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Abstract Mechanoelectrical transduction is a cellular signalling pathway where physical stimuli

are converted into electro-chemical signals by mechanically activated ion channels. We describe

here the presence of mechanically activated currents in melanoma cells that are dependent on

TMEM87a, which we have renamed Elkin1. Heterologous expression of this protein in PIEZO1-

deficient cells, that exhibit no baseline mechanosensitivity, is sufficient to reconstitute mechanically

activated currents. Melanoma cells lacking functional Elkin1 exhibit defective mechanoelectrical

transduction, decreased motility and increased dissociation from organotypic spheroids. By

analysing cell adhesion properties, we demonstrate that Elkin1 deletion is associated with

increased cell-substrate adhesion and decreased homotypic cell-cell adhesion strength. We

therefore conclude that Elkin1 supports a PIEZO1-independent mechanoelectrical transduction

pathway and modulates cellular adhesions and regulates melanoma cell migration and cell-cell

interactions.

Introduction
Cells sense and respond to their physical surroundings by converting mechanical inputs into bio-

chemical signals, a process referred to as mechanotransduction. The most rapid mode of mechano-

transduction is mediated by mechanically activated (MA) ion channels that are activated within

milliseconds of a stimulus, resulting in a localised flow of ions across the plasma membrane, thus

converting physical stimuli into electrical signals. The discovery of the mammalian MA channels,

PIEZO1 and PIEZO2 (Coste et al., 2012; Coste et al., 2010), has highlighted the diverse array of

cells and tissues that express such ionotropic force sensors (Albuisson et al., 2013; Florez-

Paz et al., 2016; Hung et al., 2016; Maksimovic et al., 2014; Martins et al., 2016;

Miyamoto et al., 2014; Ranade et al., 2014; Rocio Servin-Vences et al., 2017; Yang et al., 2016).

Patkunarajah et al. eLife 2020;9:e53308. DOI: https://doi.org/10.7554/eLife.53308 1 of 25

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.53308
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


The activation of these channels by externally applied mechanical stimuli underpins our senses of

touch, proprioception and hearing (Florez-Paz et al., 2016; Maksimovic et al., 2014), and contrib-

utes to the physiological function of mechanoresponsive tissues such as the vasculature

(Evans et al., 2018; Li et al., 2014), the urothelium (Martins et al., 2016; Miyamoto et al., 2014)

and the cartilage (Rocio Servin-Vences et al., 2017). Recent evidence has suggested that PIEZO1 is

not only activated by exogenously applied forces but can also be activated by cell-generated forces

(Blumenthal et al., 2014; Ellefsen et al., 2019; Nourse and Pathak, 2017). Thus, MA channels may

be involved in inside-out mechanical signalling and contribute to the ability of cells to probe the

physical nature of their microenvironment. Because PIEZO channels do not account for all mamma-

lian MA channel activity, identifying additional MA channels and characterising their function repre-

sent important outstanding challenges in the field (Dubin et al., 2017).

Inside-out mechanical signalling has been implicated in the development and metastasis of can-

cers. The stiffening of the local microenvironment (Kai et al., 2016), changes in cell packing and cell-

cell adhesions (Cichon et al., 2015) and the tumour topology (Lee et al., 2016a) have all been

shown to impact tumourigenicity or invasiveness. In the case of melanoma, cancer progression/trans-

formation is directly linked to mechanical changes at a cellular level: cells become more compliant

(Jonas et al., 2011), exhibit increased contractility (Paszek et al., 2005; Sanz-Moreno et al., 2011)

and display altered morphology during transformation (Poole and Müller, 2005). During the process

of metastasis, cells must break away from the primary tumour and navigate microenvironments with

diverse physical properties including: confined pores in the ECM, the planar interface of the base-

ment membrane, or tracks and channels formed from ECM fibres or the earlier passage of cancerous

cells (Wolf et al., 2009). Given the mechanical changes during melanoma development and metas-

tasis it is important to characterise mechanotransduction molecules in these cells, including MA ion

channels.

We report the identification of MA ion channel activity at the cell-substrate interface in WM266-4

metastatic melanoma cells, using elastomeric pillar arrays to apply fine mechanical stimuli to cells via

their connections to the subjacent matrix (Poole et al., 2014; Sianati et al., 2019), thus simulating

deflections arising from cell-generated forces. Simultaneous recordings using whole-cell patch-clamp

electrophysiology allowed us to directly measure the resulting MA currents. We have identified a

eLife digest When cells receive signals about their surrounding environment, this initiates a

chain of signals which generate a response. Some of these signalling pathways allow cells to sense

physical and mechanical forces via a process called mechanotransduction. There are different types

of mechanotransduction. In one pathway, mechanical forces open up specialized channels on the cell

surface which allow charged particles to move across the membrane and create an electrical current.

Mechanoelectrical transduction plays an important role in the spread of cancer: as cancer cells

move away from a tumour they use these signalling pathways to find their way between cells and

move into other parts of the body. Understanding these pathways could reveal ways to stop cancer

from spreading, making it easier to treat. However, it remains unclear which molecules regulate

mechanoelectrical transduction in cancer cells.

Now, Patkunarajah, Stear et al. have studied whether mechanoelectrical transduction is involved

in the migration of skin cancer cells. To study mechanoelectrical transduction, a fine mechanical

input was applied to the skin cancer cells whilst measuring the flow of charged molecules moving

across the membrane. This experiment revealed that a previously unknown protein named Elkin1 is

required to convert mechanical forces into electrical currents. Deleting this newly found protein

caused skin cancer cells to move more slowly and dissociate more easily from tumour-like clusters of

cells.

These findings suggest that Elkin1 is part of a newly identified mechanotransduction pathway

that allows cells to sense mechanical forces from their surrounding environment. More work is

needed to determine what role Elkin1 plays in mechanoelectrical transduction and whether other

proteins are also involved. This could lead to new approaches that prevent cancer cells from

dissociating from tumours and spreading to other body parts.
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crucial molecule (TMEM87a) required for this channel activity and have renamed this polypeptide

Elkin1, from the Greek word Elko, meaning ‘to pull’. The deletion of Elkin1 resulted in altered cell

migration and increased interaction forces between melanoma cells and laminin 511 (LM511), a func-

tionally important extracellular matrix (ECM) molecule. In addition, Elkin1 deletion modulated cell-

cell interactions, leading to facilitated dissociation of Elkin1-KO cells from organotypic spheroids.

Results

Measuring mechanically activated ion currents in melanoma cells
To establish whether melanoma cells exhibit MA channel activity, metastatic WM266-4 melanoma

cells (originally isolated from a secondary tumour) were cultured on uncoated pillar arrays made of

polydimethylsiloxane (PDMS). Mechanical stimuli were applied directly to cell-substrate contact
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Figure 1. Measuring MA currents in WM266-4 melanoma cells. (A) Schematic of pillar array experiment. Cells were cultured on top of an array of

elastomeric cylinders. Whole-cell patch-clamp was used to study the currents within the cell when stimuli were applied directly at the cell-substrate

matrix by serially deflecting an individual pilus subjacent to the cell. (B) Bright-field image of a WM266-4 cell (outlined by dashed, yellow line) cultured

on top of a pillar array. The microelectrode is outlined in white and the stimulating probe in blue. Scale bar = 10 mm. (C) Representative traces of

inward MA currents activated in WM266-4 cells in response to increasing deflections. (D) Average current-voltage relationships of deflection-activated

currents in WM266-4 cells (mean ± s.e.m., n = 5 cells). (E) Stimulus-response plots for WM266-4 cells on uncoated arrays (mean ± s.e.m., n = 10 cells)

and WM266-4 cells on pillar arrays coated with LM511 (n = 20 cells). WM266-4 cells on LM511-coated arrays were more sensitive to pillar deflections

than WM266-4 cells on uncoated arrays (ordinary two-way ANOVA, n = 20 and 10 cells respectively, **p=0.005; Sidak’s multiple comparison, *p=0.02).

(F) Transwell analysis of LM isoforms and their ability to promote transmigration. Note, LM511 supported the highest degree of transmigration, in

comparison with other LM isoforms, LM111, LM211, LM411 and EHS-LM. See Figure 1—figure supplement 1 for a comparison of mechanically evoked

currents in WM115 versus WM266-4 cells and Figure 1—figure supplement 2 for analysis of PIEZO1 contribution of mechanically evoked currents in

WM266-4 cells.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Source data for details of current kinetics.

Figure supplement 1. MA currents in melanoma cell lines.

