and discussed as a marker for progression from

mild cognitive impairment to AD (Olsson et al, 2016; Baldacci et al,

2017). Similarly, fatty acid-binding protein 3 (FABP3) is elevated in

AD CSF in our data and has been discussed as an AD CSF biomarker

before (Sepe et al, 2018). CRYM (Ketimine-reductase mu-crystallin)

has been reported as a modulator of huntingtin toxicity to striatal

neurons in Huntington’s disease (Francelle et al, 2015).

Proteins differing by AD status correlate with CSF t-tau
abundance and MMSE score

As CSF composition reflects brain health, proteins in CSF may differ

between AD and control subjects and additionally correlate with

severity of AD pathology as reflected by classical clinical parameters

such as t-tau abundance in CSF. Indeed, in the total dataset of 1,484

proteins, 124 proteins correlated significantly (P < 0.05) with t-tau

concentration, 19 of which had a correlation q-value below 0.05

(Fig 4A–D, Appendix Fig S4A, Dataset EV4). All 124 proteins

showed a consistent directionality of positive or negative correlation

across the three cohorts. The abundance of tau as measured by MS

correlated well with the ELISA measurements (Pearson r = 0.82 for

Sweden, r = 0.66 for Magdeburg, r = 0.68 for Berlin).

We next asked how our 40-protein signature correlated with

clinical t-tau measurements. Indeed, a large fraction—29 of 40

proteins—significantly correlated with t-tau in each of the three

cohorts, and the directionality of change was also as expected for

the non-significant proteins (Fig 4A–E, Appendix Fig S4A). This is a

substantial enrichment over the numbers expected by chance in this

dataset (P < 0.0001, odds ratios 37). Upon adjustment for age, sex,

and cohort in a linear regression model comprising all three cohorts,

A B C

Figure 2. Differences in AD vs. non-AD CSF proteome in the three cohorts.

A–C Protein AD/non-AD fold changes plotted vs. statistical significance for Sweden (A), Magdeburg/Kiel (B), and Berlin (C) cohorts. Proteins associated with the GO
annotation neuron projection labeled in orange. Proteins above the dashed green line are statistically significant (P < 0.05), and those above the black curves have
a q-value below 0.05 (see Materials and Methods).
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A B C

D

G

E F

Figure 3. CSF proteome alterations across the three cohorts.

A, B On the left, number of proteins that differ significantly (P-value < 0.05 in A; q-value < 0.05 in B) in abundance by AD status within each cohort. On the right,
number of proteins thereof that have a consistent directionality of either elevated or reduced abundance in AD CSF in pairwise comparisons of cohorts.

C–E Correlation of protein AD/non-AD fold changes in pairwise combinations of two cohorts each. Combinations are Sweden vs. Magdeburg/Kiel (C), Sweden vs. Berlin
(D), and Magdeburg/Kiel vs. Berlin (E). Proteins included differ significantly (P < 0.05) and consistently in abundance by AD status in both cohorts each.

F, G Proteins that differ significantly (P < 0.05 in E; q < 0.05 in F) in abundance by AD status across all three cohorts. Z-scored abundances of proteins in the AD and
non-AD groups of all cohorts shown by the heat map (see Materials and Methods). Hierarchical clustering separates AD from non-AD groups. Pyruvate kinase PKM
(PKM) was quantified in two isoforms, and UniProt IDs are given in parentheses. Black frames highlight proteins with consistent AD/non-AD fold changes across
cohorts.
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all 40 proteins were significantly associated with t-tau (Materials

and Methods; Appendix Fig S4B, Dataset EV7).

Some of these proteins, including fructose-bisphosphate aldolase

A (ALDOA), superoxide dismutase 1 (SOD1), and YKL-40/chitinase-

3-like protein 1 (CHI3L1), have previously been reported to correlate

positively with CSF t-tau levels (Dayon et al, 2018).

In the clinic, AD is routinely diagnosed by biochemical parame-

ters or by cognitive tests. We therefore investigated the relation
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between our proteomics results and the mini-mental state examina-

tion (MMSE) scores as a measure of cognitive performance, which

were assessed in the Berlin cohort (Fig EV1L). In the literature,

reference population means of MMSE scores were 29, 27, and 20 for

cognitively normal, mild cognitive impairment (MCI), and AD

participants, respectively (Chapman et al, 2016), while the MMSE

scores in the Berlin cohort were 27.7 � 1.9 (mean � SD) for non-

AD and 22.7 � 4.5 for AD. Tau (MAPT), osteopontin (SPP1), and

14-3-3c (YWHAG) were the top three proteins inversely correlating

with the MMSE score (Fig EV4A). Osteopontin has already been

reported to inversely correlate with the MMSE score in AD (Comi

et al, 2010). Moreover, in our 40-protein signature proteins with

higher abundance in AD CSF correlated negatively with the MMSE

score and vice versa.

When stratifying the Berlin cohort into “high MMSE score” and

“low MMSE score” groups over a cutoff range from 29 to 21, we

obtained the greatest separation at a cutoff of 25. Reassuringly,

MAPT and YWHAG were the top outliers and our 40-protein signa-

ture showed the expected association with the MMSE groups at all

cutoff values in spite of the limited diagnostic performance of the

MMSE evaluation (Fig EV4B–F) (Perneczky et al, 2006; Mitchell,

2009; Arevalo-Rodriguez et al, 2015). Thus, CSF protein signatures

linked to biochemically defined AD also associate with cognitive

performance.

