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Background: Fatigue in multiple sclerosis (MS) is conceived as a

multidimensional construct.

Objectives: This study aims to describe the changes of balance and gait parameters

after 6min of walking (6 MW) as potential quantitative markers for perceptions of state

fatigue and trait fatigue in MS.

Methods: A total of 19 patients with MS (17 with fatigue) and 24 healthy subjects

underwent static posturography, gait analysis, and ratings of perceived exertion before

and after 6 MW.

Results: 6 MW was perceived as exhaustive, but both groups featured more dynamic

comfortable speed walking after 6 MW. Shorter stride length at maximum speed and

increased postural sway after 6 MW indicated fatigability of balance and gait in MS

group only. While most changes were related to higher levels of perceived exertion

after 6 MW (state fatigue), higher fatigue ratings (trait fatigue) were only associated with

less increase in arm swing at comfortable speed. Further analysis revealed different

associations of trait fatigue and performance fatigability with disability and motor

functions. Performance fatigability was most closely related to the Expanded Disability

Status Scale, while for trait fatigue, the strongest correlations were seen with balance

function and handgrip strength.

Conclusions: Fatigability of performance was closely related to perceptions of exertion

after 6 MW (state fatigue) and disability in MS but distinct from fatigue ratings, conceived

as trait fatigue. Our study identified postural sway, arm swing during gait, and hand grip

strength as unexpected potential motor indicators of fatigue ratings in MS.
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INTRODUCTION

Fatigue is a frequent and burdensome complaint even in the early
disease stages of multiple sclerosis (MS) (1, 2), and there is a need
for more effective treatment options (3). Although fatigue has
been related to disability status, depressive symptoms, and brain
connectivity in MS, there is no consensus on its etiology and the
definitions of the constructs are still evolving (4, 5).

The term “fatigue” is used in different ways, ranging from
unspecific (6) tomore specific definitions, e.g., by theMS research
council as “a subjective lack of physical and/or mental energy
that is perceived by the individual or caregiver to interfere
with usual and desired activities” (7). It is generally held that
a sensation of fatigue does occur physiologically following an
effort-demanding activity, while in the context of disease, fatigue
may present as “pathological exhaustion” that occurs earlier, with
lighter activity and more persistence or even independent of
effort demands (8). Kluger et al. (9) proposed “perception of
fatigue” and “performance fatigability” as discernible but related
components of fatigue which both can present in the motor or
the cognitive domain.

At the perceptional level, transient sensations of weariness
or lack of energy during or right after exercise (perception
of exertion) can be conceived as “state fatigue” (10), while
pathological fatigue refers to a frequent, prolonged, or constant
sensation over longer time frames which has been conceptualized
as “trait fatigue” (11) and represents the construct assessed by the
fatigue self-rating scales commonly used in MS (12, 13).

Performance fatigability as such is a physiological
phenomenon. It can be described as a decline in performance
with sustained activity and may be objectively quantified as
the change of an appropriate performance parameter with
prolonged exercise. Various performance measures and exertion
paradigms have been explored for this purpose, but recent
reviews concluded that there is currently no gold standard to
assess fatigability in MS (14). As per one hypothesis, it has been
suggested that fatigue as a symptom in MS may arise of altered
interactions between perceptions of fatigue and fatigability
and the relations of both to limitations in patients’ functions,
specifically mobility, need further study (11).

TABLE 1 | Overview of fatigue taxonomy as used in this manuscript according to Kluger et al. (9), Wolff et al. (10), and Enoka and Duchateau (11).

Construct Definition Assessment

Perception of exertion (state fatigue) Refers to the perception of fatigue in situations of

effort-demanding activities that is physiologically transient and

recovers with rest, understood as state fatigue

Here: self-rating (BORG) after 6MW standard exertion task

alternatives: VAS ratings of state fatigue

Perception of (trait) fatigue Refers to “pathological fatigue” as a frequent, prolonged, or

constant disabling sensation of weariness and exhaustion over

longer time frames, interfering with usual/desired activities,

understood as fatigue trait

Here: self-rating (FSMC)

alternatives: other fatigue self-rating scales (MFIS, FSS)

Performance fatigability Refers to a reduced capacity to maintain activity which can be

observed as a decline in performance measures with

effort-demanding activities

Here: the delta-measure of balance and gait parameters after 6

MW standard exertion task

Alternatives: other fatiguing paradigms (static and dynamic force

production, treadmill)

(6MW distance itself may reflect fatigability to some extent)

Table 1 sums up the fatigue taxonomy as used throughout
this manuscript.