Figure supplement 2. Knockdown of PIEZO1 in WM266-4 cells.
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points by physically deflecting a single pilus subjacent to the cell (Figure 1A,B) and the electrical

response of the cell was monitored using whole-cell patch-clamp. Deflection-activated currents were

measured in all WM266-4 cells (10/10) and the current amplitude increased with increasing stimulus

size (Figure 1C). Variable inactivation kinetics were measured (Figure 1—figure supplement 1, Fig-

ure 1—source data 1), as also previously demonstrated for PIEZO1-mediated currents activated by

substrate deflection (Poole et al., 2014; Sianati et al., 2019). The reversal potential, as determined

from a current-voltage relationship for the peak MA current, was +6.6 mV, indicating that the under-

lying current was passed by a non-selective cation channel (Figure 1D). Stimulus-response plots

were generated by calculating the precise pillar deflection for each applied stimulus (Figure 1E). We

additionally tested whether MA currents were activated in WM115 melanoma cells (isolated from

the primary tumour from the same patient as WM266-4). Larger deflections were required to acti-

vate currents in WM115 cells, compared to WM266-4 (Figure 1—figure supplement 1). These data

demonstrate that displacements at the interface between melanoma cells and their substrate evoke

MA currents.

To examine whether MA channel activity is correlated to cell migration speeds, we performed pil-

lar-array experiments using LM511, a substrate that supports the migration of metastatic melanoma

cells (Oikawa et al., 2011). We first confirmed that LM511 promotes increased migration of

WM266-4 cells using transwell assays, compared to other LM isoforms (Figure 1F). We then

repeated the analysis of MA channel activity in WM266-4 cells cultured on pillar arrays coated with

LM511 and noted that current kinetics were unchanged (Figure 1—source data 1). However, MA

currents were more sensitive when evoked in WM266-4 cells attached to LM511 (Figure 1E). Under

these conditions, current saturation occurred within the stimulus range, allowing us to use a Boltz-

mann sigmoidal fit to determine the MA current sensitivity. Half-maximal activation of MA currents

was seen with approximately 18 nm of substrate deflection (Effective deflection ED50; standard

error = 20.5 nm). These data indicate a correlation between migratory properties and the MA cur-

rent sensitivity to deflections applied at cell-substrate contact points. The robust MA current activa-

tion observed in cells cultured on LM511 also provided an excellent system to investigate the

molecules required for this mechanoelectrical transduction.

PIEZO1 is an obvious candidate for mediating this activity, in particular because the biophysical

characteristics of the observed deflection-activated currents are consistent with those previously

described for this channel (Poole et al., 2014). To directly test if PIEZO1 mediates the MA current in

WM266-4 cells, we knocked down PIEZO1 expression and examined whether these currents were

still detectable. In PIEZO1 knock-down cells cultured on LM511-coated pillar arrays, MA currents

were activated in response to pillar deflection in 10/10 cells measured and the resulting stimulus-

response curves were similar to controls (Figure 1—figure supplement 2). Similarly, treatment with

Ruthenium Red (RR, a channel blocker that inhibits PIEZO1 and TRP channels) did not inhibit these

MA currents (Figure 1—figure supplement 2). From these data we conclude that PIEZO1 is unlikely

to be the MA channel responsible for the current measured in WM266-4 cells.

Mechanically evoked currents in WM266-4 cells are dependent on
Elkin1
To identify novel MA channels in WM266-4 cells, we undertook a proteomic-based strategy. Given

that both intracellular (Poole et al., 2014; Zhang et al., 2017) and extracellular proteins

(Chiang et al., 2011) can tune the sensitivity of MA channels, we analysed the proteome of WM266-

4 cells rather than taking a comparative proteomic approach (Supplementary file 1). Two known

non-selective cation channels were identified, PIEZO1 and TRPV2. However, RR is a channel blocker

of both PIEZO1 (Coste et al., 2012) and TRPV2 (Caterina et al., 1999), indicating that neither likely

mediates the deflection-evoked currents in WM266-4 cells (Figure 1—figure supplement 2). We

then examined the proteomics data for proteins of unknown function with four or more predicted

transmembrane (TM) domains. We prioritised the investigation of Elkin1 due to its expression in mel-

anoma cells but not healthy melanocytes, its expression in additional mechanosensitive cells (Alveo-

lar Type II cells) and its upregulation in additional human cancers (Human Protein Atlas [Uhlén et al.,

2005] available from www.proteinatlas.org). We generated miRNA constructs targeting Elkin1 and

found that knockdown of Elkin1 transcript resulted in a dramatic reduction in MA currents to deflec-

tions up to 1000 nm (Figure 2A,B). These data suggested that Elkin1 contributes to MA currents in

melanoma cells.
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Figure 2. TMEM87a/Elkin1 in WM266-4 cells. (A) Transfection of WM266-4 cells with a plasmid encoding miRNA

targeting Elkin1 leads to a reduction in Elkin1 transcript (Mann-Whitney, control n = 8, KD n = 6, *p=0.013). (B)

Knockdown of Elkin1 leads to a significant decrease in MA currents in WM266-4 cells, in comparison with controls

(two-way ANOVA, control n = 15, Elkin1 KD = 10, **p=0.004; Sidak’s multiple comparison, *p=0.02) (data

presented as mean ± s.e.m.). (C) Transmembrane topology prediction of hsElkin1-iso1, with 6 TM domains (highest

probability prediction of TM domains). (D) Western-blot analysis of samples prepared from HEK-293T cells

overexpressing hsElkin1-isoform1 or hsElkin1-isoform3. The surface fraction was isolated by pull-down of

biotinylated proteins after surface labelling. Note, both hsElkin1-isoform1 and hsElkin1-isoform3 are present at the

cell surface. See Figure 2—figure supplement 1 for full blot. TIRF images of (E) hsElkin1-iso1-GFP, (F) Lifeact

mCherry and (G) overlay in WM266-4 cells. Note that hsElkin1-iso1 is present in foci as well as the plasma

membrane. TIRF images of (H) hsElkin1-iso3-GFP, (I) Lifeact mCherry and (J) overlay in WM266-4 cells. Note that

hsElkin1-iso3 is present in the plasma membrane and associated with actin structures. Scale bar 10 mm. See

Figure 2—videos 1 and 2 for corresponding live-cell imaging and Figure 2—figure supplement 2 for laser

scanning confocal imaging of hsElkin1-iso1/hsElkin1-iso3 with a Golgi-RFP marker.

Figure 2 continued on next page

Patkunarajah et al. eLife 2020;9:e53308. DOI: https://doi.org/10.7554/eLife.53308 5 of 25

Research article Cancer Biology Cell Biology

https://doi.org/10.7554/eLife.53308


Three human isoforms (representing splice variants) of Elkin1 have been identified: isoforms 1

and 3 (555 and 494 aa respectively), contain six predicted TM domains (Figure 2C). Isoform 2 (181

aa) does not contain any predicted TM domains and was not examined in this study. We cloned hsEl-

kin1-iso1 and hsElkin1-iso3 from WM266-4 cDNA and generated C-terminal GFP fusion constructs.

We confirmed the plasma membrane localisation of these two isoforms in transiently transfected

HEK-293T cells using cell-surface biotinylation followed by Western blot analysis (Figure 2D, Fig-

ure 2—figure supplement 1). Both isoforms were present at the plasma membrane, as well as the

intracellular fraction. To further examine the subcellular distribution of hsElkin1, we transiently

expressed these plasmids in WM266-4 cells and imaged the cells using total internal reflection fluo-

rescence (TIRF) microscopy, which limits fluorescence excitation to molecules near the cell-substrate

interface. hsElkin1-iso1-GFP localised to both the membrane and a dispersed population of dynamic

foci, while hsElkin1-iso3-GFP assembled into structures that were co-labelled by Lifeact-mCherry.

(Figure 2E–J; Figure 2—videos 1 and 2). Laser-scanning confocal imaging to visualise hsElkin1-iso1-

GFP throughout the cell revealed that this protein also localised to the Golgi apparatus (as previ-

ously described [Hirata et al., 2015 ]): in contrast, hsElkin1-iso3-GFP was enriched in actin-based ruf-

fles that were present at the cell periphery (Figure 2—figure supplement 2). The presence of Elkin1

in the plasma membrane, as described here, is consistent with Elkin1 forming an integral component

of a mechanoelectrical transduction pathway.

Elkin1 activation in a heterologous system
To test the hypothesis that Elkin1 contributes to mechanoelectrical transduction, we examined

whether its expression in a heterologous cell system is sufficient to reconstitute MA currents. Un-

tagged Elkin1 isoforms were overexpressed in the HEK-293T P1KO cell line (Lukacs et al., 2015),

which lacks functional PIEZO1. The control cells exhibited no current activation in response to stimuli

within our deflection range of 1–1000 nm (0/8 cells). However, mechanically activated currents were

detected in response to similar stimuli in HEK-293T P1KO cells expressing either hsElkin1-iso1 or

hsElkin1-iso3 (8/8 and 9/9 respectively) (Figure 3A,B). The observed current kinetics were consistent

with direct mechanical activation (Figure 3—source data 1) and the mechanically evoked currents

measured in WM266-4 cells (Figure 1—source data 1). We confirmed that we could mechanically

evoke currents in a second cell line lacking PIEZO1, N2a Piezo1-/- (Moroni et al., 2018), where 6/8

cells expressing hsElkin1-iso1 responded to pillar deflection compared to 4/10 control cells (Fig-

ure 3—figure supplement 1).