Neuronal and glycolytic signature in AD CSF

To identify biological signatures in the AD-associated proteome alter-

ations, we performed an annotation enrichment analysis of func-

tional terms (GO biological process, GO cellular compartment,

UniProt Keywords) in the global proteome AD/non-AD fold changes.

We obtained 21 annotation terms below a P-value of 0.05, all of

which showed consistency across the three cohorts (Materials and

Methods, Fig 4F). Terms including “neuron projection” and “regula-

tion of neuron differentiation” underline the neuronal signature in

the AD CSF proteome. Interestingly, glycolysis and gluconeogenesis

presented as top terms with enrichment in AD CSF in this unbiased

analysis. This concurs with the presence of glycolytic proteins in our

40-protein signature. These include fructose-bisphosphate aldolase A

(ALDOA) and C (ALDOC), pyruvate kinase PKM (PKM), c-enolase
(ENO2), aspartate aminotransferase, mitochondrial (GOT2), phos-

phoglycerate kinase 1 (PGK1), L-lactate dehydrogenase A chain

(LDHA), and B chain (LDHB) (Fig 3F). Moreover, other glycolytic

proteins in the dataset not passing the significance cutoffs neverthe-

less uniformly followed the same trend of elevated abundances in

AD CSF (Appendix Fig S5). Glycolytic proteins may originate from

astrocytes as glycolysis in the brain is mainly performed by these

cells to provide lactate for oxidative phosphorylation in neurons

(Bélanger et al, 2011; preprint: Higginbotham et al, 2019). Further-

more, the GO cellular compartment annotation term “mitochon-

drion” was also enriched in AD CSF, and mitochondrial dysfunction

is a known hallmark of AD (Querfurth & LaFerla, 2010). When we

mapped the up-regulated proteins of our 40-protein signature onto a

deep human brain proteome (Carlyle et al, 2017), their correspond-

ing abundance in brain was generally in the more abundant range

(Fig 4G and H). This observation is consistent with mechanisms in

which cellular proteins are released into the CSF by tissue damage-

associated loss of membrane integrity, exosome release, or others.

Further confirmation of AD-associated proteome alterations in
an independent cohort

After completion of our study, a related preprint appeared (preprint:

Higginbotham et al, 2019). Similarly to our study, the authors inves-

tigated proteomic profiles in a study of 20 AD cases and 20 controls,

although they used a different experimental workflow. CSF samples

were depleted, digested, chemically labeled for multiplexing by an

isobaric tag, fractionated, and analyzed by mass spectrometry,

achieving a remarkable depth of quantitation. A second cohort,

consisting of 33 AD and 32 controls and 30 asymptomatic cases,

was also measured, although with a somewhat different method

and a reduced proteome depth. Many AD-associated CSF signatures

observed in our study including the glycolytic signature, the

neuronal signature, and the 14-3-3 protein signature are also

reported in the manuscript. This provides additional evidence for

these signatures to be AD-associated from independent cohorts iden-

tified by a different experimental approach.

To determine a panel of consistently AD-regulated proteins and

to assess inter-study consistency in more detail, we downloaded the

available data and compared them to our data. As tau was not

contained in the second cohort dataset and only 31 proteins signifi-

cantly differed by AD status in both cohorts of that independent

study, we limited our comparison to the 20 AD cases versus 20

controls cohort by Higginbotham et al. This dataset contained 2,875

proteins quantified in at least half of the samples and 528 proteins

thereof differed significantly (P < 0.05) by AD status. Notably,

◀ Figure 4. Protein correlation with t-tau measurements and analysis of annotation term enrichment.

A–C Correlation of proteins with ELISA-measured t-tau concentration across samples within the Sweden (A), Magdeburg (B), and Berlin (C) cohorts. Proteins with a
q-value below 0.05 are labeled in yellow. Proteins of the 40-protein signature are colored in red for those with higher abundance in AD CSF and in blue for those
with higher abundance in non-AD CSF.

D Three-cohort summary of proteins significantly correlating with ELISA-measured t-tau. Protein names given for the 29 proteins out of the 40-protein signature
with significant (P < 0.05) correlation in each of the three cohorts. Pyruvate kinase PKM (PKM) was quantified in two isoforms, and UniProt IDs are given in
parentheses.

E Overlap of proteins significantly differing by AD status with proteins significantly correlating to ELISA-measured t-tau.
F Annotation enrichment in the AD versus non-AD fold change dimension. Terms with positive enrichment means are enriched in AD CSF over non-AD CSF.

Conversely, terms with enrichment means below zero are enriched in non-AD compared with AD CSF. Annotations filtered for significance of enrichment (P < 0.05)
and term size (10–100 proteins per term) in all three cohorts.

G, H Protein abundance distribution of CSF (G) and brain (H) showing the abundances of AD-modulated CSF proteins. Proteins of our 40-protein signature are
highlighted in red (elevated abundance in AD) and blue (elevated abundance in non-AD). Proteins linked to glucose metabolism are highlighted in purple and
labeled.
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despite the different proteome depth the number of proteins that dif-

fered by AD status is similar to the proteins that differed signifi-

cantly by AD status in the Sweden (540) and Magdeburg/Kiel (453)

cohorts. These similar numbers in three out of four cohorts suggest

that both proteomic approaches cover a substantial part of the CSF

proteome signature related to AD.