Given the high relevance of fatigue in MS and the ongoing
efforts to find effective interventions (15), we aimed to evaluate
the suitability of quantitative motor markers as measures of
different components of MS fatigue. Specifically, in a first step,
we described the extent of fatigability or the changes in motor
parameters induced by participation in a 6-min walk test for
groups of PwMS and healthy subjects. In a second step, the
motor parameters indicating significant exertion effects across
all participants or parameters varying between both groups with
the regard to the exertion induced were related to perceived
state fatigue and trait fatigue in PwMS. Additionally, these
factors were also related to the patients’ disability and specific
motor functions.

METHODS

Study Population
This prospective observational study was conducted at a
university MS referral center. We included people with MS
(PwMS), according to the 2017 revised criteria (16), who felt able
to walk independently for 6min (6 MW), including the use of
unilateral walking aids, and healthy subjects (HC) of comparable
age, gender ratio, and height (Table 2).

Exclusion criteria were relapse within the last 30 days,
comorbid neurological diagnosis, or any other condition with
potential impact on movement functions.

Ethics Statement
The study was approved by the local institutional review board
(EA1/339/16, amendment 1) and conducted in accordance with
the Declaration of Helsinki in its currently applicable version. All
the participants provided written informed consent.

Assessments
Severity of fatigue was assessed with the 20-item Fatigue Scale
for Motor and Cognitive Functions questionnaire (FSMC)
(13) classified as no fatigue (<43), moderate fatigue (43–62),
and most severe fatigue (>62). The sub-scores of the FSMC
motor and cognitive domain were reported in the tables, but
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TABLE 2 | Demographics, clinical data, and motor measures are described by group.

Metric PwMS HC Group difference

Mean (SD) Mean (SD) p-value Test

Group size 19 24

Age (years) 50.5 (9.5) 47.1 (17.1) 0.5 t-test

Height (cm) 175.6 (8.7) 172.4 (10.0) 0.3 t-test

Weight (kg) 78.4 (15.1) 70.4 (10.7) 0.047 t-test

BMI (kg/m2 ) 25.5 (5.1) 23.6 (2.6) 0.13 t-test

F:M 08:11 12:12 0.6 Chi-square

FSMC total 63.6 (19.0)

FSMC cognitive 30.5 (10.3)

FSMC motor 33.1 (9.4)

PHQ-9a,b 7.3 (4.0) 2.1 (1.4) <0.001 Mann–Whitney U test

EDSS Median 3 (range: 1–6)

6MW distance (m) 490.1 (134.6) 657.2 (87.4) <0.001 t-test

VPC closed stance EO prec (◦/s) 0.4 (0.2) 0.2 (0.1) <0.001 t-test

VPC closed stance EC pred (◦/s) 0.7 (0.3) 0.3 (0.1) <0.001 t-test

Hand grip force dominant (kg) 40.2 (15.2) 42.3 (13.5) 0.6 t-test

Hand grip force non-dominant (kg) 33.7 (14.8) 40.8 (13.2) 0.1 Mann–Whitney U test

Borg pre 10.7 (2.9) 7 (1.5) <0.001 Mann–Whitney U test

Borg post 14.0 (3.4) 10.1 (2.0) <0.001 t-test

1borg 3.3 (2.4) 3.1 (2.3) 0.9 t-test

F, female; M, male; EDSS, Expanded Disability Status Scale; VPC, visual perceptive computing; EC, eyes closed; FSMC, Fatigue Scale for Motor and Cognitive Function; 6MW, 6-min

walk; Borg, Borg Rating of Perceived Exertion; PHQ-9, Patient Health Questionnaire 9-item.
aTwo PwMS were classified as major depressive syndrome according to PHQ-9 results (FSMC total: 47 and 80; Borg post 17 and 18) and for two other depressive syndromes (FSMC

total: 73 and 88; Borg post 13 and 17).
bMissing data from three healthy subjects.
c16 PwMS included; three PwMS were excluded because they were unable to stand on spot in closed stance with eyes open.
d14 PwMS included; five PwMS were excluded because they were unable to stand on spot in closed stance with their eyes closed.

Data are given as mean (SD) unless otherwise stated.

statistical tests only applied to FSMC total, as recommended
previously (17).

We screened for clinically relevant depressive syndrome by
using a self-reported patient health questionnaire 9 item (PHQ-
9), using algorithmic classification into none, other, or major
depressive syndrome (18).

