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SUMMARY

Cells rely on input from extracellular growth factors to
control their proliferation during development and
adult homeostasis. Such mitogenic inputs are trans-
mitted through multiple signaling pathways that
synergize to precisely regulate cell cycle entry and
progression. Although the architecture of these
signaling networks hasbeen characterized inmolecu-
lar detail, their relative contribution, especially at later
cell cycle stages, remains largely unexplored. By
combining quantitative time-resolved measurements
of fluorescent reporters in untransformed human cells
with targeted pharmacological inhibitors and statisti-
cal analysis, we quantify epidermal growth factor
(EGF)-induced signal processing in individual cells
over time and dissect the dynamic contribution of
downstream pathways. We define signaling features
that encode information about extracellular ligand
concentrations and critical timewindows for inducing
cell cycle transitions. We show that both extracellular
signal-regulated kinase (ERK) and phosphatidylinosi-
tol 3-kinase (PI3K) activity are necessary for initial cell
cycle entry, whereas only PI3K affects the duration of
S phase at later stages of mitogenic signaling.

INTRODUCTION

Mammalian cells harbor complex, interlinked signal transduction

networks that relay information from the outside of the cell to the

inside. These networks allow cells to sense fine-grained informa-

tion about their environment and control cellular physiology by

regulating gene expression or influencing processes like cyto-

skeletal organization. However, they are also subject to molecu-

lar noise from cell-intrinsic sources, such as fluctuations in the

levels of signaling proteins, and external influences, such as

changes in their local environment (Snijder and Pelkmans,

2011). Although we have gained a good understanding of the
This is an open access article und
molecular foundation of cellular signaling, we are still challenged

to understand how signaling pathways interact dynamically to

mediate reliable cell fate decisions despite the variable condi-

tions present in individual cells.

Among the most important cellular decisions is the control of

proliferation. In a multicellular organism, the rate and timing of

cell division need to be precisely coordinated to allow growth dur-

ing development and tissue homeostasis during adult life. Cells,

therefore, rely onmitogenic stimuli, such as epidermal growth fac-

tor (EGF) and their respective receptors, to initiate cell cycle entry.

A crucial mediator of mitogenic signals is the mitogen-activated

protein kinase (MAPK) pathway (Seger and Krebs, 1995; Fig-

ure 1A): activation of the EGF receptor (EGFR) and the small

GTPase RAS induces phosphorylation and activation of the ki-

nases rapidly accelerated fibrosarcoma (RAF),MAPK/ERK kinase

(MEK), and extracellular signal-regulated kinase (ERK). Upon

phosphorylation, ERK translocates to the nucleus and activates

transcription of target genes. Among the first target genes ex-

pressed is the transcription factor FOS. In addition to activating

its mRNA expression, ERK phosphorylates and stabilizes the

FOS protein. Therefore, target genes of FOS, such as FRA1/

FOSL1, which is also stabilized by ERK phosphorylation, will be

induced only by prolonged activity of ERK (Marshall, 1995). In

addition to this temporal encoding, information in the MAPK

pathway may be encoded by the amplitude and duration of the

signal (Heinrich et al., 2002) or other features like frequency and

amplitude of oscillation in the localization of ERK (Shankaran

et al., 2009). ERK promotes proliferation by inducing expression

of Cyclin D and repression of cyclin-dependent kinase (CDK) in-

hibitors (Rubinfeld and Seger, 2005; Zhang and Liu, 2002). Upon

activation, CDKs phosphorylate the retinoblastoma protein and

release E2F transcription factors, which regulate complex

changes in cellular physiology that mark the transition from G1

to S phase of the cell cycle (Harbour and Dean, 2000; Yao et al.,

2008). Other signaling-induced processes, such as expression

and stabilization of c-myc, contribute to regulating the G1 to S

phase transition (Leung et al., 2008).

In addition to the MAPK pathway, EGFR also activates the

PI3K/AKT pathway through direct or indirect recruitment and

activation of the p85/p110 kinase complex. PI3K activity leads
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to the generation of phosphatidylinositol-3,4,5-triphosphate,

which in turn recruits the kinase AKT to the membrane, where

it is activated by PDK1. Through activation of mechanistic target

of rapamycin kinase (mTOR), AKT influences translation and

contributes to Cyclin D accumulation during cell cycle entry

(Hay and Sonenberg, 2004). In addition, AKT also mediates

inhibitory phosphorylation of the Cyclin D repressor FOXO

(Schmidt et al., 2002) and the kinase GSK3beta, which induces

Cyclin D degradation (Dong et al., 2005). Furthermore, AKT

signaling may contribute to other cell cycle transitions by

affecting the activity and localization of regulatory proteins and

controlling metabolism (Ward and Thompson, 2012). The PI3K

andMAPK pathways interact closely upon mitogenic stimulation

(Chen et al., 2012; Moelling et al., 2002). It has been suggested

that both pathways are compensatory through co-regulated

proteins (Zwang et al., 2011). Other reports indicate that AKT

negatively regulates MAPK activity through inactivation of RAF

(Zimmermann and Moelling, 1999), whereas MEK suppresses

PI3K signaling by promoting membrane localization of the phos-

phatase PTEN (Zmajkovicova et al., 2013).

In summary, the importance and synergy of ERK and AKT in

initiating the cell cycle from G0 to S phase has been well re-

searched, such as the mechanisms by which these pathways

interact in controlling Cyclin D. In contrast, the relative roles of

AKT and ERK in controlling later stages are less clear. We, there-

fore, set out to investigate the temporal role of ERK and its rela-

tive importance to other pathways in cell cycle control

throughout the cell cycle. To this end, we quantified EGF-

induced mitogenic signaling and deconvolved the dynamic con-

tributions of downstream signaling pathways by combining time-

resolved single-cell measurements of ERK activity and cell cycle

progression in an untransformed human cell line with targeted

pharmacological perturbations and statistical analysis. Using

this approach, we define features of ERK activity that encode in-

formation about extracellular ligand concentration and deter-

mine the time window where it is necessary for cell cycle entry.

We show that both ERK and PI3K activity are necessary for initial

cell cycle entry, whereas only PI3K affects the duration of S

phase at later stages of the mitogenic signaling.

RESULTS

Quantitative Live-Cell Imaging Reveals Cell-Specific
Activation Patterns of the EGFR/ERK Pathway
To analyze EGF-induced signaling in living cells on physiologically

relevant timescales, we used a previously established MCF10A

reporter cell line. This reporter termed FIRE is based on the fluo-

rescent protein mVenus fused to a nuclear localization signal and

the PESTdomain of FRA1, a transcription factor stabilized byERK

phosphorylation (Albeck et al., 2013; Figures 1A and S1A). In the

absence of mitogenic stimuli activating the EGFR/ERK pathway,

the constitutively expressed reporter is rapidly degraded. When

cells are treated with EGF, FIRE is stabilized through ERK-depen-

dent phosphorylation and accumulates in the nucleus (Figure 1B).

It, therefore, provides a specific linear measure of the integrated

activity of the EGFR/ERK pathway over long, physiologically rele-

vant timescales (Gillies et al., 2017), whichwe verified using small-

molecule inhibitors (Figures S1B and S1C).
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As we were mainly interested in following mitogenic signaling

during the progression of quiescent cells from the G0 phase of

the cell cycle to mitosis, we withdrew mitogenic growth factors

and serum for 48 h before stimulating reporter cells with

defined EGF doses spanning two orders of magnitude from

0.5 ng/ml to 50 ng/ml. We then measured the nuclear fluores-

cence intensity of FIRE for 48 h and generated time-resolved

trajectories of FIRE intensity, representing more than 850 indi-

vidual cells per condition by using automated image analysis

followed by data processing and normalization (Figures S1D

and S1E; STAR Methods; Table S1). Without EGF, cells

showed no detectable changes in reporter activity, indicating

that there was no residual input to the MAPK pathway under

our experimental conditions (Figures 1B and 1C). At low EGF

concentrations, we observed transient FIRE accumulation dur-

ing the first 10–15 h, with homogeneous timing and amplitude.

When stimulated with EGF concentrations above 2.5 ng/ml,

cells showed a second phase of FIRE activity after about 15

h. This pattern of pathway activity was also reflected in the

mean response of all cells treated with a given dose of EGF,

which showed a first phase of reporter activity at about 10 h

for all conditions and a second phase of increasing amplitude

and duration for EGF concentrations above 2.5 ng/ml (Fig-

ure 1D). Our observations are consistent with feedback regula-

tion of the ERK pathway and EGF degradation, which is expo-

nential with a half-life of about 10 h for low EGF concentration

(Figure S1F). In contrast, EGF decays sub-exponentially and re-

mains elevated during the observed time period for higher EGF

concentrations, inducing the second signaling phase. On the

single-cell level, most cells showed a first FIRE response at

EGF concentrations as low as 1 ng/ml, whereas the fraction

of cells showing a second phase of FIRE signals saturated at

EGF concentrations of 5 ng/ml or higher (Figure 1E).