Out of our 40-protein signature, 38 proteins were contained in

the dataset of this independent study and 26 of 38 (68%) thereof

were also significant (Fig EV5A, Dataset EV4). This is a highly

significant enrichment among all significant proteins in the dataset

of that independent study (odds ratio 10, P < 0.0001, Fig EV5B).

The directionality of abundance elevation in either AD or non-AD

CSF was consistent across studies for these 26 core proteins

(Fig EV5C). Moreover, quantitative fold change agreement was high

(Pearson r = 0.76; Fig EV5D). Among these 26 proteins, only one

protein, fetuin-B (FETUB), had an elevated abundance in non-AD

CSF, while 25 proteins were elevated in AD CSF including tau,

glycolysis-related proteins, 14-3-3 proteins, protein/nucleic acid

deglycase DJ-1 (PARK7), superoxide dismutase 1 (SOD1), fatty acid-

binding protein 3 (FABP3) and hypoxanthine-guanine phosphoribo-

syltransferase (HPRT1). Taken together, AD-associated protein

signatures identified in our work are validated in a completely sepa-

rate study using an independent cohort and different experimental

strategy.

AD classification by machine learning on the CSF signature

Next, we next assessed if the MS intensities of the set of 26 core

proteins which overlap between our and the Higginbotham studies

could be applied to classify participants by AD status using

machine learning and we explored a variety of machine learning

models. First, to determine feature importance, we employed a

decision tree and found that a model with a maximum depth of

six levels, using the intensities of 14 proteins could correctly clas-

sify the participants in the three studies by AD status. A visualiza-

tion of the decision tree revealed that levels of tau itself were at

the root, followed by the glycolytic enzyme pyruvate kinase PKM

(PKM), and macrophage migration inhibitory factor (MIF) at the

next level (Fig 5A). As protein intensities are correlated, a deci-

sion tree could potentially rank proteins differently depending on

its initial state. However, when repeatedly training the decision

tree (n = 10,000) with random initial states and also shuffling the

dataset, the root of the tree remained similar (MAPT at rank 1 in

all cases, PKM at rank 2 or 3 in 82.8%, and MIF at rank 2 or 3

in 84.3% of all cases, respectively). This underlines the impor-

tance of these three proteins among the CSF proteome as indica-

tors of AD.

To test models for generalizability, we considered several tree-

based ensemble methods. We trained six commonly used methods

(AdaBoost, Bagging, ExtraTrees, GradientBoosting, RandomForest,

and XGBoost) on the intensities of the 14 proteins selected by the

decision tree above such that the tree needed to completely classify

the participants. The protein intensities were randomly shuffled and

split using a k-folds cross-validator (k = 6) into six training/test

splits. Accordingly, shuffling entailed mixing of patients from dif-

ferent cohorts but each sample was in the testing dataset exactly

once. For each method, we performed cross-validation and deter-

mined a receiver operating characteristic (ROC) curve.

All classifiers reached an area under the ROC curve (AUC) of at

least 0.84. XGBoost had the best performance with a mean AUC of

0.91 and was selected for further analysis. To determine the optimal

number of features, we iteratively added them in them in their order

of importance in the decision tree. The overall model performance

increased with the number of proteins and reached a plateau at six

proteins (MAPT, PKM [P14618-2 isoform], MIF, IMPA1, YWHAZ,

and ALDOC), which we selected for the final model.

To assess the performance of our final model as a predictive test

we again used k-fold cross-validation in six different training/test

splits. The different splits exhibited good agreement with each other

at AUC’s ranging from 0.87 to 0.98, indicating robustness of classifi-

cation (Fig 5B). We then determined the overall confusion matrix

combining the six splits (“net reclassification”, the number of

correctly and incorrectly classified participants) (Fig 5C). In total,

72 out of 88 AD patients and 95 out of 109 non-AD patients were

correctly identified, corresponding to a sensitivity of 82% and a

specificity of 87%.

Discussion

We have combined advanced sample preparation, cutting-edge mass

spectrometry hardware, acquisition schemes, MS data processing

and bioinformatic analysis and optimized it for CSF to build a high-

performance CSF proteomics workflow amenable to high-

throughput and large cohorts. About 1,500 proteins can be quanti-

fied and over 1,000 with intra- and inter-assay coefficients of varia-

tion (CVs) below 20%. Using this technology, we identified known

biomarkers such as tau as top candidates as well as a range of novel

potential biomarkers. Harnessing this pipeline, we compared AD

and non-AD CSF in three independent cohorts. This led to a 40-

protein signature whose members are consistently up- or down-

regulated in AD CSF vs. non-AD CSF across the three cohorts.

Cases and controls in two of our cohorts separated better on

the basis of clinical AD CSF biomarker concentrations (t-tau,

p-tau181, Ab1–42, Ab1–40) than in the third one. Likewise, AD-asso-

ciated differences in the CSF proteome were smaller and fewer

protein alterations were statistically significant in that third cohort.

The attenuated separation according to clinical CSF values suggests

that this third cohort comprised milder AD cases and early-stage

AD patients in the non-AD group just below the cutoff values. This

would lead to the attenuated overall differences in the CSF

proteome profile between the AD and the non-AD groups that we

observe.

