
Submitted 16 August 2019
Accepted 20 January 2020
Published 19 February 2020

Corresponding author
Dieter Beule, dieter.beule@bihealth.de

Academic editor
Elena Papaleo

Additional Information and
Declarations can be found on
page 7

DOI 10.7717/peerj.8607

Copyright
2020 Obermayer et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

SCelVis: exploratory single cell data
analysis on the desktop and in the cloud
Benedikt Obermayer1,2,*, Manuel Holtgrewe1,2,*, Mikko Nieminen1,3,
Clemens Messerschmidt1,2 and Dieter Beule1,3

1Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany
2Charité—Universitätsmedizin Berlin, Berlin, Germany
3Max Delbrück Center for Molecular Medicine, Berlin, Germany
*These authors contributed equally to this work.

ABSTRACT
Background. Single cell omics technologies present unique opportunities for biomed-
ical and life sciences from lab to clinic, but the high dimensional nature of such data
poses challenges for computational analysis and interpretation. Furthermore, FAIR
data management as well as data privacy and security become crucial when working
with clinical data, especially in cross-institutional and translational settings. Existing
solutions are either bound to the desktop of one researcher or come with dependencies
on vendor-specific technology for cloud storage or user authentication.
Results. To facilitate analysis and interpretation of single-cell data by users without
bioinformatics expertise, we present SCelVis, a flexible, interactive and user-friendly
app for web-based visualization of pre-processed single-cell data. Users can survey
multiple interactive visualizations of their single cell expression data and cell annota-
tion, define cell groups by filtering or manual selection and perform differential gene
expression, and download raw or processed data for further offline analysis. SCelVis
can be run both on the desktop and cloud systems, accepts input from local and various
remote sources using standard and open protocols, and allows for hosting data in the
cloud and locally.We test and validate our visualization using publicly available scRNA-
seq data.
Methods. SCelVis is implemented in Python using Dash by Plotly. It is available as
a standalone application as a Python package, via Conda/Bioconda and as a Docker
image. All components are available as open source under the permissive MIT license
and are based on open standards and interfaces, enabling further development and
integration with third party pipelines and analysis components. The GitHub repository
is https://github.com/bihealth/scelvis.

Subjects Bioinformatics, Cell Biology, Computational Biology, Genomics
Keywords Single cell, Visualization, tSNE

INTRODUCTION
Single-cell omics technologies, in particular single-cell RNA sequencing (scRNA-seq),
allow for the high-throughput profiling of gene expression in thousands to millions of
cells with unprecedented resolution. Recent large-scale efforts are underway to catalogue
and describe all human cell types (Regev et al., 2017) and to study cells and tissues in
health and disease (https://lifetime-fetflagship.eu). Single-cell sequencing could therefore
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become a routine tool in the clinic for comprehensive assessments of molecular and
physiological alterations in diseased organs as well as systemic responses, e.g., of the
immune system. The enormous scale and high-dimensional nature of the resulting data
presents an ongoing challenge for computational analysis (Stegle, Teichmann & Marioni,
2015). Ever more sophisticated methods, e.g., deep learning frameworks (Eraslan et al.,
2019), extract multiple layers of information from cell types to lineages and differentiation
programs. Many of these methods, their mathematical background, and the underlying
assumptions will remain opaque to users without specific bioinformatics expertise. At
the same time, an in-depth understanding of the relevant biology is often beyond the
know-how of typical bioinformatics researchers. More than ever, single-cell omics requires
close communication and collaboration from wet and dry lab experts. Due to the large
amount of data, communication needs to be based on interactive channels (e.g., web-based
apps) rather than static tables. Further, as single-cell omics moves towards the clinic, FAIR
(Wilkinson et al., 2016) data management, data privacy, and data security issues need to be
handled appropriately. All employed methods should be able to scale towards handling a
large number of users and even larger numbers of samples.

State of the art
Web apps have been used extensively in the single-cell literature and are most commonly
built on Shiny (Winston et al., 2019). Table 1 presents an overview of mostly web-based
visualization tools for single-cell data. For instance, Pagoda2 (Fan et al., 2016) comes with
a simple intuitive web app but is limited to data processed with Pagoda2. Cerebro (Hillje,
Pelicci & Luzi, 2019) is a Shiny web app and provides relatively rich functionality such as
gene set enrichments and quality control statistics, but the input is limited to Seurat objects,
similar to the Single Cell Viewer (SCV; Wang et al., 2019) which also relies on Shiny.
CellexalVR (Legetth et al., 2018) provides an immersive virtual reality platform for the
visualization and analysis of scRNA-seq data, but requires special hardware and runs only
on Windows 10. Cellxgene (https://chanzuckerberg.github.io/cellxgene/) is very fast and
user-friendly but restricted to visualizing two-dimensional embeddings. Finally, the Broad
Single Cell Portal (https://portals.broadinstitute.org/single_cell) provides a large-scale web
service for a large number of users and studies. It includes a 10X Genomics data processing
pipeline and user authentication/account management. However, the underlying Docker
image strongly depends on vendor-specific cloud systems such as Google Cloud and Broad
Firecloud services. Its implementation thus poses practical hurdles, in particular if it is to
be integrated into existing clinical infrastructure.

