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SUMMARY

Deregulated expression of MYC induces a depen-
dence on the NUAK1 kinase, but the molecular
mechanisms underlying this dependence have not
been fully clarified. Here, we show that NUAK1 is a
predominantly nuclear protein that associates with
a network of nuclear protein phosphatase 1 (PP1) in-
teractors and that PNUTS, a nuclear regulatory sub-
unit of PP1, is phosphorylated by NUAK1. Both
NUAK1 and PNUTS associate with the splicing ma-
chinery. Inhibition of NUAK1 abolishes chromatin as-
sociation of PNUTS, reduces spliceosome activity,
and suppresses nascent RNA synthesis. Activation
of MYC does not bypass the requirement for
NUAK1 for spliceosome activity but significantly at-
tenuates transcription inhibition. Consequently,
NUAK1 inhibition in MYC-transformed cells induces
global accumulation of RNAPII both at the pause
site and at the first exon-intron boundary but does
not increase mRNA synthesis. We suggest that
NUAK1 inhibition in the presence of deregulated
MYC traps non-productive RNAPII because of the
absence of correctly assembled spliceosomes.

INTRODUCTION

The MYC oncoprotein is a transcription factor that regulates

broad programs of gene expression, promoting cell proliferation

and cell growth and inducing major changes in growth-associ-

ated processes such as cellular metabolism and the interaction
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of cells with the micro-environment (Dang, 2012; Kress et al.,

2015). MYC proteins are almost universally present at active

core promoters. Proteomic analyses show that MYC and its

paralog MYCN affect the function of RNA polymerase II (RNAPII)

via multiple distinct protein complexes (Baluapuri et al., 2019;

B€uchel et al., 2017; Kalkat et al., 2018). MYC proteins can

enhance recruitment of RNAPII to promoters (de Pretis et al.,

2017), promoter escape (B€uchel et al., 2017), release of RNAPII

from the pause site (Rahl et al., 2010; Walz et al., 2014), and

RNAPII processivity during elongation (Baluapuri et al., 2019).

MYCN can suppress the accumulation of promoter-proximal

R-loops and the recruitment of mRNA de-capping complexes,

which terminate transcription at the pause site (Brannan et al.,

2012; Herold et al., 2019).

Cells and tumors expressing deregulated levels of MYC rely

on a number of specific factors for survival, including an

enhanced dependence on anti-apoptotic proteins and trophic

signals (Pelengaris et al., 2002), on glutamine as a nutrient

source (Gao et al., 2009; Xiang et al., 2015), on splicing factors

(Hsu et al., 2015), on cyclin-dependent kinases (Chipumuro

et al., 2014; Christensen et al., 2014; Huang et al., 2014), and

on AMP-dependent kinase (AMPK), which is activated by an

increase in cellular AMP levels (Kfoury et al., 2018; Liu et al.,

2012). The analysis of these dependencies has produced critical

insights into the process of MYC-driven oncogenic transforma-

tion and led to new approaches to selectively eradicate MYC-

driven tumor cells for therapy (Dang, 2016; Haikala et al.,

2019). Cells expressing deregulated levels of MYC also depend

on the AMPK-related kinase NUAK1 (also known as ARK5,

AMPK-related kinase 5) (Liu et al., 2012; Monteverde et al.,

2018). Likewise, colon tumors, which express high MYC levels

because of loss-of-function mutations in the APC tumor sup-

pressor gene, depend on NUAK1 for tumor growth and mainte-

nance (Port et al., 2018). Several explanations have been put
ors. Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. NUAK1 Binds to Chromatin and Interacts with a Nuclear PP1 Network

(A) U2OS cells stained for endogenous NUAK1 and PPP1CB. DAPI is used as nuclear counterstain (n = 3; in all legends, n indicates the number of independent

biological replicates).

(B) Immunoblot of fractionation of U2OS cells probed with the indicated antibodies. Ten percent of cytoplasm and nucleoplasm fractions were loaded. RNAPII

(chromatin) and TUBA1A (cytoplasm) were used as localization controls (n = 3).