The Strength of Mitogenic Signaling Is Encoded by
Dynamic Features of Integrated ERK Activity
To better understand how individual cells encode the strength of

mitogenic stimuli, we defined characteristic features of FIRE dy-

namics and used information theory to determine the extent to

which they carry information about extracellular EGF concentra-

tions. Using themean responses to different EGF concentrations

as guides, we focused on the amplitude, fold change, timing of

the maximum, duration and area under the curve of the FIRE

signal separately for up to 15 h (first phase) as well as for the re-

maining time course after 20 h (second phase, Figure 2A). We

used mutual information as a measure of the interdependence

between these features and EGF concentration. More precisely,

we calculated mutual information between EGF concentrations

and individual as well as all pairwise combinations of these fea-

tures. Mutual information quantifies how much information one

variable conveys about the other variable. Therefore, it allows

us to quantify how much information about the extracellular

EGF concentration can be inferred from different features of

the FIRE response. We observed that the logarithmic fold

change during the first and second signaling phasewas the com-

bination with the highest mutual information, resulting in a value

of about 1.4 bits (Figure 2B). Mutual information of 1.4 bits indi-

cates that it is possible to infer approximately three levels of EGF
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Figure 1. ERK Activity in Living Cells

(A) Scheme of the EGF pathway, where EGFR stimulation triggers the activation of RAF, MEK, and ERK by phosphorylation. ERK translocates to the nucleus,

where it phosphorylates numerous targets, including the transcription factor FRA1. Phosphorylation of the PEST domain of FRA1 by ERK leads to stabilization of

the protein. We used a fluorescent reporter that contains the PEST domain of FRA1 and is stabilized by ERK phosphorylation (FIRE). See also Albeck et al. (2013).

(B) Example images of the FIRE reporter at indicated time points and EGF concentrations. Scale bar: 24 mm.

(C) Examples of single-cell FIRE reporter time series for randomly selected single cells treated with indicated EGF concentrations. Mean time courses (bold lines)

and standard deviations (gray ribbons) of all measured cells are indicated. Growth factor and serum-deprived cells were treated with the indicated doses of EGF.

Images were acquired every 20 min for 46 h.

(D) Average FIRE reporter time series for concentrations from 0 ng/ml EGF to 50 ng/ml EGF. Color indicates EGF concentration.

(E) Percentage of cells showing a response within 16 h (light gray) after stimulation and between 20 h after stimulation and the end of measurement (gray). Cells

with amplitudes greater than three standard deviations from the average of unstimulated cells were considered to be responding. Error bars indicate 95%

confidence interval based on bootstrapping (n = 1,000).

See also Figure S1.
stimulation from the FIRE response. When inspecting the distri-

butions of these features for different EGF concentrations (Fig-

ures 2C and S2A), we noticed that both were very low for most

untreated cells, whereas stimulation with EGF resulted in loga-

rithmic fold changes of about 1.5 at early time points in most

cells. The logarithmic fold change for the second phase was

clearly different between low and high doses of EGF (Figures

2C and S2B), as stimulation with, for example, 1 ng/ml resulted

in fold changes below 1 in most cases, whereas stimulation

above 7.5 ng/ml resulted in much higher logarithmic fold

changes of 2–3. Therefore, the fold change of the first phase al-

lowed us to discriminate if the cells were stimulated and the fold

change of the second phase allowed us to discriminate between
high and low dose (Figure 2D). When considering both first and

second phase, the response to three different concentrations

of EGF can be well separated (Figure 2D).

To determine if our focus on selected features of the dynamic

response restricted the information theoretical analysis of EGF

signaling, we clustered entire time series based on Euclidean

distance using the k-means algorithm (Figures S3A and S3B;

STAR Methods). However, mutual information calculated for

EGF concentrations and clusters of time series saturated at

about 1 bit, well below the 1.4 bits calculated for the most infor-

mative combination of features (Figure S3C). The information

content of individual time points of the FIRE measurements as

well as of immunofluorescent measurements of selected
Cell Reports 31, 107514, April 14, 2020 3
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Figure 2. Bi-phasic ERK Activity Profiles

Encode External Ligand Concentration

(A) Scheme of features describing the FIRE

response after EGF treatment. The FIRE response

is separated into early and late responses, and

each phase is characterized by the following fea-

tures: amplitude (Amp), time of the maximum

(Time), fold change of the amplitude (FC), duration

of the response, and area under the curve (Auc), as

well as log2-scaled Amp and FC.

(B) Multivariate mutual information (top panel)

between EGF concentrations and FIRE features

(bottom panel, black: single features, gray: pair-

wise combinations). Features are sorted by their

median mutual information (top panel).

(C) Log2 FC of the amplitude for the first (left panel)

and second response (right panel) for indicated

EGF concentrations. Black lines indicate medians

of distributions; boxes include data between the

25th and 75th percentiles; whiskers extend to the

maximum values within 1.5 3 the interquartile

range; dots represent outliers.

(D) Contour plot of log2 FC for the first and second

response for indicated concentrations of EGF.

See also Figures S2 and S3.
signaling-induced protein modifications at various time points

during the response was even more limited (Figures S3D–S3F).

Therefore, information-theoretical analysis is an elegant

tool to assess which features represent the input stimulus

most precisely. It suggests that three concentrations of EGF

are sufficient to sample and characterize the signaling response

in these cells.

ERK Activity Is Necessary but Not Sufficient for Cell
Cycle Entry and Progression
After identifying relevant dynamic features of integrated ERK ac-

tivity, we next aimed to characterize how EGF signaling controls

the phenotypic response of individual cells. To this end, we

determined if and when cells entered S phase by using a fusion

of the red fluorescent protein mCherry (RFP) with the first 110

amino acids of geminin (Albeck et al., 2013; Figure S4A). As gem-

inin is degraded by APCCdh1 during G1 and only accumulates

during S and G2 phases (Clijsters et al., 2013; Sakaue-Sawano

et al., 2008), we defined an increase of more than 2 3 the stan-

dard deviation of the basal RFP level as the time of S-phase entry

(Figure S4B). This method to determine S-phase entry correlated

well with measurements of actively replicating cells marked

by 5-ethynyl-2�-deoxyuridine (EdU) incorporation, even at low

stimulation levels (Figures S4F–S4H). At the transition between

metaphase and anaphase of mitosis, geminin is degraded by

APCCdc20, which led to a sharp decline in the intensity of the

geminin reporter (Figure S4B). As the duration of mitosis, in gen-

eral, and of anaphase and telophase, specifically, is relatively

short given the duration of our observation period and the tem-

poral resolution of our experiments, we will refer to the duration

of geminin accumulation as the duration of S/G2 phase. More-

over, the beginning of geminin accumulation will be termed
4 Cell Reports 31, 107514, April 14, 2020
S-phase entry and the timing of the metaphase-to-anaphase

transition will be termed cell division.

Without EGF stimulation, cells showed neither S-phase entry

nor cell division, emphasizing that there was no residual mito-

genic activity under our experimental conditions and that all

observed cell cycle progression was dependent on EGF-

induced signaling. We found more and more cells entering S

phase when we increased the stimulus, reaching a maximum

of about 90% of the cells at concentrations of 7.5–10 ng/ml

EGF (Figure 3A). We observed a similar increase of cells dividing

at least once within 48 h, although the fraction of dividing cells

remained noticeably lower at around 70% (Figure 3A) as the

duration of S/G2 phase extended beyond the observation period

in cells with late S-phase entry. Accordingly, the time of S-phase

entry was heterogeneously distributed around 20 h post-stimu-

lation in individual cells, mostly independent of the strength of

the mitogenic stimulus (Figures 3B and S4C–S4E). A noticeable

exception were those cells that responded to very low EGF con-

centrations, as they only entered S phase at earlier time points,

which is consistent with a lack of signal at later times due to rapid

decay of EGF under these conditions. The duration of S/G2

phases was similarly distributed with a median around 18 h (Fig-

ure 3C). Interestingly, there was no clear correlation between

time of S-phase entry and duration of S/G2 phase (Figure 3D).

