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Purpose: The use of surface radiofrequency (RF) coils is common practice to 
boost sensitivity in (pre)clinical MRI. The number of transceive surface RF 
coils is rapidly growing due to the surge in cryogenically cooled RF technology 
and ultrahigh-field MRI. Consequently, there is an increasing need for effec-
tive correction of the excitation field (B+

1
) inhomogeneity inherent in these coils. 

Retrospective B1 correction permits quantitative MRI, but this usually requires 
a pulse sequence-specific analytical signal intensity (SI) equation. Such an 
equation is not available for fast spin-echo (Rapid Acquisition with Relaxation 
Enhancement, RARE) MRI. Here we present, test, and validate retrospective B1 
correction methods for RARE.
Methods: We implemented the commonly used sensitivity correction and developed 
an empirical model-based method and a hybrid combination of both. Tests and vali-
dations were performed with a cryogenically cooled RF probe and a single-loop RF 
coil. Accuracy of SI quantification and T1 contrast were evaluated after correction.
Results: The three described correction methods achieved dramatic improvements in 
B1 homogeneity and significantly improved SI quantification and T1 contrast, with 
mean SI errors reduced from >40% to >10% following correction in all cases. Upon 
correction, images of phantoms and mouse heads demonstrated homogeneity compa-
rable to that of images acquired with a volume resonator. This was quantified by SI 
profile, SI ratio (error < 10%), and percentage of integral uniformity (PIU > 80% in 
vivo and ex vivo compared to PIU > 87% with the reference RF coil).
Conclusion: This work demonstrates the efficacy of three B1 correction methods 
tailored for transceive surface RF probes and RARE  MRI. The corrected images 
are suitable for quantification and show comparable results between the three meth-
ods, opening the way for T1 measurements and X-nuclei quantification using surface 
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1  |   INTRODUCTION

The ability of MRI to provide high spatial resolution images 
within short acquisition times is governed by the sensitivity 
conundrum, which balances the constraints of signal-to-noise 
(SNR), image contrast, spatial resolution, and temporal resolu-
tion.1-5 Numerous approaches have been developed to improve 
SNR per scan time from the development of novel software- 
driven approaches (eg, parallel imaging,6,7 compressed sens-
ing8), to hardware improvements, including higher magnetic 
field strengths (B0)

9-11 and the optimization of radiofrequency 
(RF) technology. The use of surface RF coils is common prac-
tice to boost sensitivity12 in (pre)clinical MRI, predominantly 
with a receive-only RF coil design in combination with a vol-
ume RF coil used for excitation.13 The use of transceiver (trans-
mit-receive, TxRx) surface RF coils is increasing, in particular 
in human MRI at ultrahigh fields14-22 where large volume body 
RF coils are not used for signal excitation and are not provided 
with ultrahigh field-MR scanners.

In preclinical research, the use of transceiver RF config-
urations has been dominated by cryogenically cooled RF 
probes (CRP) that provide significant SNR gains.23-25 CRPs 
are sometimes also available as decoupled Rx-only configu-
rations in combination with a room-temperature (RT) volume 
resonator for RF excitation, but are not as common as the  
Tx/Rx configuration.26 By reducing thermal noise in the re-
ceiver circuitry (RF probe and preamplifier), SNR can be 
enhanced by a factor of up to 3-4 compared to conventional 
RT RF coils.23 The SNR gain of a CRP can be exploited to 
increase spatial resolution, to reduce scan time, or to lower 
detection limits, especially for X-nuclei MRI.

A constraint of TxRx surface RF coil technology is the 
strong intrinsic spatial gradient (inhomogeneity) in both exci-
tation (B+

1
) field and coil sensitivity (B−

1
).12,13 Although the lat-

ter can be easily corrected,27-34 non-uniform B+
1
 fields induce 

significant spatial variations in the excitation flip angle (FA), 
with the effective FA decreasing with increasing distance from 
the RF coil surface. The resulting B+

1
 inhomogeneities are more 

pronounced at higher field strengths.35,36 This adverse effect 
reduces image homogeneity and affects the T1 image contrast, 
representing a major challenge for applications for which abso-
lute signal intensities are needed, such as T1 mapping37,38 and 
quantification techniques in X-nuclei MRI.39,40

Although partial mitigation of B+
1
 inhomogeneity can be 

achieved with adiabatic pulses,41,42 dielectric materials,43-46 
or B+

1
 shimming,47-49 retrospective B+

1
 correction approaches 

are most commonly used to achieve signal uniformity.50-56 
First, the actual FA is measured using magnitude- or phase-
based B+

1
 mapping techniques, such as the double angle 

method,57,58 the phase sensitive technique,59 the actual FA 
method,60 or any of their improvements.61-63 Then, an analyt-
ical description of the signal intensity (SI) dependency on the 
FA for the RF pulse sequence (SI equation)50-54 or numerical 
simulations55,56 are used to perform the SI correction.

Retrospective B+
1
 correction has been successfully applied 

to gradient echo imaging techniques such as fast low angle 
shot50,51 or steady-state free precession,54 which are inher-
ently less sensitive to RF inhomogeneity64 and for which SI 
equations are given.65 Retrospective B+

1
 correction was also 

reported for spin-echo imaging methods.52,53 For fast spin-
echo techniques such as Rapid Acquisition with Relaxation 
Enhancement  (RARE)66 there is no exact analytical SI 
equation.67,68 This extends to pulse sequences employing 
simultaneous multislice parallel imaging,69 non-Cartesian 
trajectories,70-72 variable FA 3D turbo spin-echo,73 water-fat 
separation using Dixon approaches,74 and hybrid imaging 
techniques like half-Fourier single shot turbo spin-echo/gradi-
ent and spin-echo/turboGRASE (HASTE/GRASE/TGSE).75 
Other complex techniques with no SI equation include those 
derived from ultrashort echo time76 or echo-planar imaging 
(EPI).77 As a consequence, retrospective B+