(C) Immunofluorescence of U2OS cells stably expressing HA-tagged NUAK1 stained with a-HA and a-MYPT1 antibodies (n = 3).

(D) Cell fractionation of U2OS cells stably expressing HA-tagged NUAK1. Ten percent of cytoplasm and nucleoplasm fractions were loaded. RNAPII and TUBA1A

were used as controls (n = 3).

(legend continued on next page)
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forward to explain this dependence; for example, NUAK1 has

been linked to cellular energy metabolism (Liu et al., 2012), to

p53 function (Hou et al., 2011), and to responses to oxidative

stress (Port et al., 2018), which affect the nuclear localization of

NUAK1 (Palma et al., 2019). Nevertheless, the biochemical pro-

cesses that establish the dependence of MYC-overexpressing

cells on NUAK1 are not as clear as for the other dependencies

described above.

A well-established function of NUAK1 is to control the activity

of protein phosphatase 1 (PP1) (Zagórska et al., 2010). PP1 ho-

loenzymes consist of a broadly active catalytic core (encoded by

one of three highly homologous genes: PPP1CA, PPP1CB, or

PPP1CC) and one of many regulatory subunits (Verbinnen

et al., 2017). Regulatory subunits can both target the PP1 holo-

enzyme to specific compartments in a cell and control its cata-

lytic activity (e.g., some subunits inhibit PP1 activity toward

specific substrates) (Verbinnen et al., 2017). In the cytoplasm,

a major regulatory subunit of PP1 is MYPT1 (myosin phospha-

tase target subunit 1, encoded by the gene PPP1R12A), which

regulates the interaction of actin and myosin (Matsumura and

Hartshorne, 2008). NUAK1 directly interacts with PPP1CB and

forms a trimeric complex with PPP1CB andMYPT1. In the trimer,

NUAK1 phosphorylates MYPT1 and promotes association of

MYPT1with 14-3-3 proteins (Zagórska et al., 2010). This reaction

blocks the interaction of MYPT1 and PP1with myosin light-chain

kinase (MLC2), increases phosphorylation of MLC2, and thereby

activates myosin II. The MYPT1/NUAK1 interplay also regulates

the activity of Polo-like kinase (PLK1) throughout the cell cycle

(Banerjee et al., 2014b; Werle et al., 2014) and controls AKT-

dependent phosphorylation of GSK3b (Port et al., 2018).

Whether NUAK1 has similar roles on other PP1 holoenzymes in

a cell is unknown.

Here we show that NUAK1 complexes with PP1 in the nucleus

and promotes spliceosome activity. NUAK1 and PP1 are

involved in a regulatory circuit that couples transcriptional elon-

gation to spliceosome activity. Deregulated expression of MYC

overrides this control, providing a mechanistic model why tumor

cells with high MYC levels depend on NUAK1.

RESULTS

NUAK1 Binds to Chromatin and Interacts with a Nuclear
PP1 Network
Previous studies have shown that NUAK1 associates with PP1

complexes and have identified the cytoplasmic PP1 regulatory

subunit MYPT1 as a major interaction partner of NUAK1 (Zagór-

ska et al., 2010). Surprisingly, however, endogenous NUAK1

localized mainly to the nucleus of U2OS osteosarcoma cells;
(E) Mass spectrometry (MS) analysis of FLAG-NUAK1 co-immunoprecipitates (I

FLAG-tagged NUAK1. Proteins are sorted according to log2 fold enrichment over

to number of peptides identified by MS (n = 2).

(F) Venn diagram of NUAK1 interactors and previously documented PP1 interact

(G) List of the 14 PP1 interactors from (F). Nuclear (green) or cytoplasmic (gray) l

(H) List of selected GO terms enriched by analyzing proteins enriched in both NT-

interactors are shown. FDR, false discovery rate; fold enr., fold enrichment.

(I) Proximity ligation assay (PLA) in U2OS cells documenting proximity of SF3B1

DAPI is used as nuclear counterstain.

