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Abstract

Introduction: Apolipoprotein E (apoE) is a carrier for brain lipids and the most impor-

tant genetic risk factor for Alzheimer’s disease (AD). ApoE binds the receptor sor-

tilin, whichmediates uptake of apoE-bound cargo into neurons. The significance of this

uptake route for brain lipid homeostasis and AD risk seen with apoE4, but not apoE3,

remains unresolved.

Methods: Combining neurolipidomics in patient specimens with functional studies in

mouse models, we interrogated apoE isoform–specific functions for sortilin in brain

lipid metabolism and AD.

Results: Sortilin directs the uptake and conversion of polyunsaturated fatty acids into

endocannabinoids, lipid-based neurotransmitters that act through nuclear receptors

to sustain neuroprotective gene expression in the brain. This sortilin function requires

apoE3, but is disrupted by binding of apoE4, compromising neuronal endocannabinoid

metabolism and action.

Discussion:We uncovered the significance of neuronal apoE receptor sortilin in facil-

itating neuroprotective actions of brain lipids, and its relevance for AD risk seen with

apoE4.
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1 BACKGROUND

Apolipoprotein E (apoE) is the major carrier for lipids in the brain. It

is secreted by astrocytes and microglia and delivers essential lipids to

neurons that take up apoE-bound cargo via apoE receptors (reviewed

in ref 1). Apart from its role in lipid homeostasis, apoE also bears signif-

icance as the most important genetic risk factor for the sporadic form

of Alzheimer’s disease (AD) because carriers of the APOE ε4 gene vari-
ant are at a significantly higher risk of AD than carriers of the common

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2020 The Authors. Alzheimer’s & Dementia published byWiley Periodicals LLC on behalf of Alzheimer’s Association.

APOE ε3 allele.2 A large body ofwork confirmed the potential of apoE4,

as compared with apoE3, to accelerate neurodegenerative processes

(reviewed in ref 3). Many hypotheses have been advanced about how

apoE may affect brain health; still, the mechanism(s) that distinguish

apoE3 and apoE4 functions in brain lipid homeostasis and progression

of AD remain controversial.

Previously, we identified the lipoprotein receptor sortilin as a major

endocytic route for the uptake of apoE-containing lipoproteins in

neurons in vitro and in vivo. In gene-targeted mice, loss of sortilin
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impaired neuronal clearance of murine apoE and was associated with

enhancedaccumulationof amyloidbeta (Aβ) peptides and senile plaque
formation.4 However, the relevance of the sortilin-dependent uptake

of apoE for brain lipid homeostasis and for the risk of AD seen in carri-

ers of the human APOE ε4 genotype remained unclear.

Combining mass spectrometry (MS)-based lipidomics in patient

specimens with functional studies in humanized mouse models

expressing apoE3 or apoE4, we uncovered a unique role for sortilin

and apoE3 in facilitating the neuronal metabolism of polyunsaturated

fatty acids (PUFAs) into endocannabinoids (eCBs) that signal an anti-

inflammatory gene expression profile in the brain. The ability of sor-

tilin to sustain neuroprotective eCB signaling is disrupted by binding of

apoE4, increasing pro-inflammatorymarkers, and possibly aggravating

the amyloidogenic burden in the brain.

2 METHODS

2.1 Materials and general methods

AD specimens were collected from donors from whom written

informed consent for the use of thematerial for research purposes had

beenobtained (see supplementarymethods).Mouse strains anddetails

on animal experimentation are also given in supplementary methods.

Determination of transcript or protein levels in tissue were performed

by quantitative reverse transcription PCR (qRT-PCR) and SDS-PAGE,

respectively, using standard protocols. Cell culture experiments involv-

ing Chinese hamster ovary (CHO) cells are detailed in supplementary

methods.

2.2 Lipid analyses

Quantification of levels of total cholesterol, triglycerides, and free fatty

acids (FAs) in plasma was performed using commercial kits (Biovision,

Roche, Cayman). Mouse plasma lipoprotein profiles were established

by TNOBiosciences (Leiden, TheNetherlands) using fast protein liquid

chromatography (FPLC). Targeted lipidomics was performed on brain

cortex specimens from human subjects or mice, or on apoE-containing

lipoproteins from human cerebrospinal fluid (CSF) or mouse plasma

using liquid chromatography-mass spectrometry (LC-MS) as detailed

in supplementarymethods.

