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SUMMARY 27 

Protein synthesis must be finely tuned in the nervous system, as it represents an essential 28 

feature of neurodevelopmental gene expression, and dominant pathology in neurological 29 

disease. However, the architecture of ribosomal complexes in the developing mammalian brain 30 

has not been analyzed at high resolution. This study investigates the architecture of ribosomes 31 

ex vivo from the embryonic and perinatal mouse neocortex, revealing Ebp1 as a 60S peptide 32 

tunnel exit binding factor at near-atomic resolution by multiparticle cryo-electron microscopy. 33 

The impact of Ebp1 on the neuronal proteome was analyzed by pSILAC and BONCAT coupled 34 

mass spectrometry, implicating Ebp1 in neurite outgrowth proteostasis, with in vivo embryonic 35 

Ebp1 knockdown resulting in dysregulation of neurite outgrowth. Our findings reveal Ebp1 as a 36 

central component of neocortical protein synthesis, and the 60S peptide tunnel exit as a focal 37 

point of gene expression control in the molecular specification of neuronal morphology.     38 

 39 
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INTRODUCTION 42 

Proteostasis, the fine-tuned balance of protein homeostasis, is fundamental in establishing the 43 

molecular landscape of the nervous system.  The demand for spatially targeted and precisely 44 

timed protein synthesis is exceptionally high in mammalian nervous system development, where 45 

neurogenesis relies on spatiotemporal gene expression, driving amorphous neural stem cells to 46 

generate intricately branched neuronal architecture (Hanus and Schuman, 2013; Hipp et al., 47 

2019; Holt and Schuman, 2013; Jayaraj et al., 2019; Jung et al., 2014; Sossin and Costa-48 

Mattioli, 2018). This is particularly true in the evolutionarily advanced mammalian neocortex, the 49 

central neuronal circuit of complex cognition in the brain (Rakic, 2009). Concordantly, the 50 

nervous system is uniquely susceptible to abnormal proteostasis, a major driver of 51 

neurodevelopmental and neurodegenerative disease (Bosco et al., 2011; Kapur and Ackerman, 52 

2018; Kapur et al., 2017; Sossin and Costa-Mattioli, 2018). How proteostasis is achieved, 53 

therefore, stands as a crucial question towards understanding neurogenesis in the neocortex. 54 

 The neurogenic phase of stem cell maturation in neocortical development follows a 55 

general trajectory conserved across mammalian species (DeBoer et al., 2013; Kwan et al., 56 

2012; Molyneaux et al., 2007) (Figure 1A). Neural stem cells (NSCs) lining the lateral cortical 57 

ventricular zone initially undergo symmetric divisions to expand a pool of cells forming the basis 58 

of the cortical plate. NSC divisions then transition to asymmetric with newly born neurons 59 

migrating superficially, ultimately forming a layered cortical plate composed of structurally and 60 

functionally distinct neurons. Predominantly subcortically projecting lower layer neurons are 61 

born first, followed by intracortically projecting upper layer neurons born second. In mice, lower 62 

layer neocortical neurons are born at approximately embryonic day 12.5 (E12.5), with the switch 63 

to upper layer neurogenesis at E15.5. By postnatal day 0 (P0) neurogenesis is largely complete, 64 

with ongoing stem cell divisions yielding cells of the glial lineage. The distinct functional 65 

connectivity of neurons in different neocortical layers emerges from the architecture of their 66 

projections, where the refinement and targeting of dendritic inputs and axonal outputs pattern 67 

neocortical circuits (Harris and Shepherd, 2015). The elaboration of intricate neuronal 68 

projections requires proteostasis of the neurite outgrowth and synaptic proteome (Hanus and 69 

Schuman, 2013; Jung et al., 2012), a fine-tuned balance of proteins like cell adhesion molecules 70 

that establish neuronal connectivity (de Wit and Ghosh, 2016).           71 

Analysis of the molecular landscape in the developing neocortex has largely focused on 72 

transcriptional regulation (Lein et al., 2017; Silbereis et al., 2016), with the neocortical 73 

transcriptome coming into focus recently at the single-cell level (scRNAseq) (Nowakowski et al., 74 

2017; Telley et al., 2019; Yuzwa et al., 2017). However, the functional output of gene 75 
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expression is protein, and bridging the neocortical transcriptome to proteome is the current 76 

challenge. The ribosome is the gatekeeper of proteostasis, poised at the final essential step of 77 

gene expression as the macromolecular hub of protein synthesis. Mounting evidence positions 78 

the ribosome in a dynamic and executive role at the crossroads of cellular proliferation, 79 

differentiation, and disease (Kraushar et al., 2016; Mills and Green, 2017; Shi and Barna, 2015; 80 

Xue and Barna, 2012); however, the architecture of ribosomal complexes and proteostasis 81 

control in neocortical development remain unknown.         82 

 In this study, we analyze the molecular architecture of native ribosome complexes from 83 

the ex vivo mammalian neocortex during developmental neurogenesis at near-atomic resolution. 84 

With a combination of mass spectrometry, biochemistry, and multiparticle cryo-electron 85 

microscopy, we reveal that that ErbB3-binding protein 1 (Ebp1) participates in high occupancy 86 

binding to the 60S subunit of both non-translating and translating ribosomes through high affinity 87 

electrostatic interactions with the peptide tunnel exit site in the embryonic and perinatal 88 

neocortex. Ebp1’s role in nervous system development and specific function in protein synthesis 89 

is unknown. Ebp1 enrichment scales directly with ribosome levels and is cell type-specific: 90 

dominantly expressed in early-born NSCs, compared to later-born NSCs and post-mitotic 91 

neurons – in contrast to other exit tunnel cofactors. Ebp1�ribosome interaction occurs in the 92 

cytoplasm of NSCs in the neocortical ventricular zone at early embryonic stages when 93 

ribosomal complex levels are highest, and persists in post-mitotic neurons of the expanding 94 

cortical plate as steady state ribosome levels decline. With a combination of pulsed stable 95 

isotope labeling by amino acids in cell culture (pSILAC) and bioorthogonal noncanonical amino 96 

acid tagging (BONCAT) coupled mass spectrometry, we show that Ebp1 maintains neuronal 97 

proteostasis, particularly impacting the synthesis of cell adhesion, synaptogenic, and neurite 98 

outgrowth associated proteins. Concordantly, in vivo embryonic Ebp1 knockdown selectively in 99 

early-born neocortical NSCs results in increased branching of neurites projected by maturing 100 

neurons in the cortical plate. This study is the first near-atomic resolution analysis of protein 101 

synthesis in the nervous system, positioning Ebp1 and the 60S peptide tunnel exit as a focal 102 

point of gene expression control during neocortical neurogenesis.      103 

 104 

RESULTS 105 

Neocortical ribosome mass spectrometry identifies Ebp1 as an abundant, high 106 

occupancy translation cofactor during development 107 

To analyze the architecture of neocortical ribosome complexes across development, we first 108 

optimized a protocol to purify actively translating ribosomes ex vivo rapidly and stably without 109 
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the use of chemical inhibitors, which bias the conformational state of the ribosome. The goal 110 

was to capture the full repertoire of integral translation cofactors binding ribosomes engaged in 111 

various stages of the translation cycle throughout neocortical neurogenesis, spanning the early 112 

neural stem cell (NSC) predominant embryonic stage (E12.5) to the post-mitotic neuronal post-113 

natal stage (P0). We focused our analysis on complexes of isolated 80S ribosomes 114 

(monosomes), and chains of multiple 80S actively translating mRNA (polysomes) (Figure 1A). 115 

Neocortex lysates were fractionated by sucrose density gradient ultracentrifugation to purify 80S 116 

monosomes, actively translating polysomes, with corresponding input total lysates for mass 117 

spectrometry (MS) analysis (Figure S1). Sample reproducibility was observed in hierarchical 118 

clustering of the MS data, with the data clustering by biological triplicate, 80S vs. polysomes, 119 

and early vs. late developmental stages (Figure S2).  120 

Results from the neocortical polysome MS are shown in Figure 1B, comparing protein 121 

levels at E12.5 with each subsequent developmental stage. As expected, core ribosomal 122 

proteins (RPs) were among the most enriched proteins in the polysomes, including RPs of the 123 

large 60S subunit (Rpl) and small 40S subunit (Rps). Known translation-associated proteins 124 

were enriched to varying degrees in polysomes throughout development. Unexpectedly, we 125 

observed Ebp1 co-purifying at levels comparable to the RPs themselves in polysomes, higher 126 

than any other translation-associated protein. Ebp1 is metazoan-specific and was only observed 127 

to play a niche role in protein synthesis, promoting non-canonical internal ribosome entry site 128 

(IRES) dependent translation of a specific viral mRNA (Pilipenko et al., 2000), and suppressing 129 

eIF2a phosphorylation in conditions of cellular stress (Squatrito et al., 2006), by unknown 130 

mechanisms. Largely studied in the context of cancer, Ebp1 influences cell proliferation and 131 

differentiation (Nguyen et al., 2018), in pathways including the epidermal growth factor receptor 132 

ErbB3 (Lessor et al., 2000; Yoo et al., 2000), and other mitogenic signaling cascades. Its role in 133 

the developing nervous system, general function in protein synthesis, and whether translational 134 

regulation is connected to its role in cancer are unknown. Thus, we were intrigued by Ebp1’s 135 

exceptionally high enrichment in polysomes of the developing neocortex, and observed a 136 

similarly robust association with 80S complexes measured by MS (Figure S3A). Furthermore, 137 

Ebp1 was among the most abundant proteins measured in total neocortical lysates across 138 

development (Figure S3B), similar to the RPs. 139 

The core of the eukaryotic 80S ribosome is a macromolecular machine consisting of ~79 140 

RPs on a scaffold of 4 rRNAs, with translation-associated proteins transiently binding to 141 

catalyze and modulate ribosomal functions. To quantify the balance between translation-142 

associated cofactors and core RPs in neocortical ribosomes across development, we generated 143 
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stoichiometry matrices at the five developmental stages measured by MS (Figures 1C and 144 

S3C-D). Hierarchical clustering of these data visualizes the distribution of super-stoichiometric, 145 

stoichiometric, and sub-stoichiometric proteins associated with ribosomal complexes. The 146 

majority of core RPs approximate stoichiometric levels throughout development in polysome 147 

(Figure 1C) and 80S (Figure S3C) complexes, and are likewise maintained at similar levels in 148 

total steady state (Figure S3D). While the majority of translation-associated proteins are sub-149 

stoichiometric to core RPs in ribosomal complexes, Ebp1 is nearly stoichiometric in polysome 150 

and 80S complexes. Across development in polysomes, the ratio of Ebp1 to the Rpl or Rps 151 

median is 0.63-0.86 to 1, indicating that Ebp1 may play an integral role in neocortical translation, 152 

rather than niche for a small subset of transcripts or during transient conditions as previously 153 

reported (Pilipenko et al., 2000; Squatrito et al., 2006). 154 

 155 

Ebp1 enrichment is cell type and temporally specific, scaling with the dynamic level of 156 

ribosomal complexes 157 

The unusual abundance of Ebp1 as a translation-associated protein may correspond to a 158 

particular expression pattern in neocortical development. We next assessed the cell type and 159 

temporal specificity of Ebp1 mRNA expression in scRNAseq data (Telley et al., 2019) 160 

measuring the transcriptome of early and late born NSCs maturing into lower and upper layer 161 

neurons, respectively (Figure 2A). Strikingly, Ebp1 mRNA is particularly enriched in early born 162 

NSCs in the ventricular zone, with levels decreasing abruptly during both neuronal 163 

differentiation, and in the later born NSC pool. The particular enrichment of Ebp1 mRNA is in 164 

contrast to Rpl and Rps mRNA expression patterns, which are maintained at stable levels in 165 

NSCs regardless of birthdate, but likewise decline during differentiation. This observation was 166 

reflected in analysis of total neocortical lysates across development by RNAseq (Figure 2B), 167 

with Ebp1 mRNA steadily decreasing from E12.5, while Rpl and Rps mRNA decreases lag 168 

behind at E17. However, corresponding MS measurement revealed Ebp1 protein levels decline 169 

abruptly at E15.5 along with Rpl and Rps proteins in the neocortex, suggesting their levels are 170 

regulated in concert, with protein changes anticipating mRNA changes for the RPs. Notably, 171 

total Ebp1 protein is consistently maintained 2-5 fold higher than the median level of RPs, in 172 

contrast to the corresponding mRNA. Concordant with the above findings, 173 

immunohistochemistry analysis (Figures 2C and S4) demonstrated particularly high Ebp1 174 

levels in the ventricular zone (VZ) and nascent cortical plate (CP) at E12.5-E14, including the 175 

ventricular and pial surfaces. Ebp1 is persistent in maturing neurons laminating the CP at later 176 

stages, albeit at lower levels. Interestingly, Ebp1 was observed in the P0 VZ that contains early 177 
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gliogenic progenitor cells (Kriegstein and Alvarez-Buylla, 2009) at substantially lower levels than 178 

in the neurogenic E12.5 VZ. This observation may relate to a prior immunohistochemical study 179 

in the postnatal hippocampus, where Ebp1 was reported to be particularly enriched in neurons 180 

compared to astroglia (Ko et al., 2017). Thus, Ebp1 enrichment is specific to both differentiation 181 

status and NSC birthdate in the neocortex. 182 

 We observed that, along with Ebp1, total steady state RP levels decrease at E15.5-P0 in 183 

the developing neocortex by MS (Figure 2B). We next asked whether this reflects a timed 184 

global shift in the balance of actively translating ribosomal complexes during prenatal 185 

neurogenesis. Neocortical lysates were subjected to analytic quantitative sucrose density 186 

gradient fractionation corresponding the stages analyzed by MS, loading equivalent A260 187 

optical density units to directly compare the distribution of 40S-60S, 80S, and polysome levels 188 

at each stage (Figure 2D). Gradient curves demonstrated a timed decrease from high levels of 189 

80S and polysomes at E12.5-E14, to a lower steady state from E15.5-P0. A decrease of 35% 190 

80S and 64% polysome levels during the transition from E14 to E15.5 was calculated by area-191 

under-the-curve with a Riemann sum (Figure 2E). This decrease in ribosomes is not wholly 192 

accounted for by the availability of individual subunits in the cytoplasm, as 40S-60S levels 193 

decrease 4% from E14 to E15.5. Taken together, these findings suggest mature, active 194 

ribosomal complexes exist at elevated levels during early neocortical neurogenesis, and 195 

transition to a lower steady state level at later stages, concordant with MS findings. These data 196 

are in line with previous observations of RP downregulation in the mouse forebrain between 197 

E8.5-E10.5 during neural tube closure (Chau et al., 2018), and dynamic levels of ribosomal 198 

complex proteins in the E13-P0 neocortex (Kraushar et al., 2015). Global shifts in steady state 199 

ribosomal complex levels may reflect a dynamic equilibrium of cellular homeostasis (Delarue et 200 

al., 2018; Mills and Green, 2017; Sinturel et al., 2017) in neocortex development. 201 

 Ebp1 has been previously reported to exist as a full-length 48kDa protein (“p48”), and a 202 

42kDa isoform (“p42”) with a 54 amino acid N-terminal truncation generated by Ebp1 mRNA 203 

splicing (Liu et al., 2006). Total neocortical lysates across developmental stages were analyzed 204 

by Western blot, probing for Ebp1 with a C-terminal targeting antibody (Ebp1CT) that recognizes 205 

both long and short isoforms (Figures 2F and S5A), and with a N-terminal specific antibody 206 

(Ebp1NT) that recognizes only full-length Ebp1 (Figure S5B), compared to signal for 207 

recombinant full-length Ebp1 with a N-terminal histidine tag (Ebp1-His). Results showed that the 208 

dominant protein isoform of Ebp1 in neocortical development is full-length. Furthermore, the 209 

Western blot measurements mirror the MS measurements (Figure 2B), demonstrating higher 210 

total Ebp1 levels at E12.5-E14, with a decrease at E15.5 to a lower steady state. Notably, total 211 
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neocortical Ebp1 levels are higher overall in the embryonic and perinatal period, while 212 

measurements at P7, and particularly P14, show decreased enrichment – in agreement with 213 

previous measurements in whole brain lysates (Ko et al., 2017). Taken together, full-length 214 

Ebp1 is the dominant isoform expressed in the neocortex with a particular enrichment in 215 

embryonic development, and its levels decrease at E15.5 in concert with a global decrease in 216 

80S and polysome levels.        217 

We next sought to measure the balance of ribosome-associated Ebp1 compared to “free” 218 

extra-ribosomal Ebp1 in neocortical development. Input normalized neocortical lysates at E12.5, 219 

E15.5, and P0 were fractionated to separate extra-ribosomal free Ebp1 vs. 80S and polysome 220 

associated Ebp1 (Figure S5C). Western blot analysis of individual gradient fractions (Figure 221 

S5D), and pooled fractions constituting free, 80S, and polysome complexes (Figure 2G) 222 

showed that free extra-ribosomal Ebp1 is maintained at high levels throughout development, 223 

while only ribosome-associated Ebp1 decreases at E15.5. These findings suggest that total 224 

Ebp1 levels decline from E12.5-P0 secondary to a decrease in ribosomal complexes along with 225 

ribosome-associated Ebp1.                 226 

 227 

Ebp1 binds the 60S with high affinity in the cytoplasm of neocortical neural stem cells 228 

and neurons  229 

While previous studies suggested that Ebp1-ribosome interaction is rRNA-dependent and 230 

dissociates in high salt conditions (Squatrito et al., 2004, 2006), its specific binding mode is 231 

unknown. We next performed in vitro binding assays with recombinant Ebp1 and purified 40S, 232 

60S, and reconstituted 80S derived from rabbit reticulocyte lysate (RRL). Samples were pelleted 233 

through a sucrose cushion, followed by Western blot analysis of the supernatant (unbound 234 

Ebp1) and pellet (ribosome-bound Ebp1) (Figure 3A). Ebp1 co-pelleted with the 60S and 80S 235 

exclusively, demonstrating concomitant decreases of Ebp1 in the supernatants. These findings 236 

were reinforced by a binding assay with mouse neocortex derived 40S and 60S (Figure S6A). 237 

Thus, Ebp1 specifically binds the 60S subunit and is persistent in 80S complexes, suggesting 238 

Ebp1 interactions do not interfere with the subunit interface, nor does its binding require mRNA. 239 

Furthermore, Ebp1�60S binding is conserved between mouse and rabbit species, and across 240 

reticulocyte and neocortical derived ribosomes. 241 

 We next determined the relative affinity range of Ebp1�60S binding, where experiments 242 

were similarly conducted with a constant rabbit 60S concentration, combined with doubling 243 

concentrations of Ebp1 measured in the pellet vs. supernatant (Figure 3B), and data plotted 244 

(Figure 3C). The curve best fit to data (r2=0.99) indicates Ebp1 reaches a Kd(app) at ~124 nM, 245 

.CC-BY-NC-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.02.08.939488doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.08.939488
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kraushar ML, et al. Submission. 
	