1
 correction for 

these MRI techniques demands novel solutions.
To address this need, we developed, implemented, and 

applied three B1 correction approaches for RARE MRI with 
transceive surface RF probes with the goal to reduce errors 
to less than 10% for SI quantification and for T1 contrast. All 
three methods were applied and validated in test phantoms 
and mouse brains, in vivo and ex vivo. For performance eval-
uation, the corrected images were benchmarked against refer-
ence images obtained with a uniform TxRx volume resonator. 
The starting point was the commonly used sensitivity correc-
tion27 that uses a uniform phantom image to correct for B−

1
 

inhomogeneities. This method does not take spatial FA varia-
tions and T1 relaxation times into account. Given this limita-
tion and the unavailability of an analytical SI equation for fast 
spin-echo imaging, we modelled the SI of RARE as a func-
tion of FA and T1 based on empirical measurements obtained 
through MR experiments. This model-based correction uses 
the SI model to correct B+

1
, followed by a B−

1
 correction. We 

also implemented a hybrid correction using a combination of 
the model-based and sensitivity correction approaches. These 
methods are valuable not only for conventional 1H-MRI when 

transceiver RF coils. This approach is applicable to other MR techniques for which 
no analytical SI exists.

K E Y W O R D S
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accurate FAs are needed (eg, for well-defined T1 contrasts), 
but also in X-nuclei MRI, for which absolute SI is essential 
for signal quantification.

2  |   METHODS

The MR hardware, sample preparation, and measurements 
are summarized in Table 1.

2.1  |  MR hardware

All experiments were performed on a 9.4 T small animal 
MR scanner (BioSpec 94/20, Bruker BioSpin, Ettlingen, 
Germany) operating at 400 MHz (1H).

For creating reference images, we chose RF coils with ap-
proximately uniform excitation and reception fields:

•	 Small reference RF coil: in-house built volume resonator 
tailored for mouse head imaging78 (inner diameter [ID] = 
18.4 mm).

•	 Large reference RF coil: rat body linear volume resonator 
(Bruker BioSpin) with an ID = 72 mm.

The correction methods were applied, evaluated, and val-
idated for 2 transceive surface RF coils:

•	 Cryocooled surface RF coil (CRP): 2-element transceive 
RF probe (CryoProbe®, Bruker BioSpin) operating in 
quadrature mode with an ID = 20 mm and a saddle-shaped 
ceramic surface.

•	 RT surface RF coil: planar transceive single loop (ID =  
20 mm) surface RF coil (Bruker BioSpin).

2.2  |  Sample and animal preparation

To characterize the excitation and receive fields of the trans-
ceive surface RF coils (B1 mapping), we used samples that 
ensured full field of view coverage and had low T1 values 
(T1 ≈ 300 ms) to reduce the needed TR (TR > 5·T1) in our 
measurements:

•	 Cylindrical uniform phantom with low T1: 15-mL tube  
(ID = 14.6 mm, length = 120 mm; Thermo Fisher 
Scientific, Waltham, Massachusetts) filled with a mixture 
of water and copper sulfate (Carl Roth GmbH & Co. KG, 
Karlsruhe, Germany).

•	 Rectangular uniform phantom with low T1: 50-mL cell 
culture flask ((79.7 × 42.6 × 25) mm3; Fisher Scientific) 
filled with a doped solution of water.

Samples with different T1 (NMR tubes, Thermo Fisher 
Scientific) filled with aqueous solutions of gadolinium 
(Magnevist® 0.5 mmol/ml; Bayer Vital, Leverkusen, Germany) 
at different concentrations (0-0.5 mM) yielding T1 between 190 
and 2871 ms were used to produce the RARE SI models.

The test phantoms used for correction and evaluation of 
the B1 correction methods were:

•	 Cylindrical uniform phantom: containing water doped with 
gadolinium embedded in a 15-mL tube (T1 ≈ 800 ms).

•	 Ex vivo mouse: the central nervous system of a SJL/J 
female mouse, perfused with a phosphate-buffered sa-
line (Biochrom GmbH, Berlin, Germany), fixed in para-
formaldehyde (PFA; Santa Cruz Biotechnology, Inc., 
Dallas,Texas), and placed into a 15-mL tube filled with 4% 
PFA.

•	 In vivo mouse: a healthy SJL/J mouse anesthetized with 
2.7% isoflurane and stabilized with 1.6% during scanning. 
Heart rate, respiration rate, and temperature were moni-
tored and kept constant during the examinations.

•	 Rectangular uniform phantoms: four 50-mL cell culture 
flasks filled with solutions of two different 1H-atom con-
centrations: 100% water, 50% water and 50% deuterium 
oxide (Sigma-Aldrich, Saint Louis, Missouri). Gadolinium 
was added to the mixtures to achieve two different T1 val-
ues (490 and 1525 ms).

All animal experiments were approved by the Animal 
Welfare Department of the LAGeSo State Office of Health 
and Social Affairs in Berlin and in accordance with interna-
tional guidelines on reduction of discomfort (86/609/EEC).

2.3  |  MR measurements

To characterize the B1 fields of both transceive surface RF 
coils we used:

•	 FA mapping: fast low angle shot  (FLASH) measure-
ments with nominal excitation FAs of 60°/120° (RT) and 
60°/120°/240° (CRP) with echo time/pulse repetition time 
(TE/TR) = 2.49/2000 ms, matrix = 128 × 128, 3 slices 
with a gap of 0.5 mm and a thickness of 2 mm each,  
TA = 1h30. We used a field of view = (25 × 25) mm2 for 
the CRP and field of view = (35 × 35) mm2 for RT.

•	 B−
1
 mapping: FLASH measurement with a nominal FA of 

5° (same parameters as above).