2.3 Statistical analysis

For all in vivo experiments, an indicatednumber n is the number ofmice

per group used in an experiment. For primary cell culture experiments,

an indicated number n is the number of independent glial preparations

(biological replicates) used for western blotting or qRT-PCR analyses.

For co-localization studies in CHO cells, n is the number of cells

analyzed in replicate experiments. Each mouse (or biological replicate

in a cell culture experiment) represents a statistically independent

experimental unit, which was treated accordingly as an independent

RESEARCH INCONTEXT

1. Systematic review:Theauthors reviewed theavailable lit-

erature using scientific databases (eg, PubMed). Although

the role of sortilin in systemic lipid metabolism and car-

diovascular disease is firmly established in several arti-

cles (properly cited herein), the relevance of this neu-

ronal apolipoprotein E (apoE) receptor for brain lipid

metabolism and the risk of Alzheimer’s disease (AD) is

unclear.

2. Interpretation: Our findings provide amolecular explana-

tion for theneuroprotective actionsof apoE3 inbrain lipid

metabolism, and why this protective lipid pathway is lost

in carriers of the APOE ε4 genotype. These findings rep-

resent a major conceptual advance in the understanding

of pathophysiology of apoE4, the most important genetic

risk factor for sporadic AD known to date.

3. Future directions: Future efforts will elucidate themolec-

ular details of a sortilin-dependent neuronal metabolism

of lipids, and how this protective lipid pathway may be

restored in carriers of the APOE ε4 genotype.

value in the statistical analyses. Statistical analyses were performed

using GraphPad Prism software. For all data with two independent

variables, two-way analysis of variance (ANOVA) with Bonferroni or

Tukey multiple comparison test was applied. When comparing apoE3-

and apoE4-targeted replacement mice, either wild-type (WT) or

knockout (KO) for Sort1, P values for apoE indicate the impact of APOE

genotype, irrespective of Sort1 genotype, whereas P value for sortilin

indicates the impact of Sort1 genotype, irrespective of APOE genotype.

The given P value for interaction indicates whether the effect of the

Sort1 genotype depends on the APOE genotype, or vice versa.

3 RESULTS

3.1 Sortilin acts as brain clearance receptor for
apoE3 and apoE4

Inmice, inactivation of Sort1, the gene encoding sortilin, results in brain

accumulation of murine apoE due to impaired clearance of the protein

by neurons lacking this apoE receptor. Accumulation of murine apoE

coincides with increased levels of Aβ peptides in the brain of receptor-
deficient mice.4 Although these findings implicated sortilin as an apoE

receptor in AD-related processes, they failed to address the relevance

of this receptor for the risk of AD seen in humans expressing apoE4 as

comparedwith apoE3.

Now, we introduced the Sort1 defect (KO) into mice carrying a

targeted replacement of the murine Apoe locus with genes encoding

human apoE3 (E3;KO) or apoE4 (E4;KO).5 As shown for murine apoE

before,4 loss of sortilin also caused accumulation of human apoE3
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F IGURE 1 Sortilin deficiency causes brain accumulation of apoE3 and apoE4. (A-C) Levels of apoE3 and apoE4 in cortex (Ctx) and
hippocampus (Hip) of sortilinWT and KOmice (n= 6-11mice per group, 3months of age) were determined bywestern blot analysis (A) and
densitometric scanning of replicate blots (B and C). Values aremean± standard error of themean (SEM) given as percent ofWT control (mean set
to 100%). Accumulation of apoE3 and apoE4 in KO as comparedwithWT tissues was determined by Student’s t test (*P< .05; **P< .01). Detection
of tubulin served as loading control in A. (D) Quantitative RT-PCR analysis of transcript levels for apoE3 and apoE4 in brain extracts of sortilinWT
and KOmice at 3months of age (n= 6-9mice per group). Values aremean± SEM given as log2 fold change comparedwith levels in the respective
WT animals (mean set to 0)