To investigate whether cells expressing Elkin1 were sensitive to alternative modes of mechanical

stimuli, we used cellular indentation and high-speed pressure-clamp (HSPC). The HEK-293T P1KO

cell line is unresponsive to indentation, (0/6 cells responding) as previously described (Dubin et al.,

2017; Figure 3C,D); in contrast, MA currents were evoked in cells expressing either human Elkin1

isoform (hsElkin1-iso1 6/6 cells, hsElkin1-iso3 5/5 cells responding) (Figure 3C,D). Indentation-

evoked currents were only measured in a small fraction of N2a Piezo1-/- cells expressing hsElkin1-ios1

or hsElkin1-iso3 (1/10 and 1/12 responding respectively compared to 0/8 control cells, Figure 3—

figure supplement 1). When membrane stretch was applied using high-speed pressure-clamp

(HSPC), no currents were evoked in negative controls or HEK-293T cells overexpressing human

Elkin1 (negative pressure: hsElkin1-iso1 0/11, hsElkin1-iso3 0/13, positive pressure: hsElkin1-iso1 0/5,

hsElkin1-iso3 0/5 responding) (Figure 3E). In contrast, both positive and negative pressure evoked

currents in all positive controls where PIEZO1 was expressed (Figure 3—figure supplement 2).

From these data we conclude that the expression of Elkin1 is sufficient to confer MA channel activity

Figure 2 continued

The online version of this article includes the following video and figure supplement(s) for figure 2:

Figure supplement 1. Cell-surface biotinlyation of hsElkin1-GFP fusion proteins.

Figure supplement 2. Visualisation of hsElkin1-iso1 and -iso3 with laser-scanning confocal microscopy.

Figure 2—video 1. hsElkin1-iso1-GFP dynamics in WM266-4 cells, as visualised with TIRF microscopy.

https://elifesciences.org/articles/53308#fig2video1

Figure 2—video 2. hsElkin1-iso3-GFP dynamics in WM266-4 cells, as visualised with TIRF microscopy.

https://elifesciences.org/articles/53308#fig2video2
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Figure 3. Elkin1-dependent currents can be activated in HEK-293T P1KO cells. (A) Example traces of Elkin1-

dependent MA currents in HEK-293T P1KO cells (magenta: hsElkin1-iso1; green: hsElkin1-iso3). (B) Stimulus-

response plots of HEK-293T P1KO cells (black circles, n = 8), HEK-293T P1KO cells expressing hsElkin1-iso1

(magenta triangles, n = 8) or hsElkin1-iso3 (green triangles, n = 9) (data are mean ± s.e.m.). Note that no currents

were observed in the HEK-293T P1KO cells within the stimulus range of 1–1000 nm. (C) Example traces of

indentation-activated MA currents in HEK-293T P1KO cells: control (black), hsElkin1-iso1 (magenta), hsElkin1-iso3

(green). Note that no MA currents are activated in response to indentation in HEK-293T P1KO cells in the absence

of Elkin1. (D) Maximal current amplitude of indentation-activated currents was significantly larger in cells

Figure 3 continued on next page
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to substrate deflection and cell indentation stimuli in a heterologous system lacking endogenous

PIEZO channels, but not to membrane stretch.

The Mus musculus homolog of Elkin1-iso1 shares 93% sequence identity at the protein level with

the human variant. However, we did not observe robust MA currents in HEK-293T P1KO cells follow-

ing expression of mouse mmElkin1-iso1 (5/8 cells responding, Figure 4A,B), indicating a difference

Figure 3 continued

expressing hsElkin1-isoform1 or hsElkin1-isoform3 versus control cells (Student’s t-test, control (n = 6) versus

hsElkin1-isoform1 (n = 6) *p=0.03, control versus hsElkin1-isoform3 (n = 5) **p=0.003). Data are presented as

mean ± s.e.m. with individual points overlaying bar graphs. (E) Example traces of cell-attached patch clamp

recordings of Elkin-1 expressed in HEK-293T P1KO cells. Pressure stimuli ranging from 0 to -90 mmHg and 0 to

+30 mmHg were applied using HSPC. Note that no stretch-activated currents were measured in any of the cells

(negative pressure: control (black) = 0/8 cells, hsElkin 1-iso1 (magenta) = 0/11 cells, hsElkin1-iso3 (green) = 0/13

cells; positive pressure hsElkin 1-iso1 (magenta) = 0/5 cells and hsElkin1-iso3 (green) = 0/5 cells) Cartoons of

stimuli adapted from Rocio Servin-Vences et al. (2017). See Figure 3—figure supplement 1 for analysis of

Elkin1 activation in a second cell line (N2a Piezo1-/-), Figure 3—figure supplement 2 for HSPC analysis of PIEZO1

expressed in HEK-293T P1KO cells.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Physiological properties of currents recorded in HEK-293 P1KO cells.

Figure supplement 1. Electrophysiological characterisation of hsElkin1-iso1, hsElkin1-iso3 and mmElkin1.

Figure supplement 2. High speed pressure clamp recordings in cells expressing hsPIEZO1.
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Figure 4. hsElkin1 and mmElkin1-dependent currents exhibit distinct mechano-sensitivity. (A) Example traces of M.

musculus Elkin1-dependent MA currents in HEK-293T P1KO cells (grey: mmElkin1-iso1; blue mmElkin1-iso1 F271L

N292G). (B) Stimulus-response plots of HEK-293T P1KO cells expressing: mmElkin1-iso1 (open triangles, n = 8

cells), mmElkin1-iso1 F271L N292G (blue triangles, n = 9 cells), hsElkin1-iso3 L210F (orange squares, n = 8 cells),

hsElkin1-iso3 G231N, (green squares, n = 8 cells). Data points presented as mean ± s.e.m. Cartoons of stimuli

adapted from Rocio Servin-Vences et al. (2017). See Figure 4—figure supplement 1 for sequence alignment of

hsElkin1 and mmElkin1, Figure 4—figure supplement 2 for surface biotinylation analysis of Elkin1 variants and

Figure 4—source data 1 for details on current kinetics.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Source data for details of current kinetics.

Figure supplement 1. Sequence alignment of human and mouse Elkin1 protein and the effect of N-terminal

deletions on hsElkin1 function.

Figure supplement 2. Cell-surface biotinlyation of Elkin1-GFP fusion proteins.
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in sensitivity between these homologous proteins. These data were confirmed in the N2a Piezo1-/-

background (Figure 3—figure supplement 1), with 11/26 cells responding. Alignments between the

protein sequences (Corpet, 1988) revealed that the divergence in amino acid sequences primarily

resides in the N-terminus of the proteins (Figure 4—figure supplement 1). However, expression of

N-terminal truncation mutants of hsElkin1 conferred similar MA currents to those of the wild type

(WT) protein (Figure 4—figure supplement 1), suggesting that this region is not required for MA

currents. To further characterise the differences between the mouse and human proteins, we

focused on two non-conservative changes within the region containing the six predicted TM

domains. Introducing the two human residues into the mouse polypeptide (mmElkin1-iso1-F271L-

N292G), led to robust MA channel activity, in contrast with WT mmElkin1-iso1. Conversely, introduc-

ing either of the mouse residues into the human polypeptide (hsElkin1-iso3-L210F or hsElkin1-iso3-

G231N) led to a reduction in the amplitude of the MA currents measured (Figure 4A,B), despite the

fact that these variants were still present in the plasma membrane (Figure 4—figure supplement 2).

These data indicate that two residues can account for the differences in activity between the mouse

and human proteins, and that these two residues are required for the activation of robust Elkin1-

dependent currents by substrate deflection.

Elkin1 regulates cell migration
Having demonstrated that human Elkin1 is involved in mechanoelectrical transduction in melanoma

cells, we sought to investigate whether the presence of this protein influences cell migration. To

address this question, we used CRISPR/Cas9 to gene-edit cells such that no functional Elkin1-iso1/3

were expressed (Figure 5—figure supplement 1). Duplicate clonal populations of wild-type (WT)

and Elkin1-knockout (KO) cells were isolated. Using pillar arrays, we observed reduced deflection-

activated currents in the Elkin1-KO clones compared to the WT (Figure 5A,B). A residual current at

large deflections was still present in some KO cells; we hypothesise that this effect is due to minor

compensation from PIEZO1 (Supplementary file 1 and as noted previously [Rocio Servin-Vences

et al., 2017]) or the activity of an as-yet-unidentified MA channel. Nevertheless, these data confirm

that Elkin1 is required for sensitive MA channel activity in WM266-4 cells.