At low EGF concentrations, only about half of the cells entered

S phase (Figure 3A). Therefore, we asked if cells that entered S

phase differed in their integrated ERK activity profile, and thus

different signaling pathway engagement could be the reason

for the heterogeneity in cell cycle entry and progression. To

address this question, we calculated mutual information be-

tween individual and pairwise combinations of features of the

FIRE reporter time series and cell cycle states. However, even
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Figure 3. The Role of ERK Activity for Cell Cycle Entry and Progression

(A) Percentage of cells entering S phase (light gray) and dividing (dark gray) at indicated concentrations of EGF. Error bars indicate 95% confidence interval

estimated with bootstrapping (n = 1,000).

(B) Distribution of the time at which S phase starts after stimulation with indicated concentrations of EGF.

(legend continued on next page)
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the most informative feature combination provided only below

0.2 bits of mutual information (Figures 3E and S4J). Accordingly,

when analyzing cells that have been treated with 1 ng/ml EGF, a

concentration at which about 50% of the cells enter cell cycle,

the median FIRE signal during the first response was only slightly

higher in cells entering S phase than those that remained in G0/

G1 phase, emphasizing that the FIRE signal has a very low pre-

dictive power for the cell cycle fate of a cell (Figure 3F). Similarly,

actively replicating cells marked by EdU incorporation had only

slightly higher FIRE levels at various time points (Figure S4I). At

higher EGF concentrations, we also observed no noticeable dif-

ferences in the shape and amplitude between cells entering S

phase and those that did not (Figure 3F). Even when we align

the single-cell FIRE trajectories to the time of S-phase entry to

correct for asynchronies in the response and compared these

trajectories to FIRE trajectories of quiescent cells aligned to a

matched time distribution, we again detected only marginal dif-

ferences (Figure 3F).

As we could not observe a strong correlation between FIRE

levels and S-phase entry, we next analyzed if cell division was

influenced by integrated ERK activity. Comparing the fold

change in FIRE levels during the first response in dividing and

non-dividing cells, we observed a similar trend as for S-phase

entry (Figure 3G). Only when analyzing FIRE levels in the 16 h

preceding cell division did we observe a more noticeable differ-

ence between cycling and quiescent cells. However, as this dif-

ference was only visible when cells were stimulated with high

doses of EGF, the measurements did not provide support for a

decisive influence of ERK signaling in the completion of the cell

cycle. Most strikingly, integrated ERK activity was not elevated

at low doses of EGF in the hours before division, suggesting

that ERK activity might occur at late S phase when ligands are

present but may not be required to complete the cell cycle.

Taken together, our data corroborate that ERK activity is neces-

sary for quiescent cells to re-enter the cell cycle, as previously

reported (Sharrocks, 2006; Zhang and Liu, 2002), but they are

insufficient to explain the variability of cellular responses, arguing

for additional mitogenic inputs that are transmitted upon EGF

stimulation.

PI3K Signaling Contributes a Necessary Mitogenic
Stimulus upon EGF Treatment
To determine the extent to which the ERK/MAPK pathway

transmits pro-mitotic signal from EGFR signaling, we system-

atically perturbed EGFR and components of the MAPK

signaling pathway while monitoring integrated ERK activity,

time of S-phase entry, and duration of the S/G2 phase (Fig-
(C) Estimates of the length of S/G2 phase distribution (time from beginning of S p

using Kaplan-Meier analysis.

(D) Scatterplot comparing the time at which S phase starts after stimulation and l

Ellipses indicate area that include 95% of the cells.

(E) Multivariate mutual information (top panel) between combinations of features o

indicates the theoretical maximum.

(F and G) Average (bold line) and standard deviation (ribbon) of reporter time series

that do not enter S phase (gray) stimulated with indicated concentrations of EGF

before the onset of S phase or equivalently sampled time series for non-respondin

the first 16.5 h after stimulation or before division (G).

See also Figure S4.
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ure 4A). Blocking the activity of EGFR by using the small-mole-

cule inhibitor gefitinib abrogated all ERK signaling activity as

well as cell cycle entry and progression (Figures 4B and 4D),

reemphasizing that, in this model, EGFR signaling is absolutely

essential for cell cycle entry. Time-series measurements of

phosphoproteins showed that EGF stimulation activates

ERK, AKT, and JNK signaling (Figure 4C; Table S1). Inhibiting

the MAPK cascade with the MEK inhibitor AZD6244 led to a

strong reduction of phospho-ERK and induction of MEK phos-

phorylation (Figure 4C), consistent with feedback regulation

(Fritsche-Guenther et al., 2011; Klinger et al., 2013; Sturm

et al., 2010). Although MEK inhibition prevented FIRE activa-

tion to a similar extent as the EGFR inhibitor (Figure 4B), about

10% of cells started cycling in this condition (Figure 4D). Inter-

estingly, the duration of the S/G2 phase of those cells that

entered the cell cycle was unaffected by the MEK inhibitor

(Figure 4E).

Although pharmacological perturbation of the MAPK pathway

highlighted its importance for cell cycle progression, MEK inhibi-

tion did not lead to a complete block of S-phase entry, in contrast

to EGFR inhibition. This suggested that parallel pathways

contribute significantly to mitogenic signaling. Therefore, we

pharmacologically perturbed the interacting kinases p38

(SB203580), JNK (JNK inhibitor VI), and GSK3 (SB216763) as

well (Figures 4B–4E; Table S2). JNK and GSK3 inhibition had

no effect on ERK activity and led to only minor changes in the

cellular response (Figures 4B–4E). However, we observed a

marked increase in FIRE signals and MEK phosphorylation

upon p38 inhibition aswell as a reduction in AKT phosphorylation

(Figures 4B and 4E). Interestingly, this did not lead to an increase

in the fraction of cells entering S phase or dividing (Figure 4D). In

contrast, we observed a longer duration of the S/G2 phase as

well as a concomitant decrease in the number of cells dividing

(Figures 4D–4E). This, again, indicates that ERK activity is not

limiting for cell cycle regulation.

Finally, we inhibited the PI3K pathway by using pharmacolog-

ical inhibitors. As the PI3K pathway is activated in parallel to

MAPK signaling through the EGF receptor, it is an obvious candi-

date for transmitting additional mitogenic input. Indeed, inhibit-

ing PI3K itself by using the inhibitor LY29402 led to a near-com-

plete block of cell cycle entry and progression, and those few

cells that entered the cell cycle had prolonged S/G2 phases (Fig-

ures 4D and 4E). As with p38 inhibition, ERK was still as active as

in control cells, when assayed with the FIRE reporter (Figure 4B),

although phosphorylation was broadly reduced across path-

ways. The effect of inhibiting the downstream kinase AKT with

the small molecule MK-2206 was more restricted to this
hase to division) for three different concentration of EGF (1, 7.5, and 50 ng/ml)

ength of S/G2 phase for two different concentrations of EGF (1 and 7.5 ng/ml).

f the FIRE reporter time series (as in Figure 2B) and cell cycle state. The red line

(normalized to unstimulated control) of cells entering S phase (yellow) and cells

. Left graphs show the first 16.5 h after stimulation; right graphs show 16.5 h

g cells (F). Comparison of dividing cells (orange) and non-dividing cells (gray) for
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Figure 4. Pharmacological Perturbation Reveals Relative Contributions of ERK and PI3K/AKT Pathways during Mitogenic Signaling

(A) Scheme of the EGF pathway indicating the targets (colored asterisk) of pharmacological inhibitors used in this study. Dashed lines indicate indirect activation.

(B) Average time courses of the FIRE reporter after stimulation with EGF for controls (gray) and after pre-incubation with the indicated inhibitors. For controls, the

standard deviation around the mean of five experiments is shown (gray ribbon).

(C) Effect of inhibitors on the phosphorylation state of targets in the MAPK and PI3K pathways. Changes in phosphorylation upon EGF stimulation (7.5 ng/ml) are

shown for indicated time points compared to unstimulated control (left, mean log2 FC, n = 2). The effect of inhibitors is shown compared to the respective

unperturbed time point after EGF stimulation (right). pS6, AKT substrate; pATF2, p38/JNK substrate. Significance of differences was tested using limma and

significant differences (p < 0.05) were indicated with an asterisk.

(D) Effect of inhibitors on the percentage of cells entering S phase (top panel) or dividing (bottom panel) at the indicated concentration of EGF. Error bars indicate

95% confidence interval based on bootstrapping (n = 1,000).

(E) Effect of inhibitors on the duration of S/G2 phases for two different EGF (1 and 7.5 ng/ml) concentrations by using Kaplan-Meier analysis.