Disability in PwMS was rated with the expanded disability
status scale (EDSS). We recorded three indicators of
motor functions:

- postural sway in static posturography (closed stance with
the eyes closed) as a relevant measure of balance function
(19) recorded by visual perceptive computing using Microsoft
KinectTM and a custom-written software (version 2.0.1,
Motognosis GmbH, Germany) (20),

- 6 MW distance as indicator of walking endurance with
known validity against habitual walking performance in MS
(21), and

- hand grip strength (dominant and non-dominant hand)
as a non-locomotor indicator of general functional
status and physical health (22), reported as the
mean of three trials for each hand according to the
Southampton protocol (23) (Jamar dynamometer; Patterson
Medical, USA).

Motor Fatiguing Paradigm
Figure 1 depicts the test sequence of our paradigm. After general
clinical and motor assessment, 6 MW was used as a moderate-
intensity exercise expected to induce performance fatigability.

To verify the level of exertion induced by 6 MW, we
documented the participants’ ratings of perceived exertion
[BORG, score range 6 (low) to 20 (high exertion)] (24) before
6 MW and again directly after 6 MW.

To quantify the fatigability of motor performance, the
participants had balance and gait assessments before and
immediately after 6 MW. Fatigability was then described as
difference to the baseline. Posturography was assessed in closed
stance with the eyes open, then followed with the eyes closed for
20 s each as described above. Gait was recorded with Mobility
LabTM (APDM Inc., USA) from 2 × 15-m level walks with U-
turn around a cone. The subjects were instructed to walk at their
comfortable speed and at their maximum walking speed two
times each.

Data Management and Pre-processing
One single item missing in FSMC was replaced by the mean
of the remaining items of that subject. Missing items in
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FIGURE 1 | Time sequence of assessments in the 6 MW motor fatiguing paradigm.

TABLE 3 | Overview of balance and gait parameters recorded before and after 6-min walk.

Method Condition Parameter Abbreviation Unit

Visual perceptive computing Stance Sway closed stance eyes open angular speed 3D EO 3D speed Degrees/s

Sway closed stance eyes closed angular speed 3D EC 3D speed Degrees/s

Romberg ratio angular speed 3D Romberg 3D –

Mobility lab Comfortable speed walking/

maximum speed walking

Cadence Cad Steps/min

Stride time ST s

Gait speed Speed m/s

Stride length SL m

Circumduction Circum cm

Arm swing velocity Arm speed Degrees/s

Arm range of motion Arm ROM Degrees

Coronal range of motion Trunk roll ROM Degrees

Sagittal range of motion Trunk pitch ROM Degrees

motor parameters were considered per item and are reported
with results.

Two patients performed 6 MW using a cane and one of them
stopped performing the 6 MW early (4min 25 s). These data
points were included in the analysis but are indicated in the
respective figures.

Data for posturography were missing for three PwMS who
were unable to stand in closed stance. Two other PwMS were
unable to perform closed stance with their eyes closed. Data from
gait recordings were not available in one patient, and the arm
and trunk parameters were missing in another four PwMS due
to recording errors.

Sway during posturography was described as three-
dimensional angular velocity of a vector movement of hip
level mid-point relative to feet midpoint (20).

Gait parameters were calculated by the manufacturer’s
(APDM Inc., USA) algorithm for the plugin “Iwalk” (version
2.0) which provides algorithmic exclusion of the first steps
of each walk and algorithmic definition of steps in turn.
All trials were inspected for correct excision of turns (25).
We additionally excluded the last stride of each trial and
used only recordings with a minimum of six gait cycles. The
mean of two repetitions was used for analysis. Table 3 gives
an overview of all the motor parameters acquired in the
fatiguing paradigm.

Statistical Analysis
The descriptive analyses included a calculation of group means
and standard deviations (SD) (median/interquartile range for
EDSS). Normality testing was performed for all parameters
using the Shapiro–Wilk test and the statistical tests were chosen
accordingly (see Table 2). All gait and balance parameters (see
Table 3) were normally distributed by test and inspection of plots.

Between-group comparisons for demographic and clinical
characteristics used t-test, Mann–Whitney U test, or chi-square
test as indicated (Table 2).

The amount of change induced by 6 MW was described as
raw difference (measure-post– measure-pre= delta-measure). A
positive delta thus denoted a numerical increase after exertion.
Measures pre-post were compared by t-test.

We applied ANOVA for repeated measures (type III) for
each motor parameter with test repetition after 6 MW (effect of
exertion), status of PwMS orHC (effect of group), and interaction
(effect of exertion× group) as factors.

For motor parameters with significant exertion or interaction
effect, we applied Spearman correlations within the PwMS group
between fatigability (delta-measure) and perceptional ratings of
state (BORG post) and trait (FSMC) fatigue.