	 9 

with saturated Ebp1�60S binding at ~200 nM, relative to 100 nM 60S. These data indicate Ebp1 246 

binds the 60S with a high relative affinity, reaching saturation at ~2-fold excess Ebp1 over the 247 

60S. Given the 2-5 fold excess of total steady state Ebp1 levels over the 60S RPs measured by 248 

MS (Figure 2B), superstoichiometric Ebp1 would be hypothetically sufficient to yield a high 249 

degree of Ebp1�60S association in vivo. Furthermore, a nonlinear least squares fit, with one-site 250 

binding and Hill slope accommodation, suggested Ebp1 binding includes 60S conformational 251 

activation (Figures 3C and S6B).  252 

 While isolated 60S was sufficient for Ebp1 binding, whether its binding mode undergoes 253 

dynamic Ebp1 turnover, is diminished/enhanced by active mRNA translation, or can be 254 

modulated by translation inhibitors is unknown. To answer these questions, the following 255 

binding conditions were constituted in parallel: (1) saturating levels of Ebp1-His in the presence 256 

of rabbit 60S; (2) RRL containing native Ebp1; (3) saturating Ebp1-His added to RRL; native 257 

Ebp1 in RRL translating Luciferase mRNA (Luc) with (4) and without (5) cycloheximide to stall 258 

elongation. Results are shown in Figure 3D, with Ebp1-His and 60S inputs as markers for the 259 

binding pellet of each condition (1-5). Native Ebp1 in RRL (2) co-pelleted with the ribosome as 260 

did Ebp1-His to the 60S (1), undergoing dynamic binding (3) demonstrated by the nearly 261 

complete turnover of native Ebp1 with saturating Ebp1-His. Active in vitro translation of a 262 

Luciferase mRNA (4) did not impact the stability of Ebp1�60S binding, nor did elongation stalling 263 

by cycloheximide (5). These findings indicate the Ebp1�60S binding mode occurs with dynamic 264 

turnover, in conditions irrespective of active mRNA translation.  265 

 Ebp1 has been reported to localize to both the cytoplasm and nucleus/nucleolus in 266 

cultured cells lines (Liu et al., 2006; Radomski and Jost, 1995). Whether Ebp1�60S complexes 267 

are formed during 60S assembly in the nucleolus as previously suggested (Squatrito et al., 268 

2004), at the nuclear membrane for 60S export, or on mature 60S in the cytoplasm remained 269 

unclear in the neocortex. We next prepared coronal sections of the neocortex at E12.5, E15.5, 270 

and P0 for immuno-electron microscopy (immuno-EM), probing for Ebp1 with both Ebp1NT (full-271 

length isoform only; Figure 3E) and Ebp1CT (full-length and truncated isoforms; Figure S7A) 272 

antibodies. At all developmental stages analyzed, immunogold labeling for Ebp1 demonstrated 273 

predominantly cytoplasmic signal, occurring in clusters throughout the cytoplasm of both NSCs 274 

in the ventricular zone, and neurons populating the cortical plate. Ebp1 was largely absent from 275 

the nuclei and nuclear membrane of NSCs and neurons, including the nucleolus. Furthermore, 276 

Ebp1 was not observed in mitochondria, or in strict proximity to the endoplasmic reticulum or 277 

plasma membrane. Notably, Ebp1 was also observed in dendrites of maturing neurons at P0 278 

(Figure S7B), suggesting Ebp1 localizes throughout cytoplasmic compartments of both 279 
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neocortical NSCs and neurons. Thus, Ebp1 may function to regulate protein synthesis with 60S 280 

binding in the cytoplasm, rather than as a nuclear assembly or export factor, during neocortical 281 

neurogenesis. 282 

 283 

The structure of neocortical Ebp1�ribosome complexes ex vivo at near-atomic resolution 284 

To analyze the architecture of neocortical ribosome complexes and visualize the physiologic 285 

binding mode of Ebp1 at near-atomic resolution, 80S and polysomes were purified by sucrose 286 

density gradient fractionation from P0 neocortex lysates, pooled together, and frozen on grids 287 

for cryo-electron microscopy (cryo-EM). Micrographs confirmed the presence of both 80S and 288 

polysome complexes in the sample (Figure 4A). High-resolution cryo-EM data collection 289 

(Figure S8) and initial single-particle reconstruction yielded a map of the complete 80S, along 290 

with extra-ribosomal density (red) adjacent to the 60S peptide tunnel exit (Figure 4B). Fitting 291 

the crystal structure of mouse Ebp1 (PDB 2V6C) (Monie et al., 2007) to the extra-ribosomal 292 

density unequivocally identified Ebp1 in complex with the neocortical 60S. Furthermore, robust 293 

density was present for nearly the entire N-terminus, identifying the full-length isoform of Ebp1 is 294 

bound. The direct visualization of native full-length Ebp1 binding to 60S ex vivo strongly 295 

supports the physiologic nature of this Ebp1�60S binding mode in the neocortex.       296 

 To disentangle the ribosome conformational states bound by Ebp1, we proceeded with 297 

hierarchical multiparticle sorting and 3D classification of both large and small scale 298 

heterogeneity intrinsic to the data (Behrmann et al., 2015; Loerke et al., 2010) (Figure S9). 299 

Ribosome complexes in both the rotated and classical conformations were first sorted, including 300 

populations with (1) eEF2 and (2) eEF2+P/E tRNA in the rotated state, and populations with (3) 301 

A/A+P/P tRNAs, (4) E/E tRNA, and (5) without tRNAs in the classical state. In each of these five 302 

states, a strategy of modified focused classification (see Methods) was utilized to separate sub-303 

states with and without Ebp1, yielding ten total classes. Across all states, Ebp1 was bound to 304 

48% of ribosomes. Likewise, Ebp1 was bound to ~50% of the ribosomes within each of the five 305 

sub-states. We proceeded with high-resolution refinement of Ebp1-bound and unbound 306 

populations in the rotated state with eEF2 (3.1 Å global resolutions), and the classical state with 307 

A/A+P/P tRNAs (3.3 Å global resolutions). High-resolution cryo-EM maps are shown in Figure 308 

4C, representing both actively translating (classical state with A/A+P/P tRNAs) and non-309 

translating (rotated state with eEF2) ribosomes with Ebp1 bound to the 60S. Taken together, 310 

our findings suggest Ebp1 occupies its neocortical 60S binding site with high occupancy in vivo 311 

based on both MS estimates (Figures 1B-C), and conservative estimates with multiparticle 312 

sorting (Figure S9) (assuming some destabilization during sample freezing), approximating 313 
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50% occupancy. Furthermore, Ebp1 binds to both actively translating and non-translating 314 

neocortical ribosome states with approximately equal probability.  315 

 The near-atomic resolution of our data (Figures S8 and S10) permitted modeling of the 316 

entire neocortical Ebp1�60S complex. Figure 4D visualizes the peptide tunnel exit (TE) surface 317 

in electrostatic proximity to Ebp1, including four RPs (eL19, uL23, uL24, uL29) and three rRNA 318 

helices (H24, H53, H59). An aerial view of the Ebp1 footprint over the TE surface highlights the 319 

60S RP residues and rRNA nucleosides making electrostatic interactions with Ebp1 (Figure 4E), 320 

demonstrating that Ebp1 contacts the immediate TE surface. A side view of the Ebp1 model at 321 

the TE (Figure 4F) shows Ebp1 forming a concavity above the TE vestibule, stabilized by 322 

electrostatic interactions (Figures 4G-H) at the concavity rim with gaps (~26 Å at the widest 323 

point) that would permit peptide chain exit. Therefore, Ebp1 binds the 60S peptide TE, creating 324 

a pocket above the TE vestibule with a porous interface.    325 

 326 

Ebp1 binding requires a conserved 60S helix H59-H53 swinging latch mechanism 327 

Multiparticle sorting of our data into Ebp1-bound and unbound states enabled identification of 328 

60S structural changes facilitating Ebp1 interactions with an internal negative control (Figures 329 

S11A-B). We observed that in the Ebp1-bound state, the tip of H59 undergoes a backbone 330 

rearrangement enabled by a 235° flip of H59 G-2690, releasing contact with H53 G-2501, G-331 

2502, and C-2513 as seen in the canonical unbound state (Figure 5A) – resulting in H59 G-332 

2690 transitioning to intra-helical base stacking interactions. This “swinging latch” mechanism 333 

further includes a 73° flip of H59 U-2687, with the base reaching into the insert domain of Ebp1 334 

(Figure S11C), locking Ebp1 into position. This particular movement of H59 U-2687 was 335 

previously observed for the binding of the yeast nuclear export (Bradatsch et al., 2007) and 336 

peptide tunnel quality control factor (Greber et al., 2016) Arx1 to the 60S – thus representing a 337 

conserved binding mechanism. However, unlike Arx1, Ebp1 binding does not require 338 

stabilization by rRNA expansion segment ES27 on the solvent side (Greber et al., 2016), 339 

suggesting that aspects of its binding mode are distinct. Furthermore, the concerted 340 

restructuring of H59 may represent a 60S “activation step” to facilitate Ebp1 binding, reflected in 341 

the Ebp1�60S binding curve with Hill slope accommodation (Figures 3C and S6B). Thus, in 342 

this model, increasing concentrations of Ebp1 increase the probability that H59 is stabilized in 343 

the activated structural state, permitting Ebp1 re-binding events to occur more frequently for 344 

higher aggregate 60S occupancy. Taken together, Ebp1-ribosome binding requires a 60S H59 345 

swinging latch mechanism likewise utilized by yeast Arx1.      346 

 347 
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Ebp1�60S binding is incompatible with simultaneous binding of all other eukaryotic 348 

peptide tunnel exit cofactors 349 

The neocortical Ebp1�60S complex establishes previously unassigned functions to Ebp1 350 

structural domains (Figure 5B; adapted from (Kowalinski et al., 2007)). Ribosome binding by 351 

Ebp1’s insert domain and α5 helix positions β-sheets 1, 3, 4, 5, 7, and 13 directly over the TE. 352 

The alignment of mouse Ebp1 with orthologs across eukaryotic taxa, in addition to Metap2 and 353 

Arx1, demonstrates conservation of key binding resides (Figure S12). Previous studies have 354 

commented on the structural similarity between Ebp1 and the methionine aminopeptidase 355 

Metap2 (Kowalinski et al., 2007; Monie et al., 2007), and between Arx1 and Metap2 (Greber et 356 

al., 2016). Indeed, Ebp1, Metap2, and Arx1 share similar structural features, and putative 357 

binding motifs (Figure 5C). A common β-α---α-β insert domain facilitates 60S binding, the “pita-358 

bread” β6 fold motif is positioned over the peptide TE, and a solvent-side α4 motif is available 359 

for potential molecular interactions. Their binding ultimately creates different electrochemical 360 

environments at the TE (Figure 5D). In the event of Ebp1 or Metap2 binding, emerging peptide 361 

chain would encounter a deep, strongly electronegative pocket; however, the key residues in 362 

the Metap2 β-sheet pita-bread fold catalyzing aminopeptidase activity (Nonato et al., 2006) are 363 

absent in Ebp1 (Kowalinski et al., 2007; Monie et al., 2007), rendering Ebp1 catalytically inactive. 364 

Furthermore, the Ebp1 α5 domain facilitating electrostatic contacts with H24 and uL24 is absent 365 

in Metap2 (Figure S11D); however, a Metap2�60S complex structure has not yet been solved, 366 

and thus Metap2 structural adjustments may exist. In contrast, the yeast Arx1 pita-bread fold 367 

threads Rei1 into the peptide tunnel to probe the 60S as a quality-control step preempting active 368 

translation (Greber et al., 2016). Thus, while sharing structural features and a conserved binding 369 

mode, the binding of Ebp1, Metap2, and Arx1 engage distinct functional states of 60S-nascent 370 

chain complexes, with an emerging nascent peptide chain encountering distinct environments.     371 

 The binding of Ebp1 would be sterically incompatible with the simultaneous docking of 372 

other 60S TE cofactors, competing for limited real estate surrounding an emerging nascent 373 

peptide chain (Figure 5E). The footprint of Ebp1 is shown superimposed on the footprints of 374 

Metap2 (Nonato et al., 2006) and Arx1 (Greber et al., 2016), in addition to: the ER translocation 375 

channel Sec61 (Voorhees et al., 2014); the Ltn1-NEMF ubiquitin ligase complex (Shao et al., 376 

2015); the N-terminal acetyltransferase NatA (Knorr et al., 2019); the ribosome-associated 377 

complex (RAC) coupling nascent chain elongation and folding (Zhang et al., 2014); and the 378 

nascent polypeptide-associated complex (NAC) preventing ER mistargeting and suppressing 379 

aggregation of synthesized proteins (Gamerdinger et al., 2015; Shen et al., 2019). While the 380 

particular abundance of Ebp1 among these TE cofactors would potentially support its 381 
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occupancy, the dynamic turnover of Ebp1 might allow for other TE cofactors to bind if recruited 382 

by their associated nascent chain moieties as needed. Furthermore, the neocortical cell-type 383 

and temporal specificity of Ebp1 enrichment is in contrast to some of the other TE cofactors, 384 

such as Ltn1, while similar to others, such as RAC (Figure S13). Dynamic enrichment of Ebp1 385 

vs. other TE cofactors in neocortical development may represent the dynamic regulation of 386 

protein synthesis in response to the unique demands of particular stages of neurogenesis. 387 

Given Ebp1’s high occupancy of the neocortical ribosome tunnel exit, we hypothesized that 388 

depletion of Ebp1 would disrupt the balance of proteostasis in neuronal protein synthesis.  389 

 390 

Neuronal Ebp1 regulates acute protein synthesis and chronic proteostasis impacting 391 

axonal, dendritic, and synaptic proteomes  392 

To interrogate the potential function of Ebp1 in maintaining neuronal proteostasis, we 393 

established a system to measure the impact of Ebp1 depletion on acute protein synthesis and 394 

chronic proteostasis in a mouse neuronal cell line. Neuro2a cells dominantly express the full-395 

length isoform of Ebp1 (Figure S14A), which associates with 80S and polysomes (Figures 396 

S14B-C), similar to mouse neocortex. We next confirmed robust and specific knockdown of 397 

Ebp1 in Neuro2a by siRNA, with siEbp1 targeting the mouse sequence effecting nearly 398 

complete knockdown, in contrast to oligos targeting the human sequence, and non-targeting 399 

control (Figure 6A).  400 

The strategy to measure the response of the Neuro2a proteome with a combination of 401 

pulsed stable isotope labeling by amino acids in cell culture (pSILAC) (Schwanhäusser et al., 402 

2009) and bioorthogonal noncanonical amino acid tagging (BONACT) (Dieterich et al., 2006) by 403 

MS (Eichelbaum et al., 2012; Howden et al., 2013) in this Ebp1 knockdown system is shown in 404 

Figure 6B. SILAC isotopes labeled all newly made proteins throughout the course of Ebp1 405 

knockdown for longitudinal proteome changes, while pulse labeling with a methionine analog 406 

(AHA) captured a snapshot of newly synthesized proteins at the nadir of Ebp1 knockdown. 407 

pSILAC (Figure 6C) and pSILAC-AHA (Figure 6D) proteomes were measured by LC-MS/MS, 408 

and analyzed for differential protein enrichment in siEbp1 vs. siControl  conditions. Importantly, 409 

Ebp1 levels were below the quantification threshold in siEbp1 conditions, confirming robust 410 

knockdown. Thus, this approach captured the impact of Ebp1 depletion on both longitudinal 411 

proteostasis (pSILAC) and acute protein synthesis (pSILAC-AHA) in neurons.    412 

Results for both the pSILAC and pSILAC-AHA MS showed that in siEbp1 conditions, 413 

proportionately more proteins decrease compared to those with increased protein levels relative 414 

to control, suggesting Ebp1 largely enhances protein expression. Cell adhesion molecules 415 
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(CAMs) (de Wit and Ghosh, 2016), such as L1cam, Mcam, Cadm1, and Cdh15, were 416 

particularly impacted by Ebp1 depletion. Notably, Ebp1 maintains the balance of CAM levels, 417 

promoting L1cam (Maness and Schachner, 2007) and Mcam (Taira et al., 2005), while 418 

suppressing Cadm1 (Robbins et al., 2010) and Cdh15 (Bhalla et al., 2008), in addition to 419 

regulating CAM modulators such as Slc3a2 (Feral et al., 2005). CAMs play a critical role in 420 

neuronal migration, synaptogenesis, and neurite outgrowth/branching during development, 421 

plasticity, and disease (Biederer et al., 2017; Maness and Schachner, 2007; Missler et al., 2012; 422 

de Wit and Ghosh, 2016). Notably, six proteins were detected as significantly changing in 423 

common between the pSILAC and pSILAC-AHA datasets, such as L1cam, reinforcing that their 424 

regulation by Ebp1 is direct and protein synthesis specific, rather than a secondary effect. 425 

Collectively, gene ontology (GO) analysis of Ebp1 regulated proteins (Figure S14D) 426 

demonstrated cell adhesion (P<0.01; biological process) and secretory granule (P<0.01; cellular 427 

component) pathways as the most significantly impacted. Some of Ebp1-regulated proteins are 428 

predominantly locally translated in neurites (Zappulo et al., 2017), such as Cnn2, Mcam, and 429 

Sparc (Figure S14E). A schematic summarizing the impact of Ebp1 depletion on proteins with a 430 

known neuronal function is shown in Figures 6E and S14F, implicating Ebp1 in the regulation 431 

of cell-cell adhesion, synaptogenesis, and neurite outgrowth in neurons. 432 

Given that Ebp1 influences the neurogenic proteome associated with neuronal 433 

processes in Neuro2a cells, and is enriched in early-born neocortical NSCs, we next sought to 434 

visualize native Ebp1 expression during the progressive differentiation of early-born neocortical 435 

NSCs into post-mitotic pyramidal neurons undergoing neurite outgrowth. Primary cultures were 436 

prepared from the E12.5 neocortex of Nex:Cre;Ai9 mice (Turko et al., 2018), which label post-437 

mitotic pyramidal neurons with tdTomato by activation of the Nex locus, followed by 438 

immunohistochemical analysis of Ebp1 expression at div 0, 2, 4, and 5 (Figure 6F). Ebp1 is 439 

enriched in cytoplasmic foci colocalizing with Nestin labeling in NSCs at div 0, in addition to the 440 

earliest differentiating Nex-positive cells. Cytoplasmic Ebp1 expression persists in differentiating 441 

Nex-positive neurons and extends into growing neurites, albeit at overall lower levels with 442 

differentiation. A decreasing enrichment pattern in dissociated cell culture reinforces Ebp1 443 

mRNA (Figures 2A-B) and protein (Figures 2B-C and S4) levels in neocortex tissue, 444 

suggesting that the trajectory of decreased Ebp1 enrichment during neuronal maturation may be 445 

cell autonomous, rather than in response to a signal in the tissue environment.  At div 5, puncta 446 

of Ebp1 expression in neurites and growth cones is particularly apparent with further 447 

magnification, including the most distal aspects of extending processes. Ebp1 localization to 448 

neuronal processes and growth cones is reinforced by prior cell culture studies (Ko et al., 2017; 449 
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Kwon and Ahn, 2011), which observed enhancement of axon regeneration after injury with Ebp1 450 

overexpression in hippocampal slice culture. Taken together, these findings correlate with 451 

Ebp1’s maintenance of neurogenic, neurite, and synaptic proteostasis. Therefore, we 452 

hypothesized Ebp1 regulates neurite outgrowth in early-born neocortical NSCs.   453 

 454 

Ebp1 regulates neurite branching of early-born neocortical neurons in vivo  455 

Since we observed particularly high Ebp1 enrichment in early-born NSCs of the developing 456 

neocortex (Figures 2A-C and S4), we next sought to study the effect of early Ebp1 depletion in 457 

NSCs during their maturation into neocortical neurons in vivo. In utero electroporation (IUE) of a 458 

shEbp1 knockdown plasmid along with a CAG-GFP transfection reporter at E12 was compared 459 

to scrambled shRNA control, followed by analysis at E16 during initial neurite outgrowth (Figure 460 