B1 field characterization can be performed prior to or after 
the image acquisition and does not entail extra acquisition 
time on the day of image acquisition, for example, in vivo 
scans.
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To compute the models, we performed RARE measure-
ments both with and without flipback and studied the effect 
of the extra pulse (which restores longitudinal magnetization, 
improving SNR) on the SI:

•	 T1-weighted (T1w-) RARE scans (TE/TR = 2.49/1000 
ms, echo train length (ETL) = 8, receiver bandwidth = 50 
kHz, centric phase encoding, field of view = (25 × 25) 
mm2, matrix = 128 × 128, 3 slices of 2 mm thickness,  

T A B L E  1   Detailed overview of measurements

Purpose MR protocol RF coil type RF coil Sample(s) Acq. time

Test images T1w-RARE (with 
flipback)

Surface TxRx CRP Cylindrical uniform phantom 60 min

Ex vivo mouse 60 min

In vivo mouse 30 min

Validation images T1w-RARE (with and 
w/o flipback)

Surface TxRx RT Rectangular uniform 
phantoms

30 min

Sensitivity correction

Uniform phantom 
images

T1w-RARE (with and 
w/o flipback)

Surface TxRx CRP Cylindrical uniform phantom 
with low T1

60 min

T1w-RARE (with and 
w/o flipback)

Surface TxRx RT Rectangular uniform phantom 
with low T1

30 min

Model-based correction

Mapping of FA and B−
1

FLASH Surface TxRx CRP Cylindrical uniform phantom 
with low T1

90 min per FA

  FLASH Surface TxRx RT Rectangular uniform phantom 
with low T1

30 min per FA

RARE SI modelling T1w-RARE (with and 
w/o flipback)

Volume TxRx Small reference RF coil Samples with different T1 5 m 40 s per FA

T1 mapping for 
modelling

RARE with variable 
TR

Volume TxRx Small reference RF coil Samples with different T1 90 min

T1 mapping for test 
images

RARE with variable 
TR

Volume TxRx Small reference RF coil Cylindrical uniform phantom 100 min

Ex vivo mouse 30 min

In vivo mouse 55 min

T1 mapping for 
validation images

RARE with variable 
TR

Volume TxRx Large reference RF coil Rectangular uniform 
phantoms

30 min

Hybrid correction

Mapping of FA and B−
1

FLASH Surface TxRx CRP Cylindrical uniform phantom 
with low T1

90 min per FA

  FLASH Surface TxRx RT Rectangular uniform phantom 
with low T1

30 min per FA

RARE SI modelling T1w-RARE (with and 
w/o flipback)

Volume TxRx Small reference RF coil Samples with different T1 5 m 40 s per FA

T1 mapping for 
modeling

RARE with variable 
TR

Volume TxRx Small reference RF coil Samples with different T1 90 min

T1 mapping for test 
images

RARE with variable 
TR

Volume TxRx Small reference RF coil Cylindrical uniform phantom 100 min

Ex vivo mouse 30 min

In vivo mouse 55 min

T1 mapping for 
validation images

RARE with variable 
TR

Volume TxRx Large reference RF coil Rectangular uniform 
phantoms

30 min

T1 mapping uniform 
phantom

RARE with variable 
TR

Volume TxRx Small reference RF coil Cylindrical uniform phantom 
with low T1

100 min

T1 mapping uniform 
phantom

RARE with variable 
TR

Volume TxRx Large reference RF coil Rectangular uniform phantom 
with low T1

30 min

CRP, cryogenically cooled radiofrequency probes; FA, flip angle; FLASH, fast low angle shot; RARE, Rapid Acquisition with Relaxation Enhancement; RT, room 
temperature; TxRx, transmit-receive.
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TA = 5m40s). Thirty-five reference RF powers were used 
to vary the excitation FA in 5° increments, between 5° and 
160° (flipback) and between 5° and 110° (without flipback).

•	 T1 maps of all phantoms (RARE with variable TR (120- 
15 000 ms); ETL = 2, linear phase encoding, other param-
eters same as RARE scan).

T1w-RARE images were acquired using the same parameters 
as above with flipback (CRP) and with/without flipback (RT) for 
validation purposes. Corresponding T1 maps for all samples were 
measured using RARE with TR ranging from 150 to 14500 ms.

All reference RF power adjustments were performed on a 
2-mm slice located parallel and close to the RF coil surface.

RARE modeling can be equally performed prior to or after 
the image acquisition and does not entail extra acquisition time 
on the day of image acquisition, for example, in vivo scans.

2.4  |  Approach 1: Sensitivity correction

All post-processing was performed using customized soft-
ware developed in MATLAB (MathWorks Inc., Natick, 
Massachusetts).

This straight-forward method only requires a uniform 
phantom image to correct for the B−

1
 inhomogeneities.27,28 

The following steps were performed (Figure 1A):

•	 MRI study. Images (sample and uniform phantom) were 
acquired.

•	 Correction factor computation. We normalized and calcu-
lated the inverse of the uniform phantom image.

•	 Sensitivity correction. We multiplied the uncorrected 
image by the estimated correction factor to correct for the 
B−

1
 inhomogeneities.

This method requires neither the characterization of the 
transceive RF coil used, nor the calculation of a RARE SI 
model and it is, therefore, directly applicable after image ac-
quisition with little post-processing.

2.5  |  Approach 2: Model-based correction

Figure 2 shows the workflow of the model-based correction, 
consisting of the following steps, starting with the quantifica-
tion of the B1 inhomogeneities:

F I G U R E  1   Workflows of (A) sensitivity correction and (B) hybrid B1 correction. The sensitivity correction merely requires dividing the 
sample image by that of a normalized uniform phantom. The hybrid method combined the model-based approach to perform a B+

1
 correction on the 

sample image and a uniform phantom image. The latter is then used to perform a B−
1
 correction using the sensitivity correction method
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•	 RF coil characterization. FA maps were calculated using 
the double angle method.57,58 To increase the SNR distal 
to the CRP we added a measurement at a higher FA and 
merged the 60°/120° and 120°/240° maps using an SNR 
cutoff. All maps were denoised using a polynomial fitting 
tool (polyfitn,79 10th-order polynomials).