In another step of the analyses, we used correlation analysis
to explore the hypothesized triangular relation between (1)
perceptions of state/trait fatigue, (2) performance fatigability, and
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FIGURE 2 | Scatter plots of ratings/performance before (pre) and after (post) exertion by 6 MW for (A) Borg ratings of perceived exertion, (B) comfortable gait speed,

(C) arm swing in comfortable speed walking, (D) maximum gait speed, and (E) sway in static posturography in closed stance with the eyes open. Points on the line

would represent the identical pre- and post-ratings (no change), while values above this line denote the numerical increase of the respective parameter. The groups

are color-coded as PwMS (orange) and HC (blue). Two patients who walked with a cane are highlighted with a black curl.

(3) MS disability and limitations in motor functions (walking
function, balance, and hand grip strength).

Significance was set at p < 0.05, but trends were reported for
further analysis. The statistical analyses were performed with R
version 3.5.1.

RESULTS

Sample Characteristics
FSMC indicated relevant trait fatigue in all but two of the 19
PwMS included, with more than half classified as severe fatigue.
Depression screening indicated relevant depressive symptoms
in four subjects. PwMS were impaired in balance and walking
function, while their hand grip strength did not clearly differ
from HC (Table 2).

Validity of Fatiguing Paradigm
The 6MW, despite different individual distances walked, induced
a perception of exertion in all participants, confirming validity as
a motor fatiguing paradigm. We observed a three-point increase
in BORG ratings after 6 MW in both groups (p < 0.001 PwMS,
p < 0.001 HC; Table 2, Figure 2A), although perceived exertion
in PwMS was generally higher than in HC even before 6 MW
performance (Table 4).

Motor Performance After Exertion
The balance and gait parameters recorded before and after 6 MW
revealed a complex pattern of changes (Table 4). Worsening of
balance, i.e., increase of postural sway (eyes open), was observed
in PwMS only, not in HC (Figure 2E).

Concerning gait, a decline of performance in PwMS was only
observed at maximum speed walking. Stride length decreased in
PwMS only but remained stable in HC (Figure 2D). However,

arm swing and trunk roll movements indicated larger ranges of
upper body movement after 6 MW in both groups.

At comfortable speed walking, our observations clearly
contrasted the expected decline of motor performance with
exertion. The observed changes instead indicated a more
dynamic walking pattern after 6 MW in both groups, although
less pronounced in PwMS. Specifically, 6 MW induced an
increase of comfortable gait speed and related parameters
(cadence, stride time, and stride length) as well as increased
arm and trunk motion. ANOVA revealed an interaction of the
effect of exertion and group for several parameters (Table 5).
Furthermore, an inspection of the respective plots suggested
that the amount of change induced by 6 MW was dependent
on the baseline value (Figures 2B–E). For example, Figure 2C
indicates that lower arm swing velocity at baseline—occurring
in PwMS with higher disability grades as well as in two elderly
HC—coincides with less increase after 6 MW.

Relation of Performance Fatigability to
Trait Fatigue and State Fatigue in Multiple
Sclerosis
Next, we analyzed whether performance fatigability, i.e., delta
induced by 6 MW, was associated with perception of state fatigue
(BORG) or trait fatigue (FSMC) in MS (Table 6). Concerning
state fatigue, those with higher ratings of perceived exertion after
6 MW featured less increase in speed, stride length, and arm
movements at comfortable speed walking.

Those with higher trait fatigue featured less increase of arm
movements at comfortable speed walking, while no significant
correlation was seen for the delta of any other balance or gait
parameter. Furthermore, the subjects’ ratings of state fatigue
(BORG after 6 MW) were only weakly related to their ratings of
trait fatigue (FSMC) (r = 0.396, p= 0.09).
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TABLE 4 | Differences within-group for people with multiple sclerosis (PwMS) and healthy subjects (HC) between balance and gait parameters taken before (pre) and after

(post) exertion by 6-min walk.