See also Figures S5A and S5D.
signaling branch when assayed on the level of phosphorylation

and led to similar effects on the cell cycle as PI3K inhibition

(Figures 4B–4F).
Interestingly, we observed increased FIRE levels upon PI3K

and AKT inhibition. As blockage of PI3K, AKT, and p38 led to

reduced cell cycle entry and increased FIRE activity, it was
Cell Reports 31, 107514, April 14, 2020 7



conceivable that inhibited cell cycle progressionmight feed back

into ERK signaling or might affect FIRE activity by different

means. To test this hypothesis, we inhibited cell cycle progres-

sion by using the CDK4/6 inhibitor palbociclib and the CDK1 in-

hibitor RO3306. Although these inhibitors prevented S-phase

entry and cell division, respectively, FIRE levels were not ampli-

fied, arguing against a direct influence of the cell cycle on ERK

activity (Figures S5A–S5D).

Cell Cycle Entry and Progression Have Diverging
Temporal Requirements for MAPK and PI3K Signaling
To gain a better understanding of the relative contribution of

MAPK and PI3K signaling for regulating cell cycle entry and pro-

gression, we inhibited the corresponding pathways as well as

EGFR activity at different time points during the first 20 h after

growth factor stimulation (Figure 5A). When EGFR-dependent

signaling was blocked entirely 10 h after EGF treatment by using

the receptor inhibitor gefitinib, FIRE signals rapidly decayed and

cell cycle entry was prevented in almost all cells (Figures 5B–5E).

Sustaining EGFR activity for 15 or 20 h led to an increasing frac-

tion of cells entering and progressing through the cell cycle. As

expected, the duration of ERK activity was extended as well.

We observed a similar abrogation of the FIRE response when

we blocked the MAPK pathway at the level of MEK at different

time points after EGF stimulation (Figure 5B; Gillies et al.,

2017). However, more cells entered S phase when the MEK in-

hibitor was added at 10 h than gefitinib. Even more striking

was the relative increase in cells dividing compared with EGFR

inhibition at all time points tested (Figure 5C). In contrast, block-

ing PI3K signaling at 10, 15, or 20 h post-EGF treatment led to a

comparable or even stronger suppression of S-phase entry and

cell division as EGFR inhibition despite only temporarily attenu-

ating ERK activity (Figures 5B and 5C). Inhibiting EGFR, MEK,

or PI3K for different periods at the beginning of the experiment

led to delayed FIRE accumulation and S-phase entry, as ex-

pected (Figures S5E, S5H, S5G, and S5J). However, cells still

entered S phase in comparable numbers after inhibitors were

washed away (Figures S5F and S5I). Only when inhibitors were

applied for 15 h did the number of dividing cells decrease due

to the limited observation period. These experiments corrobo-

rate that both ERK and PI3K activity are necessary for S-phase

entry (Jones and Kazlauskas, 2001).

When we examined cells that progressed into S phase upon

PI3K inhibition more closely, we noticed higher geminin levels at

the time of treatment, indicating that they already passed the re-

striction point and initiated the transition from G1 to S phase prior

to the loss of PI3K activity (Figure 5D). Importantly, we observed

strongly increased durations of the S/G2 phase in cycling cell

whenweblockedPI3Ksignaling 10–20h after EGF treatment (Fig-

ure 5E). The same decreased rate of cell cycle progression was

observed upon EGFR inhibition, whereas preventing ERK activa-

tion had no effect once cells entered the cell cycle (Figure 5E).

To further study the important role of PI3K signaling for S- and

G2-phase progression, we aimed to initiate ERK activity for a

short period and then additionally activate PI3K by additional li-

gands. To do so, we used EGF at very low doses (0.1–0.5 ng/ml)

that, due to ligand degradation, are expected to signal only tran-

siently. We additionally stimulated cells with insulin-like growth
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factor (IGF), which preferentially activates AKT (Figure 6A).

When assessing signaling activity by measuring phosphopro-

teins after stimulation with a high or low dose of EGF and a com-

bination of low dose EGF and IGF, we confirmed that a low dose

of EGF led to transient activation of many phosphoproteins,

which peaked at 5 h (Figure 6B; Table S3). The addition of IGF

induced increased phosphorylation of AKT and further down-

stream targets of PI3K, such as S6 or mTOR, throughout the first

24 h, while leaving other modifications unaltered. Using the FIRE

reporter, we confirmed transient ERK activation at low doses of

EGF that was unaffected by the addition of IGF (Figures 6C and

S6C). Moreover, IGF treatment alone did not induce FIRE accu-

mulation (Figure S6A). Although the transient input by EGF was

sufficient to induce cell cycle entry in about 25% of cells (Figures

6D and S6D), these cells needed longer to complete S/G2 phase

than cells with high EGF inputs (Figures 6E and S6E). However,

when we combined low EGF input with IGF stimulation, which

predominantly activates the PI3K pathway, it rescued the pheno-

type and resulted in cell cycle progression rates comparable to

high EGF stimuli (Figures 6E and S6E). Importantly, IGF treat-

ment alone did not result in appreciable cell cycle entry (Fig-

ure S6B), whereas a combination of low EGF and strong IGF in-

puts led to a modest increase in the fraction of cells entering S

phase and dividing (Figures 6D and S6D). Consistently,

actively replicating cells incorporating EdU showed a trend to-

ward higher levels of phosphorylated AKT than those cells re-

maining in G1 upon treatment with both EGF alone and EGF

together with IGF (Figures S6F and S6G). We obtained similar re-

sults when combining EGF at a low dose with insulin (Figures

S6H–S6J).

To investigate the role of PI3K signaling during S and G2

phase, we stimulated cells with EGF and inhibited MEK and

PI3K activity 15 h later. We then used single-cell RNA

sequencing (scRNA-seq) to determine expression profiles of in-

dividual cells 20 h and 30 h after the addition of the growth factor

(Figure 7A; STARMethods). Visualization of the resulting data by

dimensionality reduction using uniform manifold approximation

and projection (UMAP) showed clear separation of quiescent

and EGF-stimulated cells (Figure 7B, gray and blue dots). Inhib-

iting PI3K and, to a lesser extent, MEK led to distinct expression

profiles that clustered separately from cells treated with EGF

only (Figure 7B, green and red dots). Interestingly, expression

profiles of inhibitor-treated cells differed at the 20-h and 30

h-time points. Similar results were obtained in a replicate exper-

iment and by using a different dimensionality reduction method

(principal-component analysis, Figures S7A and S7B). To corre-

late expression profiles of individual cells with cell cycle progres-

sion, we mapped the cell cycle state of each cell by using char-

acterizedmarker genes (Stuart et al., 2019; STARMethods). This

allowed us to determine cell cycle distributions for each condi-

tion and time point that were comparable to previous analysis

using time-lapse microscopy (Figure S7C). Combining the

UMAP projection with cell cycle information revealed a clear pro-

gression of EGF-stimulated cells from G1 to S and G2/M phase

(compare Figures 7B and C). Importantly, cells progressing into

S and G2/M phase in the presence of PI3K and MEK inhibitors

showed clearly distinguishable expression profiles. Using the

pathway activity scores calculated by the PROGENy method
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Figure 5. Temporal Requirements for ERK and AKT Activity Differ during Cell Cycle Progression

(A) Scheme of experiment. EGFR, MEK, and PI3K inhibitors were added either at time of stimulation or 10, 15, or 20 h after stimulation.

(B) Average time courses of the FIRE reporter after stimulation with 7.5 ng/ml EGF and incubation with the indicated pharmacological inhibitors at different time

points or controls (gray). For controls, the standard deviation around the mean of three experiments is shown (gray ribbon).

(C) Effect of inhibitors on the percentage of cells entering S phase (left) or dividing (right) for the indicated time of inhibition after stimulation. Error bars indicate

95% confidence interval based on bootstrapping (n = 1,000).

(D) Comparison of geminin levels at time of inhibitor treatment (as indicated) between cells entering S phase (right, dark gray) and cells that do not enter S phase

(left, light gray) within the time of measurement. Numbers of cells for each condition are indicated.

(E) Effect of the time of inhibitor treatment (as indicated) on the duration of S/G2 phases after stimulation with 7.5 ng/ml EGF compared to controls using Kaplan-

Meier analysis.