See also Figure S1.
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the staining occurred in a speckled pattern that partly co-local-

ized with the nuclear pool of the protein phosphatase catalytic

subunit beta (PPP1CB) (Figure 1A). NUAK1 was also localized

mainly in the nucleus in a panel of additional cell lines that we

analyzed (Figure S1A), consistent with a recent study (Palma

et al., 2019). Fractionation experiments showed that a significant

fraction of both NUAK1 and PPP1CB was bound to chromatin

(Figure 1B). To exclude that this staining reflected a cross-reac-

tivity of the antibody, we stably expressed HA-tagged NUAK1

in U2OS and MCF10A cells (HA-NUAK1). Like its endogenous

counterpart, the bulk of HA-NUAK1 localized to the cell nucleus

and bound to chromatin (Figures 1C, 1D, and S1B). Staining of

control cells infected with empty vectors confirmed the speci-

ficity of staining (Figure S1B). Parallel immunostaining confirmed

that MYPT1 is localized mainly in the cytoplasm of U2OS cells

(Figure 1C).

To identify nuclear interaction partners of NUAK1, we immu-

noprecipitated cell lysates of U2OS cells stably expressing

either N-terminally or C-terminally FLAG-tagged NUAK1 with

antibodies directed against the FLAG tag. Control immunopre-

cipitations showed that both amino-terminally and C-terminally

tagged NUAK1 efficiently co-precipitated MYPT1 as well as

PPP1CB (Figure S1C). Mass spectrometry of recovered com-

plexes revealed that immunoprecipitations using an anti-FLAG

antibody from either cell line enriched for a virtually identical

set of proteins relative to control immunoprecipitations from

empty vector-infected cells (Figure 1E). Gene Ontology (GO)

term analyses and comparison with a protein interaction data-

base showed that the immunoprecipitates were significantly

enriched for protein phosphatase complexes and contained

multiple known interactors of PP1, themajority of which localizes

to the nucleus (Figures 1F–1H and S1D). In addition, NUAK1

associated with multiple proteins involved in mRNA splicing

(Figure S1D). Specifically, components of the U2 and U12

spliceosomal small nuclear ribonucleoprotein particle (snRNP)

complexes, which mediate the recognition of the splicing

branching point on pre-mRNA, as well as the Prp19 complex

and the methylosome, which are involved in spliceosome as-

sembly, were enriched in the immunoprecipitates (Figure 1H)

(Chanarat et al., 2011; Chuang et al., 2011; David et al., 2011).

Consistently, immunofluorescence showed that the speckled

pattern of NUAK1 co-localized to a significant degree with the

spliceosomal protein SC35 (encoded by SRSF2), a typical nu-

clear speckle marker (Girard et al., 2012) (Figure S1E), and

proximity ligation assay (PLA) showed that NUAK1 interacts

with SF3B1 (Figure 1I). We have recently characterized the

RNAPII and MYC interactomes, both of which contain multiple

proteins involved in transcription and RNA processing (Baluapuri
P) from U2OS cells expressing amino-(NT-IP)- or carboxy-(CT-IP)-terminally-

IP performed in U2OS cells expressing empty vector (EV). Dot size is according

ion partners (BioGrid database).

ocalization is shown.

and CT-IP (n = 154). Terms referring to nuclear protein, splicing factors, or PP1

and NUAK1 or PNUTS. Red dots indicate proximity of the indicated proteins.
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Figure 2. PNUTS Interacts with and Is Phosphorylated by NUAK1 in the Nucleus

(A) Immunoblot of a-HA immunoprecipitates of U2OS cells expressing HA-tagged NUAK1 or empty vector (EV). Input corresponds to 1% lysate (n = 3).

(B) Proximity ligation assay (PLA) performed in U2OS cells expressing HA-tagged NUAK1 or EV (used as negative control). Red dots indicate proximity of the

indicated proteins. DAPI is used as nuclear counterstain (n = 3).

(C) Cartoon depicting the mode of interaction of NUAK1 with MYPT1 and the suggested mode of interaction with PNUTS. Binding motifs of NUAK1 (GILK) and

MYPT1/PNUTS (RVxF) to PP1 are also depicted. Yellow circle, phosphorylation.

(D) PLA performed in U2OS cells expressing HA-tagged NUAK1 or EV (used as negative control). Cells were treated for 3 h with 50 mM GILK or control peptide.