(Figure 1A, B) and apoE4 (Figure 1A, C) in the cortex and hippocampus

of KOmice compared withWT. Sortilin deficiency did not impact tran-

script levels for apoE3 or apoE4 in the brain (Figure 1D), or the levels of

apoE3 and apoE4 protein (Figures S1A, B) or transcripts (Figure S1C)

in primary astrocytes from (E3;KO) or (E4;KO) mice as compared with

WTs. Thus increasedbrain levels of humanapoE3andapoE4 inKOmice

were likely due to impaired neuronal clearance rather than increased

astrocytic production of the apolipoproteins. These findings substanti-

ated sortilin as amajor brain clearance receptor for murine and human

apoE variants alike.

3.2 Interaction of sortilin and apoE3 controls
brain levels of PUFAs and eCBs

Next, we queried an interaction of sortilin with apoE in brain lipid

homeostasis that may distinguish between apoE3 and apoE4 actions.

Our strategy was based on the documented roles for apoE and the

lipoprotein receptor sortilin in control of lipid metabolism,4,6 and on

the importance of neuronal lipid homeostasis for risk of AD (reviewed

in ref 7).

Initially, we used LC-MS-based lipidomics to determine the levels

of various lipid classes in brain cortices of (E3;KO) and (E4;KO) mice.

When comparedwithWTs, we observed a distinct impact of genotypes

on brain levels of total FAs and ω-3 PUFAs, with levels being lower in

(E3;KO) as comparedwith (E3;WT)mice (Figure 2A). By contrast, levels

of these lipids were always low in E4 compared with (E3;WT) animals,

irrespective of the presence or absence of sortilin. This interaction of

Sort1 and APOE in control of brain lipids was seen for ω-3 but not for

ω-6 PUFAs (Figure 2A), in line with the neuroprotective actions of ω-3
PUFAs in AD.8-10

To delineate the relevance of sortilin and apoE3 for brain PUFA

metabolism, we determined levels of bioactive PUFA derivatives in

the brains of our four mouse strains (Figure 2B). We focused on

eCBs, lipid-based neurotransmitters produced from PUFAs in neu-

rons.Most eCBs act anti-inflammatory and neuroprotective, and alter-

ations in eCB levels have been associated with AD.11 Of the six

eCBs and related lipids tested (Figure 2B), levels of anandamide and

linoleoyl-ethanolamide (LEA) were not impacted by genotypes. Levels

of oleyl-ethanolamide (OEA) and palmitoyl-ethanolamide (PEA) were

reduced in animals lacking sortilin, but irrespective of APOE genotype.
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F IGURE 2 Sortilin and apoE3 interact in control of brain levels of polyunsaturated fatty acids (PUFAs) and endocannabinoids. (A) Levels of
total FAs as well as ofω-3 andω-6 PUFAswere determined in brain cortices of apoE3- and apoE4-targeted replacementmice either wild-type (WT)
or homozygous for the Sort1 null allele (KO) (3months of age, n= 12 per genotype). (B) Levels of endocannabinoids and endocannabinoid-like
lipids were determined in brain cortices of mice of the indicated APOE and Sort1 genotypes (3months of age, n= 11-12 per genotype). Data are the
mean± SEM. The significance of data was determined by two-way analysis of variance (ANOVA) (*P< .05; **P< .01; ***P< .001; ****P< .0001).
2-AG, 2- arachidonoylglycerol; LEA, linoleoyl-ethanolamide; OEA, oleyl-ethanolamide; PEA, palmitoyl-ethanolamide

However, levels of 2- arachidonoylglycerol (2-AG) and the eCB-like

lipid synaptamide showed an interaction between APOE and Sort1.

In detail, physiological 2-AG levels were low in (E3;WT) mice but

increased in (E3;KO) animals. By contrast, levels inE4micewere always

high compared with (E3;WT), irrespective of Sort1 genotype. The con-

verse patternwas seen for synaptamide,with physiological levels being

high in (E3;WT) but lower in all other genotype combinations. The

dependency of eCB levels on APOE genotype was substantiated in

brain specimens of AD patients homozygous for APOE ε3 or APOE ε4
(Figure 3). As in mice, levels of synaptamide were lower (P < .05) while

levels of 2-AG tended tobehigher (P= .057) inAPOE ε4/ε4as compared

with APOE ε3/ε3 carriers. Levels of anandamide were also decreased in

the APOE ε4/ε4 genotype (P < .05), whereas OEA, LEA, and PEA levels

were not impacted.