Test condition Parameter MS HC

Pre

mean

(SD)

Post

mean

(SD)

Delta

mean

(SD)

Pre

mean

(SD)

Post

mean

(SD)

Delta

mean

(SD)

BORG Perceived exertion 10.500

(2.94)

13.889

(3.50)

3.389

(2.43)

7.000

(1.46)

10.146

(2.00)

3.146

(2.28)

Stance EO 3D speeda 0.350

(0.15)

0.470

(0.34)

0.120

(0.23)

0.198

(0.06)

0.201

(0.07)

0.003

(0.06)

EC 3D speedb 0.655

(0.33)

0.725

(0.42)

0.031

(0.28)

0.292

(0.11)

0.312

(0.11)

0.020

(0.09)

Romberg 3Db 1.970

(0.59)

1.812

(0.74)

−0.154

(0.91)

1.508

(0.45)

1.595

(0.48)

0.087

(0.53)

Comfortable speed walking Cad 110.412

(11.39)

112.335

(12.91)

1.924

(4.19)

117.912

(7.18)

122.766

(7.90)

4.854

(3.29)

ST 1.099

(0.12)

1.084

(0.15)

−0.015

(0.05)

1.022

(0.06)

0.982

(0.06)

−0.040

(0.03)

Speed 1.231

(0.23)

1.278

(0.25)

0.046

(0.10)

1.381

(0.18)

1.511

(0.19)

0.130

(0.07)

SL 1.330

(0.17)

1.355

(0.17)

0.025

(0.06)

1.403

(0.16)

1.474

(0.15)

0.071

(0.05)

Arm speedc 226.657

(69.25)

252.867

(73.32)

26.210

(27.65)

229.928

(57.53)

271.215

(55.60)

41.287

(35.34)

Arm ROMc 53.418

(20.77)

60.486

(22.70)

7.068

(7.10)

58.404

(17.02)

66.631

(15.28)

8.227

(8.15)

Trunk roll ROMc 7.446

(3.18)

8.794

(3.02)

1.348

(0.81)

6.039

(2.25)

7.626

(2.67)

1.587

(1.26)

Trunk pitch ROMc 6.019

(2.52)

6.429

(2.47)

0.410

(0.92)

4.742

(0.97)

5.065

(1.06)

0.323

(0.76)

Maximum speed walking Cad 127.138

(12.40)

125.418

(14.33)

−1.721

(5.41)

141.032

(8.58)

141.835

(8.50)

0.803

(5.76)

ST 0.954

(0.10)

0.970

(0.12)

0.016

(0.04)

0.854

(0.05)

0.850

(0.05)

−0.005

(0.04)

Speed 1.630

(0.29)

1.568

(0.32)

−0.062

(0.13)

1.911

(0.22)

1.928

(0.23)

0.016

(0.13)

SL 1.529

(0.19)

1.487

(0.19)

−0.042

(0.07)

1.628

(0.18)

1.630

(0.18)

0.003

(0.05)

Arm speedc 295.209

(65.62)

309.927

(73.46)

14.718

(31.54)

345.554

(81.65)

373.136

(97.58)

27.582

(50.66)

Arm ROMc 66.994

(20.90)

67.579

(21.72)

0.585

(6.61)

78.209

(19.65)

83.133

(21.11)

4.925

(8.00)

Trunk roll ROMc 8.412

(3.45)

9.224

(2.90)

0.812

(1.26)

7.388

(2.78)

8.509

(2.95)

1.120

(1.23)

Trunk pitch ROMc 7.187

(2.86)

6.921

(2.78)

−0.266

(0.93)

6.076

(1.51)

6.595

(2.29)

0.519

(1.62)

SD, standard deviation.

For all mobility lab parameters, one PwMS was excluded because of missing data.
a16 PwMS included; three PwMS were excluded because they were unable to stand on spot in closed stance with eyes open.
b14 PwMS included; five PwMS were excluded because they were unable to stand on spot in closed stance with their eyes closed.
c14 PwMS included; five PwMS were excluded because of missing data due to technical problems.

The disability and impairment scores were of similar size for these smaller sample sizes.

Relation of Performance Fatigability, State
Fatigue, and Trait Fatigue to Disability or
Limitations of Motor Functions in Multiple
Sclerosis
Performance fatigability—specifically delta of arm range of
motion at comfortable speed walking—and state fatigue after 6

MW, were very similarly related to EDSS (r = −0.73 and 0.77),
walking endurance (r = 0.77 and −0.71), and balance function
(r = −0.72 and 0.59). In addition, delta of arm movement was
related to grip strength in the non-dominant hand and delta of
postural sway (eyes open) after 6 MW was related to baseline
balance function (r = 0.61).
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TABLE 5 | Results of ANOVA with each gait and balance parameter as dependent variable and effect of exertion, group, and interaction as factors.