There is no universally accepted AD classification system;

however, various different integration schemes of clinical AD CSF

biomarkers have been explored (Bloudek et al, 2011; Ferreira et al,

2014; Ritchie et al, 2017). Using the Hulstaert index, a variation of

the Ab1–42/t-tau ratio, for AD classification of the three cohorts we

obtained largely the same, but fewer statistically significant poten-

tial marker proteins compared to our uniform AD classification

(Appendix Fig S6A–D, Materials and Methods) (Hulstaert et al,

1999; Molinuevo et al, 2013; Vos et al, 2013). Furthermore, the

mini-mental state examination (MMSE) cognitive test was

performed in one of our cohorts. It was encouraging to find the

proteomic outliers identified by analysis of biochemically defined

AD CSF to be associated with the MMSE score performance.
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Another general challenge in biomarker discovery studies are

cohort-specific effects. This relates particularly to multi-centric stud-

ies with distinct inclusion criteria for cases and controls. Despite

cohort-specific effects and attenuated AD/non-AD differences in the

third cohort of our study, proteins that statistically significantly

differed by AD status in multiple cohorts exhibited very good quali-

tative and quantitative cross-cohort agreement in their AD modula-

tion. A signature of 40 CSF proteins was consistently associated

with AD status and showed high correlation values of protein fold

changes across cohorts. When further combined with a recent,

A

B C

Figure 5. Machine learning separates AD from non-AD CSF at high performance.

A Decision tree to classify AD vs. non-AD participants based on the protein levels of a core 26 protein set. Splits are indicated by black triangles. A tree with a minimum
depth of six can correctly classify the participants by AD status.

B Receiver operating characteristic (ROC) curve for the model based on XGBoost. The diagonal line indicates random performance. Blue line represents the mean
performance of the model when trained on six stratified train—test splits (k-fold). The gray areas represent the standard deviation of ROC values.

C Confusion matrix indicating model performance when predicted on the test split of the cross-validation. Overall accuracy is 0.85.
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independent effort on bioRxiv (preprint: Higginbotham et al, 2019;

Johnson et al, 2020), which used different MS technology, this

resulted in a set of 26 core proteins consistent across four indepen-

dent cohorts. This highlights the power of the “rectangular strategy”

study design in discerning cohort-specific from pathological effects

for biomarker discovery.

Our relatively large dataset with nearly 200 participants

prompted us to explore machine learning for the purpose of assess-

ing AD status on the basis of the levels of the 26 core proteins. We

found that an ensemble method-based classifier reached high speci-

ficity (87%) and sensitivity (82%), while showing promising gener-

alizability. Intriguingly, tau itself, one of the glycolysis-related

proteins, and an immunological factor were selected by the machine

learning algorithm as the most important features for classification,

proving further validation of our biomarker panel and biomarker

identification pipeline. The modeling also indicated that additional

and more uniform training data could further improve diagnostic

performance. Furthermore, additional clinical data, such as cogni-

tive assessments, can naturally be incorporated in this framework.

In the list of the 26 core proteins, several have known links to

neurodegeneration such as protein/nucleic acid deglycase DJ-1

(PARK7) and superoxide dismutase 1 (SOD1) or genetic interaction

links to AD like 14-3-3 protein f/d (YWHAZ) (Bonifati et al, 2003;

Mateo et al, 2008; Renton et al, 2014). Likewise, the set also

contains the tentative AD biomarker CHI3L1 (protein YKL-40) likely

reflecting astrocytic activation (Olsson et al, 2016; Baldacci et al,

2017). Moreover, we identify a number of glucose metabolism-asso-

ciated proteins elevated in AD CSF in line with other reports (Dayon

et al, 2018; preprint: Higginbotham et al, 2019; Sathe et al, 2019).

These glycolytic proteins and other AD-associated proteins in CSF

are highly abundant in brain and could be released into CSF from

brain tissue. Regardless of the mechanism of accumulation in the

CSF, the utility of abundant cellular proteins as markers is generally

accepted in clinical practice. In the plasma proteome, this is demon-

strated by troponin levels indicative of acute myocardial infarction

(Keshishian et al, 2015) and liver proteins indicative of fatty liver

disease (Niu et al, 2019).

The fact that CSF proteomics is now able to detect brain-derived

proteins and determine protein signatures consistent across multiple

independent multi-centric cohorts sets the stage for future

biomarker discovery studies in neurodegenerative diseases. Next

steps should include investigating the added diagnostic value of the

AD CSF protein signature when combined with established diagnos-

tic criteria in the clinic, preferably in a machine learning framework.

Further, we speculate that the workflow presented here would be

highly suited for the discovery of additional clinically and etiologi-

cally relevant biomarkers. There is a great need for early diagnosis,

prognosis, and treatment efficacy biomarkers (Winblad et al, 2016).

Further studies are warranted assessing the relevance of these

proteins in prospective studies of dementia-free individuals in

midlife with repeated brain imaging, cognitive testing, and long-

term follow-up for dementia incidence. Recent developments in MS-

based proteomics now enable fast and efficient quantitative readout

of relatively large panels of proteins in a targeted or “globally

targeted” manner (Abbatiello et al, 2013; Wichmann et al, 2019).

This may enable the use of MS-based proteomics not only for the

discovery of disease-associated protein patterns but also for routine

clinical tests (Geyer et al, 2017).