3.3 Sort1 and APOE ε3 safeguard an
anti-inflammatory gene expression profile signaled by
peroxisome proliferator-activated receptors (PPARs)

eCBs exert their actions by signaling via G protein–coupled cannabi-

noid receptors CB1 and CB2 or by acting as ligands for peroxi-

some proliferator-activated receptors (PPARs). Because synaptamide

does not engage CB1/2,12 we explored the relevance of sortilin and

apoE3 interaction in eCB metabolism by focusing on PPARs. Using

a microarray-based strategy to assess transcript levels of 84 PPAR

target genes, we identified 12 brain transcripts that showed depen-

dence on Sort1 and APOE, being either higher or lower in (E3;WT) as

compared with the other three genotypes (Figure 4A). Affected tran-

scripts includedPPARγ (Pparg) and the retinoic X receptor (Rxrg), which



1252 ASARO ET AL.

F IGURE 3 ApoE-dependent changes in endocannabinoid (eCB) levels in the human brain. Levels of the indicated eCBs and eCB-like lipids were
determined in prefrontal cortex specimens of AD patients homozygous for APOE ε3 or APOE ε4 (n= 10 for APOE ε4/ε4, n= 34 for APOE ε3/ε3.)
Values aremean± standard error of themean (SEM). The significance of data was determined by Student’s t test. 2-AG, 2- arachidonoylglycerol;
LEA, linoleoyl-ethanolamide; OEA, oleyl-ethanolamide; PEA, palmitoyl-ethanolamide

form heterodimers with PPARs; but also factors in lipid homeostasis,

such as fatty acid transporter Slc27a4 and very long-chain acyl-CoA

synthetase Slc27a5. Using qRT-PCR for PPAR targets Pparg, Mmp9,

and Klf10, we substantiated an effect of sortilin on eCB-dependent

gene transcription in E3 but not in E4 mice (Figure 4B). PPARs

are lipid sensors that suppress inflammatory responses by inducing

an anti-inflammatory gene expression profile, an activity reducing

neurodegeneration.13,14 In line with interaction of Sort1 and APOE ε3
in promoting PPAR activities, loss of sortilin in apoE3mice or the pres-

ence of apoE4 (irrespective of Sort1 genotype) resulted in alterations

in the mouse brains consistent with a pro-inflammatory state. These

changes included decreased transcription of Vegf, but elevated tran-

script levels of Tnfα and Gfap in (E3;KO), (E4;WT), and (E4;KO) mice

as compared with (E3;WT) (Figure 4C). A potential pro-inflammatory

state in the three mouse strains as compared with (E3;WT) was sup-

ported by increased immunosignals for glial fibrillary acidic protein

(GFAP) in the brain (Figure 4D, E).

Our data indicated interaction of Sort1 and APOE ε3 in safeguard-

ing a neuroprotective metabolism and action of eCBs, potentially pro-

tecting the brain from inflammatory insults. This neuroprotective eCB

action is lost in apoE3 mice that lack sortilin. By contrast, this neuro-

protective action of sortilin in brain lipid metabolism is not supported

by apoE4, as PPAR activities are decreased in E4 mice irrespective of

Sort1 genotype.

3.4 Sortilin and apoE3 do not impact systemic
metabolism of PUFAs

Anandamide and 2-AG are produced from arachidonic acid (ARA),

while synaptamide is derived from docosahexaenoic acid (DHA).