Test

condition

Parameter Effect of exertion Group Interaction

p Partial eta2 p Partial eta2 p Partial eta2

Stance EO 3D speeda 0.016 0.143 <0.001 0.311 0.022 0.130

EC 3D speedb 0.426 0.018 <0.001 0.410 0.858 0.001

Romberg 3Db 0.775 0.002 0.025 0.132 0.303 0.029

Comfortable

speed walking

Cad <0.001 0.463 0.005 0.183 0.015 0.139

ST <0.001 0.358 0.005 0.178 0.038 0.103

Speed <0.001 0.521 0.005 0.181 0.003 0.196

SL <0.001 0.465 0.062 0.085 0.007 0.166

Arm speedc
<0.001 0.510 0.596 0.008 0.180 0.049

Arm ROMc
<0.001 0.486 0.363 0.023 0.661 0.005

Trunk roll ROMc
<0.001 0.629 0.158 0.055 0.529 0.011

Trunk pitch ROMc 0.012 0.163 0.023 0.135 0.755 0.003

Maximum speed

walking

Cad 0.603 0.007 <0.001 0.348 0.157 0.049

ST 0.338 0.023 <0.001 0.337 0.090 0.070

Speed 0.262 0.031 <0.001 0.286 0.059 0.086

SL 0.041 0.100 0.040 0.101 0.022 0.125

Arm speedc 0.008 0.180 0.042 0.110 0.398 0.020

Arm ROMc 0.036 0.116 0.059 0.096 0.095 0.075

Trunk roll ROMc 0.000 0.373 0.382 0.021 0.466 0.015

Trunk pitch ROMc 0.596 0.008 0.335 0.026 0.106 0.071

For all mobility lab parameters, one PwMS was excluded because of missing data
a16 PwMS included; three PwMS were excluded because they were unable to stand on spot in closed stance with eyes open.
b14 PwMS included; five PwMS were excluded because they were unable to stand on spot in closed stance with their eyes closed.
c14 PwMS included; five PwMS were excluded because of missing data due to technical problems.

P < 0.05 were deemed significant.

Parameters indicated in bold were selected for correlation analysis based on ANOVA results.

In contrast, the FSMC ratings, i.e., levels of trait fatigue,
were rather unrelated to EDSS (r = 0.34, p = 0.13) or walking
endurance (r = −0.39, p = 0.1) but showed correlations to
balance function (r= 0.68) and hand grip strength (r=−0.57 for
non-dominant hand) (Table 6). An inspection of the respective
data plots (Figures 3A–C) revealed that the subjects with motor
functions outside the normal range consistently featured relevant
trait fatigue but not vice versa.

DISCUSSION

We here report on changes of balance and gait functions after
fatiguing exercise and their relation to perceptions of fatigue
as well as disability and motor function in MS. In extension
to many other studies, we aimed to separate fatigue as a trait
variable conceived as the underlying construct of commonly used
fatigue rating scales and as a state variable conceived as the actual
perception of exertion induced by our 6 MW fatiguing paradigm.
Our sample of PwMS featured high trait fatigue according to
FSMC and low to moderate disability according to EDSS as
reflected in limited walking endurance and balance function
when contrasted to HC.

First, we were able to confirm that 6 MW is a fatiguing
paradigm as perceptions of exertion increased after 6 MW.
That the amount of change was similar in both groups despite
different distances walked can be interpreted as an interaction
of perceptions of (state) fatigue and fatigability, which leads to
corresponding adjustments of performance (11).

Despite this, the changes observed for gait parameters
when assessed before and immediately after 6 MW cannot
be straightforwardly interpreted as expression of fatigability.
The changes instead indicate a more dynamic gait pattern at
comfortable speed walking after 6 MW in both groups with
increased speed and larger arm swing and trunk movements.
This observation was unexpected and, to our knowledge, this
has not been described previously. This effect may combine a
carry-over effect [which has been reported in other contexts (26)]
from prior walking in fast pace for 6min on the one hand and,
on the other, an artifact of instructed short distance recording
which may not reflect the walking speed an individual would
usually assume for longer distances. In fact, 6 MW was shown
to have higher validity against daily walking functions in MS
compared to short-term recordings (27). The correlations of
observed changes in comfortable speed walking with the level of
state fatigue after 6 MW and 6 MW distance itself indicate that a
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TABLE 6 | Spearman correlations within PwMS group between changes in balance and gait parameters after 6 MW (delta parameter) to perception of fatigue (trait),

perception of exertion, disability, and motor functions reported as rho (ρ).

