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Supporting Information

Supplementary Figure S1: Enzymatic digestion is the most widely used technique

(a) We performed a PubMed search containing the terms “single cell sequencing, brain, 2019”. Out
of 172 search results we found 30 studies from 2019 that performed scSeq on fresh animal or human
brain tissues. The remaining excluded studies were: unrelated search results, reviews, in vitro
studies, purely bioinformatic studies and single nuclei Sequencing studies (mainly preformed on
frozen human brain samples). Out of the 30 studies 23 were performed using enzymatic digestion
(ED) and 7 with cold mechanical dissociation (MD). Although these are indeed not all brain scSeq
studies published in 2019, this snapshot represents the general trend. (b) The same search for 2020
yielded 84 results of which 18 were single cell sequencing studies in animals and humans. Of these,
14 were performed via ED, 2 via MD and 2 studies did not detail the brain dissociation protocol
used. The trend is similar for brain cell specific FACS and mass spectrometry analyses in published

studies.

Supplementary Figure S2: RNA-Seq QC-metrics

(a) The upper panel shows the distribution of the number of genes detected per cell (left) and
distribution of unique molecular identifiers (UMIs) (right). The lower panel shows mitochondrial
(left) and ribosomal (right) percentage. (b) Variable features: Relationship between gene expression
and its standard deviation. Highlighted in red are top 2000 variable genes, that are used for PCA.
(c) Left scatter: X-axis displays the number of UMIs per cell and the Y-axis is the mitochondrial
percentage per cell. Right scatter plot shows the relationship between the number of detected genes

and UMIs per cell.

Supplementary Figure S3: The cell isolation method affects the transcriptomic profiles of
several hippocampal cell types in the mouse.

Alterations in gene expression were observed in most other hippocampal cell types after 37°C
enzymatic digestion (ED) relative to cold mechanical dissociation (MD). Displayed in (a) are

select gene ontology terms associated with genes deregulated in response to ED in
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oligodendrocytes, neuronal precursor cells (NPC), border associated macrophages (BAM),
endothelial cells, mural cells and fibroblast-like cells. The bar color represents downregulation
in ED relative to MD (blue) and upregulation in ED relative to MD (red). The intensity of the
respective color indicates the adjusted p-value, while the size of the bars denotes the effect size,
i.e. the area under the curve. Depicted in (b) are the evidence plots showing the area under the
curve for selected gene ontology terms and the genes within the latter. X axis is the gene list
reported by Seurat::FindMarker function sorted by adjusted p-value. (at O is the gene with the
lowest p-value). Y axis is the cumulative fraction of genes in a specific GO term. Higher
accumulation of those genes in the top of the list (closer to 0 on X axis) results in larger AUC.
The color of the curve represents the specific cell type as depicted in Fig 1.

The full list significantly deregulated genes in each cell type and the associated gene ontology

terms can be found in Supplementary Tables 1 and 2 respectively.

Supplementary Figure S4: Cell isolation method affects the expression of immediate early
genes and genes associated with RNA and cellular metabolism.

Violin plots showing the expression distribution of selected examples of significantly
differentially expressed genes in different cell populations from ED and MD dissociation
conditions. Consistent with what reported by van den Brink et al in peripheral tissue subjected
to ED, (van den Brink et al., 2017) we find a global upregulation of the immediate early genes
(Jun, Egrl, Jund, Junb) and heat-shock protein genes (Hspala, Hspalb, Hspa8). We also
observed a global induction of genes associated with RNA-metabolic processes such as Snrpg
which is associated with alternative splicing functions (Papasaikas, Tejedor, Vigevani, &
Valcarcel, 2015). Furthermore, represented in this figure are some examples of ED-induced
downregulation of select genes. For instance, worth reporting is the downregulation of long
noncoding RNAs such as Meg3 and Malatl. The latter are receiving increasing attention as
regulators of brain development and players in various brain diseases (Sanli et al., 2018; Wang
et al., 2018; Zhang, Hamblin, & Yin, 2017). Also, we found a rather global downregulation in