7A). Analysis of GFP signal in coronal sections of the E16 neocortex demonstrated increased 461 

branching of neuronal processes in shEbp1 conditions compared to control, as normal 462 

pyramidal neuron projections include a single unbranched axon extending towards basal white 463 

matter (WM) tracts, along with an apical dendrite oriented towards the pial surface. Tracing the 464 

morphology of transfected neurons (Figure 7B) highlighted the impact of Ebp1 depletion on 465 

neurite outgrowth at various neurite lengths, with Sholl analysis (Figures 7C-D) demonstrating a 466 

significantly increased branch number in shEbp1 conditions – an approximately two-fold 467 

increase for proximal segments (Figure 7C). Importantly, this increased branching phenotype 468 

was rescued by co-electroporation of an Ebp1 overexpression plasmid (oeEbp1) along with 469 

shEbp1, with neuronal morphology tracing and branching analysis quantified as 470 

indistinguishable from control conditions. 471 

These findings reinforce the impact of Ebp1 on neurite outgrowth during neocortical NSC 472 

maturation in neurons, indicating that Ebp1 constrains the overproduction of neuronal processes, 473 

possibly through its maintenance of neurite associated proteostasis.     474 

                   475 

DISCUSSION 476 

Taken together, this study analyzes the architecture of protein synthesis in the developing 477 

neocortex at high resolution, positioning Ebp1 among 60S TE cofactors to fine-tune neuronal 478 

proteostasis in the molecular specification of morphology during neural stem cell differentiation. 479 

With a multidisciplinary approach, we demonstrate that Ebp1 is a chief component – rather than 480 

a niche regulator – of the protein synthesis machinery in neocortical development. Ebp1 481 

expression is cell-type and temporally specific, with enrichment in the early-born neural stem 482 

cell pool, in direct proportion to the transient abundance of ribosomal complexes at this 483 
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developmental stage. Therefore, Ebp1 is well positioned to shift the balance of proteostasis 484 

control on the ribosome surface.  485 

 Transcriptional control has been the principal focus in the analysis of gene expression 486 

during neocortical neurogenesis (Lein et al., 2017; Silbereis et al., 2016). Recent excellent work 487 

has advanced the resolution of this analysis to the single-cell level, with an emerging map of 488 

neocortical neural stem cell transcriptional programming coming into focus (Oberst et al., 2019; 489 

Telley et al., 2019). However, while these studies have assigned transcriptional signatures to 490 

cell subtypes, they also strongly suggest that generic gene expression programs are refined by 491 

successive layers of regulation (Cadwell et al., 2019), such as post-transcriptional mechanisms 492 

and environmental signals. Neocortical neurogenesis hinges on spatiotemporal gene expression 493 

(DeBoer et al., 2013; Kwan et al., 2012; Molyneaux et al., 2007), with the ribosome poised at 494 

the final essential step (Kraushar et al., 2016) for precisely timed and targeted protein synthesis 495 

(Hanus and Schuman, 2013; Holt and Schuman, 2013; Jung et al., 2014). By visualizing 496 

neocortical protein synthesis at near-atomic resolution, we find that the 60S TE is a locus of 497 

control in neurogenic gene expression.  498 

The interaction of 60S TE cofactors exists in a dynamic equilibrium, competing for a 499 

common binding surface to sculpt protein synthesized by a dynamic macromolecular machine 500 

(Balchin et al., 2016; Deuerling et al., 2019). While the regime of Rpl and Rps mRNA expression 501 

appears to follow generally elevated levels in all neocortical NSCs compared to their daughter 502 

neurons (Figure 2A), there is a great diversity of TE cofactor expression patterns in the 503 

developing neocortex (Figure S13). Ebp1 is particularly enriched in early-born NSCs, similar to 504 

RAC subdomains, but in stark contrast to Metap2, Ltn1, or NAC. Modulating the balance of TE 505 

cofactors may be a key determinant of cell type-specific proteostasis, gatekeepers at the very 506 

moment a nascent protein emerges from the tunnel. 507 

Our data indicate that Ebp1 participates in high occupancy binding with strong affinity to 508 

the 60S TE. This is supported by the abundance of Ebp1 available in the neocortical cytoplasm 509 

relative to other TE factors, and permissive binding requirements, including both translating and 510 

non-translating ribosomes. Whether Ebp1’s role in active and inactive complexes is linked or 511 

distinct remains unclear; for example, Ebp1 binding may protect a reserve of inactive, dormant 512 

ribosomes available to participate in translation. Ebp1’s potential interaction with nascent 513 

peptide chain and/or recruitment of other ribosome cofactors remains to be established. Since 514 

our ex vivo cryo-EM analysis of native Ebp1�ribosome complexes includes ribosomes engaging 515 

with the entire translated proteome, nascent chain density is highly fragmented in the tunnel, 516 

and lacking entirely at the TE vestibule, secondary to heterogeneity intrinsic in the data. Future 517 

.CC-BY-NC-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.02.08.939488doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.08.939488
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kraushar ML, et al. Submission. 
	

	 17 

studies in a more homogenous system will be required to interpret potential Ebp1-nascent chain 518 

interactions at high resolution.   519 

The neuronal proteins most impacted by Ebp1 are in cell adhesion, synaptogenic, 520 

neuronal migration, and neurite outgrowth pathways, with neocortical Ebp1 knockdown resulting 521 

in increased neurite branching. While the mechanism of how Ebp1 knockdown overstimulates 522 

neurite branching is not clear, it is likely that maintaining a balance of proteins like Marcks that 523 

promote neurite outgrowth (Tanabe et al., 2012; Theis et al., 2013; Weimer et al., 2009; Xu et 524 

al., 2014), and Sparc that suppress synapse formation (Kucukdereli et al., 2011; López-Murcia 525 

et al., 2015), is required to elaborate appropriate projections and synapses. A balance of protein 526 

synthesis and degradation, such as through ubiquitin ligases (Ambrozkiewicz and Kawabe, 527 

2015), is likely to be essential. Ribosomes locally translate mRNAs in neurites (Zappulo et al., 528 

2017) and synaptic compartments (Hafner et al., 2019), including both presynaptic terminals 529 

and postsynaptic dendritic spines, providing an immediate and dynamic supply of proteins for 530 

synaptic activity and plasticity. Notably, many of the proteins impacted by Ebp1 knockdown are 531 

membrane or vesicle associated proteins (Fig. S14D), and thus Ebp1 may potentially play a role 532 

analogous to NAC in coordinating the subcellular targeting of neuronal protein synthesis 533 

(Gamerdinger et al., 2015). The enrichment of Ebp1 along with actively translating ribosomes at 534 

the synapse would allow for local proteostasis control, and the subcellular action of 535 

Ebp1�ribosome complexes is an interesting direction for future study.   536 

Finally, it will be important to delineate the ribosomal and extra-ribosomal mechanisms 537 

of Ebp1 function in the nervous system. Ebp1 deletion restricts growth in mice (Zhang et al., 538 

2008) and Arabidopsis (Horváth et al., 2006; Li et al., 2018). Ebp1 influences gene expression 539 

in stem cells of the neuroectoderm lineage (Somanath et al., 2018), and helps specify the neural 540 

border zone, neural crest, and cranial placode domains in Xenopus (Neilson et al., 2017). In 541 

Drosophila, overexpression of the Ebp1 homolog CG10576 results in ectopic neurogenic-like 542 

patches in muscle tissue (Bidet et al., 2003). The nervous system is uniquely sensitive to 543 

fluctuations in its proteome, and likewise particularly susceptible to abnormal proteostasis 544 

pathology in neurodevelopmental and neurodegenerative disease (Hipp et al., 2019; Jayaraj et 545 

al., 2019; Sossin and Costa-Mattioli, 2018). How Ebp1 and the dynamic architecture of 546 

ribosomal complexes at the 60S TE contribute to both nervous system development and 547 

dysfunction as gatekeepers of functional gene expression is an interesting direction for future 548 

study. 549 

 550 

 551 
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 588 

FIGURE LEGENDS 589 

Figure 1. Ebp1 is nearly stoichiometric to ribosomal proteins in translating ribosomes 590 

during neocortical development 591 

(A) Schematic of the experimental system to measure the architecture of active protein 592 

synthesis (polysomal ribosomes) from the ex vivo neocortex across embryonic (E12.5, E14, 593 

E15.5, E17) and early postnatal (P0) neurogenesis. See text for details. (B) MS analysis of 594 

neocortical polysomal complexes across development. Scatter plots compare early 595 

neurogenesis E12.5 vs. each subsequent stage, demonstrating the enrichment of Ebp1 (red 596 

arrow) among ribosomal proteins (RPs) of the large (Rpl, blue) and small (Rps, yellow) subunits, 597 

in contrast to other translation-associated proteins (black). (C) Stoichiometry cluster heat maps 598 

quantifying the differential enrichment of each RP (Rpl, blue; Rps, yellow), translation-599 

associated protein (black), and Ebp1 (red arrow) per developmental stage. Expression of 600 

adjacent proteins on the x-axis is shown as higher (orange), lower (purple), or similar (black) 601 

relative to each protein on the y-axis. Legend and histogram at top left for each stage. See also 602 

Figures S1-3.               603 

 604 

Figure 2. Ebp1 expression is cell type and temporally specific in early-born NSCs, in 605 

concert with transiently elevated ribosomal complex levels 606 

(A) Expression heat maps of Ebp1 compared to averaged Rpl and Rps family mRNA 607 

enrichment in scRNAseq analysis of the developing mouse neocortex derived from (Telley et al., 608 

2019). Relative expression shown for apical progenitor (AP) NSCs during their differentiation 609 

into mature neurons (N4d) on the y-axis, corresponding to NSC birthdates E12, E13, E14, E15 610 

on the x-axis. (B) Neocortical expression of Ebp1 (red), Rpl (blue), Rps (yellow), and translation-611 

associated (black) genes measured in total steady state levels by RNAseq (top) and MS 612 

(bottom) across developmental stages. The median expression is plotted ± s.d. Significant 613 

changes assessed by one-way ANOVA and Bonferroni corrected post hoc test vs. E12.5, 614 

p < 0.05 considered significant. (C) Immunohistochemistry analysis of Ebp1 expression in 615 

coronal sections of the developing neocortex ventricular zone (VZ) populated by NSCs, and 616 

cortical plate (CP) populated by maturing neurons. Early-born NSCs generate lower layer (LL) 617 

neurons, while later-born NSCs generate upper layer (UL) neurons. White matter (WM) axons, 618 

nuclear DAPI staining in grey. Zoomed images (inset) correspond to the VZ and leading-edge of 619 
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the CP at each stage, with Ebp1 (red) and DAPI (blue) labeling. Similar results were obtained 620 

with the Ebp1NT antibody (Figure S4). (D) Analytic quantitative sucrose density gradient 621 

ultracentrifugation of A260 normalized neocortical lysates measuring the relative abundance of 622 

ribosomal subunits, 80S ribosomes, and polysomes. A260 curves plotted as mean ± s.d. across 623 

replicates for each stage. (E) Curves from (D) subdivided for area-under-the-curve (AUC) 624 

analysis as shown (grey boxes) calculated by a Reimann sum, and graphed as mean ± s.d. with 625 

significance testing by one-way ANOVA and Dunnett’s post hoc test vs. E12.5. *p < 0.05; 626 

**p < 0.01; ***p < 0.001; ****p < 0.0001. (F) Western blot analysis of Ebp1 enrichment in total 627 

neocortical lysates, in comparison to full-length histidine-tagged Ebp1 (Ebp1-His). Full blots are 628 

shown in Figures S5A-B. (G) Western blot analysis of Ebp1 enrichment in pooled extra-629 

ribosomal (free), 80S, and polysome fractions (Figures S5C-D).    630 

 631 

Figure 3. Ebp1 binds the 60S subunit with high affinity in the cytoplasm of neocortical 632 

NSCs and neurons 633 

(A) Western blot analysis of recombinant Ebp1-His binding to purified rabbit reticulocyte lysate 634 

(RRL) 40S, 60S, and reconstituted 80S in the pellet (pel) compared to unbound in the sucrose 635 

cushion supernatant (sup). Ebp1 signal shown compared to 60S RP (uL30) and 40S RP (uS7) 636 

markers. Binding assay with mouse neocortical 40S and 60S shown in Figure S6A. (B) Relative 637 

binding affinity of escalating Ebp1-His concentrations (15.6-500nM) to 100nM 60S measured by 638 

pelleting assay and Western blot analysis. Binding first detected in the pellet (P) at 62.5nM 639 

(arrow), with excess Ebp1 in the supernatant (S) seen at 500nM (star) in comparison to 640 

saturating signal in the pellet. (C) Results from (B) (white circles) plotted with an independent 641 

replicate experiment (grey circles), and curve best fit to the data (red line, nonlinear least 642 

squares fit, with one-site binding and Hill slope accommodation). Interpretation of binding curves 643 

further described in Figure S6B. (D) Ebp1 binding dynamics assessed by pelleting assay and 644 

Western blot. Binding pellet signal for (1) super-saturating levels of Ebp1-His (350nM) in the 645 

presence of rabbit 60S (100nM) compared to (2) native Ebp1 in RRL (~100nM ribosomes), (3) 646 

saturating Ebp1-His in RRL, and native Ebp1 in RRL translating Luciferase mRNA (Luc) with (4) 647 

and without (5) cycloheximide to stall elongation. Signal for native Ebp1 (arrow) in comparison 648 

to the slightly larger Ebp1-His (star). (E) Immuno-electron micrographs showing immunogold 649 

labeling for anti-Ebp1NT (black dots) in coronal sections of the neocortex at E12.5, E15.5, and 650 

P0 at low (12000x) and high (30000x) magnification. Neural stem cells (NSC) and neurons (N) 651 

are identified by their distinctive nuclear morphology (blue, NSC; red, N) and their localization in 652 

the developing cortical layers (ventricular zone, NSC; expanding cortical plate, N). Nucleoli (n), 653 
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mitochondria (m, green), endoplasmic reticulum (er), cell-cell junctions (arrows; blue on NSC 654 

side, red on N side). See also Figure S7.              655 

 656 

Figure 4. Structure of the neocortical ribosome with Ebp1 bound to the 60S subunit at the 657 

peptide tunnel exit 658 

(A) Cryo-electron microscopy (cryo-EM) micrograph of pooled 80S and polysome complexes 659 

(arrows) from P0 mouse neocortical lysates ex vivo. (B) Cryo-EM map generated by 3D 660 

refinement of (A) with extra-ribosomal density (red) conforming to the crystal structure of mouse 661 

Ebp1 (PDB 2V6C (Monie et al., 2007), red ribbon) on the 60S surface (rRNA, dark blue; RPs, 662 

light blue). Ebp1 density includes the N-terminal residues (NT, black ribbon) corresponding to 663 

full-length Ebp1. (C) Multiparticle classification and high-resolution map refinement (Figures S8-664 

S10) of both actively translating (left, classical state with A/A, pink, and P/P, green, tRNAs) and 665 

non-translating (right, rotated state with eEF2, purple) ribosomal complexes. Ebp1 (red), 60S 666 

rRNA (dark blue), 60S RPs (light blue), 40S rRNA (orange), 40S RPs (yellow), nascent chain 667 

fragments (black). (D) Model of the Ebp1 (red ribbon) binding surface at the 60S peptide tunnel 668 

exit, including 60S rRNA helices H24 (purple), H53 (magenta), H59 (blue), and 60S RPs eL19 669 

(lime green), uL23 (olive), uL24 (forest green), uL29 (aquamarine). (E) Aerial view of the Ebp1 670 

footprint (red outline) over the 60S peptide tunnel exit (TE), with rRNA helices and RP model 671 

surfaces colored as in (D), and residues/nucleosides making electrostatic interactions with Ebp1 672 

highlighted in yellow. (F-H) Zoomed views of the Ebp1�60S model, colored as in (D-E), with 673 

binding residues/nucleosides likewise highlighted in yellow.        674 

 675 

Figure 5. The Ebp1 insert domain utilizes a conserved H59 latch mechanism for 60S 676 

binding incompatible with simultaneous binding by other tunnel exit proteins 677 

(A) 60S rRNA H59 and H53 models corresponding to states with Ebp1 (blue) vs. without Ebp1 678 

(green), adjacent to the Ebp1 (red) insert domain. See also Figures S11A-C. (B) 2D structure 679 

diagram of Ebp1 3D domains adapted from (Kowalinski et al., 2007), orienting Ebp1 on the 680 

ribosome surface, and highlighting the domains involved in Ebp1�60S binding (yellow). (C) 681 

Global alignment of Ebp1, Metap2, and Arx1 demonstrate the conserved orientation of the β-α--682 

-α-β insert domain (orange) for 60S binding, pita-bread β6 fold motif (light blue) positioned over 683 

the TE, and solvent-side α4 motif (dark blue). See also Figure S12. (D) Electrostatic potential 684 

maps of Ebp1, Metap2, and Arx1 oriented as in (C), and viewed from within the TE from the 685 

perspective of emerging nascent chain, with 60S rRNA helices and RPs colored as in Figure 686 

4D. Methionine�Zn�H2O and Rei1 models in yellow. See also Figure S11D. (E) Schematic with 687 
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the mouse neocortical 60S model surface centered on the peptide tunnel exit, and the 688 

overlapping footprints of known eukaryotic tunnel exit surface binding factors. See also Figure 689 

S13. PDB IDs: Metap2 1KQ9 (Nonato et al., 2006), Arx1 5APN (Greber et al., 2016), Sec61 690 

3J7R (Voorhees et al., 2014), Ltn1 3J92 (Shao et al., 2015), NatA 6HD7 (Knorr et al., 2019). 691 

EMDB IDs: RAC 6105 (Zhang et al., 2014), NAC 4938 (Gamerdinger et al., 2019).	692 

 693 

Figure 6. Ebp1 knockdown disrupts acute protein synthesis and chronic proteostasis in 694 

neuronal cells, impacting neurite and synaptic proteins 695 

(A) Western blot confirmation of Ebp1 knockdown in mouse Neuro2a cells with siRNA oligos 696 

targeting mouse vs. human Ebp1 mRNA sequences, in comparison to mock transfection and 697 

scrambled siRNA controls, in biological duplicate. (B) Schematic of the strategy to measure 698 

both the chronic proteostasis and acute protein synthesis responses to Ebp1 knockdown in 699 

Neuro2a cells with pSILAC and BONCAT coupled mass spectrometry. Cultures with 700 

transfection of siControl vs. siEbp1 were concurrently incubated with medium (purple) vs. heavy 701 

(orange) SILAC amino acids, respectively, after the initiation of knockdown to label all proteins 702 

synthesized while Ebp1 levels are depleted (pSILAC) over 3 days in vitro (div). On div 4, AHA 703 

was pulsed before sample collection to label newly made proteins at the nadir of Ebp1 704 

knockdown (pSILAC-AHA). (C) pSILAC and (D) pSILAC-AHA labeled protein levels with siEbp1 705 

conditions plotted relative to siControl conditions. Proteins with significantly lower (orange) or 706 

higher (purple) levels in siEbp1 conditions are highlighted, while unchanged proteins are shown 707 

in grey. Confirming robust knockdown, Ebp1 levels were below the MS quantification threshold 708 

in siEbp1 conditions, and thus not plotted. The threshold for significant change is set to >2-fold 709 

change from control in both replicates (dotted lines). (E) Schematic representation of the 710 

subcellular localization and function of known neuron-associated proteins significantly impacted 711 

by Ebp1 depletion from (C-D). Proteins with levels promoted by Ebp1 (siEbp1 < control) are 712 

highlighted in orange, and proteins suppressed by Ebp1 (siEbp1 > control) are highlighted in 713 

purple. (F) Primary neuronal cultures from the E12.5 neocortex of Nex:Cre;Ai9 mice analyzed 714 

by immunocytochemistry at div 0, 2, 4, and 5 to monitor Ebp1 expression and localization in 715 