The transmit field (B+
1
) maps were computed using:

with γ being the gyromagnetic ratio (γ = 267.522 · 106 rad s−1 
T−1 for 1H) and τ the pulse length of a rectangular RF pulse. 
Because calculated RF pulses were used, each one has a com-
plex shape tailored to the sequence parameters. We therefore 
approximated the RF pulse length τ using the product of the 
RF pulse duration, the area under the RF pulse (Sint), and the 
related voltage (V):

The RF coil sensitivity maps (B−
1
) were calculated using 

the low FA approximation80,81:

where SIlowFA was the 5° fast low angle shot measurement. 
The low FA image and B+

1
 map were normalized by their re-

spective maximum values and B−
1
 calculated as:

Ultimately, the B−
1
 map was denoised using a 10th-order 

polynomial fit.

•	 Modeling of the RARE SI equation. The relationship be-
tween SI, FA, and T1 was estimated using experimental 
data and a fitting tool:

Data analysis: Images were denoised using a spatially 
adaptive non local means filter,82 and T1 maps computed 

FA=γ ⋅ B+
1
⋅ τ

B+
1
=

FA ⋅
π∕180

� ⋅ tp ⋅ Sint ⋅ V

SIlowFA ∝
|
||
B+

1

|
||
⋅
||B

−
1
||

B−
1
∕max

(
B−

1

)
∝

B+
1
∕max

(
B+

1

)

SIlowFA∕max
(
SIlowFA

)

FIGURE 2   Workflow of model-based B1 correction. The necessary images and maps to be acquired are described in MR Measurements & Post-
processing column. Then the flip angle (FA) and sensitivity (B−

1
) maps were calculated using the double angle method and the low FA approximation, 

respectively. The Rapid Acquisition with Relaxation Enhancement (RARE) signal intensity model was derived from a 2D fit of the signal intensities 
measured for different FAs and T1 relaxation times using a volume resonator. The B+

1
 correction factor was computed pixel-wise for the actual FA and T1 

using the RARE signal intensity model. Applying this correction factor and the B−
1
 map derived correction factor yielded the final B1 corrected image
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by fitting S = S0(1-exp(-TR/T1)) to the SIs using in-
house developed software in MATLAB. We assumed  
SI(FA = 0°) = 0 for all T1. For each T1 sample, a circular 
region of interest (ROI) was drawn to extract average SI 
and T1 values from the images and maps respectively.

RARE modeling: To model the SI = f(FA,T1) relationship 
a 7th-order 2D polynomial was fitted to the experimental 
data using MATLAB’s polyfitn79 function. This was the 
lowest polynomial order that gave an R2 > 0.99 and a faith-
ful representation of the measured data.

•	 MRI study. Images and corresponding T1 maps of the test 
samples were acquired.

•	 Retrospective correction. All images and maps (B+
1
/B−

1
/T1) 

were spatially aligned, either by careful slice planning or 
by image registration.

The B+
1
-correction factor (fcorr) was calculated as the mod-

eled RARE SI for a perfect 90° excitation (SInominal) divided 
by the modeled RARE SI for the actual excitation FA (SIactual)  
obtained from the FA map:

Applying this correction factor yielded a B+
1
-corrected 

image:

In the few cases where the algorithm produced negative 
values (low-SNR regions), the correction factor was set to 
zero.

Dividing this B+
1
-corrected image by the B−

1
 map produced 

the final B1-corrected image:

2.6  |  Approach 3: Hybrid correction

This method combines the sensitivity and model-based cor-
rection (workflow in Figure 1B), and involves:

•	 RF coil characterization (as in Model-based Correction).
•	 Modeling of the RARE SI equation (as in Model-based 

Correction).
•	 MRI study. Images and T1 maps of the samples and of a 

uniform phantom were measured.
•	 Model-based B+

1
 correction (as in Model-based Correction) 

was performed on the sample and uniform phantom image.

•	 B−
1
 correction (as in Sensitivity Correction). The inverse of 

the B+
1
-corrected uniform phantom image was applied as 

the B−
1
 correction factor to the B+

1
-corrected sample image.

Both the model-based and the hybrid correction meth-
ods need a prior/posterior characterization of the transceive 
RF coil used and the calculation of a RARE SI model. The 
post-processing needed is rather simple in both cases.

2.7  |  Correction method 
evaluation and validation

The presented B1 correction techniques were validated using 
the following methods:

2.7.1  |  Central profile plots

The SI profile along a central line perpendicular to the RF 
coil surface was plotted against distance to the RF coil sur-
face. Seven pixels across the width of the line were aver-
aged, and the SIs were normalized to [0,1] to allow a better 
comparison. A quantitative comparison was performed by 
calculating the root-mean-square-error (RMSE) between 
each profile and the reference. Each profile was scaled 
to minimize the RMSE against the reference, in order to 
compensate for the arbitrary scaling and to provide a fair 
comparison.

2.7.2  |  Image homogeneity assessment

To quantitatively assess the uniformity of the corrected 
images, the percentage of integral uniformity (PIU)83 was 
computed for several ROIs of different sizes. A PIU of 
100% represents perfect image homogeneity. In the uni-
form phantom, we defined 5 internally tangential circu-
lar regions of interest (ROIs) with increasing diameter on 
the central vertical line. For the brain images (ex vivo, in 
vivo), we manually outlined the cortex and basal ganglia/
thalamus (left and right), achieving 3 ROIs.