Materials and Methods

Study populations

Three cohorts of AD and non-AD control CSF samples were

obtained, one from Sweden, one originating from the German cities

of Magdeburg and Kiel (through the Harvard T. H. Chan School of

Public Health), and one from Berlin. The CSF concentration values

of the clinical AD biomarkers t-tau, p-tau181, Ab1–42, and Ab1–40
were available as follows: t-tau, p-tau181, Ab1–42 for the Sweden

cohort; t-tau, p-tau181, Ab1–42, and Ab1–40 for the Magdeburg cohort;

and t-tau, Ab1–42, and Ab1–40 for the Berlin cohort.

Sweden CSF samples were obtained from patients with cognitive

impairment at several memory clinics in western Sweden. De-identi-

fied diagnostic remnant CSF material was used in this study, which

was approved by the Gothenburg ethics committee. The AD and

non-AD groups as classified by the primary AD criteria of this study

were well separated biochemically based on the clinical AD CSF

biomarkers. CSF biomarker levels were measured using the

INNOTEST assays (Fujirebio, Ghent, Belgium) in the Clinical Neuro-

chemistry Laboratory, Sahlgrenska University Hospital, Mölndal,

Sweden, by board-certified laboratory technicians who were blinded

to clinical data. The laboratory procedures were accredited by the

Swedish Board for Accreditation and Conformity Assessment

(SWEDAC).

Magdeburg CSF samples originated from patients at the outpa-

tient memory clinic at the Otto-von-Guericke University Magdeburg.

CSF biomarker levels were measured at the site of collection using

commercially available INNOTEST ELISA kits (Fujirebio, Ghent,

Belgium). The AD and non-AD groups as defined by our primary

AD classification criteria were well separated biochemically based

on the clinical AD CSF biomarkers. The local ethics committee

approved the use of the CSF samples. Additional control samples

from Kiel were acquired from patients treated at the emergency

department at the University Hospital Schleswig-Holstein. Informed

consent for scientific analysis of diagnostic remnant samples

collected for clinical care and ethics committee approval for use of

the samples were obtained.

Berlin CSF samples were obtained from patients at the Memory

Clinic of Charité Universitätsmedizin Berlin. The clinical AD

biomarkers t-tau, Ab1–42, and Ab1–40 were measured at the site of

collection. The V-PLEX Ab Peptide Panel 1 (6E10) Kit (Meso Scale

Diagnostics, Rockville, MD, USA) was used for Ab peptide quantita-

tion and the INNOTEST hTAU Ag (Fujirebio Germany GmbH, Hann-

over, Germany) for tau. The AD and non-AD groups as defined by

our primary AD classification criteria were moderately separated

biochemically based on the clinical AD CSF biomarkers. CSF collec-

tion was standardized as described elsewhere (Schipke et al, 2011).

The local ethics committee approved the use of the CSF samples. All

participants provided written informed consent.

Primary AD classification

To enable uniform analysis, we standardized classification of AD

and non-AD for the different cohorts uniformly based on the CSF

concentrations of t-tau, Ab1–42, and Ab1–40 for the Sweden, Magde-

burg, and Berlin cohorts. Patients were classified as AD if the t-tau

concentration was above 400 ng/l and the Ab1–42 concentration
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below 550 ng/l or the Ab1–42/Ab1–40 ratio was below 0.065. The

t-tau criterion and at least one of the two Ab criteria had to be met

for a patient to be classified as having AD and patients were classi-

fied as not having AD otherwise. The classification here is derived

from a classification according to the cutoffs of t-tau being higher

than 400 ng/l, p-tau181 higher than 60 ng/l, and Ab1–42 lower than

550 ng/l (Sjogren et al, 2001; Hansson et al, 2006). We additionally

included the CSF Ab1–42/Ab1–40 ratio as it has a superior diagnostic

performance than the Ab1–42 concentration alone (Spies et al, 2010;

Dubois et al, 2014; Niemantsverdriet et al, 2017). Participants with

missing information on the CSF t-tau or Ab1–42 concentration in the

Sweden, Magdeburg, or Berlin cohort were excluded. Kiel CSF

samples originated from young patients (32.0 � 17.1 years,

median � SD) treated at an emergency department with no indica-

tions of AD or other neurodegenerative diseases. Thus, we included

these samples as non-AD controls despite the missing clinical

biomarker CSF concentrations.

Hulstaert index

The Hulstaert index for AD classification is a variant of the Ab1–42/
t-tau ratio with improved diagnostic performance (Molinuevo et al,

2013). It is calculated as Ab1–42/(240 + (1.18*t-tau)) using ng/l

concentrations, and samples below a cutoff value of one are classi-

fied as AD (Hulstaert et al, 1999). We performed an independent

analysis using the Hulstaert index instead of our uniform classifi-

cation. As shown in Appendix Fig S6, the results overlap almost

completely; however, the Hulstaert index, although less stringent in

AD inclusion, leads to a smaller number of significantly different

proteins.

Clinical AD diagnosis

Information about clinical AD status, i.e. the diagnosis of symp-

tomatic AD according to site-specific criteria, was available for the

Magdeburg, Kiel, and Berlin cohorts. At these sites, clinical AD diag-

noses had been reached by assessing the clinical presentation of

patients according to distinct guidelines.