Nestin-positive (cyan arrows) neural stem cells (NSCs) throughout their maturation into Nex-716 

postive (red arrows) postmitotic pyramidal neurons. Ebp1 localization in growing neurites is 717 

indicated (green arrows). Zoomed images at div 5 with clustered Ebp1 foci in neurites and 718 

growth cones (dotted arrows), including the leading edge of neurite protrusions (solid arrows). 719 

See also Figure S14. 720 

 721 
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Figure 7. Ebp1 regulates neurite branching of early-born neocortical neurons during 722 

development in vivo 723 

(A) E12 in utero electroporation (IUE) followed by analysis at E16, comparing shEbp1 vs. 724 

scrambled shRNA control transfection, and rescue by co-electroporation of shEbp1 with an 725 

Ebp1 overexpression plasmid (oeEbp1). Transfected cells are labeled by co-electroporation with 726 

CAG-GFP, and analyzed in coronal sections showing the WM to pial surface (top), with 727 

individual cells in each condition magnified (bottom), including labeled basally projecting axons 728 

(yellow arrows). (B) Morphology tracing of individual GFP labeled neurons in control, shEbp1, 729 

and rescue sh+oeEbp1 conditions from (A). (C) Sholl analysis of (B), comparing branching per 730 

unit distance from the soma in control (black, n = 15), shEbp1 (orange, n = 15), and rescue 731 

sh+oeEbp1 (purple, n = 15) conditions. (D) Sum total branches of Sholl analysis in (C). Data in 732 

(C) and (D) shown as mean ± s.d. Significance in (D) assessed by one-way ANOVA with 733 

Bonferroni corrected post hoc test vs. control (**p < 0.01).   734 

735 
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STAR★METHODS 745 

KEY RESOURCES TABLE 746 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies   
anti-Ebp1CT rabbit, Abcam ab35424 

anti-Ebp1NT rabbit, Millipore ABE43 

anti-eEF2 rabbit, Cell Signaling 2332S 

anti-Gapdh mouse, Millipore MAB374 

anti-GFP chicken, Abcam ab13970 

anti-Map2 chicken, Millipore AB5543 

anti-Nestin mouse, Millipore MAB353 

anti-Rpl7 (uL30) rabbit, Abcam ab72550 

anti-Rps5 (uS7) mouse, Santa Cruz sc-390935 

Gold-conjugated-anti-rabbit IgG goat, Nanoprobes 2003 

HRP-anti-rabbit-Light Chain mouse, Dianova 211-032-171 

HRP-anti-mouse-Heavy Chain goat, Millipore 71045 

488-anti-chicken donkey, Jackson 
ImmunoResearch  703-545-155 

488-anti-rabbit donkey, Jackson 
ImmunoResearch  711-545-152 

594-anti-mouse donkey, Jackson 
ImmunoResearch  715-585-150 

647-anti-chicken donkey, Jackson 
ImmunoResearch  703-605-155 

 747 

Recombinant DNA   
Control siRNA (non-targeting) Dharmacon D-001810-10-05 

Homo sapiens siPa2g4 siRNA Dharmacon 
SMARTpool ON-
TARGETplus #5036, 
#L008860-00-0005 

Luciferase reporter pSPUTK-luc+ (Rakwalska and Rospert, 
2004)  

Mus musculus Pa2g4 cDNA Source BioScience IRAVp968A0190D 

Mus musculus shPa2g4 shRNA Sigma Mission TRCN0000236756, RefSeq 
NM_011119 

Mus musculus siPa2g4 siRNA Dharmacon 
SMARTpool ON-
TARGETplus #18813, #L-
042883-01-0005 

pCAGIG (pCAG-IRES-GFP) (Ambrozkiewicz et al., 2018)  
pET-28a(+)  Novagen 69864-3 

pSuper-Neo-GFP OligoEngine VEC-pBS-0006 
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pSuper-Neo-GFP-sh-Scramble (Ambrozkiewicz et al., 2018)  
 748 
Chemicals, Peptides, and 
Recombinant Proteins   
Acetonitrile  CHEMSOLUTE 2697 
Acetonitrile (Alkyne-agarose 
enrichment) Sigma-Aldrich 271004 

Acetylated Bovine Serum Albumin  
(BSA-c) Aurion 900.022 

Agarose Sigma-Aldrich A9539 

Alkyne-agarose beads  Click-Chemistry Tools  1033 

Ammonium bicarbonate (ABC) Sigma-Aldrich 9830 

B27 Thermo Fisher 17504044 

Bovine serum albumin  Sigma-Aldrich A3294 

Copper(II) sulfate pentahydrate  Sigma-Aldrich 209198 

Cycloheximide  Sigma-Aldrich C7698 

DAPI (Nuc Blue, Molecular Probes) Invitrogen R37606 

Dithiothreitol (DTT) Sigma-Aldrich/Roche DTT-RO 
Dithiothreitol (DTT) (Alkyne agarose 
enrichment) BioMol 40010.25 

DMEM Gibco 31966047 

DMEM - methionine free Sigma-Aldrich D0422 

Ebp1 recombinant protein mouse, this paper  

EcoRI restriction enzyme New England Biolabs R0101 
Ethylenediaminetetraacetic acid 
(EDTA) Sigma-Aldrich E-5143 

Epoxy embedding medium Epon 812 Sigma-Aldrich 45345 

Ethanol J.T. Baker 8025 

Fetal Bovine Serum Gibco 10270106 

Fetal Bovine Serum - dialyzed PAN-Biotech P30-2102 

Fluoromount-G  Southern Biotech 0100-01  

Formic acid Sigma-Aldrich 33015 

Glutamax Thermo Fisher 35050-038 

Glutaraldehyde  Sigma-Aldrich G5882 

HEPES Sigma-Aldrich 391338 

IGEPAL CA-630 Sigma-Aldrich I8896 

Iodoacetamide (IAA) Sigma-Aldrich I6125 

KCl Roth 6781.1 
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L-Arginine:HCl (13C6, 99%; 15N4, 
99%) (Arg-10) Cambridge Isotope Labs CNLM-539  

L-Arginine:HCl (13C6, 99%) (Arg-6) Cambridge Isotope Labs CLM-2265  

L-azidohomoalaine (AHA) Anaspec AS-63669 
L-Lysine:2HCl (13C6, 99%; 15N2, 99%) 
(Lys-8) Cambridge Isotope Labs CNLM-291 

L-Lysine:2HCl (4,4,5,5-D4, 96-98%) 
(Lys-4) Cambridge Isotope Labs DLM-2640 

Lead citrate Fluka GA10655 
Lipofectamine RNAiMAX Transfection 
Reagent  Thermo Fisher 13778075 

Liquid ethane   
Lysyl endopeptidase (LysC) Wako 12505061 

Methanol Merck Millipore 1.06009.2511 

MgCl2 Ambion AM9530G 

Nanogold silver enhancement Nanoprobes  
Neurobasal medium Thermo Fisher 21103049 
Neurobasal custom medium (-met / -arg 
/ -lys) Gibco 041-96642M 

Normal goat serum  PAN-Biotech P30-1002 

Osmium tetroxide (OsO4)  Polysciences 0972A 

Papain Sigma-Aldrich P4762 

Paraformaldehye (PFA) Sigma-Aldrich P6148 

Penicillin-Streptomycin Thermo Fisher 15140-122 

Poly-L-Lysine Sigma-Aldrich P1399  
Protease Inhibitor Cocktail Set III, 
EDTA-Free  Calbiochem/Sigma-Aldrich  539134 

Protease Inhibitor cOmplete EDTA-free  Roche 5056489001 
Rabbit reticulocyte lysate nuclease-
treated Promega L4960 

ReproSil-Pur C18-AQ 3-µm resin Dr. Maisch GmbH r13.aq 

RNasin Plus RNAse inhibitor  Promega N2615 
SeeBlue Plus2 Prestained Protein 
Ladder  Thermo Fisher LC5925 

SILAC-DMEM PAN-Biotech P04-02505 

Sodium borohydride (NaBH4) Sigma-Aldrich 452882 

Sodium deoxycholate Sigma-Aldrich D6750 

Sodium dodecyl sulfate (SDS) Roth 2326.1 

Sodium L-ascorbate Sigma-Aldrich A7631 

Spermidine�3HCl Sigma-Aldrich S2501 
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Spermine�4HCl Sigma-Aldrich S2876 

Sucrose Sigma-Aldrich S0389 

SUPERase-In RNAse inhibitor  ThermoFisher AM2694 

Tris-HCl Roth 9090.3 
Tris(3-
hydroxypropyltriazolylmethyl)amine 
(THPTA) 

Sigma-Aldrich 762342 

Triton-X 100 Sigma-Aldrich T8787 

TRIzol-LS Invitrogen 10296010 

Trypsin  Promega V511A 

Tween Sigma-Aldrich P9416 

Uranyl acetate  Merck 1.08473.0100 

Urea Sigma-Aldrich 51459 

Vectashield Antifade Mounting Medium Vector Laboratories H-1000 
 749 

Critical Commercial Assays   
Amersham ECL Prime GE Healthcare RPN2232 

TruSeq Stranded mRNA kit  Illumina 20020594 
 750 

Deposited Data   

Neocortex total input, 80S, polysome 
mass spectrometry this paper 

ProteomeXchange 
PXD014841 
Username: 
reviewer22269@ebi.ac.uk 
Password: 8Vro0crd 

Neuro2a pSILAC/AHA mass 
spectrometry  this paper 

ProteomeXchange 
PXD014740 
Username: 
reviewer84416@ebi.ac.uk 
Password: BwylH8kX 

Neocortex total input lysate RNA 
sequencing this paper 

NIH GEO  
GSE136199  
Password: cbkfsgcwvlszfab 
 

Cryo-EM maps of the P0 neocortical 
ribosome this paper Worldwide Protein Data 

Bank EMD-10321 

Atomic model of the P0 neocortical 
60S�Ebp1 complex this paper Worldwide Protein Data 

Bank PDB ID 6SWA 

 751 

Experimental Models: Cell Lines   
Neuro2a Thermo Fisher RRID: CVCL_0470 

 752 
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Experimental Models: 
Organisms/Strains   
CD1 WT Charles River  
Nex:Cre;Ai9 (Turko et al., 2018)  
NMRI WT Charles River and Janvier 

Labs  
 753 

Software and Algorithms   
Andromeda (Cox et al., 2011)  
APBS (Jurrus et al., 2018)  
CCP4Interface CONTACT (Potterton et al., 2003)  
CLUSTAL Omega MSA	(1.2.4) (Sievers et al., 2011) https://www.ebi.ac.uk/Tools/

msa/clustalo/  
COOT (Emsley and Cowtan, 2004)  
CTFfind4 (Mindell and Grigorieff, 

2003)  
DAVID (Huang et al., 2009)  
EMAN2 (Tang et al., 2007)  
EPU FEI Company  
ERRASER (Chou et al., 2013)  
FIJI (Schindelin et al., 2012) https://fiji.sc/  

GraphPad Prism 7 GraphPad Software Inc https://www.graphpad.com/  

IBAQ (Schwanhäusser et al., 
2011)  

Illustrator Adobe Creative Cloud  
Image stitching plugin (FIJI) (Preibisch et al., 2009)  
Leginon (Carragher et al., 2000; 

Suloway et al., 2005)  
LFQ (Cox et al., 2014)  
MaxQuant (Cox and Mann, 2008)  
MolProbity (Chen et al., 2010)  
Morpheus  https://software.broadinstitut

e.org/morpheus  
MotionCor2 (Zheng et al., 2017)  
Neurite Tracer plugin (FIJI) (Longair et al., 2011)  
Perseus (Tyanova et al., 2016)  
PHENIX (Adams et al., 2010)  
Photoshop Adobe Creative Cloud  
Sholl analysis plugin (FIJI) (Ferreira et al., 2014)  
SPHIRE/SPARX (Moriya et al., 2017)  
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SPIDER (Frank et al., 1996)  
STAR (Dobin et al., 2013)  
UCSF Chimera (Pettersen et al., 2004)  
UCSF ChimeraX (Goddard et al., 2018)  

 754 

Primers   

Ebp1-His forward (recombinant protein) Eurofins 
5'AATTCCATGGGCCACCA
TCACCATCACCATTCGGG
CGAGGACGAGCAAC3' 

Ebp1-His reverse (recombinant protein)   Eurofins 5'TTAAGGATCCTTAGTCC
CCAGCTTCATTTTCTTC3' 

Ebp1-HA forward (overexpression 
plasmid) Eurofins 

5'gtctcatcattttggcaaagATGT
ACCCATACGATGTTCCAG
ATTACGCTTCGGGCGAAG
ACGAG3' 

Ebp1-HA reverse (overexpression 
plasmid) Eurofins 5'cggccgcgatatcctcgaggTCA

GTCCCCAGCTCCATTC3' 
 755 

CONTACT FOR REAGENT AND RESOURCE SHARING 756 

Further information and requests for reagents may be directed to and will be fulfilled by the Lead 757 

Contact, christian.spahn@charite.de (C.M.T.S.). 758 

 759 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 760 

Mice 761 

All experiments and associated procedures involving animals in this study were conducted in 762 

compliance with the welfare guidelines of the Landesamt für Gesundheit und Soziales 763 

(LAGeSo) Berlin and Charité Universitätsmedizin Berlin under certified protocols (Spahn Lab: 764 

T0267/15; Vida Lab: T0215/11; Tarabykin Lab: G00206/16, G0054/19), and the Rutgers-Robert 765 

Wood Johnson Medical School Institutional Animal Care and Use Committee (IACUC) (Rasin 766 

Lab: I12-065-10). Mice were utilized in the embryonic (E12.5, E14, E15.5, E17) and early post-767 

natal (P0) period, inclusive of both sexes in each litter without discrimination, towards the aim of 768 

studying common developmental mechanisms. Timed pregnant wild-type (WT) CD-1 mice were 769 

obtained from the Charles River Company and utilized for all experiments, with two exceptions: 770 

(1) for primary neocortical cell cultures and immunocytochemistry (Figure 6F), homozygous 771 

Nex:Cre females (C57BL/6) were crossed with hemizygous Ai9 males (C57BL/6J) to produce 772 

Nex:Cre;Ai9 mice as described previously (Turko et al., 2018), labeling post-mitotic 773 

glutamatergic neocortical neurons with tdTomato (protocol T0215/11); (2) for in utero 774 
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electroporation (Figures 7A-D), NMRI WT (Charles River and Janvier Labs 775 

RRID:IMSR_TAC:nmri) mice were utilized (protocols G00206/16, G0054/19). 776 

 777 

Cell lines 778 

Mouse neuroblastoma Neuro2a cells were obtained from Thermo Fisher (RRID: CVCL_0470) 779 

for pulsed stable isotope labeling by amino acids in cell culture (pSILAC) (Schwanhäusser et al., 780 

2009) and bioorthogonal noncanonical amino acid tagging (BONCAT) (Dieterich et al., 2006) 781 

coupled mass spectrometry experiments.  782 

 783 

METHOD DETAILS 784 

Neocortex dissection and lysis 785 

For all experiments, embryonic (E12.5, E14, E15.5, E17) and postnatal (P0) mouse neocortices 786 

were dissected in a 4°C room in ice-cold phosphate buffered saline (PBS; ThermoFisher 787 

#14040133), frozen as tissue pellets in 1.5mL tubes on dry ice, and stored at -80°C. Once 788 

sufficient stocks of tissue were generated, each experiment was performed in biological 789 

replicates, such that each replicate incorporated an equivalent number of neocortices pooled 790 

from distinct litters of mice to meet the input requirements. Frozen tissue pellets were gently 791 

lysed by cryogenic grinding on ice using a P1000 tip in 1.5 mL tubes, similar to prior studies 792 

(Kraushar et al., 2014, 2015), but with the following lysis buffer: 20 mM HEPES, 100 mM KCl, 793 

10 mM MgCl2, pH 7.4, supplemented with 20 mM Dithiothreitol (DTT), 0.04 mM Spermine, 794 

0.5 mM Spermidine, 1x Protease Inhibitor cOmplete EDTA-free (Roche #05056489001), 795 

200 U/mL SUPERase-In RNAse inhibitor (ThermoFisher #AM2694), 0.3% v/v IGEPAL CA-630 796 

detergent (Sigma #I8896). Tissue lysates were clarified of membranes to post-nuclear, post-797 

mitochondrial supernatants by centrifugation at 16100g for 10 minutes at 4°C with a benchtop 798 

centrifuge, and directly applied to downstream analysis. Ribosomal content was estimated by 799 

A260 optical density units (ODU) with a NanoDrop 1000 Spectrophotometer. Two neocortical 800 

hemispheres (one brain) yields ~ 2 ODU at P0, 1 ODU at E15.5, and 0.5 ODU at E12.5.     801 

 802 

Sucrose density gradient ultracentrifugation fractionation 803 

Sucrose density gradients were prepared in Beckman Coulter Ultra-Clear Tubes; #344057 for 804 

preparative 5 mL 10-50% gradients (for mass spectrometry, western blot), #344060 for 805 

quantitative/analytic 14 mL 5-45% gradients. Base buffer consisted of 20 mM HEPES, 100 mM 806 

KCl, 10 mM MgCl2, 20 mM Dithiothreitol (DTT), 0.04 mM Spermine, 0.5 mM Spermidine, 1x 807 

Protease Inhibitor cOmplete EDTA-free (Roche #05056489001), 20 U/mL SUPERase-In RNAse 808 
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inhibitor (ThermoFisher #AM2694), pH 7.4, prepared with either 5 & 45% or 10 & 50% sucrose 809 

w/v. Overlaid 5 & 45% or 10 & 50% sucrose-buffer solutions were mixed to linearized gradients 810 

with a BioComp Gradient Master 107ip.   Neocortical lysates were balanced to equivalent ODU 811 

and volume across samples for comparison in analytic gradients, with a minimum of 3 ODU 812 

required for each biological replicate in each experiment. Lysates were overlaid on gradients 813 

pre-cooled to 4°C. 5-45% gradients were centrifuged in a SW40 rotor (Beckman Coulter) for 814 

5 hrs, 4°C, 25000 rpm; 10-50% gradients were centrifuged in a SW55 rotor (Beckman Coulter) 815 

for 1hr, 4°C, 37000 rpm. Gradients were fractionated using a BioComp Piston Gradient 816 

Fractionator and Pharmacia LKB SuperFrac, with real-time A260 measurement by an LKB 817 

22238 Uvicord SII UV detector recorded using an ADC-16 PicoLogger and associated 818 

PicoLogger software. Collected samples were stored at -80°C for downstream analysis. Notably, 819 

with the gentle lysis technique described in the above Methods (0.3% v/v IGEPAL CA-630 820 

detergent), only cytoplasmic mature ribosomal subunits and complexes were measured and 821 

fractionated. Analytic gradient area-under-the-curve analysis for 40S-60S, 80S, and polysome 822 

peaks was calculated with a Reimann sum, and significance testing by ANOVA with Dunnett’s 823 

post hoc test performed in GraphPad Prism software (https://www.graphpad.com/scientific-824 

software/prism/), with p<0.05 considered significant.          825 

 826 

Mass spectrometry analysis of total input, 80S, and polysomes 827 

Sample preparation. Samples were prepared in biological triplicate, with each sample including 828 

mass spectrometry (MS) analysis of total input neocortex lysate, and purified corresponding 80S 829 

and polysomes by preparative 10-50% sucrose density gradient ultracentrifugation (Figure S1) 830 

as described in the Methods above. Notably, with the lysis method described above, only post-831 

nuclear, post-mitochondrial, cytoplasmic mature ribosomal subunits and complexes were 832 

measured and fractionated. Each biological replicate incorporated 12 neocortices (6 animals) at 833 