2.7.3  |  T1-contrast and quantification 
performance

We used the experimental setup (Figure 3A) to compare sub-
stances with different water content (100% or 50%, respectively) 
and different T1 relaxation times (490 or 1525 ms, respectively). 
All acquired images with and without flipback were corrected 
using the three B1 correction methods. Five ROIs were drawn at 

fcorr =
SInominal

SIactual

imageB1+corr = image ⋅ fcorr

imagecorr = imageB1+corr∕B−
1
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pseudo-randomized positions (Figure 3B) on all sets of images 
(three corrections, original and reference) for all flasks. For each 
of the flask image pairs described in Figure 3A, mean SI ratios 
were calculated using all possible ROI combinations for all sets. 
Relative ratio errors were computed:

With SIreference being the mean SI ratio computed using 
all ROI combinations on the reference image pairs, and 
SIcorrected being that achieved using the corrected image 
pairs. Finally, the mean error and mean SD were calculated. 
An example of the workflow is shown in Figure 3B.

Statistical analysis. A nonparametric 1-way analysis of 
variance Friedman repeated measures test was performed 
(mean errors on the original data did not have a Gaussian dis-
tribution) followed by Dunn’s test where all corrections were 
compared to the original data (P values < .05 were considered 

significant). All statistical assessments were performed using 
GraphPad Prism 5 (GraphPad Software, La Jolla, California).

3  |   RESULTS

3.1  |  RF coil characterization

The maps of the receive field (B−
1
) (Figure 4A) and transmit 

field (B+
1
, here as FA) relative to a 90° excitation FA (Figure 4B)  

demonstrate the spatially varying sensitivity and FA for the 
CRP. A closer look at the vertical midline profile reveals a 
strong deviation from the target of FA = 90° (nominal FA) with 
increasing distance from the surface of the CRP (Figure 4C).  
These field maps show the typical inhomogeneity inherent 
to transceive surface RF coils, which was very similar in 
the B+

1
 and B−

1
 maps and FA profiles for the single loop RF 

coil (Figure 4D-F). The minor deviation of the FA profiles 
at 20-30 mm from the coil surface (in gray) reflects a math-
ematical artifact of the polynomial fit at low-SNR regions 

Ratio error=
abs

(
SIreference −SIcorrected

)

SIreference
∗100(%)

F I G U R E  3   Illustrations of validation 
methods. (A) To evaluate the performance 
of the correction methods (sensitivity, 
model based, and hybrid), 4 phantoms with 
different water content and T1 relaxation 
times were prepared. The quantitative 
assessment compared flasks with different 
water content for both low and high T1 
values. Similarly, contrast was evaluated 
by comparing phantoms with different 
T1 values at low and high water content. 
(B) shows the region of interest (ROI) 
placement and depicts for one selected 
ROI the ratios that were calculated. In this 
manner we calculated the ratios for all 
possible ROI combinations in the corrected, 
original and reference images. The mean 
relative errors of these ratios with regard 
to those obtained in the reference served as 
quantitative measure for the validation
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far from the RF coil surface. The assumed correct value is 
depicted by the dashed blue line.

3.2  |  Modeling of the RARE SI equation

The RARE SI dependency on FA and T1 (SI = f(FA,T1)) 
was modeled by fitting a polynomial to the experimental data 
acquired with these parameters, either incorporating a flip-
back pulse to restore longitudinal magnetization and hence 
improve SNR (Figure 5A-C), or excluding flipback to allow 
natural relaxation (Figure 5D-F). The fitted 3D-surfaces are 
shown in Figure 5A,D. Two-dimensional projections of the 
RARE models show the relationships between SI and T1 for 
several FA values (Figure 5B,E) and between SI and FA for 
several T1 values (Figure 5C,F). As expected, the fitted SI 
data predicts lower SI with increasing T1 and maximal SI for 
FAs around 90°. The surface fits modeled the experimental 
data well (R2 = 0.997 in both cases).

3.3  |  Correction method 
evaluation and validation

We acquired T1 maps (needed for B+
1
 correction) and refer-

ence images of a uniform phantom, an ex vivo mouse phan-
tom, and an in vivo mouse brain using a volume resonator 

(Figure 6A-B). The original uncorrected CRP images show 
the strong spatial SI gradient typical of transceive surface RF 
coils (Figure 6C). The results obtained with the three B1 cor-
rection methods are shown in Figure 6D-F. The strong spatial 
SI gradient present in the CRP images was removed by all 
B1 correction methods, yielding a uniform SI throughout the 
entire field of view for all investigated samples, including 
the in vivo mouse head. With the sensitivity and model-based 
corrections we observed an overshoot in SI in some regions, 
particularly distal to the CRP. This was due to a combination 
of increasing inaccuracies in the FA and SI data at low SNR. 
This overshoot in SI was resolved by combining both meth-
ods in the hybrid correction approach.

3.3.1  |  Central profile plots (CRP)

To quantitatively assess the correction of the image in-
homogeneity, we plotted normalized vertical SI profiles 
(Figure 7A-C). For all three approaches, the corrected SI 
profiles showed close correspondence with the reference 
RF coil (plotted as a surface in green). From these pro-
files one can determine how far away from the RF coil it 
is still viable to perform B1 correction. This depends on 
the specific scanning parameters and the dimensions of the 
RF coil; here this distance was approximately 17 mm (for 
a nominal FA of 90°, an actual FA of up to 8° could be 

F I G U R E  4   Sensitivity maps and transmission fields of the two transceive (TxRx) surface radiofrequency (RF) coils used for testing and 
validation. (A,D) Axial view of the computed sensitivity (B−

1
) maps for a uniform phantom placed close to the RF coil surface. (B,E) Corresponding 

flip angle (FA) maps relative to a 90° excitation. (C,F) Normalized central profile plots of the FA along the vertical axis, which reveal a strong 
decay with increasing distance to the RF coil surfaces. The gray lines depict the true calculated data misestimated by the polynomial fit at low 
signal-to-noise ratio regions far away from the RF coil surface; the assumed true value is shown by the blue dotted lines
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corrected). For our experimental setup, the region beyond 
17 mm showed increasing inaccuracies in the field maps 
and SI measurements, leading to unacceptable errors in all  
corrected images.