In Magdeburg, the clinical AD diagnosis was based on the

patient’s clinical presentation using the National Institute of Neuro-

logical and Communicative Disorders and Stroke—Alzheimer’s

Disease and Related Disorders Association (NINCDS-ADRDA) crite-

ria (McKhann et al, 2011). The clinical evaluation included the

CERAD (Consortium to Establish a Registry for Alzheimer’s Disease)

neuropsychological test battery and magnetic resonance imaging

(Morris et al, 1989). AD and control subjects had no clinical signs of

stroke, epilepsy, or other neurodegenerative diseases. For the clini-

cal diagnosis of AD, local concentration cutoffs for core AD

biomarkers were used; however, fulfillment of the cutoff criteria

was considered indicative but not sufficient for an AD diagnosis

which also depended on the patient’s clinical presentation. AD was

considered likely if the criteria p-tau181 > 80 ng/l and t-

tau > 450 ng/l were simultaneously met. Likewise, AD was consid-

ered likely if the criteria Ab1–42 < 485 ng/l and the amyloid ratio

Ab1–42/Ab1–40 < 0.06. Non-AD control patients underwent CSF with-

drawal to exclude neuroinflammation and dementia. Control

subjects showed no signs of neurodegeneration and had normal CSF

parameters regarding cell count, protein content, and lactate

concentration. All but one of 26 biochemically defined AD cases

according to our primary AD classification study also had a clinical

AD diagnosis, while none of the non-AD controls had a clinical AD

diagnosis.

Kiel CSF samples originated from patients presenting with acute

headache. No patient had an AD diagnosis or showed clinical indi-

cations of neurodegenerative diseases. CSF sampling was performed

to exclude meningitis which is not present in any subject in this

study. Subjects with a history of dementia, systemic or CSF

inflammatory signs, and blood–brain barrier dysfunction (CSF-to-

serum albumin ratios ≥ 9 × 103) were excluded, and clinical diag-

noses were diverse and predominantly migraine, headache,

common cold or sinusitis or skin sensation disturbance (Koch et al,

2017).

In Berlin, patients were diagnosed as having AD based on the

clinical presentation according to the American Psychiatric Associa-

tion guidelines, the Diagnostic and Statistical Manual of Mental

Disorders (DSM), version DSM-5. Diagnoses were reached at a

consensus panel composed of psychiatrists, neurobiologists, and

neuropsychologists according to the DSM-5. Specifically, patients’

relevant medical history, standard cognitive and functional

measurements (e.g., MMSE), CSF biomarker values for t-tau and

amyloid peptides, and cMRI findings were examined in parallel. For

the clinical diagnosis of AD, site-specific CSF concentration cutoffs

for core AD biomarkers were used. Under these conditions, the

following CSF biomarker values were rated as indicative of AD:

Ab1–42 < 600 ng/l or Ab1–42/Ab1–40 ratio ≤ 0.060 (in 2014 and

before) or Ab1–42/Ab1–40 ratio ≤ 0.065 (from 2015 on), in addition

to t-tau > 350 ng/l. Again, however, fulfillment of these cutoff crite-

ria was considered indicative but not sufficient for an AD diagnosis

which also depended on the patient’s clinical presentation. Out of

33 biochemically defined AD cases according to of our primary AD

classification, 24 also had a clinical AD diagnosis at the time of CSF

withdrawal, while none of the non-AD controls had a clinical AD

diagnosis. For three of the nine biochemically defined AD cases

without a clinical AD diagnosis, the medical records included addi-

tional clinical information or information collected months to years

after the CSF withdrawal as the patient returned to the clinic again.

These three patients either developed clinical AD within 2 years,

presented with mild cognitive deficiencies of the AD type or a “not

yet specified neurodegenerative disease”.

Sample preparation

The sample preparation was optimized for CSF on the basis of our

Plasma Proteome Profiling workflow (Geyer et al, 2016). CSF was

aliquoted in 96-well plates and processed with an automated set-up

on an Agilent Bravo liquid handling platform. In total, 40 ll of CSF
was mixed with 40 ll PreOmics lysis buffer (PreOmics GmbH) for

reduction of disulfide bridges, cysteine alkylation, and protein

denaturation at 95°C for 10 min. After a 10-min cooling step, 0.2 lg
trypsin and 0.2 lg LysC were added to each sample and digestion

was performed at 37°C for 4 h. Peptides were purified on two 14-

gauge StageTip plugs according to the PreOmics iST protocol

(https://preomics.com/products). The StageTips were centrifuged

using an in-house 3D-printed StageTip tray at 1,500 g for washing

and elution. The eluate was completely dried using a SpeedVac

centrifuge at 45°C (Eppendorf, Concentrator plus), resuspended in
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10 ll buffer A* (2% v/v acetonitrile, 0.1% v/v trifluoroacetic acid,

and stored at �20°C. Upon thawing, samples were shaken for 1 min

at 2,000 rpm (thermomixer C, Eppendorf). Peptides were then

subjected to LC-MS/MS analysis.

Additionally, for library generation for the DIA measurements,

peptides of the Sweden cohort were pooled into one AD sample

pool and one non-AD sample pool of 75 lg each. Peptide concen-

tration was measured spectroscopically by absorbance at 280 nm

(Nanodrop 2000, Thermo Scientific). The AD sample pool and the

non-AD sample pool were fractionated into 24 fractions each by

high-pH reversed-phase chromatography on the “spider fractiona-

tor” (Kulak et al, 2017). Fractions were completely dried and

resuspended in 10 ll buffer A*. To determine coefficients of varia-

tion, five aliquots of a CSF pool on one plate were subjected to

sample preparation (intra-plate) and this was repeated on three dif-

ferent days (inter-plate).