P0, 18 neocortices (9 animals) at E17, 24 neocortices (12 animals) at E15.5, 30 neocortices (15 834 

animals) at E14, and 36 neocortices (18 animals) at E12.5. Tissues were pooled such that each 835 

biological replicate included an equal number of neocortices derived from multiple distinct litters 836 

of embyros/pups.  837 

Samples were processed essentially as described previously (Imami et al., 2018). Briefly, 838 

proteins were precipitated from input lysates, or directly from sucrose gradient fractions, with 839 

ethanol, then resuspended in 50 µL of 8 M urea and 0.1 M Tris-HCl, pH 8. Proteins were then 840 

reduced with 10 mM dithiothreitol (DTT) at room temperature for 30 min, and alkylated with 841 

50 mM iodoacetamide (IAA) at room temperature for 30 min in the dark room. Protein digestion 842 
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was first performed with lysyl endopeptidase (LysC) (Wako) at a protein-to-LysC ratio of 100:1 843 

(w/w) at room temperature for 3 hrs. Then, the sample solution was diluted to final concentration 844 

of 2 M urea with 50 mM ammonium bicarbonate (ABC). Trypsin (Promega) digestion was 845 

performed at a protein-to-trypsin ratio of 100:1 (w/w) under constant agitation at room 846 

temperature for 16 hrs. Peptides were desalted with C18 Stage tips (Rappsilber et al., 2007) 847 

prior to LC-MS/MS analysis.  848 

 849 

NanoLC-MS/MS analysis. Measurements were performed essentially as described previously 850 

with minor adjustments. Reversed-phase liquid chromatography was performed by employing 851 

an EASY nLC 1000 or 1200 (Thermo Fisher Scientific) using self-made fritless C18 852 

microcolumns (Ishihama et al., 2002) (75 µm ID packed with ReproSil-Pur C18-AQ 3-µm resin, 853 

Dr. Maisch GmbH) connected on-line to the electrospray ion source (Proxeon) of a Q Exactive 854 

plus (Thermo Fisher Scientific). The mobile phases consisted of (A) 0.1% formic acid and 5% 855 

acetonitrile and (B) 0.1% formic acid and 80% acetonitrile. Peptides were eluted from the 856 

analytical column at a flow rate of 200 nL/min by altering the gradient: 5-6% B in 2 min, 6-8% B 857 

in 18 min, 8-20% B in 80 min, 20-33% in 80 min, 33-45% B in 20 min, 45-60% B in 2 min, 60-858 

95% B in 1 min. The Q Exactive plus instrument was operated in the data dependent mode with 859 

a full scan in the Orbitrap followed by top 10 MS/MS scans using higher-energy collision 860 

dissociation (HCD). The full scans were performed with a resolution of 70,000, a target value of 861 

3x106 ions and a maximum injection time of 20ms. The MS/MS scans were performed with a 862 

17,500 resolution, a 1x106 target value, and a 60 ms maximum injection time. The isolation 863 

window was set to 2 and normalized collision energy was 26. Ions with an unassigned charge 864 

state and singly charged ions were rejected. Former target ions selected for MS/MS were 865 

dynamically excluded for 30 s.  866 

 867 

Processing of mass spectrometry data. All raw data were analyzed and processed by 868 

MaxQuant (v1.5.1.2) (Cox and Mann, 2008). Default settings were kept except that ‘match 869 

between runs’ was turned on. Search parameters included two missed cleavage sites, cysteine 870 

carbamidomethyl fixed modification and variable modifications including methionine oxidation, 871 

protein N-terminal acetylation and deamidation of glutamine and asparagine. The peptide mass 872 

tolerance was 6ppm and the MS/MS tolerance was 20ppm. Minimal peptide length of 7 amino 873 

acids was required. Database search was performed with Andromeda (Cox and Mann, 2008; 874 

Cox et al., 2011) against the UniProt/SwissProt mouse database (downloaded 11/2014) with 875 

common serum contaminants and enzyme sequences. The false discovery rate (FDR) was set 876 
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to 1% at peptide spectrum match (PSM) level and at protein level. Protein quantification across 877 

samples was performed using the label-free quantification (LFQ) algorithm (Cox et al., 2014). A 878 

minimum peptide count required for LFQ protein quantification was set to two. Only proteins 879 

quantified in at least two out of the three biological replicates were considered for further 880 

analyses. LFQ intensities were log2-transformed and imputation for missing values was 881 

performed in Perseus (Tyanova et al., 2016) software based on a simulated normal distribution 882 

to represent low abundance values below the noise level (generated at 1.8 standard deviations 883 

of the total intensity distribution, subtracted from the mean, and a width of 0.3 standard 884 

deviations). Hierarchical clustering of the input, 80S, and polysome data for ANOVA significant 885 

proteins (FDR = 0.05) in Morpheus (https://software.broadinstitute.org/morpheus) is shown in 886 

Figure S2, with clustering based on one minus Pearson correlation using an average linkage 887 

method. Proteins whose abundance differed significantly among developmental stages were 888 

identified by multiple sample ANOVA test at a permutation-based FDR cutoff of 0.05. Log2 LFQ 889 

intensities were further z-transformed for only significantly changed proteins.  890 

To estimate protein abundance within input and ribosome fractions, the intensity-based 891 

absolute quantification (iBAQ) algorithm was used, which computes the sum of all the peptides’ 892 

intensities divided by the number of theoretically observable peptides. Stoichoimetry matrices 893 

(Figures 1C and S3C-D) compared the median iBAQ value across replicates for each gene, 894 

fraction, and time point, plotting the log2 transformed ratio for every pair of proteins as a heat 895 

map. Mass spectrometry proteomics data have been deposited to the ProteomeXchange 896 

Consortium (Vizcaíno et al., 2014) (http://proteomecentral.proteomexchange.org) via the PRIDE 897 

partner repository for reviewer access, and for immediate release on publication:  898 

ProteomeXchange PXD014841 899 

Username: reviewer22269@ebi.ac.uk 900 

Password: 8Vro0crd 901 

 902 

Single-cell RNA sequencing analysis derived from (Telley et al., 2019) 903 

The transcriptional birthdate and differentiation maps for individual genes (Figures 2A and S13) 904 

were acquired from the open source website associated with (Telley et al., 2019) 905 

(http://genebrowser.unige.ch/telagirdon/#query_the_atlas). Averaging the data across all Rpl 906 

and Rps mRNAs into combined single maps for these gene families (Figure 2A) was performed 907 

with the kind support of Ludovic Telley (Denis Jabaudon lab).  908 

 909 

RNA sequencing analysis of total neocortical lysates  910 
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Total RNA was isolated from post-nuclear, post-mitochondrial, total neocortical lysates prepared 911 

as described above in biological duplicate, with each replicate including the following number of 912 

neocortical hemispheres (animals) at each developmental stage: E12.5, 80 (40); E14, 60 (30); 913 

E15.5, 42 (21); E17, 40 (20); P0, 34 (17). Tissues were pooled such that each biological 914 

replicate included an equal number of neocortices derived from multiple distinct litters of 915 

embyros/pups. RNA was isolated with TRIzol-LS (Invitrogen #10296010), and 1 µg of RNA per 916 

sample was used to prepare libraries with the TruSeq Stranded mRNA kit (Illumina #20020594) 917 

according to manufacturer´s instructions. Sequencing was performed on a HiSeq4000. Reads 918 

were aligned to the mouse M12 genome using the splice aware aligner STAR (Dobin et al., 919 

2013), and GENCODE (Frankish et al., 2019) gene annotation GRCm38.p5. We used the STAR 920 

parameters  ‘--alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --outFilterMismatchNmax 999  921 

--outFilterMismatchNoverLmax 0.04 --alignIntronMin 20’ and default otherwise. Gene-level 922 

counts were produced using the subread package, with duplicates and multi-mappers 923 

discarded. TPMs were calculated using the total exon length for each gene. Significantly 924 

changing levels over time of Ebp1, or the median value of Rpl, Rps, and translation-associated 925 

gene groups, was assessed by one-way ANOVA followed by Bonferroni corrected post hoc 926 

testing vs. E12.5, with p<0.05 considered significant. RNAseq data have been deposited in the 927 

NIH Gene Expression Omnibus (GEO) (Edgar et al., 2002) for reviewer access, and for 928 

immediate release on publication:  929 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136199) 930 

NIH GEO GSE136199  931 

Password: cbkfsgcwvlszfab 932 

        933 

Western blot 934 

Analysis was performed with the NuPAGE (Invitrogen) Western blot system according to the 935 

manufacturer’s protocol, including 4-12% Bis-Tris NuPAGE gels (Invitrogen NP0321BOX, 936 

NP0322BOX, NP0323BOX), MES running buffer, and transfer onto nitrocellulose membranes 937 

(Amersham Protran 0.45 NC, GE Life Sciences #10600002) with NuPAGE transfer buffer 938 

(NP0006) prepared with 10% methanol. All membranes were blocked in phosphate buffered 939 

saline with Tween (PBST; 0.5% Tween) prepared with 5% milk (w/v) for 20 minutes at room 940 

temperature, followed by overnight incubation with primary antibody at 4°C in PBST-5% milk. 941 

Primary antibodies: anti-Ebp1CT (rabbit, Abcam #ab35424), anti-Ebp1NT (rabbit, Millipore 942 

#ABE43), anti-Gapdh (mouse, Millipore #MAB374), anti-Rpl7/uL30 (rabbit, Abcam #ab72550), 943 

anti-Rps5/uS7 (mouse, Santa Cruz #	 sc-390935). Membranes were then washed in PBST at 944 
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room temperature, HRP secondary antibodies applied in PBST-5% milk for 1 hour at room 945 

temperature, and again washed in PBST before developing (Amersham ECL Prime Western 946 

Blotting Detection Reagent, GE Healthcare #RPN2232) and imaging (GE Amersham Imager 947 

600). Secondary antibodies: HRP-anti-rabbit-Light Chain (mouse, Dianova #211-032-171), 948 

HRP-anti-mouse-Heavy Chain (goat, Millipore #71045). Importantly, note that HRP-anti-Light 949 

Chain secondary antibody was used because probing with HRP-anti-Heavy Chain secondary 950 

antibody introduced a non-specific band (~50 kDa) just above Ebp1 signal (48 kDa), obscuring 951 

the interpretation of actual Ebp1 signal. Band molecular weights were compared to the SeeBlue 952 

Plus2 Prestained Standard Protein Ladder (Thermo Fisher #LC5925) as shown in each figure. 953 

Band signal intensity was measured using GE Amersham Imager 600 software, with 954 

significance testing by ANOVA with Dunnett’s post hoc test (≥3 comparisons), or two-tailed 955 

unpaired t-test (≤2 comparisons), vs. E12.5 with GraphPad Prism software. Western blot signal 956 

for endogenous Ebp1 in lysates was compared to full-length recombinant Ebp1 with a N-957 

terminal Histidine tag (Ebp1-His) as a marker, which was cloned in a pET-28a(+) backbone 958 

(Novagen #69864-3) and purified as described (Kowalinski et al., 2007).    959 

 960 

Binding specificity and affinity analysis of Ebp1�ribosmal subunits 961 

40S and 60S subunits were purified from mouse neocortex and rabbit reticulocyte lysate (RRL) 962 

essentially as described previously (Pisarev et al., 2007). Briefly, 40 frozen P0 neocortices (40 963 

ODU) were lysed as described above, and ribosomes pelleted through a 1 M sucrose cushion in 964 

base buffer (20 mM HEPES, 100 mM KCl, 10 mM MgCl2, 42 U/mL SUPERase-In RNAse 965 

inhibitor, pH 7.4) in Beckman Coulter Ultra-Clear Tubes (#344057) with a SW55 rotor at 966 

50000 rpm for 5.5 hrs, 4°C. 80S ribosome pellets were resuspended in base buffer, and 967 

subjected to a puromycin reaction as described (Pisarev et al., 2007) to release 40S and 60S 968 

subunits. Subunits were separated on a 10-30% sucrose high-salt gradient (20 mM HEPES, 969 

0.5 M KCl, 10 mM MgCl2, 8 U/mL SUPERase-In RNAse inhibitor) prepared as described above, 970 

by ultracentrifugation in Beckman Coulter Ultra-Clear Tubes  (#344060) with a SW40 rotor at 971 

27000 rpm for 12 hrs, 4°C. Subunits were fractionated and collected as described above, and 972 

desalted using Amicon Ultra 0.5 mL 100 kDa MWCO spin columns (Millipore/Sigma 973 

UFC510024) and reconstituted 1:3 v/v with low salt buffer (20 mM HEPES, 10 mM KCl, 2 mM 974 

MgCl2). 40S and 60S subunit concentrations were quantified by NanoDrop Spectrophotometer. 975 

 Recombinant Ebp1 with an N-terminal Histidine tag (Ebp1-His) was cloned into a pET-976 

28a(+) backbone (Novagen #69864-3) and purified as described (Kowalinski et al., 2007). For 977 

Ebp1-His binding to mouse neocortex 40S and 60S subunits (Figure S6A), 5 nM and 20 nM of 978 
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Ebp1-His was reconstituted with 100 nM subunit in 20 mM HEPES, 100 mM KCl, 10 mM MgCl2, 979 

and incubated for 30 min at 37°C. Samples were pelleted through a 15% sucrose cushion 980 

containing 20 mM HEPES, 100 mM KCl, 10 mM MgCl2, 0.04 mM Spermine, 0.5 mM Spermidine 981 

in Beckman Coulter 230 µL Thickwall Polypropylene Tubes (#343621) with a TLA100 rotor at 982 

35000 rpm for 20 hrs at 4°C, separating unbound Ebp1-His from pelleted subunits with bound 983 

Ebp1-His. Pellets of subunits�Ebp1-His were resuspended in 20 mM HEPES, 100 mM KCl, 984 

10 mM MgCl2. Binding was assessed by Western blot loading supernatant and pellet 985 

resuspensions of 40S and 60S samples on the same gel, and probing with Ebp1CT (rabbit, 986 

Abcam #ab35424), uL30/Rpl7 (rabbit, Abcam #ab72550), and uS7/Rps5 (mouse, Santa Cruz #	987 

sc-390935) antibodies on the same membrane.   988 

 Rabbit reticulocyte 40S and 60S subunits were purified and reconstituted to 80S 989 

ribosomes as described (Pisarev et al., 2007) from RRL (Promega #L4960). Binding of 200 nM 990 

Ebp1-His to 100 nM rabbit 40S, 60S, and 80S (Figure 3A) was performed as described above. 991 

For dose-response binding of Ebp1-His to 60S rabbit subunits (Figure 3B), 100 nM 60S was 992 

reconstituted with 1:1 serial dilutions (to 0.5x concentrations) of Ebp1-His from 500 nM to 993 

15.625 nM with 20 mM HEPES, 100 mM KCl, 10 mM MgCl2, 0.04 mM Spermine, 0.5 mM 994 

Spermidine. Binding was assessed by pelleting and Western blot as described above at each 995 

dilution in parallel. This was repeated with a different Ebp1-His dose range between 325 nM to 996 

81.25 nM. Western blot quantification was performed by normalizing Ebp1CT signal to uL30 997 

(Rpl7) signal, subtracting any signal detected in the supernatant, and generating a single dose-998 

response curve including both independent experiments; with the Ebp1-His concentration 999 

demonstrating maximum binding (Ebp1CT/uL30) in each experiment set to 100%. Curves were 1000 

fit using the GraphPad Prism software, with the best fit achieved by non-linear one site-specific 1001 

binding with Hill slope accommodation (Figures 3C and S6B). 1002 

 Binding dynamics of Ebp1 to the rabbit 60S during mRNA translation were assessed by 1003 

comparing the following mixtures: (1) 100 nM of rabbit 60S with saturating levels of (350 nM) 1004 

Ebp1-His; (2) endogenous Ebp1 in RRL (~100 nM ribosomes estimated as described in the 1005 

Methods below); (3) 350 nM Ebp1-His added to RRL (100 nM ribosomes); (4) endogenous 1006 

Ebp1 in RRL (100 nM ribosomes) undergoing in vitro translation of a Luciferase mRNA; (5) the 1007 

same conditions as (4) but with 0.1 mg/mL cycloheximide (Sigma-Aldrich #C7698) added to stall 1008 

Luciferase peptide elongation. All the above mixtures were prepared in parallel, and incubated 1009 

at 30°C for 30 min, 650 rpm – allowing for protein synthesis to occur to completion in (4) and (5). 1010 

Mixtures were pelleted through a sucrose cushion as described above to separate unbound vs. 1011 

bound Ebp1, and pellets likewise analyzed by Western blot (Figure 3D).      1012 
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 1013 

Immuno-electron microscopy 1014 

Neocortex was dissected at E12.5, E15.5, and P0 at 4°C as described above, and immersion 1015 

fixed at 4°C in phosphate buffered saline (PBS) containing 4% PFA and 0.1% Glutaraldehyde 1016 

overnight, followed by 24 hours incubation in 4% PFA-PBS, and finally stored in 1% PFA-PBS. 1017 

In order to identify the subcellular localization of EBP1 protein in neocortical precursor/stem and 1018 

neuronal cells at different developmental stages, we performed pre-embedding nanogold-silver 1019 

enhanced immunolabeling for Ebp1. 1020 

Fixed brains were rinsed several times in PBS and sectioned on a Vibratome (Leica 1021 

VT1000S) at 50-100 µm. Floating sections were washed again in PBS, followed by incubation in 1022 

0.1% sodium borohydride (NaBH4; Sigma-Aldrich #452882) in PBS for 15 min to inactivate 1023 

residual aldehyde groups. Sections were then washed with PBS several times until the solution 1024 

was clear of bubbles. To improve reagent penetration, the sections were then treated with PBS 1025 

containing 0.05% Triton X-100 for 30 min and then washed 3x with PBS. To avoid nonspecific 1026 

binding, sections were incubated for 1 hr in blocking solution containing 5% normal goat serum 1027 

(NGS; PAN Biotech #P30-1002), and 5% bovine serum albumin (BSA; Sigma-Aldrich #A3294) 1028 

in PBS. All following immuno-incubations were done with gentle agitation, overnight at 4°C. 1029 

After blocking, sections were incubated with primary antibodies: rabbit anti-Ebp1NT (rabbit, 1030 

Millipore #ABE43) or rabbit anti-EBP1CT (rabbit, Abcam #ab35424) diluted in PBS containing 1031 

0.5% acetylated BSA (BSA-c, Aurion #900.022). After washes with PBS/BSA-c, sections were 1032 

incubated in the secondary nanogold conjugated antibody (Nanoprobes #2003) goat anti-rabbit 1033 

IgG diluted 1:100 in PBS/BSA-c. To remove unbound secondary antibodies, sections were 1034 

washed thoroughly with PBS/BSA-c and then with PBS. Subsequently, sections were post-fixed 1035 

with 2% GA in PBS for 2 hrs to crosslink nanogold in the tissue in order to prevent the loss of 1036 

labeling during subsequent processing. Next, sections were washed several times in PBS and 1037 

in double distilled water (ddH2O) and prepared for silver enhancement according to the 1038 

manufacturer’s instruction (Nanoprobes). For structural stabilization, section were incubated 1039 

with buffered 1% osmium tetroxide (OsO4; Polysciences #0972A) for 1 hr and then washed in 1040 