Mainly, ARA and DHA are supplied to the brain from the bloodstream

as FA or esterified to phospholipids. In the brain, ARA and DHA are

re-esterified to membrane phospholipids or converted into bioactive

metabolites, such as eCBs (reviewed in ref 15). To query the impact of

sortilin and apoE on PUFA transport into the brain, we quantified lipid

levels in brain tissue, and in plasma and brain lipoproteins. Levels of

DHA, but not of ARA, were reduced in the brains of (E3;KO), (E4;WT),

and (E4;KO) comparedwith (E3;WT)mice (Figure S2A). A similar trend

in reduction of DHA (P = .1) but not ARA levels was seen in brain tis-

sues from AD patients with APOE ε4/ε4 as compared with APOE ε3/ε3
(Figure S2B). Altered brain levels of DHA were not due to differential

association of lipids with lipoproteins containing apoE3 or apoE4, as

plasma lipoprotein profiles were indistinguishable comparing all four

mouse genotypes (Figure S3A), as were the levels of DHA and ARA

in apoE-containing lipoproteins isolated from plasma of these mice

(Figure S3B). In addition, levels of DHA and ARA were comparable in

apoE3- and apoE4-containing brain lipoproteins isolated from human

CSF (Figure S3C-F). Finally, transcript levels of enzymes in neuronal

metabolism of 2-AG and synaptamide were not affected by Sort1
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F IGURE 4 Interaction of Sort1 and APOE ε3 controls peroxisome proliferator-activated receptors (PPAR)–dependent gene expression.
(A) Heatmap of expression levels of target genes of PPARs in the brain of apoE3- or apoE4-targeted replacementmice eitherWT or homozygous
for the Sort1 null allele (KO) (Mouse PPAR Targets RTš Profiler PCRArray, Qiagen). Transcripts up (Cat. 1) or down (Cat. 2) in (E3;WT) as compared
with the other three genotype groups are highlighted (n= 3-4mice per group, 3months of age). (B) Quantitative RT-PCR analysis of transcript
levels of the indicated PPAR target genes in brain cortices of apoE3 and apoE4mice eitherWT or KO for Sort1. Log2 fold changes as compared to
(E3;WT)mice set to value 0 are given (n= 7-8mice per group, 3months of age; two-way ANOVA). (C) Quantitative RT-PCR analysis of vascular
endothelial growth factor (Vegf), tumor necrosis factor α (Tnfa), and glial fibrillary acidic protein (Gfap) in brain cortices of mice of the indicated
Sort1 and APOE genotypes. Log2 fold changes as compared to (E3;WT)mice set to value 0 are given (n= 7-10mice per group; two-way ANOVA).
Mice were 18months of age. (D) Immunodetection of GFAP (red) on exemplary cortical brain sections of (E3;WT) and (E3;KO)mice. Sections were
also stained for neuronal marker NeuN (green) and DAPI (blue). Bothmerged color images (left panels) and single GFAP channels in gray scale
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or APOE genotype as shown by qRT-PCR on mouse brain extracts

(Figure S4).

3.5 ApoE4 disrupts cell-surface recycling of
sortilin

So far, our studies failed to identify changes in biosynthesis or extra-

cellular transport that may explain why alterations in DHA and eCB

metabolism in E4 mice resembled defects in apoE3 animals lacking

sortilin. Thus, we focused on the hypothesis that apoE4 may disrupt

the activity of sortilin, rendering E4 brains essentially sortilin depleted.

This hypothesis was based on the propensity of apoE4 to impair

intracellular sorting and thereby the activity of several cell surface

receptors.16-18

Both apoE variants interact with sortilin equally well, as shown pre-

viously using surface plasmon resonance analysis.19 To query whether

receptor trafficking, rather thanbinding,was differentially impactedby

apoEvariants,we tested co-localization of sortilinwith apoE3or apoE4

in CHO cells using proximity ligation assays (PLAs). Co-localization

of sortilin with apoE3 was seen in a scattered vesicular pattern

throughout the cytoplasm,whereas co-localizationwith apoE4 showed

a distinct pattern close to the cell membrane (Figure 5A). Altered

localization of sortilin complexed to apoE4 was substantiated by co-

immunostaining the PLA signal with transferrin (Tf), commonly used to

mark the early endocytic and the recycling compartments of cells.20

The extent of co-localization of sortilin/apoE complexes (PLA signal)

with Tf was significantly higher with apoE4 as compared with apoE3

(Figure 5C, D). These findings indicated extended retention of sortilin

and apoE4 complexes in endocytic and/or recycling compartments.