MATERIALS & METHODS
SCelVis is based onDash by Plotly (Plotly Technologies Inc., 2015) and accepts data inHDF5
format as AnnData objects. These objects can be created using Scanpy (Wolf, Angerer &
Theis, 2018), provide a scalable and memory-efficient data format for scRNA-seq data
and integrate naturally into python environments. SCelVis also provides conversion
functionality to AnnData from raw text, loom format or 10X Genomics CellRanger output.
The built-in converter is accessible from the command line and a web-based user interface
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Table 1 Comparison of single-cell visualization tools.

Pagoda Cerebro Single Cell
Viewer

CellexalVR Cellxgene Single
Cell Portal

ScelVis

Reference Fan et al.
(2016)

Hillje, Pelicci
& Luzi (2019)

Wang et al.
(2019)

Legetth et al.
(2018)

chanzuckerberg.
github.io/
cellxgene/

singlecell.
broadinstitute.org

This study

Version v0.1.1 v1.1.0 v0.13.0 v0.13.0 v0.38.0 v0.8.1
Language R R R C# Python ruby Python
Platform Browser Browser Browser Windows 10 Browser Browser Browser
License GPL-3.0 MIT GPL-3.0 GPL-3.0 MIT BSD 3-clause MIT
Additional
dependencies

None None None HTC Vive
Controller

None Google
Cloud
Platform etc.

None

Plot types Scatter,
heatmap

Scatter,
violin,
heatmap,
box, bar

Scatter,
heatmap, dot

Scatter,
heatmap

Scatter,
histogram

Scatter,
violin,
heatmap, box

Scatter,
violin,
box, bar, dot

Cell filtering X X X X X × X

Differential
expression

X X X X X × X

Data input Local+
remote

Local Local Local Local+
remote

Local+
remote

Local+
remote

Input formats Pagoda Seurat Seurat Raw Anndata raw Anndata,
loom, raw,
CellRanger

Conversion × X × X X X X

(Fig. 1). One HDF5 file or a folder containing multiple such files can then be provided to
SCelVis for visualization, and data sets can be selected for exploration on the graphical web
interface. To enable both local and cloud access, data can be read from the file system or
remote data sources via the standard internet protocols FTP, SFTP, and HTTP(S). SCelVis
also provides data access through the open source iRODS protocol (Rajasekar et al., 2010)
or the widely-used Amazon S3 object storage protocol. The data sources can be given on
the command line and as environment variables as is best practice for cloud deployments
(AdamWiggins, 2011). The latter allows for easy ‘‘serverless’’ and cloud deployments.

SCelVis is built around two viewpoints on single-cell data (Fig. 1). On the one hand, it
provides a cell-based view, where users can browse and investigate cell annotations (e.g., cell
type) and cell-specific statistics (sequencing depth, cell type proportions, etc.) in multiple
visualizations, e.g., on a t-SNE or UMAP embedding, as violin or box plots or bar charts.
Cells to be displayed can be filtered by various criteria, and groups of cells can be defined
manually on a scatter plot as input for on-the-fly differential gene expression analysis. On
the other hand, SCelVis provides a gene-based view that lets users explore gene expression
in multiple visualizations on embeddings or as violin or dot plots. Relevant genes can be
specified by hand or selected directly from lists of marker or differential genes.

The source code is available under the permissive MIT license on the GitHub repository
at https://github.com/bihealth/scelvis, which also contains a tutorial movie and a link
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hdf5 input
(AnnData object)

scelvis convert
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・ raw text
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cell annotation
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scatter: clustering / cell meta data
violin: distributions / QC 

bar: proportions
�lter displayed cells 

select groups of cells on the plot
for di�erential expression

scatter: expression plots
violin: expression distributions 

dot: summarized expression
for multiple genes 
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tables of marker genes or

 di�erential expression results)

A

B

(1) (2) (3)

(4)

(5)

(6)

(7)

(8)

(9)
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・ local �lesystem
・  (s)ftp / http(s) / iRODS / S3