the proteolipid protein gene Plpl which holds important roles in myelin sheet stability and
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microglial immune responses, (Tanaka et al.,, 2009; Tatar et al., 2010). Remarkable
downregulation following ED was observed also for Ly6h, which has been shown to modulate
the hippocampal a.7-nicotinic acetylcholine receptor subunit and consequently glutamatergic
signaling (Puddifoot, Wu, Sung, & Joiner, 2015). The full list significantly deregulated genes
in each cell type and the associated gene ontology terms can be found in Supplementary Tables

1 and 2 respectively.

Supplementary Figure S5: Enzymatic digestion affects the proteotype profile of
hippocampal microglia regardless of perfusion temperature. Some research groups perfuse
animals at room temperature (RT) rather than with ice-cold buffers. We sought to identify
whether perfusion at RT and subsequent ED at 37°C for 30 min also leads to a significant
cellular response in microglia. (a) The volcano plot shows the deregulated proteins in microglia
cells extracted from mice perfused at RT followed by enzymatic digestion at 37°C as compared to
microglial proteins from mice perfused at 4°C followed by mechanical dissociation at 4°C. We
found overall 2130 proteins with significant abundance difference. The GO terms for biological
processes associated with this deregulation are similar to the ones observed for the experiment
in Figure 2 and they are listed in Table S3. (b) Volcano plot displaying the deregulated proteins
in microglia cells extracted from mice perfused at RT followed by enzymatic digestion at 37°C as
compared to microglial proteins from mice perfused at 4°C followed by enzymatic digestion at
37°C. Only few proteins (66) were identified as significantly different in abundance. (c) Heat-
map showing the log2 protein abundance of microglia from mice perfused and isolated at 4°C in
comparison to the profile of microglia from mice perfused at either RT or at 4°C and subsequently
isolated via enzymatic digestion at 37°C. Overall, this analysis demonstrates that enzymatic
digestion at 37°C causes a substantial proteomic deregulation in microglia cells, regardless of
whether the animals are perfused at RT or at 4°C. Significantly different proteins were determined
by the threshold fold-change > 2 and adjusted p-value < 0.01. Benjamini-Hochberg method was
used to account for multiple testing. N= 4 biological replicates/group. A complete list of

differentially regulated proteins can be found in Supplementary Table S3. Supplementary Table S4



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

contains the complete list of GO-terms associated with deregulated proteins in all conditions

described.

Supplementary Figure S6: Back gating

(a) Gating strategy used for the FACS analysis of microglia cells. Single cells were gated followed
by a gating for live-cells and gating out debris. Microglia cells were selected based on their CD11b+
and CD45iow expression. (b, ¢) We found that mechanical dissociation yielded a higher
proportion of live microglia (b) (ts = 18.11, p < 0.0001) and microglia singlets (c) (ts = 12.14,
p < 0.0001) as compared to enzymatic digestion at 37°C. (d) Mechanical dissociation also
yielded a higher percentage of total single cells from adult mouse tumor samples (t7z = 4.38, p
= 0.0032). Unpaired two-tailed Student t test was used to compare the means. Error bars
represent the mean + standard deviation. Summary of two independent experiments, N= 4-5

biological replicates/group.

Supplementary Figure S7: Glia cells and RNA yields following cold mechanical dissociation.
(a) Table showing examples of the number of microglia and the respective total RNA that can be
obtained from one single adult mouse hippocampus (from one hemisphere) or two hippocampi
(from one mouse) using the mechanical dissociation protocol at 4°C proposed in this study (see
methods). Microglia cells were sorted via Magnetic Associated Cell Sorting (MACS) using anti-
CD11b microbeads. (b) The graphs show the successful enrichment of the MACS sorted microglia
cells as compared to the flow through via gqRT-PCR for the microglial specific genes Siglech and
P2ryl2. (c) Table showing examples of the number of astrocytes and the respective total RNA that
can be obtained from one single adult mouse hippocampus (from one hemisphere) or two
hippocampi (from one mouse) using the mechanical dissociation protocol at 4°C proposed in this
study. Microglia cells were sorted via MACS using anti-ACSA2 microbeads. (d) The graphs show

the successful enrichment of the MACS sorted astrocytes as compared to the flow through via qRT-
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PCR for the astrocytic genes Gfap and Slcla3. Abbreviations: ft: flow through, tc: target cells. N=

5 biological replicates/group. Error bars represent the mean + standard deviation.