See also Figures S5E–S5J.
(Schubert et al., 2018), we validated that inhibitor treatment led

to the expected changes in MAPK and PI3K signaling (Fig-

ure S7D). Next, we determined differentially expressed genes

upon inhibitor treatment depending on cell cycle state and

time point and resolved the corresponding molecular pathways

using Gene Ontology (GO) term analysis (Figure S7E). In G1-

phase cells, we mainly observed changes in the expected mo-

lecular pathways, such as response to growth factors. In
S-phase cells, only PI3K-inhibitor -treated cells showed signifi-

cant changes, whichmainly affected pathways involved in meta-

bolic processes, such as mitochondrial respiration, translation,

and ribonucleotide synthesis. In G2/M-phase cells at 30-h

post-EGF stimulation, MEK and PI3K inhibition induced distinct

alterations in pathway activity. For PI3K inhibition, changes in

G2/M-phase cells partially overlapped with those observed dur-

ing S phase.
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Figure 6. AKT Activation Rescued Delayed Cell Cycle Progression at Low EGF Concentrations

(A) Pathway scheme of the EGF and IGF pathways and overview of the performed rescue experiment.

(B) Effect of low and high doses of EGF stimulation (0.5 ng/ml and 50 ng/ml) as well as IGF co-stimulation on the phosphorylation state of targets in the MAPK and

PI3K pathway. Changes in phosphorylation are shown for four time points compared to unstimulated control (mean log2 FC, n = 2). p-mTOR, BAD-AKT sub-

strates; pSTAT3, pP90RSK-ERK substrates

(C) Average time courses of the FIRE reporter after stimulation with different concentrations of EGF as well as co-stimulation with IGF.

(D) Percentage of cells entering S phase (solid bars) or dividing (open bars) after stimulation. Error bars indicate 95% confidence interval based on bootstrapping

(n = 1,000).

(E) Duration of S/G2 phase using Kaplan-Meier analysis.

See also Figure S6.
To determine whether the observed delay in cell cycle pro-

gression upon PI3K inhibition was due to an increased duration

of S or G2/M phase, we further analyzed cell cycle distributions

from scRNA-seq. As expected, we observed a decreased frac-

tion of cells in S, G2, or M phase 20 h after EGF treatment

when MEK or PI3K activity was inhibited 15-h post-stimulation

(Figure 7D, top graph). The fraction of S/G2M-phase cells further

decreased at the 30-h time point, as no additional cells could

enter S phase in the absence of MAPK or PI3K activity, whereas

others successfully progressed through the cell cycle and

divided. When we analyzed the ratio between S- and G2/M-

phase cells under both conditions, we observed that most

MEK-inhibitor-treated cells completed S phase between the

20-h and 30-h time point (Figure 7D, bottom graph). However,

upon PI3K inhibition, a noticeable fraction of cells remained in
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S phase at the 30-h time point, indicating a delay in S-phase

progression.

To support this conclusion, we monitored FIRE reporter cells

upon EGF treatment by time-lapse microscopy, inhibited MEK

and PI3K activity after 15 h, and performed metabolic labeling

with EdU at 22.5-h and 32.5-h post-stimulation, respectively (Fig-

ure 7E). Consistent with our scRNA-seq analysis, we observed

that most geminin-positive cells were actively replicating at the

22.5-h time point (Figure 7F). After 32.5 h, MEK-inhibitor-treated

cells completed S phase and entered G2 phase. Under control

conditions, we still observed some replicating cells at this time

point, as cells were still able to enter S phase from G1. However,

although no additional cells were able to enter S phase upon

PI3K inhibition, we observed that most treated cells still incorpo-

rated EdU at the later time point. To estimate the corresponding
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Figure 7. PI3K Signaling Is Required for Timely Progression through S Phase

(A) Scheme of single-cell RNA sequencing experiments. Cells were stimulated with 7.5 ng/ml EGF. MEK or PI3K inhibitors were added after 15 h and cells were

sampled for single-cell RNA sequencing at the indicated time points.

(B) UMAP for one experiment. Cells are barcoded for experimental condition.

(C) UMAP as in (B) with cells barcoded for cell cycle phases.

(D) Percentage of cells in S/G2M phase (top panel) based on cell cycle markers (dots, replicates; lines, mean). Effect of MEK or PI3K inhibitors, respectively, on

percentage of cells in S phase (bottom panel).

(E) Scheme of live-cell imaging experiments with EdU stainings at different time points.

(F) Percent of EdU-positive cells that started S phase before EdU staining based on analysis of geminin levels. Error bars indicate 95% confidence interval based

on bootstrapping (n = 1,000).

(G) Effect of MEK or PI3K inhibitor on the number of EdU-positive cells labeled at indicated time points. Cells were binned according to the time since entering S

phase (based on geminin). Error bars indicate 95% confidence interval based on bootstrapping (n = 1,000).

(H) Effect of MEK (orange) and PI3K inhibitor (green) on the extent of EdU incorporation.

See also Figure S7.
time of S-phase progression, we binned cells according to the

time of S-phase entry, as indicated by geminin accumulation rela-

tive to the time of metabolic labeling, and determined the corre-

sponding fraction of EdU-positive cells (Figure 7G). Although con-

trol and MEK-inhibitor-treated cells completed S phase within 16

h, most cells remained in S phase for over 20 h in the absence of

PI3Kactivity. This severedelay inS-phaseprogressionwas further

supported by a slower rate of EdU label incorporation in PI3Ki-

than in MEK-inhibitor-treated cells (Figure 7H).

Taken together, quantitative time-resolved analysis at the sin-

gle-cell level showed that the mitogenic input of EGF ligands is
transmitted both by theMAPK and PI3K signaling pathway. Acti-

vation of both pathways together is necessary for cell cycle en-

try. However, timely progression through S phase depends on

sustained PI3K signaling to adjust the metabolism of the cell to

the replicative state.

DISCUSSION

Mitogenic signaling allows multicellular organisms to regulate

the rate and timing of cell division. To ensure precise control

over cell cycle entry and progression, the information flow
Cell Reports 31, 107514, April 14, 2020 11



through multiple signaling pathways needs to be integrated

dynamically to coordinate the different components of the

cell cycle machinery (Chambard et al., 2007). Combining

time-resolved measurements in individual cells with com-

puter-aided data analysis, information theoretical calcula-

tions and pharmacological perturbations allowed us to

disentangle the contributions of the MAPK and PI3K/AKT

pathways to mitogenic signaling during different phases of

the cell cycle.

To measure signaling activity, we used live-cell microscopy of

fluorescent reporter cells. In addition to unrivaled temporal reso-

lution, live-cell microscopy allows resolving non-genetic hetero-

geneity that can strongly influence the outcome of signaling

events (Spiller et al., 2010). Several strategies have been devel-

oped to monitor MAPK pathway activity in living cells: FRET-

based reporters allow direct measurements of substrate phos-

phorylation but are limited by a low signal-to-noise ratio and

are prone to saturation (Gillies et al., 2017; Komatsu et al.,

2011; Ryu et al., 2015; Selimkhanov et al., 2014). Transloca-

tion-based reporters provide a similar but more robust ratio-

metric measure (Regot et al., 2014). However, their sensitivity

is also restricted to certain segments of the ERK dynamic range

(Gillies et al., 2017). Nuclear localization of an ERK-yellow fluo-

rescent protein (YFP) fusion correlates with its activity on short

timescales but can be affected by other cellular processes (Co-

hen-Saidon et al., 2009). Finally, as we were interested in under-

standing how andwhen total ERK activity affected cell cycle pro-

gression, we decided to use the FIRE reporter that linearly

reflects integrated ERK activity (Albeck et al., 2013; Gillies

et al., 2017). Although the FIRE reporter does not allow us to

directly follow the short-term dynamics of ERK activity observed

with other reporters, it provides a robust readout that enabled us

to faithfully measure the contribution of MAPK signaling over the

long timescales involved in progressing from a quiescent state to

cell division. When comparing our measurements to previously

reported data from Albeck et al. (2013), it is important to keep

in mind that different experimental conditions were used.

Although previous studies focused on steady-state EGF

signaling under sustained stimulations, we investigated the

response of quiescent cells to acute growth factor stimulation.

Also, as the FIRE reporter captures only nuclear activity, we

could not consider signaling effects of the MAPK pathway that

take place in the cytoplasm (Murphy et al., 2002). This might

explain why under some conditions, such as PI3K and AKT inhi-

bition, FIRE response and phosphorylation diverge. Further-

more, the use of a synthetic reporter such as FIREmay introduce

additional variability that could potentially degrade measure-

ments of information flow and mask correlations in individual

cells. As an alternative, measurements of endogenously tagged

ERK targets, such as FRA1, may be used (Gillies et al., 2017).