Quantitative examination revealed that all correction 
methods considerably reduced the RMSE computed on the 
profiles to a maximum of 0.18 (uniform), 0.12 (ex vivo) and 
0.26 (in vivo), with respect to the reference. For the uniform 
phantom, the sensitivity and hybrid approaches performed 
equally well (0.11). For the ex vivo phantom the sensitivity 
and model-based correction performed similarly (0.11). In 
vivo, the sensitivity correction achieved the best result (0.21). 
In comparison, the uncorrected profiles revealed an average 
RMSE of 0.53 ± 0.07 for all test phantoms.

3.3.2  |  Image homogeneity assessment 
(CRP)

For the uniform phantom, we found the calculated PIU 
(Figure 7D-F) to be 95.7% within the largest ROI using the 
volume resonator, indicating no significant inhomogeneities 
across the image, as expected. Conversely, a PIU of 0.9% was 
obtained within the same ROI on the uncorrected image. The 
PIU degradation scaled with increasing ROI diameter. After 
correction, the model-based approach showed a PIU of 65% 
on the fourth ROI (up to a distance of 16.2 mm from the RF 
coil surface). Beyond that distance, the observed overshoots 

confounded the PIU, which decreased to 0% in the largest 
ROI.

For the mouse brain images the PIUs showed the ex-
pected high homogeneity for the reference RF coil: ex vivo 
87.0 ± 4.4% and in vivo 87.7 ± 9.1%. The original surface 
RF coil images displayed substantial inhomogeneities: av-
erages of 35.4 ± 9.2% ex vivo and 33.2 ± 11.8% in vivo. 
A significant improvement in image homogeneity was 
achieved with all three correction methods, both in vivo and 
ex vivo. The model-based method performed best on average 
(85.0 ± 3.8% ex vivo and 80.5 ± 11.3% in vivo), closely fol-
lowed by the hybrid (81.6 ± 6.9% ex vivo and 79.7 ± 11.2% 
in vivo) and sensitivity (80.8 ± 5.7% ex vivo and 76.5 ±  
10.3% in vivo) corrections.

3.3.3  |  T1-contrast and quantification 
performance (RT)

We studied the errors in SI ratios between several fixed 
locations for all four phantoms, comparing original (uncor-
rected) RARE images and their  three corrections, relative 
to the ground truth (reference images). These validation 
assessments were performed for RARE without flipback 
(Figure 8) and with flipback (Figure 9). The box plots 
(whiskers at 5-95 percentile) depict the mean errors for 
quantification at low and high T1 relaxation times, and 
for T1 contrast measurements with low and high proton 

F I G U R E  6   B1 correction for cryogenically cooled radiofrequency probes (CRP) images of a uniform phantom, an ex vivo phantom and a 
living mouse. From left to right, the columns show (A) the acquired T1 map (reference coil), (B) the reference image, (C) the original CRP image, 
(D-F) the corrected images. A comparison of the original images with the reference images demonstrates the need of B1 correction. Quantification 
is severely hampered by the adverse signal intensity gradient. The corrected images show a remarkably improved homogeneity. All three correction 
methods performed well, with only slight differences between the results. Masks containing minor errors in the correction are overlaid and shown 
in light red
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density. Errors below 10% (dashed line) were considered 
acceptable.

Correction of RARE MR images without flipback (Figure 8):  
All correction methods reduced the errors to less than 10% for 
both quantification and contrast, contrary to uncorrected im-
ages that showed substantial errors (41-45%) and variabilities  
(37-42%). None of the calculated mean errors reached a value 
>8.3% after correction.

The sensitivity correction performed best when calculat-
ing water content proportions at low T1 values (5.0 ± 2.9%), 
followed closely by the hybrid (6.0 ± 2.7%) and model-based 
(6.6 ± 4.5%) methods. All three methods behaved similarly for 
higher T1 values, with mean errors of approximately 8% (sensi-
tivity 8.1 ± 2.9%, model-based 8.3 ± 5.9%, hybrid 8.1 ± 3.3%). 
All correction methods improved quantification significantly 
(P value < .0001) when compared to the original data.

When measuring T1 contrast, the hybrid method per-
formed best for both water content phantoms (2.4 ± 
1.7% high, 4.7 ± 3.8% low). The sensitivity correction 
method performed better than the model-based method 
for the high water content phantom (3.5 ± 2.5% vs. 6.2 ±  
5.5%). However, for the low water content comparison, 

the model-based correction method performed better than 
the sensitivity correction (5.2 ± 3.9% vs. 6.1 ± 3.1%). 
Similarly, the three described correction methods signifi-
cantly improved T1 contrast, when compared to the original 
data (P value < .0001).

Correction of RARE MR images with flipback (Figure 9): 
In general, all correction methods performed worse when 
flipback was enabled in RARE measurements, compared to 
RARE without flipback. The errors without correction were 
comparable to the case without the flipback option (40-58%). 
Their variabilities, however, were spread along a wider range 
(40-62%).

For quantification, the correction methods performed 
worse at low T1 relaxation times (overall about 10%: sensi-
tivity 11.0 ± 7.6%, model-based 10.7 ± 7.9%, hybrid 12.2 ±  
8.6%) than at higher ones (sensitivity 4.8 ± 4.0%, model- 
based 11.4 ± 10.1%, hybrid 7.2 ± 6.0%). All correction meth-
ods significantly improved quantification when compared to 
the original data (P < .0001).