We first tested whether Elkin1-dependent mechanotransduction regulates cell migration using a

transwell assay. While transmigration of the WT clones was not different from control populations,

both Elkin1-KO clones exhibited reduced transmigration (Figure 5C). This phenotype could be res-

cued by the transient overexpression of wild-type hsElkin1-iso3. In contrast, overexpression of hsEl-

kin1-iso3 L210F (Figure 5D), a variant associated with significantly reduced MA currents (Figure 4B),

did not rescue the transmigration defect. We additionally generated an Elkin1-KO clone from the

A375 melanoma cell line (which has previously been shown to express functional PIEZO1

[Hung et al., 2016]). The A375 Elkin1-KO cells exhibited reduced transmigration, compared to the

A375 WT cells (Figure 5E), indicating that the link between Elkin1 activity and migration is not

restricted to WM266-4 cells and can be measured in a cell line where PIEZO1 is functionally active.

We therefore conclude that disruption of Elkin1 not only impairs mechanosensitivity, but also cell

migration.

Elkin1 regulates unconfined (2D) and confined (quasi-1D) cell migration
We expanded our analysis to investigate how Elkin1 regulates different modes of migration. To

examine how Elkin1 mediates the unconfined migration of individual cells on a 2D surface, we plated

cells on dishes coated with LM511, and observed their movement using phase-contrast and epi-fluo-

rescent microscopy. A representation of the migration tracks shows that the WT clones migrated fur-

ther over the course of the experiment (Figure 6A). To test whether this effect was exclusive to

migration on LM511-coated substrates, we repeated the experiments on dishes coated with poly-L-

lysine (PLL) (Figure 6B). The Elkin1-KO clones exhibited reduced track mean speed on both sub-

strates (Figure 6C) and a reduced distance migrated from origin (calculated as the Euclidean dis-

tance, Figure 6D).The percent reduction in the mean of the measured track mean speed was similar

for experiments conducted on LM511 (Elkin1-KO cells 29% reduction in the mean) to PLL (Elkin1-KO

cells 32% reduction). These data demonstrate that Elkin1 modulates cell migration in unconfined

environments. To investigate the impact of Elkin1 on confined migration, stripes of LM511 were

printed onto glass coverslips and the unprinted regions were passivated to block cell adhesion, thus

Patkunarajah et al. eLife 2020;9:e53308. DOI: https://doi.org/10.7554/eLife.53308 9 of 25

Research article Cancer Biology Cell Biology

https://doi.org/10.7554/eLife.53308


restricting attachment to the printed regions (maximum width of 5 mm) (Figure 6E). During the

experiment cells would occasionally detach and then reattach; our analysis only included periods

when cells were attached and elongated on the patterned region. The mean migration speed was

lower in the Elkin1-KO clones compared to WT (Figure 6F) (22% reduction in the mean Elkin1-KO

track mean speed), indicating that disrupting Elkin1 inhibits the ability of cells to undertake both

unconfined and confined migration on hard surfaces.
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Figure 5. CRISPR/Cas9 deletion of Elkin1 inhibits MA currents and migration of WM266-4 cells. (A) Example traces of MA currents in WT and Elkin1-KO

clones of WM266-4 cells on LM511-coated pillar arrays. A residual current is present in Elkin1-KO clones at large deflections. (B) Stimulus-response

plots showing that MA currents are significantly inhibited in the Elkin1-KO clones in comparison with the WT clones (ordinary two-way ANOVA, Elkin1

KO = 19 cells, WT = 11 cells, ****p<0.0001; Sidak’s multiple comparison, **p=0.007, *p=0.03, **p=0.004). (Data displayed as mean ± s.e.m.). (C) A

transwell analysis of migration onto LM511-coated membranes shows that WT clones (3B6 and 3E9) were indistinguishable from WT controls, whereas

Elkin1-KO clones (3C6 and 3D6) exhibited significantly reduced transmigration (one-way ANOVA, parental control n = 8 wells, 3E9 = 4 wells, 3B6 = 7

wells, 3D6 = 8 wells, 3C6 = 8 wells, ****p<0.0001; Dunnett’s multiple comparisons, control vs 3C6, ****p<0.0001; control vs 3D6, ****p<0.0001, samples

normalised against WT control). (D) The transmigration phenotype in the KO was rescued by overexpression of hsElkin1-iso3, but not hsElkin1-iso3-

L210F (one-way ANOVA, KO control n = 11 wells, +hsElkin1-iso3 = 12 wells, +hsElkin1-iso3-L210F = 11 wells, ****p<0.0001; Dunn’s multiple

comparisons, Control vs +hsElkin1-iso3, ***p=0.0006; +hsElkin1-iso3 vs +hsElkin1-iso3-L210F, ***p=0.0002, samples normalised against KO control). (E)

In the A375 melanoma cell line, an Elkin1-KO clone also exhibited a significant decrease in transmigration onto LM511, in comparison with a WT control

(unpaired t-test with Welch’s correction, WT and Elkin1-KO = 8 wells, **p=0.002, samples normalised against WT control). (C–E) Individual data points

overlay mean ± s.e.m. See Figure 5—figure supplement 1 for CRISPR/Cas9 strategy and knockout clone validation.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. CRISPR/Cas9 editing of WM266-4 cells.
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Figure 6. Elkin1-KO cells exhibit decreased migration on 2D and quasi-1D substrates. (A) Example tracks of cell

movement on LM511 substrates of representative WT (3B6, 51 cells) and Elkin1-KO clones (3C6, 55 cells). (B)

Example tracks of cell movement PLL substrates of representative WT and Elkin1-KO clones (3B6 = 35 cells,

3C6 = 54 cells). (C) The Elkin1-KO clones exhibited a significant decrease in mean track speed in comparison with

WT clones on LM511 (Mann-Whitney, WT = 246 tracks, Elkin1-KO = 340 tracks, ****p<0.0001) and on PLL (Mann-

Whitney, WT = 240 tracks, Elkin1-KO = 241 tracks, ****p<0.0001). In addition, WT clones exhibited a significantly

higher mean track speed on LM511 compared with PLL (Mann-Whitney, LM511 n = 246 tracks, PLL = 240 tracks,

****p<0.0001) and the Elkin1-KO clones exhibited a significantly higher mean track speed on LM511 compared

Figure 6 continued on next page
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Loss of Elkin1 facilitates dissociation of WM266-4 cells from
organotypic spheroids
Given that cell dissociation from the primary tumour is required for tumour metastasis, we investi-

gated the effect of Elkin1 deletion using in vitro organotypic spheroids. We selected representative

WT and Elkin1-KO clones and labelled these cells using a viral vector expressing GFP. Spheroids

formed from GFP-expressing cells were implanted in 3D collagen gels and imaged at 24, 48 and 72

hr post-implantation. At every time point, more Elkin1-KO cells had dissociated from the spheroid

compared to WT (Figure 7A–G) and at 48 and 72 hr the Elkin1-KO cells were further away from the

edge of the spheroid (Figure 7H, Figure 7—figure supplement 1). Imaging the first 12 hr after

spheroid implantation highlighted the fact that Elkin1-KO cells dissociated more readily from the

spheroid mass (Figure 7—videos 1 and 2). We investigated whether isolated Elkin1-KO cells

embedded in 3D collagen gels exhibited a change in migratory properties to determine if an

increase in migration speed could account for these data. In this 3D environment, the mean track

speed was not different between WT and Elkin1-KO clones, however the track straightness was

reduced in the Elkin1-KO clones (Figure 7—figure supplement 2). We additionally noted that the

Elkin1-KO cells were less spherical as they broke away from the spheroid (Figure 7I, Figure 7—fig-

ure supplement 1) as they were in the 3D collagen gels (Figure 7—figure supplement 2)). How-

ever, these effects on sphericity and track straightness were moderate, with much of the data set

overlapping. These data thus suggest that the increased distance of the Elkin1-KO cells from the

spheroid is due to facilitated dissociation, not due to increased migration speed.