Using automated image analysis, we extracted a time series of

ERK activity over 2 days for thousands of cells treated with

various concentrations of EGF. Information theoretical calcula-

tions allowed us to identify the features of the dynamic ERK

response that conveyed themost information about extracellular

EGF concentrations. In recent years, information theory has

been increasingly used to investigate principles of signal trans-

duction or to quantitatively compare signaling pathways
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(Brennan et al., 2012; Mc Mahon et al., 2014). Analysis of tumor

necrosis factor alpha (TNFa)-induced nuclear factor kB (NF-kB)

signaling at a single time point, for example, indicated that

information transmission through the network is restricted by

molecular noise and, therefore, limits the ability of a cell to derive

precise information about ligand concentrations (mutual infor-

mation, <1 bit) (Cheong et al., 2011). Similar low capacities to

transmit information were observed for other pathways,

including calcium, cyclic AMP (cAMP), and MAPK signaling

(Garner et al., 2016; Selimkhanov et al., 2014; Uda et al., 2013;

Voliotis et al., 2014). However, estimating information flow from

a limited number of measurements at arbitrarily selected points

of the underlying molecular networks has its limitations. For

example, restrictions on information transmission can be miti-

gated by integrating temporal information or modulating feed-

back strength (Garner et al., 2016; Voliotis et al., 2014).

Our analysis confirms that when considering appropriate dy-

namic features, mutual information above 1 bit can be obtained.

We used information theory to systematically probe which fea-

tures of the reporter time series carry the most information.

This analysis showed that the combination of fold changes of

the first and second response of the biphasic ERK activity profile

convey the most information about extracellular ligand concen-

tration. Our continuous measurements from unperturbed indi-

vidual cells, thus, confirmed previous observations from

biochemical studies of cell populations (Meloche et al., 1992).

From these data, it was proposed that initial ERK activity is

necessary to mediate the transition from the G0 state of the

cell cycle to G1. During G1 phase, reduced nuclear ERK activity

promotes cell cycle progression, as the transcription factor FOS

is degraded and replaced by FRA1 (Burch et al., 2004). Suffi-

ciently strong activation of ERK during late G1 phase is finally

necessary to induce transcription factors, such as EGR1, which

mediate the all-or-none decision to enter S phase and divide

(Zwang et al., 2011). Using pharmacological inhibitors to artifi-

cially abbreviate ERK activity, we could confirm that some level

of ERK signaling is required for S-phase entry (Figure 5). How-

ever, we did not detect a clear correlation between ERK activity

and S-phase entry at low EGF doses in simultaneous measure-

ments of FIRE and cell cycle reporters (Figure 3F). Consistently,

there was no direct correlation between S-phase entry and the

occurrence of a second signaling phase (Figures 1E and 3A).

We, therefore, hypothesize that entering S phase is similar to a

stochastic decision that requires sustained ERK activity. De-

pending on the duration of G1 phase, transient ERK signaling

may suffice in one cell, whereas both phases of ERK signaling

may be required in another one. A corresponding threshold

mechanism could be based on EGR1 induction and convert

the graded input of ERK activation into a digital decision to

pass the restriction point (Zwang et al., 2011) .

The observed heterogeneity in S-phase entry may be due to

varying levels of cell cycle inhibitors, such as p21. In elegant sin-

gle-cell experiments, it was shown that the decision between

proliferation and quiescence in cycling MCF10A cells is

controlled by a bifurcation in CDK2 activity due to varying levels

of p21 as a consequence of endogenous DNA damage during

replication (Arora et al., 2017; Barr et al., 2017; Spencer et al.,

2013). It will now be interesting to investigate if heterogeneity



in p21 persists during growth-factor-starvation-induced quies-

cence or if other molecular mechanisms are involved in the

observed heterogeneous responses to low EGF concentrations.

For example, it is conceivable that heterogeneous expression of

inhibitors of the PI3K pathway, which we showed to be required

for cell cycle entry as well, contributes to the proliferation-quies-

cence decision.

In addition to quantifying the decision to enter cell cycle, we

followed the phenotypic response of each cell to determine the

frequency and timing of cell division. By integrating molecular

measurements of post-translational modifications as well as

pharmacological perturbations, we showed that ERK signaling

is dispensable after crossing of the restriction point, whereas

PI3K/AKT activity was necessary both for entering S phase and

for timely progression to mitosis. However, activation of AKT

through IGF or insulin alone was insufficient to induce cell cycle

entry. During G1, it is known that ERK and AKT signaling interact

at the level of cell cycle inhibitors, although the precise effects

may depend on the cell line studied (Worster et al., 2012; Zwang

et al., 2011). Our data from pharmacological inhibition at different

intervals after stimulation show that after PI3K inhibition, no

further cells enter S phase, whereas with MEK inhibition, some

cells still enter S phase. This is consistent with previous studies,

which showed that progression through G1 requires PI3K/AKT

and ERK signaling, whereas S-phase entry itself is mainly depen-

dent on PI3K/AKT (Jones and Kazlauskas, 2001). As AKT activity

can suppress anti-proliferative gene products induced during

early G1 phase, it may render cells permissive for ERK-driven

S-phase entry (Zwang et al., 2011). AKT’s role in controlling pro-

gression through S/G2 phase is less well documented. It was

shown that blocking PI3K/AKT signaling prolongs progression

through S/G2, although it remained unclear if S phase or G2

phase is prolonged (Dangi et al., 2003). Our data from scRNA-

seq and life-cell imaging combined with metabolic labeling

show that inhibition of AKT signaling strongly prolongs S phase.

One proposed mechanism is that AKT phosphorylates CDK2

and regulates its subcellular localization during S phase (Maddika

et al., 2008). The resulting AKT-induced nucleo-cytoplasmic shut-

tling of CDK2 may be necessary for cell cycle progression. In

further studies, it may be interesting to measure AKT activity

and CDK2 localization simultaneously in living cells. Additionally,

metabolic demands of S phase may require high AKT signaling.

The AKT signaling pathway is a key regulator of cellular meta-

bolism, including glycolysis and nucleotide biosynthesis (Ward

and Thompson, 2012). Analysis of the differentially expressed

genes in our scRNA-seq data showed that, indeed, PI3K

blockagederegulates genes involved inmetabolic processesdur-

ing S phase. This provides evidence that unmet metabolic de-

mand might contribute to prolonged S-phase progression in the

absence of AKT signaling. In addition, AKT signaling also influ-

ences cell growth by mTOR signaling (Ward and Thompson,

2012), and cell size, in turn, might influence the length of S phase

(Lloyd, 2013). However, it is currently unknown if and how cell size

and cell cycle are coupled (Lloyd, 2013).

Perturbations of the signaling processes controlling cell

cycle progression can be involved in severe pathologies. Ampli-

fication of EGF receptors in breast cancer cells, for example, in-

crease mitogenic input to both ERK and PI3K/AKT signaling
pathways. Alterations in the E2F/Rb system or loss of cell cycle

inhibitors renders cells more permissive to ERK signaling. Muta-

tions in the PI3K pathway, such as PTEN deletion, lead to

increased AKT activity. Although single perturbations will not

lead to changes in cell proliferation in most cases, the accumu-

lation of alterations observed during tumorigenesis increase

information flow through both mitogenic pathways and cause

hypersensitivity to growth factors. Conversely, a detailed under-

standing of temporal requirements for and synergies between

major mitogenic mechanismsmay enable us to devise therapeu-

tic interventions that counteract altered cell signaling. Rationally

designed schedules of combination therapies may provide more

efficiency in targeting both cycling and quiescent cells than

continuous treatment with single agents, such as gefitinib.