T1 contrast accuracy was considerably reduced when using 
flipback during the measurements, with errors approach-
ing 20-30% for high water content. The sensitivity correction 

F I G U R E  7   Normalized signal 
intensity profiles perpendicular to the 
radiofrequency (RF) coil surface and 
percentage of integral uniformities (PIU) for 
the exemplary images shown in Figure 5:  
(A-D) uniform phantom, (B-E) ex vivo, 
and (C-F) in vivo, using 5 internally 
tangent circular regions of interest (ROIs) 
with increasing diameter (uniform) or 
anatomical regions (ex vivo, in vivo: cortex 
and basal ganglia/thalamus, BG/T). The 
corrected profiles demonstrate a striking 
increase in image homogeneity and show 
the same trends as those of the reference 
coil. In all three phantoms the calculated 
root-mean-square-errors (RMSEs) of the 
corrected profiles reveal a high resemblance 
to the reference. The PIU plots indicate 
a significant improvement in image 
homogeneity after correction
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method (19.5 ± 9.7%) performed marginally better than the 
model-based (28.9 ± 19.4%) and hybrid (28.4 ± 14.5%) meth-
ods. For higher water content the errors were smaller (8-15%). 
Similarly, the sensitivity correction method (8.3 ± 5.0%) per-
formed slightly better than the other two (model-based 15.2 ± 
13.2%, hybrid 15.2 ± 8.7%). Only the sensitivity method signifi-
cantly improved T1 contrast (P value = .0002 and .0003 for high 
and low proton density, respectively).

4  |   DISCUSSION

Several methods have been described in the literature to cor-
rect B1 inhomogeneities. These methods are especially crucial 
for images acquired with transceive surface RF coils. The cur-
rent study extends this work by demonstrating the feasibility 

and efficacy of B1 field inhomogeneity correction methods for 
RARE MRI, for which an analytical SI equation is not avail-
able. Our phantom results showed a substantial improvement 
in image homogeneity after B1 correction using the methods 
we investigated. We also establish the feasibility of these ap-
proaches for samples with more complex structures (ex vivo 
and in vivo mouse) and in time-constrained scenarios (in vivo). 
These results demonstrate that images derived from the cor-
rection procedures are suitable for accurate T1 contrast and SI 
quantification purposes, thus opening the way for parametric T1 
mapping and X-nuclei quantification using surface transceiver 
RF coils/probes. Compared to previously developed correction 
methods,50-54 the approaches presented and evaluated here are 
applicable to MR imaging techniques for which no analytical 
SI equation exists, including but not limited to echo-planar im-
aging and ultrashort echo time imaging techniques.

F I G U R E  8   Assessment of quantification and contrast accuracy for Rapid Acquisition with  Relaxation Enhancement (RARE) without 
flipback. Box plot of relative quantification and contrast errors for the original uncorrected images and those corrected with each of the  three B1 
correction methods. All B1 correction methods reduced the median error from well above 25% to below 10% (dashed line). Whiskers represent the 
5 and 95 percentiles. Asterisks indicate statistically significant differences compared to the uncorrected images



      |  2697DELGADO et al.

The sensitivity correction method is well established in 
the literature27 for correction of sensitivity-related inhomoge-
neities. A typical application is the correction of B−

1
 inhomo-

geneities in a RF coil setup where a volume resonator is used 
for transmission and a surface RF coil (with or without cryo-
cooled technology) for MR signal detection. We demonstrate 
here that this method is also effective for correction of B+

1
 

inhomogeneities. The sensitivity correction method includes 
an inherently linear B+

1
 correction, because all images are the 

product of the transmission and reception capabilities of an 
RF coil. This concept is supported by the quasi-linear trends 
shown in our SI model for SI vs. T1 relaxation time, and the 
linear trends present for the majority of the SI vs. FA range 
(e.g. between 30°-70° and between 90°-140°).

The two novel B1 correction methods (model-based,  
hybrid) we propose use an empirical SI model of the RF 

pulse sequence. The correction workflow involves using the 
calculated SI model to adjust the SI to that of the nominal FA, 
based on the actual FA and T1. This rectifies the inhomoge-
neities related to RF transmission (B+

1
), whereas those related 

to the RF coil sensitivity (B−
1
) are addressed in a separate step 

using a previously calculated B−
1
 map (model-based) or using 

a B+
1
-corrected uniform phantom (hybrid).

Homogeneity was first assessed calculating the PIU and 
central SI profiles in the corrected and reference images. 
These tests revealed a high homogeneity, maintained when 
comparing the ex vivo phantom to the in vivo situation (dif-
ference in mean below 5%). A clear difference was found in 
the profile comparison (RMSE = 0.12 vs 0.26, ex vivo and 
in vivo respectively), which might be related to a change in 
animal position when transferring the animal from 1H-CRP 
to reference RF coil. These differences might be also caused 

F I G U R E  9   Assessment of quantification and contrast accuracy for Rapid Acquisition with  Relaxation Enhancement (RARE) with active 
flipback. Box plot of relative quantification and contrast errors for the original uncorrected images and those corrected with each of the three B1 
correction methods. B1 correction reduced the median quantification error from well above 25% to below 10% (dashed line) but achieved only a 
modest improvement in the T1 contrast error. Whiskers represent the 5 and 95 percentiles. Asterisks indicate statistically significant differences 
compared to the uncorrected images
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by motion (eg, due to misalignment of the FA map, worse 
B0 shimming, etc.). Although the option motion averaging 
was used, it might not have been enough to compensate for 
bulk motion. Because we were using a RARE-based imaging 
sequence where the blood signal in large vessels is inherently 
suppressed due to the use of a spin-echo train, we do not be-
lieve the changes in performance to be related to blood flow.84

Assessing the accuracy of SI quantification and T1 con-
trast measurements yielded different results for RARE with 
and without flipback that drives the equilibrium regimen. 
Without the driven equilibrium regimen all correction meth-
ods reduced the errors to less than 10% for both quantifica-
tion and T1 contrast, and produced statistically significant 
improvements compared to the original data. For the driven 
equilibrium regimen, the errors in the original data were more 
pronounced, which translated into higher SI quantification 
and T1 contrast errors after correction. For all three B1 cor-
rection methods, errors were around 10% for quantification, 
but the accuracy of T1 contrast was considerably reduced, 
with errors up to 20-30% (for high water content). Only the 
sensitivity method improved T1 contrast significantly.