Parameter Perception of fatigue Perceived

exertion

Disability Motor function

FSMC

total

FSMC

motor

FSMC

cognitive

Borg post EDSS Gait Balance Hand grip strength

6-MW

distance

Stance

eyes closed

prea

Non-

dominant

Dominant

Perception of fatigue FSMC

total

1

(<0.001)

0.95

(<0.001)

0.95

(<0.001)

0.4

(0.090)

ns ns 0.68

(0.010)

−0.57

(0.010)

−0.5

(0.029)

FSMC

motor

1

(<0.001)

0.84

(<0.001)

0.42

(0.070)

0.4 (0.089) −0.42

(0.071)

0.71

(0.004)

−0.51

(0.027)

−0.48

(0.040)

FSMC

cognitive

1

(<0.001)

ns ns ns 0.6

(0.026)

−0.54

(0.017)

−0.47

(0.045)

Perceived exertion Borg post 1

(<0.001)

0.77

(<0.001)

−0.71

(0.001)

0.59

(0.03)

ns ns

Disability EDSS 1

(<0.001)

−0.88

(<0.001)

0.67

(0.009)

ns ns

Motor function Gait 6–MW distance 1

(<0.001)

−0.76

(0.002)

0.4

(0.089)

ns

Balance Stance eyes

closed pre

1

(<0.001)

ns ns

Hand

grip

strength

Non–dominant 1

(<0.001)

0.65

(0.003)

Dominant 1

(<0.001)

Stance 1EO 3D speedb ns ns ns ns ns ns 0.61

(0.024)

ns ns

Comfortable speed walking 1Cad ns ns ns −0.46

(0.060)

ns ns ns ns ns

1 ST ns ns ns 0.44

(0.070)

ns ns ns ns ns

1 Speed ns ns ns −0.51

(0.030)

−0.48

(0.044)

0.43

(0.077)

ns ns ns

1 SL ns ns ns −0.49

(0.040)

−0.45

(0.060)

ns ns ns ns

1 Arm speedc
−0.7

(0.007)

−0.47

(0.087)

−0.76

(0.002)

−0.55

(0.040)

−0.64

(0.013)

0.61

(0.022)

ns 0.62

(0.020)

ns

1 Arm ROMc
−0.83

(<0.001)

−0.72

(0.004)

−0.78

(0.001)

−0.62

(0.020)

−0.73

(0.003)

0.77

(0.002)

−0.72

(0.019)

0.56

(0.040)

ns

1 Trunk roll

ROMc

−0.52

(0.062)

ns −0.53

(0.050)

ns ns ns ns ns ns

1 Trunk pitch

ROMc

ns ns ns ns ns ns ns ns ns

Maximum speed walking 1 SL ns ns ns ns ns ns ns ns ns

1 Arm speedc ns 0.51

(0.062)

ns ns ns ns ns ns ns

1 Arm ROMc ns ns ns ns ns ns −0.56

(0.090)

ns ns

1 Trunk roll

ROMc

ns ns ns ns ns ns ns ns ns

a14 PwMS included; five PwMS were excluded because they were unable to stand on spot in closed stance with their eyes closed.

For all mobility lab parameters, one PwMS was excluded because of missing data.
b16 PwMS included; three PwMS were excluded because they were unable to stand on spot in closed stance with eyes open.
c14 PwMS included; five PwMS were excluded because of missing data due to techincal problems.

For clarity, we only depict correlations with p < 0.1.
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FIGURE 3 | Correlations of the Fatigue Scale for Motor and Cognitive Functions questionnaire ratings of fatigue trait with specific motor function in multiple sclerosis:

(A) walking function (6MW distance), (B) handgrip strength of the non-dominant hand, and (C) balance function (EC 3D speed). For interpretation, the means and the

range of one standard deviation (solid and dashed lines) of HC are inserted.

“lower amount of increase” in gait parameters can be understood
as expression of fatigability with delta of arm swing as the most
relevant marker in this respect. Arm swing behavior is generally
understudied (28) and we are not aware of its description in
MS, which makes this marker difficult to interpret. As arm swing
may influence recovery after tripping and improve gait efficiency
and stability (28), further exploration of the arm swing behavior
and the determinants in MS is highly relevant. Interestingly, in
this study, arm swing also increased with exertion at maximum
speed walking despite a decrease in stride length and gait speed
observed in PwMS. The latter effect was not strong enough to
consider it as a promising marker of performance fatigability in
MS but is consistent with a decrease in walking speed reported
from continuous or minute-by-minute 6 MW recordings (29,
30). As a limitation of our study, such recordings were not applied
and thus respective deceleration indices could not be calculated
for direct comparison. Taken together, the standardized short
assessment battery of gait function applied in an appropriate
fatiguing paradigm did not yield clinically applicable markers
of fatigability.