Deletion of Elkin1 modulates cell binding forces
One model to account for the increased dissociation of cells from Elkin-1-KO spheroids as well as

their altered migration properties is that deletion of Elkin1 changes physical cellular interactions. To

test this idea we used atomic force microscopy (AFM) to measure unbinding forces after short-term

contact between cells and LM511 or homotypic cell-cell contacts (Hofschröer et al., 2017;

Puech et al., 2006). The unbinding of LM511 from Elkin1-KO cells required a larger force than the

WT clone (37% increase in the mean of the maximum unbinding force) (Figure 8A,B). In contrast,

lower unbinding force was measured after homotypic contact between Elkin1-KO cells, in compari-

son with WT cells (27% decrease in the mean of the maximum unbinding force) (Figure 8C,D). To

determine if deletion of Elkin1 influenced cell-cell organisation over longer time scales, we created

chimeric spheroids between Elkin1-KO and WT cells by mixing equal numbers of a GFP-labelled and

an unlabelled clone. Regardless of which clone expressed the GFP, the spheroid was organised such

that Elkin1-KO cells were found in the outer layer of the spheroid and the WT cells in the core (tripli-

cate experiments, 23 spheroids total) (Figure 8E,F). To test whether the channel activity of Elkin1 is

linked to cell partitioning within spheroids, we stably transfected Elkin1-KO cells with either hsEl-

kin1-iso3 or hsElkin1-iso3-L210F. In chimeric spheroids the partitioning of cells was partially rescued

in cells expressing hsElkin1-iso3 but not hsElkin1-iso3-L210F, where cells were evenly distributed

throughout the resulting spheroids (duplicate experiments, 6 and 9 spheroids,

Figure 6 continued

with PLL (Mann-Whitney, LM511 n = 340 tracks, PLL = 241 tracks, ****p<0.0001). See Figure 6—figure

supplement 1 for supporting experiments conducted using GFP-labelled cells. (D) The Euclidean distance

calculated for the Elkin1-KO clones was significantly lower than WT clones on LM511 (Mann-Whitney, WT = 246

tracks, Elkin1-KO = 340 tracks, ****p<0.0001) and PLL globally coated substrates (Mann-Whitney, WT = 240 tracks,

Elkin1-KO = 241 tracks, **p=0.0020). (E) Representative images of WT and Elkin1-KO clones attached to quasi-1D

LM511 substrates, green line indicates direction of printed stripes, scale bar = 20 mm. (F) Elkin1-KO clones

exhibited a significantly decreased mean track speed, in comparison with the WT clones (Mann-Whitney test,

WT = 260 tracks, Elkin1-KO = 275 tracks, ****p<0.0001). (C,D,F) Data displayed as violin plots to represent relative

distribution of data, black lines indicate median and coloured lines indicate quartiles. See Figure 6—source data

1 for further details.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Source data for migration speeds and distances.

Figure supplement 1. GFP-expressing Elkin1-KO cells exhibit decreased migration on 2D substrates, in

comparison with WT cells.
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Figure 7. Elkin1-KO increases cell dissociation from organotypic spheroids. (A–C) Representative images of WT spheroids at 24 (A), 48 (B) and 72 (C) h

post-implantation in 3D collagen I gel. See Figure 7—videos 1 and 2 for live imaging of 0–12 hr post-implantation. (D–F) Representative images of

Elkin1-KO spheroids at 24 (D), 48 (E), and 72 hr (F). Scale bars = 200 mm. (G) At all time points the number of Elkin1-KO cells that had dissociated from

the spheroid was higher than for the WT cells. Data is presented as the mean ± s.e.m. with individual points representing the average number of

invading cells for each spheroid (one-way ANOVA with Tukey’s multiple comparison, WT = 9, Elkin1-KO = 9, 24, 48, 72 hr ****p=0.0001). (H) Average

distance of cells from the edge of the spheroid. Data are presented as mean ± s.e.m. of distance from spheroid with overlay of points representing the

average for each individual experiment The average distance per spheroid was significantly different at 48 and 72 hr, but not 24 hr (one-way ANOVA

with Tukey’s multiple comparison: WT = 9 spheroids, Elkin1-KO = 9 spheroids, 24 h p=0.78; 48 hr, ****p<0.0001; 72 hr, ****p<0.0001). See Figure 7—

figure supplement 1A for data representing all individual cells. (I) Sphericity of cells that had invaded the collagen gel. Data are average sphericity of

all cells within the collagen gel at each time point, presented as bar graphs with mean ± s.e.m. with an overlay of average for each spheroid measured.

The WT cells were significantly more spherical than the Elkin1-KO clones at 24 and 48 hr (one-way ANOVA with Tukey’s multiple comparison, WT = 9

spheroids, Elkin1-KO = 9 spheroids, 24 hr, ****p<0.0001; 48 hr, *p=0.012; 72 hr, NS, p=0.46). See Figure 7—figure supplement 1B for data

representing all individual cells, Figure 7—figure supplement 2 for migration data corresponding to isolated cells in 3D collagen gels and Figure 7—

source data 1 for further details.

The online version of this article includes the following video, source data, and figure supplement(s) for figure 7:

Source data 1. Source data for 3D migration properties.

Figure supplement 1. Data from all individual cells invading collagen gels from organotypic spheroids.

Figure supplement 2. The effect of Elkin1 deletion on migration in 3D collagen gels.

Figure 7—video 1. Dissociation of WM266-4 WT cells in organotypic spheroid assay.

https://elifesciences.org/articles/53308#fig7video1

Figure 7—video 2. Dissociation of WM266-4 Elkin1-KO cells in organotypic spheroid assay.

Figure 7 continued on next page
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respectively) (Figure 8—figure supplement 1). Taken together these data indicate that deletion of

Elkin1 has a differential effect on cell-substrate versus cell-cell binding and regulates cell-cell associa-

tions in organotypic spheroids.

Discussion
We have identified a novel mechanoelectrical transduction pathway in melanoma cells, activated by

mechanical stimuli applied at the cell-substrate interface. The sensitivity of MA currents found in mel-

anoma cells grown on LM511 was comparable to those found in the sensitive mechanoreceptors of

the dorsal root ganglia required for fine touch (Poole et al., 2014). Furthermore, these molecular-

scale pillar movements lie within the range of matrix displacements that arise due to cells pulling on

their surroundings (Legant et al., 2013; Legant et al., 2010). In WM266-4 melanoma cells these

deflection-activated currents were dependent on the Elkin1 protein. Elkin1 contains a LUSTR (Lung

Seven Transmembrane) domain, which defines a family of proteins of as yet unknown function found

in plants and animals, but not bacteria, archaea or viruses (Edgar, 2007). This LUSTR family also

includes TMEM87b, a protein that shares 48% homology with hsElkin1-isoform1. There is limited

information regarding the physiological function of Elkin1, however the gene is expressed in diverse

human tissues including organs where mechanical feedback is important, such as the lungs and the

bladder (GTEx portal). Elkin1 was previously suggested to be a Golgi-associated protein that, when

overexpressed, partially rescued a VPS54-KO endosome to trans-Golgi network (TGN) retrograde

transport phenotype (Hirata et al., 2015). In contrast, we found that a fraction of both hsElkin1-iso1

and -iso3 is localised to the plasma membrane, with hsElkin1-iso1 also present within the Golgi.

Elkin1 has also been demonstrated to be amongst the fraction of cell surface proteins that undergo

N-linked glycosylation (Park et al., 2018), further supporting our data. Given that Elkin1 knockdown

did not inhibit endosome to TGN retrograde signalling (Hirata et al., 2015), but did ablate MA

channel activity (shown here), we propose that Elkin1 is an essential component of a novel mecha-

noelectrical transduction pathway.

In support of this model, heterologous expression of Elkin1 was associated with the appearance

of MA currents activated by substrate deflections in two cell lines in which Piezo1 was deleted. The

latency between stimulus and response (<2 ms) and the activation time constant (<1 ms) were similar

to those reported for PIEZO1-mediated currents (Poole et al., 2014; Rocio Servin-Vences et al.,

2017) and sufficiently rapid to suggest that the Elkin1-dependent current is directly activated by the

mechanical stimulus (Christensen and Corey, 2007). In addition, none of the other MA non-selective

cation channels (PIEZO2, TRPV4) were detected in WM266-4 cells, suggesting that Elkin1 either

mediates these MA currents or modulates an unidentified MA channel. These data definitively dem-

onstrate that Elkin1 is required for a novel, PIEZO1-independent mechanoelectrical transduction

pathway. Mutation of a single residue in a predicted TM helix and of a single residue in a predicted

intracellular loop led to a marked reduction in MA channel activity, without a concomitant reduction

in surface localisation of the protein. Taken together these data indicate that Elkin1 exhibits several

hallmarks of a novel MA channel (Christensen and Corey, 2007). However, it is possible that Elkin1

is an accessory molecule that modulates the activation of an, as yet uncharacterised, MA channel or

an ion channel that requires additional proteinaceous tethers in order to be activated by mechanical

inputs. Future studies with purified protein will be required to definitively test the hypothesis that

Elkin1 is an ion channel activated by mechanical inputs.