Mass spectrometry analysis

Samples were measured using an EASY-nLC 1200 (Thermo Fisher

Scientific) coupled to a Q Exactive HF-X Orbitrap mass spectrome-

ter (Thermo Fisher Scientific) via a nano-electrospray ion source

(Thermo Fisher Scientific). Purified peptides were separated on

50 cm UHPLC columns with an inner diameter of 75 lm packed

in-house with ReproSil-Pur C18-AQ 1.9 lm resin (Dr. Maisch

GmbH). In total, 500 ng of purified peptide in buffer A* was

loaded onto the column in buffer A (0.1% v/v formic acid) and

eluted at a flow rate of 300 nl/min and a temperature of 60°C by a

linear 80-min gradient from 5% to 30% buffer B (0.1% v/v formic

acid, 80% v/v acetonitrile), followed by a 4-min increase to 60%

B, a further 4-min increase to 95% B, a 4-min plateau phase at

95% B, a 4-min decrease to 5% B, and a 4-min wash phase of 5%

B. To acquire MS data, the data-independent acquisition (DIA)

scan mode was used for single-shot patient samples, whereas the

fractionated samples of the AD pool and non-AD pool were

acquired with a top12 data-dependent acquisition (DDA) scan

mode. Both acquisition schemes were combined with the same

liquid chromatography gradient. The mass spectrometer was oper-

ated by the Xcalibur software (Thermo Fisher). DDA scan settings

on full MS level included an ion target value of 3 × 106 charges in

the 300–1,650 m/z range with a maximum injection time of 20 ms

and a resolution of 60,000 at m/z 200. At the MS/MS level, the

target value was 105 charges with a maximum injection time of

60 ms and a resolution of 15,000 at m/z 200. For MS/MS events

only, precursor ions with 2–5 charges that were not on the 20 s

dynamic exclusion list were isolated in a 1.4 m/z window. Frag-

mentation was performed by higher-energy C-trap dissociation

(HCD) with a normalized collision energy of 27 eV. DIA was

performed with one full MS event followed by 33 MS/MS windows

in one cycle resulting in a cycle time of 2.7 s. The full MS settings

included an ion target value of 3 × 106 charges in the 300–

1,650 m/z range with a maximum injection time of 60 ms and a

resolution of 120,000 at m/z 200. DIA precursor windows ranged

from 300.5 m/z (lower boundary of the first window) to

1649.5 m/z (upper boundary of the 33rd window). MS/MS settings

included an ion target value of 3 × 106 charges for the precursor

window with an Xcalibur-automated maximum injection time and

a resolution of 30,000 at m/z 200.

Mass spectrometry data processing

The MS data of the fractionated pools (DDA MS data, 24 AD frac-

tions, 24 non-AD fractions) and the single-shot subject samples

(DIA MS data, all samples from all three cohorts) were used to

generate a DDA-library and direct-DIA-library, respectively, which

were computationally merged into a hybrid library in the Spec-

troMine software, version 1.0.21621.8.15296 (Biognosys AG,

Schlieren, Switzerland). The hybrid library contained 33,392 precur-

sors linked to 23,855 unique peptides considering peptide modifi-

cations or 17,301 unique peptides based on the amino acid

sequence corresponding to 2,733 protein groups. The hybrid spec-

tral library was used to search the MS data of the single-shot patient

samples in the Spectronaut software, version 12.0.20491.9.26669

(Biognosys AG), for final protein identification and quantitation. All

searches were performed against the human UniProt reference

proteome of canonical and isoform sequences with 93,786 entries

downloaded in March 2018. Searches used carbamidomethylation

as fixed modification and acetylation of the protein N-terminus,

oxidation of methionines and deamidation of asparagine or gluta-

mine as variable modifications. Default settings were used for other

parameters. In brief, a trypsin/P proteolytic cleavage rule was used,

permitting a maximum of two miscleavages and a peptide length of

7–52 amino acids. Protein intensities were normalized using the

“Local Normalization” algorithm in Spectronaut based on a local

regression model (Callister et al, 2006). Spectral library generation

stipulated a minimum of three fragments per peptide, and maxi-

mally, the six best fragments were included. A protein and precursor

FDR of 1% were used and protein quantities were reported in

samples only if the protein passed the filter (“Q-value sparse” mode

data filtering).

Bioinformatics data analysis

Data analysis was mainly performed in the Perseus environment

version 1.6.1.3 but also in version 1.6.0.9 for correlation analysis

and version 1.5.2.11 for Venn diagram analysis (Tyanova et al,

2016). Proteins with < 20 observations across the entire dataset were

excluded, reducing the dataset from 1,542 to 1,484 proteins. Protein

intensities were log10-transformed for further analysis, apart from

correlation and coefficient of variation analysis. All t-tests performed

were two-sided and unpaired. False discovery rate (FDR) control to

account for multiple hypothesis testing in statistical tests was

performed by a permutation-based model in conjunction with a

SAM-statistic with an s0-parameter of 0.001 (Tusher et al, 2002).

Annotation term enrichment was performed with the 1D enrichment

tool in Perseus separately for each cohort (Cox & Mann, 2012).

Annotation terms were filtered for terms with a P-value cutoff of

0.5% in each cohort. Moreover, terms comprising less than 10 or

more than 100 proteins in our dataset of 1,484 proteins were

excluded because we found that annotation enrichment analysis is

often dominated by very small or large but not meaningful terms.