PBS followed by ddH2O. Sections were dehydrated in increasing concentrations of ethanol and 1041 

flat-embedded in Epoxy embedding medium (Epon 812; Sigma-Aldrich #45345) between two 1042 

sheets of Aclar film (Plano #10501-10). After resin polymerization at 60°C, small pieces of 1043 

cortex were dissected, mounted on plastic stubs, and sectioned en face into 60-65 nm sections 1044 

on an Ultramicrotome (Reichert Ultracut S, Leica) and mounted on 200-mesh Formvar-coated 1045 

nickel grids (Plano #G2710N). Ultrathin sections were finally stained with 2% aqueous uranyl 1046 
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acetate (Merck #1.08473.0100) for 2 min and with lead citrate (Fluka #GA10655) (Reynolds, 1047 

1963) for 30 s. Sections were imaged using a Zeiss TEM-912 equipped with a digital camera 1048 

(Proscan 2K Slow-Scan CCD-Camera, Zeiss). Subcellular profiles of interest were highlighted in 1049 

the images with pseudo-color in Adobe Photoshop (Figures 3E and S7) as detailed in the guide 1050 

by Eric Jay Miller  1051 

(http://www.nuance.northwestern.edu/docs/epic-1052 

pdf/Basic_Photoshop_for_Electron_Microscopy_06-2015.pdf).  1053 

 1054 

Cryo-electron microscopy and data processing 1055 

Sample and grid preparation. Pooled 80S and polysomal ribosomes were purified ex vivo by 1056 

preparative 10-50% sucrose density gradient ultracentrifugation from dissected frozen P0 1057 

mouse neocortex tissue as described above, but with the following adaptations optimizing for 1058 

cryo-electron microscopy (cryo-EM). Frozen P0 mouse neocortex (32 animals, 64 neocortex 1059 

hemispheres) were lysed by cryogenic pulverization with 20 mM HEPES, 100 mM KCl, 10 mM 1060 

MgCl2, pH 7.4, supplemented with 20 mM Dithiothreitol (DTT), 0.04 mM Spermine, 0.5 mM 1061 

Spermidine, 1x Protease Inhibitor cOmplete EDTA-free (Roche #05056489001), 480 U/mL 1062 

RNasin Plus RNAse inhibitor (Promega #N2615), 0.3% v/v IGEPAL CA-630 detergent (Sigma 1063 

#I8896), and 0.1 mg/mL cycloheximide (Sigma-Aldrich #C7698). Lysates were subjected to 1064 

further passive lysis by incubation for 1 hr on ice to enhance lipid membrane dissociation, 1065 

followed by lysate clarification as above. 10-50% sucrose gradients in Beckman Coulter Ultra-1066 

Clear Tubes (#344057) were prepared with a base buffer of 10 mM HEPES, 50 mM KCl, 5 mM 1067 

MgCl2, to pH 7.4, supplemented with 20 mM Dithiothreitol (DTT), 0.04 mM Spermine, 0.5 mM 1068 

Spermidine, 1x Protease Inhibitor cOmplete EDTA-free, 40 U/mL RNasin Plus RNAse inhibitor, 1069 

and 0.1 mg/mL cycloheximide. Samples were centrifuged in a SW55 rotor for 50 min at 1070 

37000 rpm, 4°C. Fractions corresponding to the 80S and polysomal peaks were collected, 1071 

pooled, and diluted 1:1 v/v with 20 mM HEPES, 100 mM KCl, 10 mM MgCl2, pH 7.4, 1072 

supplemented with 20 mM Dithiothreitol (DTT), 0.04 mM Spermine, 0.5 mM Spermidine, 1x 1073 

Protease Inhibitor cOmplete EDTA-free, and 0.1 mg/mL cycloheximide to dilute the sucrose 1074 

concentration to ≤ 20%. Samples were then pelleted by ultracentrifugation in Beckman Coulter 1075 

Ultra-Clear Tubes (#344057) with a SW55 rotor for 50 min at 37000 rpm, 4°C. Pellets were 1076 

resuspended in the same dilution buffer, testing for concentration and quality control by negative 1077 

stain EM with 2% uranyl acetate. Samples were diluted 1:6 with resuspension buffer, and 3.6 µL 1078 

of sample were applied to glow-discharged holey carbon grids (Quantifoil R3/3 100 Holey 1079 
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Carbon Films; 2 nM carbon; Micro Tools GmbH), blotted with a Vitrobot device (FEI) for 2-4 s at 1080 

4°C, and plunged in liquid ethane. Samples were stored in liquid nitrogen until imaging. 1081 

 1082 

Cryo-EM data collection. Initial datasets were collected for sample quality control and low-1083 

resolution ribosome reconstruction on a 120 keV Tecnai Spirit cryo-EM (FEI; MPI Molecular 1084 

Genetics, Berlin) equipped with a CMOS camera (TVIPS), with automated Leginon software 1085 

(Carragher et al., 2000; Suloway et al., 2005). Projection images were then analyzed by 3-D 1086 

reconstruction and unsupervised classification for intrinsic ribosomal structure heterogeneity in 1087 

silico with SPIDER (Frank et al., 1996) as described previously (Behrmann et al., 2015; Loerke 1088 

et al., 2010). These data revealed the presence of extra-ribosomal density at the 60S exit tunnel. 1089 

To validate these findings, an independent biological replicate sample was re-prepared, with 1090 

new grids frozen, and likewise imaged using the same protocol, yielding identical density at the 1091 

60S exit tunnel. 1092 

 High-resolution data (Figures 4-5 and S8-S10) were collected on a 300 keV Titan Krios 1093 

(FEI; EMBL, Heidelberg) equipped with a Gatan Quantum K2 direct electron detector at a 1094 

nominal magnification of 31000x, yielding a pixel size of 0.66 Å on the object scale. Movie 1095 

stacks were collected in super-resolution mode with EPU automated software (FEI) with the 1096 

following parameters:  defocus range of 0.5-2.5 µm, 40 frames per movie, 20 s exposure time, 1097 

electron dose of 1.589 e/Å2/s and a cumulative dose of 31.78 e/Å2 per movie.  1098 

 1099 

Computational analysis. High-resolution data collection yielded 5379 movies. The movies were 1100 

aligned and dose-weighted using MotionCor2 (Zheng et al., 2017) and initial estimation of the 1101 

contrast transfer function (CTF) was performed with the CTFfind4 package (Mindell and 1102 

Grigorieff, 2003). Resulting micrographs were manually inspected to exclude images with 1103 

substantial contaminants (typically lipid/membranes) or grid artifacts. Power spectra were 1104 

manually inspected to exclude images with astigmatic, weak, or poorly defined spectra. The 1105 

dataset included 4501 micrographs after these quality control steps (84% of total). Ribosomal 1106 

particle images were identified using the “swarm” function within e2boxer from the EMAN2 1107 

software package (Tang et al., 2007). After the manual removal of artifact particle images, the 1108 

data set contained 208206 particle images (Figure S8).        1109 

For multiparticle sorting and 3D refinement (Figure S9), the SPHIRE package (Moriya et 1110 

al., 2017) was used for all steps except for 3D classification, which was performed using a 1111 

python/SPARX-implementation of the incremental k-means algorithm described previously 1112 

(Loerke et al., 2010). Therein, two modes for classification exist: (1) refinement, either global or 1113 
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local; and (2) focused classification based on a binary mask, defining a region of interest (ROI) 1114 

(Penczek et al., 2006). Such a focused mask was derived from 3D variability calculations, which 1115 

visualizes regions of high heterogeneity with the 3D volume (Behrmann et al., 2015).  1116 

However, since heterogeneous regions outside the binary mask can influence the 1117 

classification, a more sensitive approach was implemented. The “nue” mode, named after the 1118 

hybrid beast in japanase folklore, creates a hybrid map for each class in a simple procedure: a 1119 

weighted average of all classes is calculated and used as the “outside”. The ROI within the 1120 

focused mask is extracted for each class and used as the “inside”. Therefore, the focused mask 1121 

is transformed into a soft mask by adding a smooth falloff at the edges. For each class, the 1122 

“outside” map is combined with the respective “inside” map, normalized and filtered, forming the 1123 

“nue”-map for each class. These “nue” maps are then used as references for focused 1124 

classification. The “nue” maps only differ within the region of interest, reducing the influence of 1125 

any peripheral variations. A new set of “nue” maps are calculated at the beginning of each 1126 

iteration. A similar approach was implemented in Frealign/cisTEM, in which the outside area can 1127 

be filtered or weighted down in order to reduce its influence during the classification (Grant et al., 1128 

2018; Grigorieff, 2016; Zhang et al., 2019). A more detailed description of the procedure is in 1129 

preparation (Krupp F, et al. In preparation). 1130 

For the initial refinement, particle images were extracted at a box size of 360 pixels with 1131 

a pixel size of 1.32 Å/px. All particles were aligned using sxmeridien using a filtered 80S yeast 1132 

ribosome cryo-EM map as a reference. The refinement yielded a consensus map with sub-1133 

nanometer global resolution depicting fragmented densities for the small subunit, tRNAs, eEF2, 1134 

and Ebp1. In order to separate this dataset into homogeneous sub-states, a hierarchical 1135 

classification scheme (Figure S9) was employed as described previously (Behrmann et al., 1136 

2015). Three tiers of sorting were performed, whereby large-scale heterogeneity (e.g. subunit 1137 

rotation) was classified first, before sorting based on more subtle differences (+/- Ebp1). 1138 

In the first tier of sorting, particle images and parameters were decimated to 3.96 Å/px at 1139 

a box size of 120px to minimize computational expense and limit the resolution for classification. 1140 

This yielded a rotated 80S, classical 80S, and an artifact population, achieved by an incremental 1141 

K-means procedure using global and local refinement.  1142 

In the second tier of sorting, rotated and classical populations were separated and 1143 

treated independently. Particle images were decimated to 2.64 Å/px at a box size of 180px. 1144 

Focused classification was performed, since the maps already depicted high-resolution features. 1145 

A strong signal of 3D variability was detected in the tRNA-binding site and at the eEF2 binding 1146 

site, and thus focus masks were constructed in order to separate classes with different 1147 
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compositions of tRNA and eEF2. The “rotated”-branch was separated into two classes: (1) 1148 

+eEF2, and (2) +eEF2 +P/E-tRNA. The “classical”-branch was separated into three classes: (1) 1149 

+A-tRNA +P-tRNA, (2) +E-tRNA, and (3) empty 80S. However, within these five classes, the 1150 

Ebp1 density still appeared fragmented, suggesting further heterogeneity in this region. These 1151 

findings were confirmed by 3D variability calculations.  1152 

In the final sorting tier, particle images were separated into these five classes, and 1153 

decimated to 2.64 Å/px at a box size of 180 px. A focus mask enclosing the Ebp1 region was 1154 

defined based on the 3D variability of each of the second-tier classes, and used for sorting into 1155 

Ebp1-positive and Ebp1-negative classes. The results yielded a nearly equal distribution of 1156 

Ebp1-positive and Ebp1-negative ribosomes in each sub-state, with an overall Ebp1�80S 1157 

occupancy of 52% in our dataset (Figure S9). 1158 

Finally, four of these classes were refined at 1.326 Å/px decimation with box size of 1159 

360 px, yielding near-atomic global resolution for all ribosomal complexes, and allowing for the 1160 

building of an atomic model of the mouse neocortical ribosome 60S�Ebp1. Euler distributions 1161 

and global Fourier Shell Correlations (FSCs) were calculated (Figures S10A-D), in addition to 1162 

the local resolutions of these maps (Figures S10E-K’) with SPHIRE. Local resolution for Ebp1 1163 

ranges from 4 Å at the rRNA binding site to 6 Å at the solvent-side periphery (Figures 1164 

S10I,I’,K,K’). Ebp1-positive and Ebp1-negative maps yielded similar global and local resolutions 1165 

from a similar particle number, permitting the use of the Ebp1-negative map as an internal 1166 

control for the structural interpretation.  1167 

Cryo-EM maps for the neocortical 80S�Ebp1 complex, including both the rotated state 1168 

with eEF2 and the classical state with A/A+P/P tRNAs, are deposited in the Worldwide Protein 1169 

Data Bank (wwPDB; https://www.wwpdb.org/) with accession code EMD-10321, for immediate 1170 

release on publication.  1171 

 1172 

Model building 1173 

Since our focus was the interaction surface of Ebp1 on the mouse neocortical ribosome, we 1174 

modeled the 60S subunit in complex with Ebp1 in the cryo-EM map. Modeling was performed in 1175 

density for the rotated sub-state (+) Ebp1, since this map achieved the highest global resolution 1176 

of 3.1 Å (Figure S10C). A 60S model derived from human polysomes (PDB 5AJ0) (Behrmann 1177 

et al., 2015) was used as a starting model for the ribosomal proteins, and a rabbit 60S model 1178 

(PDB 6GZ5) (Flis et al., 2018) was the starting model for rRNA. A pre-existing crystallographic 1179 

model of mouse Ebp1 (PDB 2V6C) (Monie et al., 2007) was utilized to model Ebp1 density, 1180 

downloaded from the Research Collaboratory for Structural Bioinformatics (RCSB) (Berman et 1181 
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al., 2000) website https://www.rcsb.org/. For all models, an initial rigid body docking was 1182 

performed in UCSF Chimera v1.10.2 (Pettersen et al., 2004) (http://www.rbvi.ucsf.edu/chimera), 1183 

with subsequent adjustment within the density performed in COOT (Emsley and Cowtan, 2004). 1184 

Thereafter, the models were globally optimized by real-space refinement in PHENIX (Adams et 1185 

al., 2010) and validated with MolProbity (Chen et al., 2010) (Figure S8). To prevent over-fitting 1186 

during refinement, the applied weight was optimized by monitoring correlation of the map versus 1187 

model in half-sets of the cryo-EM map (Brown et al., 2015; Greber et al., 2014; Sprink et al., 1188 

2016), using individually-determined weight factors. rRNA stuctures were further refined with 1189 

ERRASER (Chou et al., 2013). Molecular graphics and analysis for figure preparation was 1190 

performed with UCSF Chimera v1.10.2 and UCSF ChimeraX v0.9.0 (Goddard et al., 2018) 1191 

(https://www.cgl.ucsf.edu/chimerax/). Analysis of atomic interactions between Ebp1 residues 1192 

and ribosomal proteins/rRNA was aided by the CCP4Interface 7.0.073 (Potterton et al., 2003) 1193 

CONTACT algorithm to compute atomic distances between the Ebp1 crystallographic model 1194 

(PDB 2V6C) and modeled ribosomal proteins/rRNA as input. Atomic distances deemed 1195 

significant and highlighted as electrostatic contacts (Figures 4E-H) were between 0.93-3.95Å. 1196 

Electrostatic potential maps were generated for Ebp1 (PDB 2V6C), Metap2 (PDB 1KQ9), and 1197 

Arx1 (PDB 5APN) in UCSF Chimera v1.10.2 using the APBS (Jurrus et al., 2018) interface and 1198 

webserver http://nbcr-222.ucsd.edu/pdb2pqr_2.1.1/.   1199 

 The neocortical 60S�Ebp1 atomic model is deposited in the wwPDB with accession 1200 

code PDB ID 6SWA, for immediate release on publication. A PDB validation report is available 1201 

upon request with the submission of this manuscript.    1202 

 1203 

Pulsed SILAC and BONCAT coupled mass spectrometry 1204 

Knockdown confirmation. The mouse and human siEbp1 oligos were obtained from the 1205 

Dharmacon SMARTpool ON-TARGETplus collection (mouse siPa2g4 #18813, order #L-1206 

042883-01-0005; human siPa2g4 #5036; order #L008860-00-0005) and compared to non-1207 

targeting siRNA control (order #D-001810-10-05). Transfection was performed with 1208 

Lipofectamine RNAiMAX Transfection Reagent (Thermo Fisher #13778075) according to the 1209 

manufacturer’s protocol. To confirm robust and specific knockdown with the mouse siEbp1 1210 

oligos, Neuro2a cells were treated in parallel with the following conditions in biological duplicate, 1211 

followed by Western blot analysis of total lysates (Figure 6A): (1) mock transfection, (2) control 1212 

siRNA, (3) mouse siEbp1, (4) human siEbp1, and (5) 1:1 mouse + human siEbp1. 1213 

 1214 
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Sample preparation. For pulsed stable isotope labeling by amino acids in cell culture (pSILAC) 1215 

(Schwanhäusser et al., 2009) and bioorthogonal noncanonical amino acid tagging (BONCAT) 1216 

(Dieterich et al., 2006) coupled mass spectrometry (QuaNCAT) (Eichelbaum et al., 2012; 1217 

Howden et al., 2013) (Figures 6C-D), eight 10 cm plates of Neuro2a cells were grown in 1218 

standard DMEM (Gibco #31966047) with 1% FBS (Gibco #10270106) to a confluence of 50% in 1219 

humidified 37°C, 5% CO2. Then, mouse siEbp1 vs. control siRNA tranfection was performed 1220 

with Lipofectamine RNAiMAX Transfection Reagent (Thermo Fisher #13778075) according to 1221 

the manufacturer’s protocol, in four plates each. The next morning, media was changed in each 1222 

condition to either heavy SILAC (2 plates; Cambridge Isotope Labs #CNLM-539, CNLM-291) or 1223 

medium SILAC (2 plates; Cambridge Isotope Labs #CLM-2265, DLM-2640) prepared with 1224 

DMEM (Pan-Biotech #P04-02505), 1% dialyzed FBS (PAN-Biotech #P30-2102), GlutaMAX 1225 

(Thermo Fisher #35050-038), and Penicillin-Streptomycin (Thermo Fisher #15140-122) along 1226 

with repeated application of the siRNAs. Thus, throughout the course of Ebp1 vs. control 1227 

knockdown, all newly made proteins were labeled with either heavy or light SILAC (pSILAC), i.e. 1228 

“label swap” biological replicates. After 48 hr, SILAC media and siRNAs were refreshed. After 1229 

another 24 hr, one heavy SILAC and one medium SILAC plate from each condition were pulsed 1230 

with 1 mM L-azidohomoalaine (AHA; Anaspec #AS-63669) for four hours in the corresponding 1231 

SILAC media prepared with methionine-free DMEM (Sigma-Aldrich #D0422) and 1% dialyzed 1232 

FBS, labeling all newly made proteins during this acute interval with AHA in addition to the 1233 

original SILAC label. Thus, acutely synthesized proteins at the point of maximal Ebp1 1234 

knockdown were labeled with both SILAC and AHA in parallel (pSILAC-AHA).  1235 

 Media was then gently aspirated from each plate, followed by washing with ice-cold PBS, 1236 

then scraping cells into 1 mL ice-cold PBS. Samples were lysed by the addition of 50 mM Tris 1237 

pH 8, 150 mM NaCl, 1% IGEPAL CA-630 detergent (Sigma #I8896), and 0.5% Sodium 1238 

Deoxycholate, followed by 5 min of boiling, then lysate clarification by centrifugation at 16000xg 1239 

4°C for 30 min. 10% of each sample was frozen for Western blot confirmation of Ebp1 1240 

knockdown. The remaining 90% of samples were then mixed 1:1 as per the following:  1241 

(1) Control+Heavy SILAC : siEbp1+Medium SILAC 1242 

(2) Control+Medium SILAC : siEbp1+Heavy SILAC 1243 

(3) Control+Heavy SILAC-AHA : siEbp1+Medium SILAC-AHA 1244 

(4) Control+Medium SILAC-AHA : siEbp1+Heavy SILAC-AHA 1245 

Mixtures (1) and (2) were combined with nine volumes of ice-cold ethanol, and frozen at -80°C 1246 

for downstream MS analysis. Mixtures (3) and (4) were subjected to AHA-enrichment.  1247 