Supplementary Table S1: Differential gene expression for neurons, microglia, astrocytes,
oligodendrocytes, endothelial cells, neuronal precursor cells, border associated macrophages,
endothelial cells, mural cells and fibroblast-like cells. The differential expression analysis presented
is based on a Log-fold change cut-off > 0.5 and adjusted p-value <0.01.

Supplementary Table S2: Complete list of gene ontology terms for biological process, function
and component for the genes deregulated upon enzymatic digestion relative to cold mechanical
dissociation in all analysed cell types.

Supplementary Table S3: Complete list of differentially regulated proteins for microglia and
astrocytes isolated from enzymatically digested and mechanically dissociated hippocampal tissues.
Significantly different proteins were determined by the threshold: fold-change > 2 and adjusted
p-value < 0.01. Benjamini-Hochberg method was used to account for multiple testing.
Supplementary Table S4: Complete list of gene ontology terms for biological process, function
and component for the proteins deregulated upon enzymatic digestion in microglia and astrocytes.

Additional File 1: Complete description of the 4°C brain cell isolation procedure.
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a b c
Microglia proteotype analysis Microglia proteotype analysis o m
10 15 20
log2 abundance
l_l_|__l_l_| —= — Lo— 1 1
S 104 S 101
© ©
3 3
[oX [oX
<) <)
© ©
4 4
2 & 2 s
= o
(@] (2]}
Re) Re)
04 0
4 0 4 4 0 4 —NO <~ N® < — N

log, (Fold-change) log, (Fold-change) TE YT E RN



Supplementary Figure S6

(9d ®2ens) 5¥ad

V-2SS

Singlets
87.8

H-2S4

10°

4

T
10

-10° (')" I1|03
CD11b (Surface BV711)

T
o - ) ©,
o

T T
o o (=]

e ° 2 o 2
(9d ®>e4ns) 5¥ad

CD11b (Surface BV711)

FSC-A

Viability (Aqua)

FSC-A

T

*kkk

*%

I
Yol
(e}

1 1 1 1
o T9) o Te)
» [ce} [¢e) N~
(si1e0 [e30L) s1vIBUIS %
[ ]
[ ]
[}
1 1 1 1 1
Yo} o Tp} o Yo}
[ N~ © © e}

© SI9D ,41LLad moSGrao sielbuls %

Q

*kkk

SII®D +9LLAD moGAdD AT %

37°C

4°C

C

37°

4°C

C

37°

Cc

o

4

n.s.

[ce] N~ N~

elBoudly Jown] dAIT %

5

eljbouol|y Jown) s}e|buls 9,

70—

37°C

4°C

37°C

4°C



Supplementary Figure S7

1 Hippocampus

Sample | Number of Microglia | Total RNA extracted (ng)
1 150.000 85
2 187.500 74
3 167.500 88
4 100.000 64
5 95.000 59
2 Hippocampi
Sample | Number of Microglia | Total RNA extracted (ng)
1 432.500 214
2 362.500 197
3 396.000 203
4 450.000 218
5 442.500 231
1 Hippocampus
Sample | Number of Astrocytes | Total RNA extracted (ng)
1 127.500 104
2 122.500 99
3 150.000 108
4 110.000 80
5 120.000 97
2 Hippocampi
Sample | Number of Astrocytes | Total RNA extracted (ng)
1 317.500 310
2 300.000 272
3 330.000 378
4 285.000 210
5 307.500 225
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