To further substantiate the differential impact of apoE4 on sortilin

sorting,we established the trafficking path of the receptor inCHOcells

by labeling sortilin molecules on the cell surface with antibodies and

following their subsequent intracellular route using immunocytochem-

istry (Figure 6A). Within 15 minutes, labeled receptors internalized

from the cell surface (Figure 6A, panel surface labeling) into intracel-

lular compartments (Figure 6A, panel internalization). To interrogate

recycling of these internalized receptors, we subsequently treated the

cells with dynasore, an inhibitor of endocytosis, to block continuous

re-entry of recycled receptors into the cells. Application of dynasore

resulted in the accumulation of labeled sortilinmolecules at the plasma

membrane, confirming cell-surface recycling of internalized (antibody-

labeled) receptors (Figure 6A, panel recycling). Application of dynasore

did not alter levels of expression of sortilin as shown by qRT-PCR (Fig-

ure S5A).

The recycling path of sortilin established in CHO cells was not

impacted by the presence of apoE3 in the culture medium (Figure 6B).

However, in the presence of apoE4, internalized receptors failed to

re-appear on the cell surface and remained largely intracellular (Fig-

ure 6B). To more accurately quantify the extent of sortilin recycling in

the presence of apoE3 versus apoE4,webiotinylated sortilinmolecules

on the surface of CHO cells and followed their internalization and

recycling fate as schematized in Figure 6C. Recycled receptors accu-

mulating at the cell surface were stripped of their biotin tag by glu-

tathione treatment to only retain a biotin label in the intracellular

(non-recycling) receptor pool. The extent of receptor recycling was

determined by subtracting the amount of biotinylated receptors puri-

fied on streptavidin beads after 60 minutes of recycling from the total

amount of biotinylated receptors internalized at the beginning of the

experiment. In these studies, the amount of receptors recycling back

to the cell surface was reduced by 50% in apoE4-treated as com-

pared to apoE3-treated cells (Figures 6D, E). The detrimental effect

of apoE4 was specific for the recycling step of the sorting path as the

extent of internalization of sortilin (Figure S5B) or its ligand apoE (Fig-

ures S5C, D) was not different comparing apoE3 and apoE4 treatment

conditions.

4 DISCUSSION

We propose a novel concept for the neuroprotective metabolism

of PUFA in the brain. It involves interaction of sortilin with apoE3

to support neuronal uptake and action of DHA and eCBs, pro-

viding anti-inflammatory gene expression and suppressing noxious

insults that possibly deteriorate brain health in AD. Loss of sortilin in

apoE3 mice compromises this neuroprotective PUFA uptake pathway,

thereby increasing pro-inflammatory gene expression. Similar detri-

mental effects are seen in WT mice in the presence of apoE4 as it dis-

rupts receptor trafficking.

In mice, loss of sortilin reduces neuronal uptake of apoE and causes

alterations in brain lipid homeostasis also seen in apoE KO animals

(ie, accumulation of sulfatides).4 These data suggested sortilin as a

key player in apoE-dependent lipid metabolism in the brain. Our new

results substantiate this role by identifying the interaction of sortilin

withapoE3 in control of neuronalDHAandeCBmetabolismandaction.

It is notable that the same effect ofAPOE ε4 onDHA and eCBs levels as

in ourmousemodels is also seen inADpatients, substantiating the clin-

ical relevance of our findings frommousemodels.