 1248 
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AHA-enrichment. In preparation for on-bead digestion, azide-containing proteins were enriched 1249 

from Neuro2a cell lysates using alkyne-agarose beads (Click-Chemistry Tools #1033). Alkyne-1250 

agarose beads were rinsed 2 times in pure injection grade water (AMPUWA) before use. To 1251 

facilitate azide-alkyne binding, a 4x-concentrated “click-solution” was prepared in pure water: 1252 

0.8 mM Tris(3-hydroxypropyltriazolylmethyl)amine (THPTA, Sigma-Aldrich #762342), 80 mM 1253 

Sodium L-ascorbate (Sigma-Aldrich #A7631), and 0.8mM Copper(II) sulfate pentahydrate 1254 

(Sigma-Aldrich #209198). 200 µl of 4x-click-solution and 200 µl of alkyne-agarose beads were 1255 

first mixed before addition to 400 µl of Neuro2a lysate. To prevent protease degradation of 1256 

peptides, Protease Inhibitor Cocktail Set III, EDTA-Free (Calbiochem/Sigma-Aldrich #539134) 1257 

was added to the final solution (1:50 dilution). To allow time for the click reaction to proceed, the 1258 

click-bead-lysate mix was briefly vortexed (~8000xg for 5 s) before being placed on an orbital 1259 

shaker maintained in the dark at room temperature. Following 3.5 hrs of incubation, alkyne-1260 

agarose beads were briefly centrifuged at 3000xg for 2 min, and resuspended in agarose wash 1261 

buffer (100 mM Tris, 1% SDS, 250 mM NaCl, 5 mM EDTA, pH 8.0) containing dithiothreitol 1262 

(DTT, 10 mM). To break disulfide bonds, alkyne-agarose beads were incubated with DTT-1263 

solution for 20 min at room temperature, then 10 min at 70°C, at 1000 rpm in a thermomixer 1264 

(Eppendorf). Following DTT treatment, alkyne-agarose beads were resuspended in agarose 1265 

wash buffer containing 40 mM Iodoacetamide (IAA). For the alkylation of free thiol groups, 1266 

alkyne-agarose beads were incubated with IAA for 45 min on an orbital shaker maintained in the 1267 

dark at room temperature. Following incubation, alkyne-agarose beads were washed using a 1268 

bench top centrifuge (Roth) and 2 ml centrifuge columns (Pierce) with the following solutions, 10 1269 

times each: (1) agarose wash buffer, (2) 8 M Urea in 100 mM Tris, and (3) 70% acetonitrile 1270 

solution (100 mM ammonium bicarbonate buffer; ABC). Following washing, beads were then 1271 

resuspended in 35% acetonitrile (50 mM ABC buffer) before centrifugation at 3000xg for 2 min 1272 

to form a bead-pellet. The resulting supernatant was removed and the tube containing the pellet 1273 

was frozen on liquid nitrogen before storage at -20°C until on-bead digestion. 1274 

 1275 

Mass spec analysis. Proteins from cell lysates were precipitated in 90% ethanol solution at -1276 

20°C followed by 30 min centrifugation at 20000xg at 4°C. Protein pellets and AHA-clicked 1277 

beads were resuspended in 2 M urea, 6 M Thiourea, 0.1 M Tris pH 8 solution. Proteins were 1278 

reduced and alkylated with 10 mM DTT and 55 mM iodoacetamide at room temperature, 1279 

respectively. For lysis, proteins were incubated with lysyl endopeptidase (Wako) at room 1280 

temperature for 3 hr. Three volumes of 50 mM ammonium bicarbonate solution were added, 1281 

and proteins were further digested with trypsin (Promega) under constant agitation at room 1282 
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temperature for 16 hr. Peptides were desalted with C18 Stage Tips prior to LC-MS/MS analysis. 1283 

Peptide concentration was measured based on 280 nm UV light absorbance. 1284 

Reversed-phase liquid chromatography was performed employing an EASY nLC II 1285 

(Thermo Fisher Scientific) using self-made C18 microcolumns (75 µm ID, packed with ReproSil-1286 

Pur C18-AQ 1.9 µm resin, Dr. Maisch, Germany) connected on-line to the electrospray ion 1287 

source (Proxeon, Denmark) of a Q Exactive HF-X mass spectrometer (Thermo Fisher Scientific). 1288 

Peptides were eluted at a flow rate of 250 nL/min over 1 or 2 hr with a 9% to 55.2% acetonitrile 1289 

gradient in 0.1% formic acid. Settings for mass spectrometry analysis were as follows: one full 1290 

scan (resolution, 60,000; m/z, 350-1,800) followed by top 20 MS/MS scans using higher-energy 1291 

collisional dissociation (resolution, 15,000; AGC target, 1e5; max. injection time, 22 ms; isolation 1292 

width, 1.3 m/z; normalized collision energy, 26). The Q Exactive HF-X instruments was operated 1293 

in data dependent mode with a full scan in the Orbitrap followed by up to 20 consecutive MS/MS 1294 

scans. Ions with an unassigned charge state, singly charged ions, and ions with charge state 1295 

higher than six were rejected. Former target ions selected for MS/MS were dynamically 1296 

excluded for 20 or 30 s. 1297 

All raw files were analyzed with MaxQuant software (v1.6.0.1) with default parameters, 1298 

and with match between runs and requantify options on. Search parameters included two 1299 

missed cleavage sites, cysteine carbamidomethyl fixed modification, and variable modifications 1300 

including methionine oxidation and protein N-terminal acetylation. Peptide mass tolerance was 1301 

6ppm and the MS/MS tolerance was 20ppm. Database search was performed with Andromeda 1302 

against UniProt/Swiss-Prot mouse database (downloaded on January 2019) with common 1303 

serum and enzyme contaminant sequences. False discovery rate (FDR) was set to 1% at 1304 

peptide spectrum match (PSM) and protein levels. Minimum peptide count required for protein 1305 

quantification was set to two. Potential contaminants, reverse database hits and peptides only 1306 

identified by modification were excluded from analysis. MaxQuant normalized SILAC ratios were 1307 

used for quantitative data analysis.  1308 

We tested for miRNA-like off-target effects using seeds based on the siRNA sequences 1309 

in the mouse siEbp1 (siPa2g4) knockdown pool with the cWord software (Rasmussen et al., 1310 

2013). All proteins from our dataset were ranked according to their change ratio (mean H/M 1311 

ratio in Forward and Reverse experiments; lowest to highest fold change). UniProt IDs were 1312 

converted to Ensembl IDs and searched against mouse 3’UTR using cWords 1313 

(http://servers.binf.ku.dk/cwords/) (Rasmussen et al., 2013). None of the possible 7-mers from 1314 

these seeds showed specific enrichment in either AHA or pSILAC datasets. A cutoff of >2-fold 1315 

change in siEbp1 conditions compared to control in both replicates was considered significant. 1316 
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Gene ontology (GO) pathway analysis was performed with the Database for Annotation, 1317 

Visualization and Integrated Discovery (DAVID) (Huang et al., 2009) for proteins with >2-fold 1318 

change from control in siEbp1 conditions (against all quantified proteins). Importantly, peptides 1319 

corresponding to Ebp1 measured in siEbp1 samples did not meet the minimum requirements for 1320 

quantification, confirming robust knockdown, and therefore show no fold-change ratio. Mass 1321 

spectrometry proteomics data have been deposited to the ProteomeXchange Consortium 1322 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository for reviewer 1323 

access, and for immediate release on publication: 1324 

ProteomeXchange PXD014740 1325 

Username: reviewer84416@ebi.ac.uk  1326 

Password: BwylH8kX 1327 

 1328 

Primary neocortical culture and immunocytochemistry 1329 

Primary E12.5 neocortical cultures (Figure 6F) were prepared from Nex:Cre;Ai9 animals, as 1330 

previously described (Turko et al., 2018). Briefly, dissected neocortex tissue was dissociated 1331 

with Papain for 25 min (1.5 mg/ml) before trituration in bovine serum albumin (10 mg/ml). Cells 1332 

were then resuspended in Neurobasal (medium, supplemented with 1x B27, 1x Glutamax, and 1333 

100 U/ml Penicillin-Streptomycin). Dissociated cells were grown on 12 mm round, glass 1334 

coverslips coated with Poly-L-Lysine (20 µg/ml) in 24-well plates. Cells were plated in 40 µl 1335 

droplets at a concentration of 500 cells per µl (total: 20,000 cells per coverslip). Cultures were 1336 

grown in humidified conditions at 37°C, 5% CO2. Cells were cultured for 5 days to allow for 1337 

neural stem cell (NSC) differentiation into post-mitotic Nex-positive neurons.  1338 

 At days in vitro 0, 2, 4 and 5 coverslips were fixed and analyzed by 1339 

immunocytochemistry for Ebp1 expression in Nestin-positive NSCs and Nex-positive neurons 1340 

as described previously (Turko et al., 2018). In brief, cells were fixed for 15 min in 4% 1341 

paraformaldehyde (PFA), 4°C solution before subsequent washes in: 0.1 M phosphate buffered 1342 

solution (PB) and phosphate buffered saline (PBS). All antibodies were diluted (1:1000) in PBS 1343 

with 0.1% Triton-X 100, and incubated overnight at 4°C on an orbital shaker. Primary 1344 

antibodies: anti-Nestin (mouse, Millipore #MAB353), anti-Ebp1NT (rabbit, Millipore #ABE43). 1345 

Secondary antibodies: Alexa Fluor 647-conjugated anti-mouse (goat, Jackson 1346 

ImmunoResearch) and Alexa Fluor 488-conjugated anti-rabbit (goat, Jackson 1347 

ImmunoResearch). DAPI was applied to visualize nuclei (NucBlue, Molecular Probes, Invitrogen 1348 

#R37606). Coverslips were mounted on glass slides using Fluoromount-G (Southern Biotech, 1349 

#0100-01). Images were captured on an upright confocal microscope (FV-1000, Olympus) using 1350 
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30x silicon oil-immersion objective (1.05 NA, 0.8 mm WD). Images were analyzed using the FIJI 1351 

distribution of ImageJ software (Schindelin et al., 2012) (https://fiji.sc/), maintaining constant 1352 

LUT parameters across images.  1353 

 1354 

Immunofluorescence labeling in neocortex tissue  1355 

Tissue processing and immunohistochemistry (Figures 2C and S4) was performed similar to 1356 

the previously described method (Kraushar et al., 2014). In brief, embryonic (E12.5, E14, E15.5, 1357 

E17) and postnatal (P0) mouse brains were dissected at 4°C in ice cold PBS (ThermoFisher 1358 

#14040133), and initially immersion-fixed with 4% (w/v) paraformaldehyde (PFA) in PBS (PBS-1359 

PFA; pH 7.4) at room temperature for 30 min, followed by overnight PBS-PFA fixation at 4°C. 1360 

Fixed brains were then embedded in 3.2% agarose-PBS, and coronally sectioned at 70 µm on a 1361 

Leica vibratome (VT1000S). Sections of the anterior sensorimotor neocortex were collected, 1362 

incubated in blocking solution (PBS, 10% normal donkey serum, 2% w/v BSA, 0.2% w/v glycine, 1363 

0.2% w/v lysine), then incubated overnight in probing solution with 0.4% Triton-X and primary 1364 

antibody at 4°C. Primary antibodies: anti-Map2 (chicken, Millipore #AB5543), anti-Ebp1CT (rabbit, 1365 

Abcam, #ab35424), anti-Ebp1NT (rabbit, Millipore #ABE43). Samples were washed in PBS, then 1366 

all secondary antibodies, Alexa 488 anti-rabbit (goat, Jackson ImmunoResearch) and Alexa 647 1367 

anti-chicken (goat, Jackson ImmunoResearch), were applied at 1:250 dilution in probing 1368 

solution for 2 hr at room temperature, washed, incubated with DAPI (NucBlue, Molecular Probes, 1369 

Invitrogen #R37606) for 10 min, and mounted with Vectashield. Confocal imaging was 1370 

performed with an upright confocal microscope (FV-1000, Olympus), 20x air objective, 1371 

maintaining constant parameters and setting across all images. Images were likewise analyzed 1372 

using FIJI software, including the pairwise stitching plugin (Preibisch et al., 2009), maintaining 1373 

constant LUT parameters across images.      1374 

 1375 

In utero electroporation and morphology analysis 1376 

The mouse shEbp1 plasmid was obtained from the Sigma MISSION collection (shPa2g4; oligo 1377 

name: TRCN0000236756; RefSeq NM_011119) in bacterial glycerol stock format, and amplified 1378 

according to the manufacturer’s protocol, followed by plasmid purification with the Nucleobond 1379 

Xtra Midi Kit (Macherey & Nagel #740410.100). The non-targeting scrambled shRNA control 1380 

was generated as described in a prior study (Ambrozkiewicz et al., 2018). The Ebp1 1381 

overexpression plasmid was generated by insert amplification from the Clone IRAVp968A0190D 1382 

I.M.A.G.E. Fully Sequenced cDNA (Source BioScience) with primers forward 5'-1383 

gtctcatcattttggcaaagATGTACCCATACGATGTTCCAGATTACGCTTCGGGCGAAGACGAG-3' 1384 
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and reverse 5'-cggccgcgatatcctcgaggTCAGTCCCCAGCTCCATTC-3', followed by cloning into 1385 

the pCAGIG (pCAG-IRES-GFP) backbone (Ambrozkiewicz et al., 2018) with the restriction 1386 

enzyme EcoRI (NEB). Co-electroporation of the pCAG-IRES-GFP plasmid was used as a 1387 

transfection reporter.  1388 

E12 In utero electroporation (IUE) of control, shEbp1, and shEbp1+oeEbp1 conditions 1389 

with the CAG-GFP reporter followed by analysis at E16 with confocal imaging, morphology 1390 

tracing, and Sholl analysis (Figures 7A-D) was performed as described (Ambrozkiewicz et al., 1391 

2018). Briefly, GFP labeling of electroporated neurons in confocal images was analyzed by 1392 

morphology tracing with the Neurite Tracer plugin (Longair et al., 2011) by a blinded investigator, 1393 

followed by the Sholl analysis (Ferreira et al., 2014) plugin run in FIJI with 1 µm radius of 1394 

concentric circles, plotting the average intersections over distance from the soma and average 1395 

total summed intersections in each condition. Significance was assessed by one-way ANOVA 1396 

followed by Bonferroni corrected post hoc testing in GraphPad Prism software, with p < 0.05 1397 

considered significant.         1398 

 1399 

QUANTIFICATION AND STATISTICAL ANALYSIS 1400 

Mass spectrometry 1401 

MaxQuant software (v1.6.0.1) (Cox and Mann, 2008) was run with default parameters, and with 1402 

match between runs and requantify options on. Protein quantification across samples was 1403 

performed using the label-free quantification (LFQ) algorithm (Cox et al., 2014). A minimum 1404 

peptide count required for LFQ protein quantification was set to two. Only proteins quantified in 1405 

at least two out of the three biological replicates in input, 80S, and polysome samples, and two 1406 

out of two (label swap) biological replicates in pSILAC/AHA samples, were considered for 1407 

further analyses. LFQ intensities were log2-transformed and imputation for missing values was 1408 

performed in Perseus software (Tyanova et al., 2016) based on a simulated normal distribution 1409 

to represent low abundance values below the noise level (generated at 1.8 standard deviations 1410 

of the total intensity distribution, subtracted from the mean, and a width of 0.3 standard 1411 

deviations). For stoichiometry matrices, the IBAQ algorithm (Schwanhäusser et al., 2011) was 1412 

used to quantify within-sample abundance. Database search was performed with Andromeda 1413 

(Cox et al., 2011) against UniProt/Swiss-Prot mouse database with common serum and enzyme 1414 

contaminant sequences. False discovery rate (FDR) was set to 1% at peptide spectrum match 1415 

(PSM) and protein levels. Minimum peptide count required for protein quantification was set to 1416 

two. Potential contaminants, reverse database hits and peptides only identified by modification 1417 

were excluded from analysis.  1418 
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For input, 80S, and polysome MS performed in biological triplicate, Ebp1 and the median 1419 

protein abundance within protein groups (Rpl, Rps, translation-associated) were tested for 1420 

significantly changing levels across developmental stages by one-way ANOVA with Bonferroni 1421 

corrected post hoc testing, with p<0.05 considered significant. For pSILAC/AHA MS performed 1422 

in biological duplicate with SILAC label swap, MaxQuant normalized SILAC ratios were used for 1423 

quantitative data analysis. All proteins from our dataset were ranked according to their change 1424 

ratio (mean H/M ratio in Forward and Reverse experiments; lowest to highest fold change). A 1425 

cutoff of >2-fold change from control in both replicates was considered significant. 1426 

 1427 

RNAseq 1428 

Samples were prepared in biological duplicate at each developmental stage. Reads were 1429 

aligned to the mouse M12 genome using the splice aware aligner STAR (Dobin et al., 2013), 1430 

and GENCODE (Frankish et al., 2019) gene annotation GRCm38.p5. Gene-level counts were 1431 

produced using the subread package. Significantly changing levels over time of Ebp1, or the 1432 

median value of Rpl, Rps, and translation-associated gene groups, was assessed by one-way 1433 

ANOVA followed by Bonferroni corrected post hoc testing vs. E12.5, with p<0.05 considered 1434 

significant. 1435 

 1436 

Sucrose density gradient ultracentrifugation fractionation curves 1437 

Analytic gradient area-under-the-curve (AUC) analysis for 40S-60S, 80S, and polysome peaks 1438 

was calculated from real-time A260 values measured by PicoLogger recorder and software 1439 

during sample fractions in biological duplicate or triplicate at each developmental stage. A 1440 

Reimann sum was used to calculate the AUC corresponding to 40-60S, 80S, and polysome 1441 

peaks of the gradient. Significance was tested by one-way ANOVA with Dunnett’s post hoc test 1442 

vs. E12.5, performed in GraphPad Prism, with p<0.05 considered significant.  1443 

 1444 

Quantitative Western blot 1445 

Western blot band signal intensity measured in duplicate membranes was quantified using GE 1446 

Amersham Imager 600 software, with significance testing by two-tailed unpaired t-test (≤2 1447 

comparisons), vs. E12.5 with GraphPad Prism software, with p<0.05 considered significant.  1448 

 1449 

Sholl analysis 1450 

Neuronal morphology tracings of GFP signal were generated with the Neurite Tracer plugin 1451 

(Longair et al., 2011) in FIJI, then analyzed by the Sholl analysis plugin (Ferreira et al., 2014) 1452 
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with 1µm radius of concentric circles, plotting the average intersections over distance from the 1453 

soma, and average total summed intersections in each condition. Significance of total summed 1454 

intersections was assessed by one-way ANOVA followed by Bonferroni corrected post hoc 1455 

testing in GraphPad Prism software, with p<0.05 considered significant.  1456 

 1457 

DATA AVAILABILITY 1458 

Mass spectrometry proteomics data (Figures 1B-C, 6C-D, and S2-S3) have been deposited to 1459 

the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the 1460 

PRIDE partner repository for reviewer access, and for immediate release on publication: 1461 

ProteomeXchange PXD014740 1462 

Username: reviewer84416@ebi.ac.uk  1463 

Password: BwylH8kX 1464 

 1465 

RNAseq data (Figure 2B) have been deposited in the NIH Gene Expression Omnibus (GEO) 1466 

for reviewer access, and for immediate release on publication: 1467 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136199) 1468 