Further studies combining quantitative experimental data with

computer-aided analysis will provide the necessary molecular

insights for such next-generation therapies.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-pAKT Thermo Fisher Cat#MA1-20325; RRID: AB_557538

Rabbit monoclonal anti-pRB Cell Signaling Technology Cat#8516; RRID: AB_11178658

Rabbit monoclonal anti-pERK Cell Signaling Technology Cat#4370; RRID: AB_2315112

Bio-Plex Pro Human Cancer Biomarker Panel 2, EGF Set Bio-Rad Cat #171BC603M

Bio-Plex Protein Array system Bio-Rad Cat#LQ000060AK284J

Chemicals, Peptides, and Recombinant Proteins

CHIR-98014 GSK3b inhibitor Selleckchem S2745; CAS:252935-94-7

Gefitinib EGFR inhibitor Cayman Chemical 13166; CAS:184475-35-2

IKK2 inhibitor Calbiochem 401479; CAS:354812-17-2

JNK inhibitor VIII Cayman Chemical Cay15946; CAS: 894804-07-0

Ly294002 PI3K inhibitor Alexis Biochemicals BML-ST420; CAS: 154447-36-6

MK-2206 AKT1/2/3 inhibitor Selleckchem S1078; CAS:1032350-13-2

Palbociclib CDK4/6 inhibitor MedchemExpress HY-50767; CAS: 571190-30-2

RO-3306 CDK1 inhibitor Axon Medchem Axon 1530; CAS: 872573-93-8

SB203580 p38 inhibitor Selleckchem S1076; CAS: 152121-47-6

SB216763 GSK-3 inhibitor Sigma-Aldrich S3442; CAS: 280744-09-4

Selumetinib (AZD6244) MEK1/2 inhibitor Selleckchem S1008; CAS:606143-52-6

Sorafenib RAF kinases inhibitor Selleckchem S7397; CAS: 284461-73-0

U0126 MEK1/2 inhibitor Selleckchem S1102; CAS:1173097-76-1

Hoechst 33342 Invitrogen Cat#H3570

FluoroBrite Thermo Fisher Cat#A1896701

DMEM/F-12 Thermo Fisher Cat# 21331020

HEPES Thermo Fisher Cat#A15630106

EGF PeproTech Cat#AF-100-15

IGF PeproTech Cat#100-11

Insulin Sigma-Aldrich Cat#91077C

Penicillin-Streptomycin Thermo Fisher Cat#15140-122

GlutaMAX Thermo Fisher Cat#3550-038

Cholera Toxin Sigma-Aldrich Cat#C8052

BSA Thermo Fisher Cat#11021-037

Hydrocortison Sigma-Aldrich Cat#H0888

Critical Commercial Assays

EdU Click-647 Carl Roth GmbH 7777.1

Chromium Single Cell 3ʹ GEM, Library & Gel Bead Kit v3 10x Genomics PN-1000075

Chromium Single Cell B Chip Kit 10x Genomics PN-1000073

Chromium i7 Multiplex Kit 10x Genomics PN-120262

BD Single-Cell Multiplexing Kit—Human BD Biosciences 633781

Deposited Data

scRNA-seq data This study GSE147259

Single cell time series This study https://dx.doi.org/10.25534/tudatalib-158

Analysis code This study https://dx.doi.org/10.25534/tudatalib-160

Experimental Models: Cell Lines

Human: MCF10A FIRE Albeck et al., 2013 NLS-mCerulean, FIRE, RFP-GMNN

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

ImageJ https://imagej.net/ImageJ Version 1.8; RRID:SCR_003070

R https://www.r-project.org Version 3.6; RRID;SCR_001905

MATLAB Mathworks R2016b; RRID:SCR_001622

Python https://www.python.org/ Version 3.7; RRID:SCR_008394

NIS-Elements Advanced Research Nikon Version 4.5; RRID:SCR_014329

Other

Inverted fluorescence microscope Nikon Ti-E inverted

m-Plate 24 Well Black ibidi Cat#82406
LEAD CONTACT AND MATERIALS AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Alexander

Loewer (loewer@bio.tu-darmstadt.de).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
Time series data of all tracked cells (https://doi.org/10.25534/tudatalib-158) as well as data analysis scripts (https://doi.org/10.

25534/tudatalib-160) are available online. ScRNA-seq data is available at GEO under the accession number GSE147259 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147259). Original image data and image analysis scripts are available from

the corresponding author upon reasonable request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
MCF10A cells were grown in DMEM/F12 medium supplemented with 5% horse serum (Thermo Fisher), 20 ng/ml EGF (PeptroTech),

0.5 mg/ml hydrocortisone, 100 ng/ml cholera toxin, 10 mg/ml insulin (all Sigma), penicillin-streptomycin and 13GlutaxMaxTM (Thermo

Fisher). The FIRE reporter has been previously described (Albeck et al., 2013) . In brief, it is an indirect reporter of ERK activity, which

consists of the PEST domain of FRA1 fused to YFP. Expression is driven by the MSCV LTR (murine stem cell virus long terminal

repeat). The reporter cell line also stably expresses NLS-CFP (mCerulian) as a nuclear marker to facilitate automatically tracking

and segmenting cells. In addition, the reporter cell line also expresses GMNN as a marker for the transition from G1- into S-phase

and for division.

METHOD DETAILS

Luminex assays
We seeded 37,500 cells per well in a 24-well plate and let them grow for 48 h in complete growthmedium (see above). Afterward, cells

were growth factor-starved for 48 h and stimulated with either 1 ng/ml or 7.5 ng/ml EGF for different durations (0 h, 1 h, 2.5 h, 5 h and

24 h). Thirty minutes prior EGF stimulation, cells were treated with inhibitors against MEK (1 uM), GSK3 (10 uM), JNK (10 uM), p38 (1

uM), AKT (1 uM) and PI3K (50 uM). Lysates were prepared according to the supplier’s protocol and analyzed with the Bio-Plex Protein

Array system (Bio-Rad, Hercules, CA) using beads specific for pAKT (S473), pERK1/2 (T202/Y204, T185/Y187), pMEK1 (S217/S221),

pRPS6 (S235/236), pATF2 (T71), pSTAT3 (Tyr705), pP90RSK (Ser380), pP38 (Thr180/Tyr182), p-mTOR (Ser2448), pJNK (Thr183/

Tyr185), pGSK-3a/b (Ser21/Ser9) and pBAD (Ser136). For data acquisition, the Bio-Plex Manager software was used. The raw

data was further analyzed using customized R-scripts.

Extracellular EGF concentrations in combination with a standard weremeasured in cell culture supernatants using the Bio-Plex Pro

Human Cancer Biomarker 2 panel (Bio-Rad) according to the manufacturer’s recommendations.

Live-cell microscopy experiments
For live-cell imaging experiments, we used 24-well imaging plates (ibidi). We seeded 37,500 cells per well and incubated them

in normal medium for 36 h before a 48 h starvation period in DMEM/F12 containing 0.3% tissue culture grade BSA (Sigma),
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0.5 mg/ml hydrocortisone, 100 ng/ml cholera toxin, penicillin, and streptomycin. At least 2 h before the experiment we changed me-

dium to phenol red – free FluoroBrite medium (Thermo Fisher) containing 0.3% tissue culture grade BSA (Sigma), 0.5 mg/ml hydro-

cortisone, 100 ng/ml cholera toxin, 13 glutamax, 10 mM HEPES, penicillin and streptomycin. In stimulation experiments, cells were

tracked for an hour prior to EGF addition. Cells were imaged on a Nikon Ti inverted microscope enclosed with an environmental

chamber controlling temperature, atmosphere (5% CO2), and humidity using a 20 3 Plan Apo objective (NA 0.75) and a Nikon

Qi2 camera. Cells were imaged every 20 min for up to 48 h.

EdU staining
For EdU staining in live-cell imaging, cells were incubated with 10 mM EdU (EdU Click-647) at defined time points. After 40 min, EdU

was washed off with medium and the supernatant of a backup plate, which was treated equally, was utilized to ensure appropriate

EGF concentrations. Immediately after the experiment, cells were fixedwith 2%paraformaldehyde, washedwith PBS, permeabilized

with 0.1% Triton X-100/PBS and blocked with 10% goat serum/PBS. For EdU detection, a reaction cocktail was prepared according

to the manufacturer’s instructions and added to the cells. After 30min incubation at room temperature, cells were washed and coun-

terstained with 2 mg/ml Hoechst in 0.1% Triton X-100/PBS. Using the same positions, cells were imaged for one additional loop in the

microscope and correlated with the previous captured images.

Immunofluorescence
Cells were seeded and treated equally to the live-cell microscopy experiments. After a 48-hour growth factor starvation, cells were

stimulated with EGF at specific time points to fix all conditions with 2% paraformaldehyde simultaneously. After permeabilizing with

0.1% Triton X-100/PBS, cells were blocked with 10% goat serum/PBS and incubated with primary antibodies in 1% BSA/PBS.

Washing steps using 0.1% Triton X-100/PBS and following incubation with secondary antibodies conjugated with Alexa Fluor 488

(#A-11034) and Alexa Fluor 647 (#A-21245, Thermo Fisher Scientific) in 1% BSA/PBS were performed. After further washing steps,

cells were stained with 2 mg/ml Hoechst in 0.1% Triton X-100/PBS. Stored in PBS, images were acquired with a 203 plan apo objec-

tive (NA 0.75) using appropriate filter sets. Automated segmentation was performed in MATLAB (MathWorks) with algorithms from

CellProfiler (Carpenter et al., 2006).