DHA and its bioactive metabolites are regulators of brain health,

linking inflammation with neurodegeneration. DHA is the most abun-

dant brain ω-3 PUFA. It regulates numerous cellular processes, espe-

cially the resolution of brain inflammation.15,21 Low levels of DHA in

plasma or brain correlate with humanAD,22-24 and dietary DHA intake

lowers Aβ levels in mice.8-10 A similar role in the control of inflam-

mation in the aging brain has been suggested for anandamide and

2-AG. Anandamide levels decrease in the brains of AD patients25,26

(right panels) are given. Scale bar: 250 µm. (E) Quantification of the GFAP-immunoreactive area in the cortex of apoE3 and apoE4mice eitherWT
or KO for Sort1 is shown (n= 7mice per group; two-way ANOVAwith Tukey’s multiple comparisons test). Mice were 18months of age. *P< .05;
**P< .01; ***P< .001
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F IGURE 5 ApoE4 alters the intracellular localization of sortilin/ligand complexes. (A) CHO cells stably expressingmurine sortilin (CHO-S)
were treated for 24 hours at 37 ◦Cwith 5 µg/mL of myc-tagged apoE3 or apoE4 produced in HEK293 cells.4 Co-localization of sortilin and apoE
was tested by proximity ligation assay (PLA) using primary antisera directed against sortilin andmyc, respectively. PLA signals (red) for
colocalization showed a dispersed vesicular pattern with apoE3 but a juxtamembrane pattern with apoE4 (white arrowheads). The inset
documents the absence of PLA signals in cells not treated with apoE. Cell nuclei were counterstained with DAPI (blue). (B) CHO-S cells were
treated for 2 hours with 5 µg/mL of myc-tagged apoE3 or apoE4, followed by incubation with 25 µg/mL of Alexa Fluor 647-conjugated transferrin
(Tf) for another 20minutes. Subsequently, complex formation between sortilin and apoEwas detected by PLA (red signal), while fluorescent Tf
conjugates (green signal) marked early endocytic and recycling compartments. Cell nuclei were counterstained with DAPI (blue). (C, D)
Co-localization of sortilin and apoE complexes (PLA signal) with Tf was quantified as thresholdedManders’ values (tM) in experiments exemplified
in panel B. Colocalization of receptor/ligand complexes in Tf-positive cell compartments was significantly higher in apoE4 as comparedwith apoE3
treated cells as shown byManders’ values tM1 (C) and tM2 (D). Data are given asmean± SEM (n= 15-18 cells for each condition; Student’s t test).
*P< .05; **P< .01. Scale bars in A and B: 10 µm

and mouse models of AD.27 Conversely, levels of 2-AG increase in AD

patients28 and mouse models,29 and increased 2-AG signaling exacer-

bates synaptic failure.30 Although little is known about synaptamide, it

is considered a bioactive mediator of DHA, as it recapitulates the pro-

tective actions seenwithDHA.31 Wedocument a pathological increase

in brain levels of 2-AG and a concomitant decrease in DHA, anan-

damide, and synaptamide in humans andmicewith apoE4, and in apoE3

mice lacking sortilin, identifying the relevance of Sort1 and APOE geno-

types for brain PUFA homeostasis.

We focused on the relevance of sortilin and apoE3 interaction

for DHA and eCB signaling by investigating PPARs. Transcript lev-

els of PPAR-γ increase in AD patients to counteract neuroinflamma-

tory insults.32 Non-steroidal anti-inflammatory drugs ameliorate AD-

related processes due to their ability to stimulate PPAR and inhibit

inflammatory responses.33,34 In line with a function for sortilin and

apoE3 in PPAR actions, we observed a concordant dysregulation of

transcriptional targets in E4mice and in E3 animals lacking sortilin (Fig-

ure 4A, B). The relevance of Sort1 and APOE ε3 to counteract brain

inflammationwas supported by an increase in pro-inflammatorymark-

ersGFAPand tumor necrosis factorα (TNFα) (Figure 4C–E). GFAP indi-
cates brain inflammation in rodentADmodels,35 and increases inGFAP

levels in ratmodels of AD are reverted by eCB application.36 Increased

levels of TNFα are also linked to AD pathology.37,38 Another sign of a

potentially pro-inflammatory state in E4 mice and in (E3;KO) animals

is downregulation of vascular endothelial growth factor (VEGF) (Fig-

ure 4C). VEGF suppresses inflammatory brain response39 and reduces

neurodegeneration inmousemodels of AD.40,41

Sortilin facilitates cellular uptake of apoE3 and apoE4 equally well,

both in vitro (Figure S5C, D) and in vivo (Figure 1A–C). In addition, lev-

els of PUFAbound to apoE3- or apoE4-containing lipoprotein in plasma

or brain are comparable (Figure S3). Thus, apoE variants likely do not

discriminate the types of PUFA taken up into neurons via sortilin.