In HEK-293T P1KO cells, human Elkin1 isoform1 and 3 were associated with a current activated

by substrate deflection. Expression of mouse Elkin1 in the HEK293T P1KO cells was also associated

with the de novo appearance of deflection activated currents, though these currents were of smaller

amplitude. Channel activity could also be evoked by indentation (however, maximal currents were

smaller than reported for the PIEZOs [Coste et al., 2010]) but not by membrane stretch applied

using HSPC. This mechanical response profile is distinct to other MA ion channels: PIEZO1 and

PIEZO2 respond to membrane stretch, cell indentation and substrate deflection (Coste et al., 2010;

Figure 7 continued

https://elifesciences.org/articles/53308#fig7video2
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Figure 8. Deletion of Elkin1 modulates cell binding forces. (A) Diagram of AFM analysis of cell-matrix unbinding

forces. (B) These data demonstrated a significant increase in the maximum unbinding force to separate cells from

LM511, after a 2 s contact time (Mann-Whitney U test, WT = 52, KO = 50 force-distance curves, ***p=0.001) (C)

Diagram of AFM analysis of cell-cell unbinding forces (D) A significantly higher force was required for the

unbinding of WM266-4 WT cells in comparison with the Elkin1-KO cells after a 2 s contact time (Mann-Whitney U

test, WT = 70, KO = 83 force-distance curves, ****p<0.0001). (E–F) Representative confocal images taken from an

orthogonal slice through chimeric spheroids formed over 72 hr from equal numbers of (E) WT-GFP cells and

unlabelled Elkin1-KO cells or (F) unlabelled WT cells and Elkin1-KO-GFP cells. In both cases the spheroid

organises with the WT cells in the core and the Elkin1-KO cells in the periphery. Scale bars = 100 mm. Similar

observations made for 10 WT-GFP:Elkin-KO and 13 WT:Elkin-KO-GFP chimeric spheroids. See Figure 8—source

data 1 for further details on cell binding forces. See Figure 8—figure supplement 1 for spheroid chimera rescue

experiments using Elkin1 variants.

The online version of this article includes the following source data and figure supplement(s) for figure 8:

Source data 1. Source data for AFM measurements of cell binding forces.

Figure supplement 1. Overexpression of Elkin1-L210F does not rescue the partitioning phenotype in chimeric

spheroids.
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Poole et al., 2014; Rocio Servin-Vences et al., 2017) (though PIEZO2 is less sensitive to membrane

stretch than PIEZO1 [Wang et al., 2019]) and TRPV4 responds only to substrate deflections in mam-

malian cells (Rocio Servin-Vences et al., 2017). These data suggest that the expression of distinct

MA channels allows cells to distinguish between stimuli arising from cell-generated forces at cell-

substrate contacts versus exogenous stimuli that stretch the membrane or compress the cell. Such

differential activation profiles may reflect multiple roles for distinct MA channels during tumour

development and metastasis.

During metastasis, cells first dissociate from the primary tumour and then, as they migrate

through the body, the cells encounter environments of differing dimensionality and degree of con-

finement (Paul et al., 2017; van Helvert et al., 2018). Disruption of Elkin1 expression altered the

confined and unconfined migration of cells in quasi-1D and 2D environments. Our results stand in

contrast with the effect of PIEZO1 on melanoma cell migration: PIEZO1 knockdown reduced the

speed of cell migration in confined environments, but had no effect on unconfined cell migration

(Hung et al., 2016). In other tumours, PIEZO2 knockdown in a breast cancer cell line (BrM2), inhib-

ited the cells’ ability to enter confined spaces, but did not influence the speed of migration of the

confined cells (Pardo-Pastor et al., 2018). These data suggest that distinct MA channels mediate

separate mechanical transduction pathways regulating different aspects of tumour cell migration.

In addition to the Elkin1-dependent changes in migration, we report that Elkin1-KO cells exhib-

ited increased dissociation from organotypic spheroids embedded in collagen gels. The process of

cell dissociation from a spheroid mass is defined by a complex interplay between the strength of

cell-cell adhesions, the contractility of the cells at the edge of the spheroid and the physical charac-

teristics of the surrounding matrix (Ahmadzadeh et al., 2017). Our data demonstrate that Elkin1

expression regulates cell-substrate and cell-cell binding forces. In addition, the partitioning of cells

within the organotypic spheroids was dependent on Elkin1. We therefore propose that Elkin1-

dependent expression regulates the balance between cell-cell and cell-matrix adhesion; ablation of

the protein increases invasion of surrounding matrix (by reducing cell-cell adhesions and facilitating

cellular dissociation) and slows migration (by increasing cell-substrate binding). Previous studies of

the role of TRPV4 in breast cancer development have demonstrated that overexpression of TRPV4

can lead to a decrease in E-cadherin expression, driving EMT in this cancer type (Lee et al., 2017).

This TRPV4-dependent switch in E-cadherin expression may also lead to increased dissociation from

the tumour mass. However, in contrast to Elkin1, increased levels of TRPV4 lead to an increase,

rather than a decrease in cell migration (Lee et al., 2016b; Lee et al., 2017). A similar phenomenon

(decreased cell-cell binding forces, facilitated dissociation from organotypic spheroids and

decreased cell migration) has been reported in melanoma cells overexpressing the Na+/H+

exchanger, NheI (Hofschröer et al., 2017). This exchanger locally modulates the pH of the cellular

environment and is not known to be mechanically responsive.

Given that Elkin1 is required for MA currents that are separable from the PIEZO channels and

that Elkin1-dependent currents are activated at the cell-substrate interface, these channels may

transduce distinct mechanical inputs. The PIEZOs may be acting to sense confinement (Hung et al.,

2016; Pardo-Pastor et al., 2018) and the overall mechanical status of the cells (Rocio Servin-Vences

et al., 2017), while Elkin1-dependent mechanoelectrical transduction may encode information about

the mechanical nature of the cells’ microenvironment thus facilitating modulation of cell-cell versus

cell-substrate binding. Such integration of multiple mechanoelectrical transduction pathways could

engender cells with a tuneable and diverse repertoire of mechanical sensing.

Materials and methods
Please refer to Supplementary file 2: Key Resources table for details of resources used and created

for this study.

Cell culture
All melanoma cell lines (WM266-4, WM115, and A375) were obtained from the ATCC and cultured

in complete Minimum Essential Medium Eagle (MEME) or High Glucose DMEM supplemented with

10% FBS and 1% Penicillin/Streptomycin. MEME was additionally supplemented with 1% l-gluta-

mine. HEK-293T and HEK-293T P1KO (Lukacs et al., 2015) (a gift from A. Patapoutian) were cul-

tured in DMEM medium, 10% FBS and 1% Penicillin/Streptomycin. All cultures were maintained at
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37˚C, 5% CO2. Fugene HD (Promega) or polyethyleneimine (PEI, Sigma, MW 600–800 kDa) was used

to transfect cells at the following ratios (w/w): DNA:Fugene at 1:3 and DNA:PEI at 1:4. WM266-4

cells were transduced with pRRLSIN.cPPT.PGK-GFP.WPRE lentivirus (a gift from Ian Alexander, origi-

nally from Didier Trono/Inder Verma, Addgene plasmid #12252), in which a human PGK promoter

drives EGFP expression. The virus was produced in HEK-293T cells following PEI transfection of the

lentiviral backbone together with packaging plasmid (psPAX2) and the vesicular stomatitis virus

(VSV-G) envelope. To create cell lines with stably-integrated DNA for spheroid rescue experiments,

plasmids encoding Elkin1 and GFP were linearised using ScaI. Linearised DNA was transfected into

WM266-4 3C6 (Elkin1 KO clone) using Fugene (as above). Genetically modified cells (virally trans-

duced or stably expressing Elkin1) were isolated in FACS buffer (2 mM EDTA, 2% FBS, 2% Penicillin/

Streptomycin in PBS) using the BD FACS Jazz (low pressure sorting with a 100 mm nozzle at 17 psi,

4˚C). For all experiments to be conducted within 6 hr of cell collection, cells were released from cul-

ture flasks using enzyme-free cell dissociation buffer (Sigma-Aldrich). Cell lines were authenticated

using STR profiling and checked for mycoplasma contamination by CellBank Australia.

Proteomics
To prepare samples for mass spectrometry, peptides were prepared from cultured WM266-4 cells

using the Pierce Mass Spec Sample Prep Kit for Cultured Cells as per manufacturer’s instructions

(ThermoFisher). LysC and Trypsin were used to generate peptides from 1 mg of total protein. Pepti-

des were separated using isoelectric focussing (IEF) in immobilized pH gradient (IPG) gel strips into

six separate fractions, as previously described (Eravci et al., 2014). Desalted peptides of these frac-

tions were then separated on an 8–60% acetonitrile gradient (240 min) with 0.1% formic acid at a

flow rate of 200 nL/min using the EASY-nLC II system (Thermo Fisher Scientific) on in-house manufac-

tured silica microcolumns packed with the ReproSil-Pur C18-AQ 3 mm resin. A Q Exactive plus mass

spectrometer (Thermo Fisher Scientific) was operated in the data dependent mode with a full scan in

the Orbitrap followed by top 10 MS/MS scans using higher-energy collision dissociation (HCD). Anal-

ysis of MS and MS/MS spectra was performed using MaxQuant software (version 1.5.1.2) and pro-

teins were identified by searching against the human reference proteome database UP000005640

from Uniprot.