Hierarchical clusters were generated using the built-in tool in

Perseus. When protein abundances were reported on the group level

(e.g. Sweden AD), Z-scoring across samples either within the cohort

or across cohorts (for all 197 samples) was performed as stated in

the figure legends and the median Z-score was taken as group abun-

dance. Sample groups (e.g. Sweden AD) were clustered based on
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Pearson’s correlation coefficient, while proteins were clustered based

on Euclidian distance unless ranked by the three-cohort mean.

A deep human brain proteome was used for comparison to the

CSF proteome, and 753 proteins were matched based on ensemble

identifiers (Carlyle et al, 2017, supplementary table 5). For genera-

tion of the abundance distribution curves, median protein abun-

dances across all samples within a proteome were used. For the

comparison of AD CSF proteomes with the independent report

(preprint: Higginbotham et al, 2019), data for the CSF1 dataset were

downloaded from bioRxiv.org. Proteins were matched to our data

based on UniProt protein identifiers, apart from of MAPT, ALDOA,

and SOD2 which were matched based on gene names. Fisher’s exact

test in combination with the Baptista–Pike method was used in

GraphPad Prism version 7.03 to assess the significance of enrich-

ment and odds ratios in contingency table settings. This included

the analysis of association of t-tau concentration-correlated proteins

with proteins differing by AD status and the analysis of enrichment

of AD-regulated proteins identified in this study among the proteins

differing significantly (P < 0.05) by AD status in the Higginbotham

CSF1 dataset.

We used linear regression analysis computed in RStudio version

1.2.5033 using R version 3.6.3 and assessed the association of log10-

transformed protein intensities first with AD status (Fig EV3C) and

second with the log10-transformed ELISA-measured CSF t-tau

concentration (Appendix Fig S4B), adjusting for age, sex, and cohort

(Sweden, Magdeburg/Kiel, or Berlin) in both models. To compare

estimators of binary (AD status, sex) to those of continuous vari-

ables (age, t-tau concentration [log10]), the estimators for continu-

ous variables (i.e. per 1 year [age] and per 1 unit in log10 space of t-

tau concentration/[ng/l]) were multiplied with the interquartile

range (IQR) of the variable for plotting. IQRs for age were eleven

years for the complete dataset (Fig EV3C) and 9 years for the

reduced dataset excluding the Kiel samples due to missing t-tau

concentration values (Appendix Fig S4B). The t-tau concentration

75% and 25% quantiles were 802 ng/l and 275 ng/l, respectively,

corresponding to an interquartile range of 527 and 0.4648 in linear

and log10 space, respectively (Appendix Fig S4B). Regression coeffi-

cients for age and sex were displayed in the heat map if the P-value

for these estimators was below 0.05. All proteins were associated

with AD status or t-tau concentration at a significance below of 0.05

in each plot.

Coefficients of variation (CVs) were calculated in RStudio for all

inter-plate and intra-plate combinations of three samples, the

median thereof was reported as overall coefficient of variation.

Combinations with only one observation in three samples of a given

protein were excluded. The protein CVs of the main study were

calculated likewise within cohorts individually. The median CVs

were calculated within the three cohorts, and the median thereof

reported as final CV.

Machine learning for participant classification

All data processing was done in Python (3.7.3). Protein intensity data

were Z-scored within cohorts, saved in Excel, and imported via the

pandas package (0.25.3). Except for the XGBoost classifier, missing

intensities were replaced with 0. Machine learning classifiers were

employed using the scikit-learn package (0.21.3) and the XGBoost

package package (0.90) (Fabian et al, 2011). Results were plotted via

matplotlib (3.1.2). Visualization of the decision tree was performed

with the dtreeviz package (https://github.com/parrt/dtreeviz).

In order to estimate features important for AD prediction, we

employed a decision tree (Freund & Schapire, 1997). The minimum

depth of the tree was increased until a training accuracy of 1.0 was

achieved. At a tree depth of 2, using the protein intensities of MAPT,

PKM (protein group P14618-2), and MIF, the training accuracy had

reached 0.86, highlighting the importance of these proteins for the

classifier. For a tree depth of six, intensities of a total of 14 proteins

were used by the algorithm.

For estimating how well our tree-based approach would general-

ize to new data, we tested several ensemble methods (AdaBoost,

Bagging, ExtraTrees, GradientBoosting, RandomForests, XGBoost).

The subset of 14 protein intensities selected by the decision tree

above were randomly shuffled and split using a k-Folds cross-vali-

dator (k = 6). Each model was used with its default parameters.

XGBoost had the best performance and was selected for further

analysis. To determine the optimum set of features, we added

proteins to the model iteratively according to their feature impor-

tance within the tree (Fig 5A) and compared the AUC as a measure

of model performance. To control for overfitting, we employed early

stopping with 10 rounds and logloss as evaluation metric for best

generalizability. No further tuning of hyperparameters was

performed at this stage.

To assess the sensitivity and specificity of the final method, we

combined each train and test set of the cross-validation and calcu-

lated the confusion matrix. Here, a test accuracy of 0.85 was

achieved (training accuracy 0.94; sensitivity 82%, specificity 87%

on our AD data).

Data availability

The datasets produced in this study are available in the following

databases:

• Proteomic datasets: PRIDE archive PXD016278 (Perez-Riverol

et al, 2019; https://www.ebi.ac.uk/pride/archive/)

Expanded View for this article is available online.
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