Rather it is the detrimental effect of apoE4 on trafficking of sortilin

that impairs this neuronal uptake route for lipids. Following endocytic

uptake, apoE3 recycles to the cell surface for re-secretion. This route is

not taken by apoE4 that accumulates in the endocytic pathway.16,17,42

Impaired recycling of apoE4 disrupts cell surface re-exposure of apoE

binding proteins, as shown for APOER218 or the insulin receptor,20

mechanisms believed to contribute to impaired synaptic plasticity

and altered brain insulin signaling in AD, respectively. Consequently,

reversal of impaired recycling has been suggested as therapeutic

approach for AD risk imposed by apoE4.43 We now show a similar
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F IGURE 6 ApoE4 disrupts cell surface recycling of sortilin. (A) Immunodetection of sortilin (red) in CHO-S cells under the indicated treatment
conditions. Cells were either permeabilized (total) or non-permeabilized (surface) to distinguish between total and cell-surface receptor pools.
Cells were counterstainedwith DAPI (blue). Scale bar: 10 µm. Schematics visualize the proposed trafficking fate of sortilin in the respective images.
Panel Surface labeling: Receptormolecules at the cell surfacewere decoratedwith primary antibody (ab-sortilin, red symbols) in CHO-S cells kept at
4 ◦C to disrupt membrane trafficking. Immunosignals for sortilin in non-permeabilized cells (surface) confirm plasmamembrane localization of the
labeled receptors. Panel Internalization: Following shift to 37 ◦C for 15minutes, labeled receptors move to an intracellular localization as evidenced
by immunosignals in the permeabilized (total) but not in the non-permeabilized (surface) condition. Panel Recycling: To confirm re-appearance of
internalized receptors at the cell surface, cells were subsequently treated with dynasore for 60minutes at 37 ◦C.When endocytosis was blocked
with dynasore to prevent re-uptake of surface localized receptors, labeled sortilin molecules accumulated at the cell surface as evidenced by
immunosignals in non-permeabilized cells (surface), substantiating a recycling path for the receptor. (B) Experiment as in (A) but cells were
incubated in apoE3- or apoE4-conditionedmedium. Antibody-tagged sortilin molecules recycled to cell surface in the presence of apoE3 as
documented by immunosignals in non-permeabilized cells (upper panels). No receptor recycling was observed in the presence of apoE4 as
evidenced by the absence of immunosignals in the non-permeabilized condition (lower panels). (C) Experimental strategy to quantify sortilin
recycling in the presence of apoE3 or apoE4. Sortilin molecules at the surface of CHO-S cells kept at 4 ◦Cwere biotinylated (panel labeling;
bio-sortilin, red receptor symbols). Following shift to 37 ◦C for 15minutes in the presence of 5 µg/mL of apoE3 or apoE4 (yellow symbols),
receptors remaining at the cell surface were stripped of their biotin label using glutathione (GSH) treatment (panel 2, Internalization). Finally, cells
were incubated for 60minutes at 37 ◦C in the presence of dynasore and thenwith GSH, stripping all recycled receptors accumulating at the
surface of biotin label (panel 3, Recycling; gray receptor symbols). (D)Western blot analysis of biotinylated sortilin molecules affinity-purified on
streptavidin beads fromCHO-S cells after internalization and recycling phases as described in (C, steps 2 and 3). (E) The amount of biotinylated
(bio-)sortilin was determined by densitometric scanning of replicate western blots as exemplified in (D). The percentage of recycled receptors was
determined by subtracting the amount of biotinylated (intracellular) receptors at the recycling phase (step 3) from that at internalization (step 2).
Mean values for apoE3were set to 100%. Significantly fewer receptors recycled in the presence of apoE4 than apoE3 (49.56± 16.92% vs 100±
13.84%). Data are given asmean± SEM (n= 9 biological replicates from three independent experiments; Student’s t test). *P<.05

deleterious impact of apoE4 on sortilin trafficking (Figures 5 and 6),

likely explaining the loss of anti-inflammatory actions of this receptor

in eCBmetabolism in the apoE4 brain.

In conclusion, we identify a novel pathway linking neuronal apoE

handling by sortilin with the well-known neuroprotective actions of

PUFA in the brain, andwe provide a possible molecular explanation for

the risk of AD seenwith apoE4.
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