Molecular biology
The sequences of all primers used for this study are listed in Supplementary file 2. mRNA was iso-

lated from WM266-4 cells using the RNEasy kit as per manufacturer’s instructions (Qiagen). First

strand cDNA synthesis was carried out using 200 ng of isolated mRNA, random primer mix (New

England Biolabs) and M-MuLV reverse transcriptase (New England Biolabs). The resulting samples

were used for qPCR analysis (see below) and as a template to amplify hsElkin1-iso1/3 cDNA. For

electrophysiology experiments, these sequences were cloned into pRK5 with a cistronic eGFP driven

by an internal IRES sequence. For the purposes of live cell imaging, hsElkin1-iso1/iso3 sequences

were fused to mGFP using the same vector. miRNA knockdown reagents were generated using the

BLOCK-iT Pol II miR RNAi Expression Vector, as per manufacturer’s instructions (Invitrogen). Briefly,

complementary ssDNA sequences (Eurofins, Belgium) that encode the miRNA of interest were

annealed and cloned into the pcDNA 6.2GW-EmGFP vector. Three distinct miRNA sequences were

generated for each target gene and assembled in series within a single plasmid to generate the final

construct for knock-down experiments. The Golgi network was detected using CellLight Golgi-RFP,

BacMam 2.0 (ThermoFisher). Sequences were analysed using the T-Coffee multiple sequence align-

ment server (coffee.crg.cat) and formatted using Boxshade (https://embnet.vital-it.ch/software/

BOX_form.html).

CRISPR/Cas9 gene editing
To create plasmid constructs for gene editing, guide RNAs (gRNAs) were designed using the online

CRISPR design tool (Zhang Lab, MIT - http://crispr.mit.edu/). Single stranded DNA oligos were

obtained from Eurofins (Belgium), annealed and cloned into the pSpCas9n(BB)�2A-GFP plasmid (a

gift from Feng Zhang, Addgene plasmid # 48140) (Ran et al., 2013). Four plasmids were generated,

each with gRNAs that targeted sequences in intron 7 or exon 9 of the Elkin1 gene. These constructs

were transfected into either WM266-4 or A375 cells. Isolation of clonal populations was a two-step
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process. First, a population of transfected cells was initially isolated based on GFP expression: 24–48

hr post-transfection cells were resuspended in FACS buffer (2 mM EDTA, 2% FBS, 2% Penicillin/

Streptomycin in PBS) and cells expressing GFP were collected using the BD FACS Jazz low pressure

sorting with a 100 mm nozzle at 17 psi, 4˚C. Following expansion of this population, cells were sorted

a second time (as above) as single cells in individual wells of a 96 well plate. Single-cell clones were

initially cultured in a media comprising of 50% complete media/50% conditioned media for 7–14

days until cells had started to divide and form colonies.

Genomic PCR
Edited clones were screened for genomic deletions covering the Elkin1 gene using PCR. Primers for

screening CRISPR edited clones were designed using Primer-BLAST (NCBI) to span the ~2.5 kb

deleted region of the gene. Genomic DNA (gDNA) was extracted from cells using the Illustra Geno-

mic Prep Mini Spin kit (GE Life Sciences), as per manufacturer’s instructions. Genomic PCR was con-

ducted using 10 ng of template DNA and Hot Start Taq DNA polymerase (New England Biolabs).

Quantitative PCR
Primers and probes to analyse Elkin1 and PIEZO1 transcript levels were designed using PrimerQuest

Design Tool (IDT, Singapore) and a predesigned assay was used to detect levels of HPRT1 (house-

keeping gene) (Integrated DNA Technologies, Singapore). The reaction underwent 40 cycles. Using

the difference in cycle threshold (DCt), the fold change in expression (2-DDCt) was calculated and

compared to a control sample.

Micropillar array fabrication
Positive masters and pillar array casting were described previously (Poole et al., 2014). Briefly, posi-

tive silicon masters were silanised using vapour phase Trichloro(1H,1H,2H,2H-perfluorooctyl) silane

(Sigma-Alrich) for 16 hr. Negative masters were cast from this substrate in polydimethylsiloxane

(PDMS) (Sylgard 184, Dow Corning), mixed at a ratio of 1:10 and cured at 110˚C for 15 min. Nega-

tive masters were silanised as above and used to cast pillar arrays. Arrays were coated with

degassed PDMS (1:10) and left for 30 min. A thickness two coverslip activated with oxygen plasma

generated using a low pressure Zepto plasma system (Diener, Germany) was placed over the still liq-

uid PDMS. Pillar arrays were cured for 1 hr at 110˚C. Pillar arrays were activated using the oxygen

plasma system and either cells were directly seeded onto this activated surface or arrays were first

functionalised by coating with 10 mg/ml LM-511 (BioLamina, Sweden) for one hour at 37˚C. Cells

were seeded at a concentration of 2 � 104 cells/mL in complete media and incubated overnight.

Electrophysiology
Whole-cell patch pipettes were prepared from thick-walled filamented glass (Harvard Apparatus,

USA) using a pipette puller fitted with a box filament (P-1000, Sutter Instruments, USA). Pipettes

were heat-polished with a homemade micro-forge to give a final resistance of 3 MW – 6 MW. Pip-

ettes were filled with a solution containing 110 mM KCl, 10 mM NaCl, 1 mM MgCl2, 1 mM EGTA

and 10 mM HEPES (pH 7.3). Extracellular solutions contained 140 mM NaCl, 4 mM KCl, 2 mM CaCl2,

1 mM MgCl2, 4 mM glucose and 10 mM HEPES (pH 7.4). Whole-cell patch-clamp data was obtained

on either a Zeiss 200 inverted microscope and an EPC-10 amplifier in combination with Patch-master

software or a Nikon Ti-E inverted microscope and an Axopatch 200B with pClamp 10 software. Data

were analysed using either Fitmaster software (HEKA Electronik GmbH, Germany) or Clampfit soft-

ware (Molecular Devices, USA). Pipette and membrane capacitance were compensated and to mini-

mise voltage errors, series resistance was compensated by at least 60%. Mechanically-activated

currents were recorded at a holding potential of �60 mV.

Mechanical stimuli were applied by serially deflecting an individual pilus using a blunt, heat-pol-

ished pipette (tip diameter approx. 2 mm) driven by a MM3A-LS nanomanipulator (Kleindiek Nano-

technik, Germany). Multiple stimuli ranging between 1 nm–1 mm were applied with a delay between

each stimulus of at least 10 s. To quantify the stimulus, bright-field images of the deflected pilus

were taken before and during stimulation using a 40x/0.6 NA objective. The centre of each pilus was

calculated off line by applying a 2D-gaussian fit of intensity values (Igor, Wavemetrics, USA) and the
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magnitude of pillar deflection calculated from successive images by comparing the difference in the

calculated centre point.

Transwell assays
Transwell assays were conducted using the HTS FluoroBlok Multiwell Insert System (Corning) with an

8.0 mm pore size. The bottom surface of the membrane was coated with laminin (10 mg/ml) for 3 hr

at 37˚C. Membranes were then blocked for 1 hr using 2% polyvinylpyrolidone. The bottom well was

filled with 500 ml media and 1 � 104 cells were added to the top well. Cells were allowed to transmi-

grate for 16 hr before the bottom side of the membrane was fixed with 4% PFA. In order to quantify

the number of cells that had transmigrated, the fixed sample was permeabilised using 0.1% TX-100

for 5 min at room temperature and nuclei were stained using Hoechst at a concentration of 0.1 mg/

ml. Cells were imaged using epifluorescence imaging on an inverted microscope (Zeiss Axiovert 200

or Leica DMIL) fitted with a 10x/0.22 NA objective and standard filters; 4 regions of each filter were

imaged. The ‘Analyze Particles’ function of ImageJ was used to count cells within each field. Data

from each independent experiment were normalized to the average number cells that were counted

on the underside of each filter for triplicate controls.

2D migration assay
m-Slide 8-well dishes (ibidi, Germany) were coated with either 10 mg/ml LM-511 (BioLamina, Swe-

den), or 0.1% (w/v) poly-L-lysine (PLL) (Sigma-Aldrich, USA). Approximately 2500 cells were added

to each well, and after 2 hr, nuclei were labelled by adding Hoechst dye at a concentration of 0.1

mg/ml. Cell migration was monitored for 16 hr using live-cell microscopy (see below). Data were

obtained from three experiments. Data were confirmed by repeating this assay with cells expressing

cytoplasmic GFP, using the same imaging conditions.

quasi-1D migration assay
Microcontact-printing (von Philipsborn et al., 2006) was used to pattern substrates for quasi-1D

experiments. Microcontact-printing stamps (Chiang et al., 2011) were incubated with 10 mg/ml

LM511 and 1 mg/ml of goat anti-mouse IgG antibody labelled with AlexaFluor 594 (to visualize pat-

terns) for 30 min at 37 ˚C. Stamps were rinsed with ultrapure water, dried with inert gas, then

stamped on clean coverslips activated using oxygen plasma. Coverslips were incubated with 1 mg/

mL PLL-g-PEG (SuSoS, Switzerland) in PBS, at room temperature for 30 min, to block unprinted

regions. Cells (3 � 104 cells/mL) were seeded on each substrate and nuclei were labelled by adding

0.1 mg/ml Hoechst. Cells were monitored using live-cell microscopy for 12 hr and data were obtained

from at least 50 cells across three experiments. We only included in our data the periods of move-

ment that correspond to when the cell was attached and elongated on the patterned region. To

determine whether cells were confined/unconfined we analysed the cell shape. Cells with an aspect

ratio of 2:1 or more were classed as confined and the number of confined vs non-confined cells was

determined by sampling still images at five points during each experiment.