NIH GEO GSE136199  1469 

Password: cbkfsgcwvlszfab 1470 

 1471 

Cryo-EM maps for the neocortical 80S�Ebp1 complex (Figures 4-5 and S7-S10), including both 1472 

the rotated state with eEF2 and the classical state with A/A+P/P tRNAs, have been deposited in 1473 

the Worldwide Protein Data Bank (wwPDB; https://www.wwpdb.org/) with accession code EMD-1474 

10321, for immediate release on publication. 1475 

 1476 

The neocortical 60S�Ebp1 atomic model (Figures 4-5, S8, and S11) has been deposited in the 1477 

wwPDB with accession code PDB ID 6SWA, for immediate release on publication. A PDB 1478 

validation report is available upon request with the submission of this manuscript. 1479 
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SUPPLEMENTARY FIGURE LEGENDS 1480 

Supplementary Figure 1. Preparative sucrose density gradient fractionations for MS 1481 

samples, associated with Figure 1 1482 

Mouse neocortical lysates were subjected to preparative sucrose density gradient 1483 

ultracentrifugation fractionation in biological triplicate to purify 80S and polysomal ribosome 1484 

complexes at E12.5, E14, E15.5, E17, and P0. Input lysate, pooled 80S fractions, and pooled 1485 

polysome fractions were analyzed by LC-MS/MS. 1486 

 1487 

Supplementary Figure 2. Hierarchical clustering of MS samples, associated with Figure 1 1488 

Hierarchical clustering of neocortex MS data for (A) total input lysates and (B) 80S and 1489 

polysomes in biological triplicate at E12.5, E14, E15.5, E17, and P0.  Clustering of ANOVA 1490 

significant (FDR = 0.05) proteins based on one minus Pearson correlation with an average 1491 

linkage method. Heat maps colored by higher (orange) and lower (purple) protein expression 1492 

per row (protein ID) max and min, respectively. Results demonstrate clustering by replicates, 1493 

80S vs. polysomes, and developmental stages.  1494 

 1495 

Supplementary Figure 3. Scatter plots and stoichiometry cluster heat maps for input and 1496 

80S proteins, associated with polysome samples in Figures 1B-C 1497 

(A-B) Scatter plots of ribosomal complex protein enrichment measured by MS comparing early 1498 

neurogenesis E12.5 vs. each subsequent stage. (A) 80S MS showing Ebp1 (red arrow) 1499 

enriched among ribosomal proteins (RPs) of the large (Rpl, blue) and small (Rps, yellow) 1500 

subunits, similar to the polysome MS (Figure 1B). Ebp1 enrichment is shown relative to the 1501 

level of translation-associated proteins (black), and all other proteins (grey). (B) Input MS, 1502 

showing Ebp1 is among the most abundant proteins in the neocortex. (C-D) Stoichiometry 1503 

cluster heat maps comparing the enrichment of each RP (Rpl, blue; Rps, yellow), translation-1504 

associated proteins (black), and Ebp1 (red arrow) in comparison to every other protein per 1505 

developmental stage in the (C) 80S MS and (D) total input MS, corresponding to the polysome 1506 

MS in Figure 1C. The expression of adjacent proteins on the x-axis is shown as higher (orange), 1507 

lower (purple), or similar (black) relative to each protein on the y-axis (legend and histogram at 1508 

top left for each stage). Ebp1 is expressed at levels comparable to RPs in neocortical total 1509 

lysates, and is nearly stoichiometric to RPs in the 80S, similar to polysomes. In contrast, other 1510 

translation-associated proteins are sub-stoichiometric. 1511 

 1512 

.CC-BY-NC-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.02.08.939488doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.08.939488
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kraushar ML, et al. Submission. 
	

	 52 

Supplementary Figure 4. Ebp1NT immunohistochemistry in the developing neocortex, 1513 

associated with Figure 2C 1514 

Immunohistochemistry analysis of Ebp1 expression in coronal sections of the developing 1515 

neocortex with the Ebp1NT antibody (green), reinforcing findings with the Ebp1CT antibody. Ebp1 1516 

levels are particularly high in early-born NSCs in ventricular zone (VZ), and nascent cortical 1517 

plate (CP), at E12.5-E14. Ebp1 is expressed in the lower layers (LL) and upper layers (UL) of 1518 

the expanding cortical plate at E15.5-P0, albeit at decreased levels. Co-immunostaining with 1519 

Map2 (red) as a marker of maturing neurons in the CP, along with DAPI (blue) marking nuclei. 1520 

 1521 

Supplementary Figure 5. Full Western blots associated with Figure 2F, and sucrose 1522 

density gradient fractionations and Western blots of each fraction, associated with 1523 

Figure 2G  1524 

Western blot membranes of total neocortical lysates from E12.5, E14, E15.5, E17, and P0 1525 

probed with (A) C-terminal specific (Ebp1CT, membrane from Figure 2A; Abcam #ab35424) and 1526 

(B) N-terminal specific (Ebp1NT, separate replicate; Millipore #ABE43) (Xia et al., 2001) anti-1527 

Ebp1, in comparison to full-length recombinant Ebp1 (Ebp1-His) as a band marker. Ebp1CT 1528 

antibody would be expected to identify both full-length Ebp1 (“p48”; ~48kDa) and the N-terminal 1529 

truncated isoform (“p42”; ~42kDa), which lacks the first 54 amino acids (Liu et al., 2006). The 1530 

Ebp1NT antibody should exclusively identify full-length Ebp1. Results demonstrate dominant 1531 

signal concordant with Ebp1 full-length at ~48kDa (arrows), migrating slightly lower than 1532 

recombinant Ebp1-His. Faint bands are seen at ~55kDa and ~35kDa (stars). Membranes were 1533 

reprobed with Gapdh as a loading control. We concluded that the starred bands in (A) and (B) 1534 

are both non-specific signal not corresponding to Ebp1, since these bands could not be 1535 

replicated with both antibodies. Of note, all Ebp1 Western blots in this paper were performed 1536 

with anti-light chain secondary antibodies, since application of anti-heavy chain secondaries 1537 

was found to introduce strong artifact signal at ~50kDa, creating an obstacle to the 1538 

interpretation of the 48kDa Ebp1. (C) Total neocortical lysates at E12.5, E15.5, and P0 were 1539 

A260 normalized, and fractionated by preparative sucrose density gradient ultracentrifugation 1540 

into eleven fractions in biological duplicate, followed by (D) Western blot analysis of Ebp1 levels 1541 

in each fraction corresponding to extra-ribosomal (free), 80S, and polysomes (replicate #1). 1542 

Gapdh is a marker for pre-ribosomal free fractions, while uL30 is a marker for ribosome-1543 

associated fractions. While pre-ribosomal free Ebp1 levels are stable across neocortical 1544 

development, ribosome-associated Ebp1 levels decrease in concert with decreasing levels of 1545 

80S and polysomes, seen in both the A260 curves (C) and likewise in uL30 protein levels (D). 1546 
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Individual fractions from replicate #2 were pooled to constitute free, 80S, and polysome samples 1547 

in Figure 2G.   1548 

 1549 

Supplementary Figure 6. Biochemical analysis of Ebp1�ribosome binding, associated 1550 

with Figure 3 1551 

(A) 40S and 60S subunits were purified from P0 mouse neocortex, and reconstituted with 1552 

recombinant Ebp1-His, as in Figure 3A with rabbit-derived subunits. Escalating doses of Ebp1 1553 

(100nM, 200nM) were mixed with a constant 100nM of each subunit, and pelleted through a 1554 

sucrose cushion to separate free unbound Ebp1 in the supernatant, vs. Ebp1�subunit 1555 

complexes in the pellet. Western blot analysis demonstrates a dose-dependent binding of Ebp1 1556 

specifically to the 60S subunit. Marker for the 60S is uL30, and for 40S uS7. (B) Interpretation of 1557 

binding data related to Figure 3C. Curves were fit to the data using a nonlinear least-squares fit, 1558 

with one-site binding (left, r2=0.70), two-site binding (middle, r2=0.87), or one-site binding and 1559 

Hill slope accommodation (right, r2=0.99). The best fit-to-data approximated by one-site binding 1560 

and Hill slope accommodation (h=5) suggests that the 60S site serving as a receptor for Ebp1 1561 

binding acquires a conformational state (active state, 60S*) that is present with a higher 1562 

probability when increasing concentrations of Ebp1 are present, yielding a higher probability of 1563 

Ebp1 re-binding.           1564 

 1565 

Supplementary Figure 7. Immuno-electron microscopy with Ebp1CT and Ebp1NT 1566 

antibodies, associated with Figure 3E 1567 

(A) Immunogold labeling for Ebp1CT (black dots) in sections of the neocortex at E12.5, E15.5, 1568 

and P0. Neural stem cells (NSC) and neurons (N) are identified by their distinctive nuclear 1569 

morphologies (highlighted in blue, NSC and red, N) and positions in the developing cortical 1570 

layers (ventricular zone, NSC; expanding cortical plate, N). Ebp1 labeling is predominantly 1571 

found in clusters in the cytoplasm of these cells, but shows no association with the nucleolar site 1572 

of RP synthesis (n), the endoplasmic reticulum (er), mitochondria (m, in green), or the plasma 1573 

membranes at cell-cell junctions (arrows; blue on NSC side, red on N side). These results are in 1574 

agreement with those obtained for Ebp1NT in Figure 3E. (B) Electron micrographs of a dendritic 1575 

branch (D) labeled for Ebp1NT (black dots). Immunogold particles labeling Ebp1 are present in 1576 

clusters in the dendritic cytoplasm, but not associated with mitochondria or the plasma 1577 

membrane. 1578 

 1579 
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Supplementary Figure 8. Cryo-EM data collection and model statistics, associated with 1580 

Figures 4-5 1581 

(A) Statistics corresponding to cryo-EM data collection, map refinement, model characteristics, 1582 

data resolution estimation, and cross correlation (CC) of model vs. data. (B) Fourier Shell 1583 

Correlations (FSCs) for masked vs. unmasked maps. (C) Representative cryo-EM map (mesh) 1584 

to model correspondence for rRNA, β-sheet, and α-helix structures.  1585 

 1586 

Supplementary Figure 9. Multiparticle sorting and refinement of mouse neocortical 1587 

ribosome states, associated with Figures 4-5 1588 

Cryo-EM imaging of pooled 80S and polysome complexes derived from the P0 mouse 1589 

neocortex ex vivo yielded 208206 particles for in silico analysis. Initial multiparticle sorting of 1590 

data at six times decimation (DC6) for large-scale heterogeneity generated ribosomes in the 1591 

rotated and classical states, and a junk population. Further sorting within the rotated and 1592 

classical states proceeded at DC4. In the rotated state, populations with eEF2 and eEF2+P/E 1593 

tRNA emerged. In the classical state, populations with A/A+P/P tRNAs, E/E tRNA, and without 1594 

tRNA emerged. In each of these five populations, extra-ribosomal density was observed at the 1595 

peptide tunnel exit. Further sorting within each of these five populations proceeded at DC4 with 1596 

a focus mask applied to this extra-ribosomal density as described in the Methods, to disentangle 1597 

cofactor-positive and cofactor-negative ribosome sub-states. Each of these five populations 1598 

yielded cofactor-positive and -negative populations. Final high-resolution refinement at DC2 1599 

proceeded for cofactor-positive (red arrow) and -negative populations of the rotated state with 1600 

eEF2 (3.1Å global resolution), and the classical state with A/A+P/P tRNAs (3.3Å global 1601 

resolution). These high-resolution data allowed for the identification of the cofactor as Ebp1, 1602 

with cofactor-positive and -negative sub-states revealing 60S structural changes with Ebp1 1603 

binding.  1604 

 1605 

Supplementary Figure 10. Global and local resolution measurements of cryo-EM maps, 1606 

associated with Figures 4-5 1607 

Particle orientation distribution and global resolution Fourier Shell Correlation (FSC) for the (A, 1608 

C) rotated state with eEF2, and (B, D) classical state with A/A+P/P tRNAs, both with and 1609 

without Ebp1. Local resolution heat maps for the (E, E’, F, F’, I, I’, J) rotated state with eEF2, 1610 

and (G, G’, H, H’, K, K’, l) classical state with A/A+P/P tRNAs, both with (E, E’, I, I’; G, G’, K, K’) 1611 

and without (F, F’, J; H, H’, L) Ebp1. Maps are shown in both surface (E, F, G, H, I, J, K, L) and 1612 

cross-section (E’, F’, G’, H’, I’, K’). The local resolution of Ebp1 is ~4-6Å. 1613 
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 1614 

Supplementary Figure 11. Cryo-EM density for H59 and H53 of Ebp1-positive and Ebp1-1615 

negative maps associated with the models shown in Figure 5A, electrostatics associated 1616 

with Figure 5A, and Ebp1:Metap2 structure comparison associated with Figures 5C-D  1617 

Cryo-EM density (mesh) for the rotated state with eEF2 in (A) Ebp1-positive (blue) and (B) 1618 

Ebp1-negative (green) sub-states. Density for base U-2687 (yellow) demonstrates flipping out 1619 

when Ebp1 is bound, along with flipping in of base G-2690 (orange), and global reorganization 1620 

of the H59 tip backbone away from H53. Base G-2690 in the Ebp1-negative state demonstrates 1621 

density bridging to H53 bases G-2501, G-2502, and C-2513 (magenta) to stabilize H59’s 1622 

canonical position, opening a gap (star) in H59 once occupied by the G-2690 intra-helical base 1623 

stacking interactions. (C) Reorientation of H59 U-2687 into a pocket of Ebp1’s insert domain, 1624 

facilitating Ebp1 stabilization on the 60S tunnel exit surface. Ebp1 shown as electrostatic 1625 

potential map. (D) Global alignment of Ebp1 (red, PDB 2V6C) and Metap2 (grey, PDB 1KQ9), 1626 

highlighting structural differences with Ebp1’s α5 domain, and overall structural similarity, such 1627 

as the insert domain. Ebp1 residues making electrostatic interactions (yellow) with 60S TE 1628 

rRNA helices and proteins are highlighted.    1629 

 1630 

Supplementary Figure 12. Sequence alignment of mouse Ebp1 with orthologs and 1631 

structural homologs, associated with Figures 4-5 1632 

Ebp1 amino acid sequence alignment of human (Homo sapiens PA2G4 full-length, iso-1; N-1633 

terminal truncated, iso-2), mouse (Mus musculus Pa2g4 full length iso-1), chicken (Gallus gallus 1634 

Pa2g4), and zebrafish (Danio rerio Pa2g4-a/b) orthologs with CLUSTAL Omega (1.2.4) (Sievers 1635 

et al., 2011), default settings (https://www.ebi.ac.uk/Tools/msa/clustalo/) and visualized in 1636 

Unipro UGENE (Okonechnikov et al., 2012). Alignment with structurally homologous proteins 1637 

Mus musculus Metap2, Saccharomyces cerevisiae Arx1, and Chaetomium thermophilum Arx1 1638 

is also shown. Ebp1 residues involved in 60S binding are outlined in yellow aligned with 1639 

homologous residues, colored by hydrophobicity. All other residues colored by percentage 1640 

identity (grey). Percent similarity to the human full-length sequence is shown at left. Amino acid 1641 

sequences were obtained from UniProt (The UniProt Consortium, 2019) 1642 

(https://www.uniprot.org/) with entry number and name for each protein shown at top left.   1643 

 1644 

Supplementary Figure 13. Transcriptional landscape of 60S tunnel exit binding cofactor 1645 

expression in the developing neocortex derived from (Telley et al., 2019), associated with 1646 

Figure 5E  1647 
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Expression heat maps from scRNAseq data plotting NSC birthdate (x-axis) and differentiation 1648 

(y-axis) scores, for the relative enrichment of mRNAs coding for 60S tunnel exit cofactors in the 1649 

developing neocortex (ribosome-binding subunits shown). In each graph, the early-born apical 1650 

progenitor (AP) NSC pool is plotted in the bottom left, with their corresponding differentiated 1651 

lower layer neurons (N4d) in the top left. Late-born NSCs are plotted in the bottom right, with 1652 

their corresponding differentiated upper layer neurons in the top right. Data from: 1653 

http://genebrowser.unige.ch/telagirdon/#query_the_atlas   1654 

 1655 

Supplementary Figure 14. Ebp1 association with Neuro2a 80S and polysomes, and 1656 

analysis associated with Figure 6 1657 

(A) Western blot of Neuro2a, HEK-293T, and rabbit reticulocyte (RRL) total lysates probed with 1658 

Ebp1CT antibody. (B) Preparative sucrose density gradient fractionation of Neuro2a cell lysates, 1659 

followed by (C) Western blot analysis of Ebp1 enrichment of each fraction. Ebp1 associates with 1660 

80S and polysomes in Neuro2a cells, similar to mouse neocortical cells (Figures S5C-D). uL30 1661 

is a marker for ribosome-associated fractions. (D) Gene ontology (GO) pathways analysis with 1662 

the Database for Annotation, Visualization and Integrated Discovery (DAVID) of proteins with 1663 

>2-fold change from control in siEbp1 conditions (against all quantified proteins) measured by 1664 

pSILAC/AHA MS (Figures 6C-D). (E) Ribosome Profiling (Riboseq) derived from (Zappulo et al., 1665 

2017), highlighting the relative enrichment of Ebp1-regulated targets (red) in soma vs. neurites 1666 

(y-axis) protein synthesis compared overall RPKM (x-axis) of cultured neurons. (F) Schematic 1667 

summary of Ebp1’s impact on neuronal proteostasis, associated with Figures 6C-D, showing 1668 

proteins that have been previously reported to influence neurogenesis. Ebp1 impacts cell 1669 

adhesion molecules (de Wit and Ghosh, 2016), such as L1cam (Maness and Schachner, 2007), 1670 

Mcam (Taira et al., 2005), Cadm1 (Robbins et al., 2010), and Cdh15 (Bhalla et al., 2008), in 1671 

addition to the CAM modulator Slc3a2 (Feral et al., 2005). Ebp1 further regulates the 1672 

synaptogenesis protein Sparc (Kucukdereli et al., 2011; López-Murcia et al., 2015), a 1673 

membrane scaffold for calcium channels Ahnak (Jin et al., 2019), the neuronal migration and 1674 

neurite outgrowth protein Marcks (Brudvig and Weimer, 2015), and the synaptogenic 1675 

membrane-type metalloproteinase Mt3 (Sanz et al., 2018). Several of these proteins, in addition 1676 

to Cald1 (Morita et al., 2012) and Cnn2 (Ulmer et al., 2013), interact with the cytoskeleton in 1677 

growing neurites. Among the proteins modulating synaptic transmission that are sensitive to 1678 

Ebp1 knockdown are chromogranins a/b (Chga/b) and the granin Scg5, that regulate the 1679 

secretion of neuronal hormones, neurotransmitters, and growth factors (Bartolomucci et al., 1680 

2011). Ebp1 may further influence proteostasis through its regulation of protein aggregation 1681 
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modulators Nucb1 (Bonito-Oliva et al., 2017; Niphakis et al., 2015; Tulke et al., 2016) and Scg5 1682 

(Bartolomucci et al., 2011; Helwig et al., 2013). The impact of Ebp1 on the developmental 1683 

neurogenic proteome is apparent in many of the proteins above, in addition to regulators of NSC 1684 

signaling, such as Cxxc5 (Andersson et al., 2009) and Hand2 (Hendershot et al., 2007; Lei and 1685 

Howard, 2011). 1686 

1687 
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