When flipback was inactive, all three methods performed 
similarly for SI quantification purposes, and yielded improved 
performance for the low T1 mode. This can be attributed to 
the reduced T1-weighting at the repetition times used, so that 
less correction was needed. The sensitivity correction method 
performed slightly better than the other two for SI quantifica-
tion purposes. The simplicity of this approach makes it pref-
erable for absolute SI quantification. Conversely, our results 
showed that the hybrid correction provides more accuracy 
when T1 contrast is essential (eg, for contrast-enhanced im-
aging in inflammatory disease).

Overall, the hybrid method performed better than the 
model-based one. Because the only difference between them 
is the sensitivity profile calculation, we conclude that the 
simple sensitivity correction performs better than the low 
FA approximation when computing a B−

1
 map from measure-

ments. The minor artifacts produced at regions distal to the 
coil are caused by inaccuracies in the FA information associ-
ated with low SNR.

The described model-based approach is fundamentally 
limited by SNR constraints at larger distances from the RF 
coil, and by the accuracy of the B1 and T1 maps and the poly-
nomial fit. Determining the distance until which a meaningful 
correction can be achieved is challenging, since it depends on 
the conditions and scanning parameters used (eg, coil dimen-
sions, SNR, acquisition time). Hence, this distance should be 
determined by each user, for each specific setup: (1) calculate 
the central profile plots for each correction and (2) determine 
at what distance from the coil the corrected profile still fol-
lows that of the reference volume RF coil. This will not re-
quire extra time, because T1 mapping with the reference RF 
coil is anyway required for the B1 correction.

Accurate knowledge of T1 and FA is crucial for the precise 
correction of the B1 inhomogeneities using the model-based 
and hybrid methods. For our workflow, we selected readily- 
available MR imaging protocols (eg, double angle mapping, 
RARE with variable TR). Limitations are related to the inherent 
instability associated with the FA and T1 mapping techniques, 
the lack of an established gold standard, and substantial vari-
ability among the different methods. FA mapping depends on 
the slice excitation profile, B0 homogeneity and other factors,61 
which produce additional uncertainties. Moreover, FA mapping 
techniques are usually imprecise for low FAs,85 increasing the 
FA error at large distances from the RF coil.

T1 mapping is equally challenging and subject to many 
sources of error. Fundamentally dependent on the FA, it is 
usually performed using volume resonators or a combination 
of RF coils for transmit-receive (volume for transmit, surface 
for receive) to attenuate the effects of B+

1
 inhomogeneity. A 

caveat of these methods (model-based and hybrid) is the need 
to acquire a T1 map with each image (in order to consider the 
T1 contrast of tissues) when removing the field inhomogene-
ities in 1H images. Although T1 mapping is feasible using a 
cryocooled RF probe,86 we invested the extra time and used a 
volume resonator to reduce T1 map errors.

An alternative to calculate the signal evolution (SI model) 
would be to use extended phase graph87 or Bloch88 simula-
tions. Equally, magnetic resonance fingerprinting89 could be 
used not only to create the model but also to acquire a T1 
and B1 map altogether by changing FA and TR, reducing the 
amount of scan time needed and producing a tailored correc-
tion (“real” B1 map of the phantom/mouse). To our knowl-
edge there are no magnetic resonance fingerprinting-RARE 
techniques available to date and the development of such MR 
sequences was out of the scope of this study.

When considering SNR, it is important to bear in mind 
that these correction methods entail multiplication by a  
position-dependent matrix of correction factors. Thus, both 
the signal and the noise will be increased; furthermore, this 
effect will be different for each image pixel. Therefore, SNR 
calculations must be performed on the original uncorrected 
images.

The B1 correction methods presented here have widespread 
implications. We demonstrated that these methods are not only 
useful for the specific case of cryogenically cooled RF probes, 
frequently used to boost SNR in preclinical MRI,24,40,90 but are 
also generally applicable for transceive surface RF coils like 
single-loop RF coils. We demonstrated the applicability of the 
correction methods in conventional 1H brain imaging; however, 
these methods can also be applied to moving organs, for exam-
ple, cardiovascular research, as long as the calculated reference 
power is correct and the maps and images are acquired using a 
trigger and spatially aligned. These approaches are also highly 
relevant for quantitative MR of X-nuclei, where absolute SI is 
important._ENREF_39,40 For the low-SNR scenarios that are 
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prevalent in X-nuclei imaging, the procedures that are used to 
validate the correction methods described in this manuscript 
(eg, PIU, central profile plots) might not be entirely valid. In 
these cases, we suggest performing error propagation simula-
tions associated with inaccuracies due to the low SNR or to sim-
ply use the sensitivity correction method.

Interestingly, all correction methods we studied here greatly 
improved SI quantification and image contrast, with only minor 
differences in performance of the three approaches. The best re-
sults were obtained with the hybrid correction, but contrary to 
expectations, even the straightforward sensitivity correction per-
formed well. Therefore, one could recommend this last method 
due to its simplicity. These B1 correction methods permit quan-
titative SI and T1 contrast measurements with transceiver sur-
face RF coils, using MRI techniques for which analytical SI 
equations do not exist. This circumvents a key limitation and 
offers a new approach for correcting B1 inhomogeneity that may 
be applied for a broad range of biomedical research applications.
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