Microscopy
Quasi-1D and 2D migration
The Nikon Eclipse Ti-E inverted microscope fitted with a 20x/0.5 NA objective and the Perfect Focus

System was used for live imaging of migrating cells at 37˚C, 5% CO2. Phase-contrast (exposure 200

ms) and epifluorescent images (exposure 850 ms) were obtained every 5 min. Data was collected

using the NIS elements software. Data of 2D and quasi-1D migration were analysed using the

ImageJ plugin TrackMate (version 1.51n) (Tinevez et al., 2017) with the parameters: nuclear diame-

ter ~13 mm, simple Linear Assignment Problem (LAP) tracker, linking distance and gap-closing maxi-

mum distance of 20 mm. Migration tracks were discarded if the track was shorter than 5 h. Mean

speed was calculated from the entire length of the track. The Euclidean distance was calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð Þ2þ yð Þ2
q

, where x (¼ xB � xA) and y (¼ yB � yA) are the differences in the x and y axes, respec-

tively, and xA; yA is the coordinate of the track origin and xB;
; yB is the coordinate of the final point

(taken at 5 h for each track). Data were excluded if cells became necrotic during the imaging.
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Imaging Elkin1 variants
For live imaging, cells were plated onto 35 mm glass bottom dishes (ibidi GmbH, Germany) and

transiently transfected using Fugene HD (Promega, USA) 24 hr prior to imaging. All cultures were

maintained at 37˚C and 5% CO2 for the duration of the experiment. Confocal microscopy was per-

formed on a Zeiss 880 equipped with a Plan-Apochromat 63�/1.4 NA Oil DIC M27 objective and an

Airyscan detector. TIRF imaging was performed using the Zeiss Elyra system fitted with a Plan-Apo-

chromat 100�/1.46 NA Oil objective and an Andor iXon 897 EMCCD camera. In both cases, samples

were illuminated using 488 nm, 561 nm or 633 nm lasers, and all data was collected using the Zen

software (Zeiss).

3D dissociated cell migration assay
To assay individual cells in collagen gels, a cell suspension (1.25 � 106 cells/mL in complete media)

was mixed with 1.5 mg/mL rat tail Collagen I (total volume 100 mL) and gelated at 37˚C, 5% CO2 for

15 min. Isolated cells in collagen gels were imaged using a Leica SP8 DLS fitted with a 10x/

0.4 NA objective every 10 min for 14 hr. All cultures were maintained at 37˚C and 5% CO2.

Organotypic spheroid assay
Both WT and Elkin1-KO clones were virally transduced with a construct encoding eGFP to enable

visualisation of cells. For spheroid formation, 1 � 103 cells were seeded onto Ultra-low attachment

96-well plates (Corning, USA) in complete MEME media and formed spheroids following 72 hr of

incubation. Composite spheroids were created by mixing 5 � 102 of each cell-type to give 1 � 103

cells total. Collagen gel mixtures were made from 1.5 mg/mL – 2 mg/mL rat tail Collagen I (Corning,

USA) in 10 mM NaOH, 1 � PBS and complete media on ice. A base collagen gel was formed in each

well of a glass-bottom 96-well plate (Greiner Bio-one, Austria) by incubating 30 mL of the collagen

mixture at 37˚C, 5% CO2 for 6 min. The collagen gel mixture containing the spheroid was then

applied to the base gel and underwent gelation at 37˚C, 5% CO2 for 15 min. Cells in collagen gels

were cultured under 200 mL of complete media. Spheroids and invasive cells were imaged at 24, 48,

72 hr using a Leica SP8 DLS fitted with a 10x/0.4 NA objective.

Analysis of cells in collagen gels
Imaris 9.1.2 software (Bitplane AG, Zurich, Switzerland) was used to segment cells by creating surfa-

ces with a filter of 200 mm3 to discard cell debris. For organotypic spheroid assay analysis, cell surfa-

ces were filtered by centre of image mass versus z depth, where the z value was determined by

orientating the 3D image stacks to the plane of view showing the cells on the glass and cells

attached to the glass were excluded from analysis. Cells from the 3D dissociated cell migration assay

were tracked using autoregressive motion, applying a threshold of 1500s to filter track duration.

Intensity, morphological and tracking data were then exported and further analysed using GraphPad

Prism software (La Jolla, CA, USA).

Immunoblotting and cell-surface biotinylation
To detect Elkin1 variants at the plasma membrane, the cell surface fraction was biotinylated and sub-

sequently isolated following established protocols (Tarradas et al., 2013). Briefly, HEK-293T P1KO

cells attached to PLL-coated culture dishes were transiently transfected with plasmids encoding

GFP-tagged Elkin1 variants. After 24 hr the cell surface fraction was labelled, on ice, with freshly pre-

pared 2.5 mg/ml EZ-link Sulfo-NHS-LC-LC-biotin (21338, ThermoFisher Scientific) in DPBS containing

Ca++. After quenching with 100 mM glycine, cells were lysed as above using RIPA buffer containing

protease inhibitor cocktail. A portion of this lysed sample was reserved as the ‘input’ sample. The

biotinylated fraction was then isolated using NeutrAvidin Ultralink Resin (53150, ThermoFisher Scien-

tific). After recovery from the NeutrAvidin beads, samples were prepared as for gel electrophoresis

by mixing with Bolt LDS sample buffer and Bolt reducing agent (B0007 and B0009 respectively,

ThermoFisher Scientific). Samples were separated on a 10% Bolt Bis-Tris Plus gel (NW00102BOX,

ThermoFisher Scientific), transferred to a PVDF membrane and subjected to standard antibody

detection. GFP-fusion proteins were detected using rabbit polyclonal anti-GFP (SAB4301138,

Sigma-Aldrich, 1:1000) and HRP-linked anti-rabbit IgG (7074, Cell Signaling Technologies, 1:1000).
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AFM analysis of cell binding forces
AFM analysis of cell-binding forces was conducted using a JPK Nanowizard, fitted with a CellHesion

module (JPK Instruments AG). To measure cell-LM511 interaction forces, cantilevers (MLCT-O10,

Bruker) were first activated using oxygen plasma generated using a low-pressure Zepto plasma sys-

tem (Diener, Germany) and then incubated in a droplet of LM511 (20 mg/ml) for 1 hr. To measure

cell-cell interaction forces, cantilevers were coated with wheat germ agglutinin (L4895, Sigma

Aldrich). Before collecting data, the sensitivity and spring constant of each cantilever was deter-

mined using in-built routines in the JPK software. To measure cell-LM511 binding forces, the follow-

ing settings were used: speed 2 mm/sec, set point 500 pN, with contact times of 2 s held at constant

height. At least five force-distance curves were collected from at least 10 cells per condition (multi-

ple force-distance curves were not collected successively on each cell to minimise adaptive changes).

To measure cell-cell binding forces the CellHesion module was used to move the stage through an

extended 100 mm pulling range. To attach a cell to the cantilever, cells in suspension were added to

a sample dish containing adherent cells, the calibrated cantilever was positioned over an unattached

cell and carefully brought into contact. After 10 s attachment time the cantilever was slowly with-

drawn from the surface, with a single cell attached. To collect data the cantilever was positioned

over an adherent cell and data collected with the following parameters: speed 5 mm/sec, set point

250 pN, contact time 2 s held at a constant height. At least five force-distance curves were collected

from at least 10 different cell-cell interaction pairs. Force-distance curves were analysed to deter-

mine the maximum unbinding force during cantilever retraction.

Statistical analysis
All data were analysed using Prism seven or Prism 8 (GraphPad). Normality was determined with

D’Agostino-Pearson omnibus normality test. Normally distributed data were analysed using

parametric statistical tests. All t-tests were two-tailed and when there were significant differences in

the variance, Welch’s correction was used. Data from qPCR experiments and migration assays were

analysed using a Kruskal-Wallis one-way ANOVA test with Dunn’s multiple comparisons. Stimulus-

response plots were generated by binning data by stimulus size and averaging within bins for each

cell, then across cells. Ordinary two-way ANOVA with Sidak’s multiple comparisons was used to ana-

lyse stimulus-response plots. The transwell migration assay data were normalised against the paren-

tal clone and analysed using a parametric one-way ANOVA test with Tukey’s multiple comparisons.

Data from organotypic spheroid experiments were averaged for each spheroid and then compared

with one-way ANOVA with Tukey’s multiple comparisons.
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