The decline in balance function with exertion confirms
previous reports (31). Future studies need to explore the
relevance of this finding for fall risk and walking capabilities
in MS. Worsening of balance with exertion has also been seen
in elderly HC with prompt recovery after minutes (32) and
has also been proposed for screening of workplace fatigue (33).
The high susceptibility of balance function to effects of exertion
surely warrants consideration in assessment protocols for balance
testing. However, a more direct link of perceived fatigue to
vestibular functions has been the topic of recent investigations
(34), while the associations of balance function and psychological
factors are largely unexplored. Of note is that the posturography
system used in our study as a low-cost tool may be of potential
utility for such research.

Performance fatigability, i.e., parameters’ delta with exertion,
was similarly correlated to BORG ratings after 6 MW and 6 MW
distance, which both also had similar and robust correlations
with disability and limitations of gait and balance function in
MS. This is in line with previous evidence (30). It suggests that
patient ratings of state fatigue after standard exercise as well as
actual performance in the endurance task may both serve as good
proxies for fatigability in MS. It further implies that (motor)

fatigability in MS can be considered as a phenomenon closely
related to the motor symptoms of the disease. The applicability of
this finding in the cognitive domain or in other disease conditions
needs further investigation.

As a general limitation, FSMC was not performed in HC
and gender ratio between groups was not perfectly balanced.
This may contribute to the underestimation of between-group
difference due to a higher prevalence of fatigue in females at the
population level. For FSMC correlations in PwMS, the sample
size was small and included only two subjects without relevant
fatigue (who weremainly unimpaired in all motor function tests).
Nevertheless, in line with our results, the divergence of trait
fatigue and disability in MS has been reported in larger cohorts
with almost identical coefficients (12, 35) as well as the divergence
of trait fatigue and fatigability (36). The occurrence of strong
trait fatigue in the absence of other neurological symptoms or
structural CNS change in chronic fatigue syndromemay be taken
as another piece of evidence (37). Similar to our results, they
(37) also found a relation of hand grip strength to the levels of
trait fatigue, including a sample of PwMS. This further supports
divergence between trait fatigue and MS-related disability as
handgrip strength was unrelated to EDSS/6 MW and did not
clearly differ from HC in our study. There is ample evidence
for handgrip strength as an indicator of general health status
with relations to morbidity and mortality (22), and it is one of
the five criteria to define frailty in the elderly (in combination
with comfortable walking speed, weight loss, physical activity,
and perceptions of exhaustion) (38). Future studies on hand
grip strength in MS should aim to further explore and consider
possible confounders (e.g., gender, age, and body weight) to gain
more robust findings.

With this in mind, what is measured by fatigue rating scales
as a disabling symptom in MS may be conceived as only
indirectly or in a large part even non-related to MS disability
as assessed by EDSS. In fact, previous studies determined
depressive symptoms as the only independent predictor of
FSS ratings (12). Four depressive cases on our study scored
high on FSMC and Borg post, but their motor performance
in the 6 MW paradigm seemed not distinct and post hoc
analysis excluding these cases did not change the essence of
the results. Other possible determinants such as general health,
comorbidity (and subsequent medications), physical fitness, and
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pain remain largely unexplored to date. Further exploration of
medication effects was not feasible in our study due to the small
sample size and the various drugs applied (see Table 1 of the
Supplementary Material). Mechanistic studies suggested self-
control (10) or internal effort–reward trade-offs (39) as other
possibly relevant psychological factors in MS fatigue. While a
relation of trait fatigue to balance function has been reported
previously (40), we were also able to link fatigability/state fatigue
to balance function. Such interactionmay be interpreted as worse
balance being the expression of MS disability (with impact on
fatigability) and also being influenced by other factors that at the
same time impact on the levels of trait fatigue. In this respect, the
impact of psychological determinants, e.g., attentional control,
affective state, or general health, on balance function deserves
further exploration. In sum, the correlation results are in line with
the recently proposed distinction between the effort-dependent
and the effort-independent components of MS fatigue (8) that
may prove more useful as a concept than the performance–
perception duality proposed by Kluger et al. (9).

Our study adds important aspects to inform future studies
on MS fatigue. State levels of fatigue (e.g., Borg ratings) after
standard exercise or 6 MW distance may serve as indicators
of fatigability/effort-dependent component of MS fatigue that
can be considered close to MS disability but distinct from
patient ratings of (trait) fatigue. Handgrip strength and balance
warrant further exploration, including the determination of
appropriate testing and normalization procedures, as possibly
useful indicators of trait fatigue. Easy means of assessment
and ample normative data for both measures support their
clinical applicability. Arm swing during gait may be an additional
feature of interest with possible cross-correlations to other yet
undetermined factors.
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