Single cell preparation for scRNA sequencing
For scRNA sequencing, 6-cm plates were used with 4.3 3 105 cells per plate and treated equally to the live-cell microscopy exper-

iments. After a 48-hour growth factor starvation, cells were stimulated with EGF at specific time points to trypsinize them simulta-

neously and adjusted the cell number to 500.000 cells per condition. Each sample was resuspended in 50 ml BD Stain Buffer

(FBS) and labeled with a specific Sample Tag (10 ml) for 20 min at room temperature. After adding 100 ml BD Stain Buffer, cells

were mixed, centrifuged and washed with 500 ml BD Stain Buffer. Using 500 ml RNase free PBS, all cells were pooled in a single

tube and counted to ensure a sufficient cell number. After centrifugation and resuspension in RNase free PBS, pre-chilled methanol

was added dropwise to the sample while mildly vortexing. Cells were kept on ice for 15 min, mixed, divided into 1 mL aliquots and

stored at �80�C.

Rehydration and library preparation
Rehydration was done at 4�C; cells were pelleted and washed twice in rehydration buffer (DPBS, 10%BSA, 0.5U/ml RNase Inhibitor),

then filtered and counted. The 30 RNA library war prepared according to the ‘‘Chromium Single Cell 30 Reagent Kits v3’’-protocol

(CG000183 Rev A) with a targeted cell recovery of 10.000 cells. At step 2.3.d of cDNA Cleanup the supernatant was removed and

used for sample tag library preparation according to the ‘‘BD Single-Cell Multiplexing Kit—Human’’-protocol (Reagent Kit v2, Doc

ID: 179682 Rev. 1.0). The cDNA library was complemented with 5% of its corresponding sample tag library to be run in the same

sequencing run. Samples were sequenced on an Illumina HiSeq 4000 sequencer.

QUANTIFICATION AND STATISTICAL ANALYSIS

Single cell RNA sequencing analysis
Readmapping and countingwas done using cellranger version 3.0.2 using a dual genome reference consisting of the human genome

GRCh38 as supplied by cell ranger, and an artificial genome containing the BD sequence tags. Demultiplexing was done using a

custom script that reads the BAM file and counts sequences that map to the artificial BD sequence tags genome, and removes dupli-

cate UMIs per cell. Subsequently, cells were assigned to samples (or duplets) using the HTODemux() function of Seurat (Stuart et al.,

2019) after normalization (as described in the Seurat manual). Transcriptome analysis of the single cell RNA sequencing samples was

done using Seurat (Stuart et al., 2019). In brief, low quality cells were removed based on mitochondrial contamination and number of

unique genes. Each gene was normalized by the total expression in the cell, scaled by 10,000 and log-transformed. Cell cycle status

was defined using a list of cell cycle markers from Tirosh et al. (2016) as provided by Seurat. For differential gene expression

analysis, cells were grouped by experiment, condition, and cell cycle phase to generate pseudo-bulk samples. Differential gene

expression analysis was done using DESeq2 (Love et al., 2014). To identify the effect of inhibitors on pathway activity, we used vari-

ance-stabilized data as provided by DESeq2 and applied PROGENy (Schubert et al., 2018) . The differentially expressed genes in the
e3 Cell Reports 31, 107514, April 14, 2020



pseudo-bulk samples were further analyzed using GO enrichment (R package: clusterProfiler; Yu et al., 2012). The identified GO-

terms were simplified using a semantic similarity measure, which depends on the frequencies of two GO terms involved and that

of their closest common ancestor term (R package: GOSemSim; Yu et al., 2010).

Data analysis of live-cell experiments
Cells were tracked throughout the duration of the experiment using custom-written MATLAB (MathWorks, Natick, MA) scripts based

on code developed by the Alon lab (Cohen et al., 2008) and the Cell Profiler project (Carpenter et al., 2006) as previously described

(Strasen et al., 2018). In brief, we applied flat-field correction and background subtraction to raw images before segmenting individual

nuclei from images of the NLS-CFP reporter using adaptive thresholding and seeded watershed algorithms. Segmented cells were

assigned to corresponding cells in subsequent images using a greedy match algorithm based on a cost function, which included the

velocity and direction of movement for a cell. Additionally, the fluorescence intensity of the nuclear marker was used to ensure con-

sistency. We then quantified the nuclear fluorescence intensity of the FIRE reporter for each cell over time and normalized the result-

ing single-cell trajectories by dividing with the nuclear fluorescence of the NLS-CFP reporter to account for changes in nuclear shape.

This normalization eliminated spurious peaks and disturbances by cell division. The measurements of unstimulated control cells

included in each experiment were used for further normalization resulting in a fold-change of FIRE levels compared to unstimulated

means (Figure S1E). Specifically, for each cell the FIRE levels at each time-point were divided mean FIRE level of the unstimulated

control at that time-point. Cells with an amplitude greater than three standard deviations from the average amplitude of

unstimulated cells are considered to be responders.

To identify cell cycle states using Geminin, we first normalize the time courses by themean of the unstimulated control. Time points

with a Geminin response smaller than a threshold (mean + 2*sd of unstimulated control) are defined as part of the G1-phase, when

Geminin is not expressed (Figure S4B). Using run-length encoding, we can identify the duration of S/G2-phase and the time point of

division. To avoid false positive detection cell cycle phases, we include only cells in our analysis, where the time between beginning of

S-phase and division is at least 4 h.

Percent of dividing cells was used to compare effects between different concentrations of EGF or different types of inhibitors. We

calculated the standard error with bootstrapping (n = 1000, R package: boot).

Clustering
The time courses of the FIRE reporter (normalized) were clustered using Partitioning Around Medoids (PAM), which is a non-hierar-

chical clustering. PAM tries to partition the data by minimizing the squared error of distance measure (R package: cluster). We chose

Euclidean distance, which is based on the straight-line distance between the FIRE responses at each individual time-point. In order to

identify the most reasonable number of clusters, we calculated the Gap-statistic (Tibshirani et al., 2001)for an increasing number of

clusters (k = 1 ... 20) (R package: cluster).

Feature analysis
The time courses were separated into early (less than 16 h after stimulation) and late response (more than 20 h after stimulation). For

each signaling phase, we defined the amplitude as the mean of the three highest FIRE responses after normalization and the time of

response as themean time for the three highest FIRE responses. The fold-change is taken with respect to themean response of FIRE

in the same cell before stimulation. The log2 amplitude and the log2 fold-change were also included as features. The duration is

measured as full width at half maximum, limited to the maximum possible observation period. The area under the curve has been

estimated using a spline interpolation (R package: MESS). To identify responding cells, the amplitude of the first response and

the second response was compared to the distribution of the respective amplitude in the control experiment (without EGF).

Information theoretical analysis
For calculating the multivariate mutual information, we grouped each feature into equidistant bins. We calculated the overlap matrix,

or confusion matrix, between EGF concentrations and the different groups for each FIRE feature. A similar approach was used to

define the overlap between the different groups of FIRE features and whether a cell divides (yes-or-no decision). From this we calcu-

late mutual information, defined as

IðX;YÞ =
X

x˛X

X

y˛Y

pðx; yÞlog pðx; yÞ
pðxÞ$pðyÞ

We bootstrapped mutual information (n = 1000, R package: boot) to ensure robustness of the calculation and report the median.

Kaplan-Meier analysis
The analysis of duration of the S/G2-phase might be affected as cells are not monitored indefinitely and thus, we have incomplete

data. We are overcoming this shortcoming by calculating Kaplan-Meier curves. Kaplan-Meier curves are a way to analyze times-

to-event with incomplete data. This type of analysis is commonly used in clinical studies (Bewick et al., 2004) to account for

patient drop-outs. In the analysis of S/G2-phase duration, we characterize cells which go into S-phase if they undergo division (event
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occurrence) in themeasured time course or not (censored data). We show the cumulative events (completion of division) over time (R

package: survival, survminer).

Analysis of Luminex experiment with inhibitors
First, only valid beads are included for further analysis (> 90% of the beads). The experiment was done in two replicates and the sec-

ond replicate has a similar number of valid beads (> 90%) as the first one. The bead ids were mapped to the corresponding antibody

names of the Luminex assay. There were 534 (465) spurious beads with 26 (26) different ids. Those beads were removed from further

analysis. We bootstrapped the median (n = to calculate the amplitude and variability for each antibody. For each replicate the log2
fold-change compared to the untreated control has been calculated and the mean for the replicates is presented.

Analysis of EGF concentration
Fluorescence measurements of the EGF standard were used for a nonlinear regression (R-package: minpack.lm) of a 4-parameter

logistic function:

FI = d +
a� d

1+
�EGF

c

�b

The parameters of the model fit were applied to the inverse function to map fluorescence intensities of the measurements in the

supernatant to EGF concentrations.
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