Figure 1 Overview of SCelVis Architecture and User Interface. (A) Data can be converted from Cell-
Ranger output, loom format or raw text to an input HDF5 file with the SCelVis converter. These files can
be uploaded into the web app or loaded remotely via various protocols such as S3, HTTP, etc. SCelVis
can then be run locally or on a server/in the cloud and provides various views of the analysis results. (B)
Screenshot of the SCelVis interface for a mixture of human and mouse cells from 10X Genomics. Users
can browse the ‘‘about’’ tab to obtain background information on the data (1), select the ‘‘cell annotation’’
tab (2) to investigate cell meta data or the ‘‘gene expression’’ tab (3) to interrogate gene expression. The
cell annotation view provides scatter, violin, box and bar plots (4). Displayed cells can be filtered (5) by a
number of criteria. In typical cases, the scatter plot would be configured with embedding variables on the
x- and y-axis (6) and a categorical or continuous variable for the coloring (7). Differential gene expression
(8) can be performed by manually selecting groups of cells on the scatter plot, using ‘‘box select’’ or ‘‘lasso
select’’ in hover bar on the top right-hand corner of the plot (9). Here, plot results can also be downloaded
in png format. The underlying data can be obtained from a link at the bottom left (10). Other datasets can
be selected, uploaded or converted from the menu on the top right (11).

Full-size DOI: 10.7717/peerj.8607/fig-1
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to a public demonstration instance. The software can be run both in the cloud and
on workstation desktops via Docker. Documentation and tutorials are provided on
https://scelvis.readthedocs.io.

Usage example
We provide three example datasets within our GitHub repository or via figshare. First, a
small synthetic simulated dataset created for testing and illustration purposes, and secondly
a publicly available processed scRNA-seq dataset from 10X Genomics containing ∼1,000
cells of a mix of human HEK293T and murine NIH3T3 cells. Finally, we reanalyzed a
published data set of stimulated and control peripheral blood mononuclear cells (PBMCs;
Kang et al., 2018) with the Seurat ‘‘data integration’’ workflow (Stuart et al., 2019) and
made it accessible via https on figshare (https://files.figshare.com/18037739/pbmc.h5ad;
Fig. 2). With the species-mix dataset from 10X, the relevant plot to demonstrate a low
doublet rate can be readily re-created (Fig. 2A left; compare to Fig. 2A in Zheng et al.
(2017), which shows data obtained with a previous version of the 10X chemistry), and the
species composition of the different clusters found by CellRanger can be easily interrogated
(Fig. 2A right). For the PBMC dataset, it is straightforward to perform differential gene
expression analysis, e.g., between stimulated and control monocytes by using the ‘‘filter’’
and ‘‘differential gene expression’’ buttons (Fig. 2B). Summarized gene expression for
cell-type marker genes as well as for general (e.g., IFI6) or cell-type specific (e.g., CXCL10)
differential genes can be displayed in a split dot plot as in Fig. 2D of Stuart et al. (2019).
Hence, our visualizations for the published datasets are equivalent to those obtained from
other visualization tools, e.g., Seurat.

CONCLUSIONS
In this manuscript, we have presented SCelVis, a method for the interactive visualization
of single-cell RNA-seq data. It provides easy-to-use yet flexible means of scRNA-seq data
exploration for researchers without computational background. SCelVis takes processed
data, e.g., provided by CellRanger or a bioinformatics collaboration partner, as input,
and focuses solely on visualization and explorative analysis. Great care has been taken to
make the method flexible in usage and deployment. It can be used both on a researcher’s
desktop with minimal training yet its usage scales up to a cloud deployment. Data can
be read from local file systems but also from a variety of remote data sources, e.g., via
the widely deployed (S)FTP, S3, and HTTP(S) protocols. This allows for deploying it in
a Docker container on ‘‘serverless’’ cloud systems. As both the application and data can
be hosted on the network or cloud systems, the application facilitates cross-institutional
research. For example, a sequencing or bioinformatics core unit can use it for giving access
to non-computational collaboration partners over the internet. This is particularly relevant
as it comes with no dependency on any vendor-specific technology such as the Google or
Facebook authentication that appears to become pervasive in today’s life science.
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Figure 2 Visualization of publicly available scRNA-seq data. (A+ B) scRNA-seq data for a 1:1 mix-
ture of 1k fresh frozen human (HEK293T) and mouse (NIH3T3) cells (Chromium v3 chemistry) were
taken from the 10X website (CellRanger output) and visualized with SCelVis. A scatter plot shows human
vs. mouse UMI counts per cell and confirms a low doublet rate (A), while a bar plot visualizes the species
composition of the different clusters defined by CellRanger (B). (C–F) scRNA-seq data for stimulated vs.
control PBMCs (Kang et al., 2018). The cluster annotation resulting from the Seurat sample alignment
workflow (https://satijalab.org/seurat/v2.4/immune_alignment.html) can be interrogated and monocyte
markers can be displayed by selecting from a table of marker genes (C+ D). Stimulated or control mono-
cytes can then be isolated using ‘‘filter cells’’ and defined as groups ‘‘A’’ or ‘‘B’’, respectively, for differen-
tial expression analysis (E). Summarized gene expression can be displayed for marker genes as well as cell-
type specific or globally differential genes in a split dot plot (F).

Full-size DOI: 10.7717/peerj.8607/fig-2
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