Red dots indicate proximity of the indicated proteins. DAPI is used as nuclear counterstain (n = 3).

(legend continued on next page)
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et al., 2019). The overlap of the NUAK1 interactome with either

the RNAPII or MYC interactome was limited to a small number

of proteins (Figure S1F). Notably, a nuclear PP1 regulatory sub-

unit, PNUTS, that was previously found to interact with RNAPII

(Ciurciu et al., 2013), was also found in the NUAK1 interactome

(see below) and interacted with SF3B1 in PLA assays (Figure 1I).

We therefore explored further the interaction of NUAK1 with nu-

clear PP1 complexes.

PNUTS Interacts with and Is Phosphorylated by NUAK1
in the Nucleus
In the cytoplasm, NUAK1 controls the function of PP1 holoen-

zymes by phosphorylating the MYPT1 regulatory subunit,

thereby altering its function and localization (Zagórska et al.,

2010). In the nucleus, the catalytic subunit of PP1 interacts

with one of three major subunits: Repo-Man (encoded by the

CDCA2 gene), PNUTS (PP1-nuclear targeting subunit, encoded

by PPP1R10), and NIPP1 (nuclear inhibitor of PP1, encoded by

PPP1R8) (Verheyen et al., 2015). Of those, PNUTS, but neither

Repo-Man nor NIPP1, was present in NUAK1 interactome (Fig-

ures 1G and S1D). This was confirmed by co-immunoprecipita-

tion of PNUTS and HA-NUAK1 (Figure 2A). PLAs showed that

NUAK1 and PNUTS interacted in the nucleus, whereas

NUAK1 and MYPT1 interacted mainly in the cytoplasm (Figures

2B and S2A). Like NUAK1 and PPP1CB, the bulk of PNUTS was

bound to chromatin (Figures 1B and 1D), and like NUAK1,

PNUTS interacted with SF3B1 in PLA assays (Figure 1I).

NUAK1 interacts directly with the catalytic subunit of PP1 holo-

enzymes via a conserved four amino acid motif (GILK) (Zagór-

ska et al., 2010) (Figure 2C). Consistently, incubation of cells

with a corresponding peptide abolished the interaction of

NUAK1 with both PPP1CB and PNUTS, as documented by

PLAs (Figure 2D). Intriguingly, a phosphoproteomic analysis of

NUAK1-depleted cells (see below) showed that serine 313 of

PNUTS is a potential target site of NUAK1. To confirm this hy-

pothesis, we raised a phospho-specific antibody against this

site. Immunoblots of lysates of transfected cells confirmed

that the antibody recognizes wild-type PNUTS, but neither

S313A, S313D, nor S313E mutant PNUTS expressed at equal

levels (Figure 2E). Depletion of NUAK1 using three different

short hairpin RNAs (shRNAs) (Figure 2F) or a small interfering

RNA (siRNA) (Figure S2B) decreased phosphorylation of

endogenous PNUTS at S313 but had no effect on total PNUTS

levels. We concluded that NUAK1 interacts with nuclear

PNUTS/PPP1CB complexes and phosphorylates PNUTS

on S313.
(E) Immunoblot using the indicated antibodies of U2OS cells transfected with pcDN

EVwas used as negative control. In the a-pS313-PNUTS panel, the upper band rep

was used as loading control (n = 3).

(F) U2OS cells were infected with three independent doxycycline (DOX)-inducible

24 h. Asterisk denotes unspecific band (n = 3). Bottom: immunoblot of NUAK1 c

(G) Volcano plot showing differentially regulated phosphosites and the function

analysis upon transfection of a siRNA pool targeting NUAK1 mRNA (siNUAK1). S

(H) Waterfall plot showing differentially spike-in SILAC-labeled phosphorylated

teracting proteins (n = 3).

(I) Differentially phosphorylated residues upon NUAK1 depletion (n = 197, p < 0.05)

function). FDR, false discovery rate; fold enr., fold enrichment.

See also Figure S2.
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Regulatory subunits such as PNUTS can either target PP1 cat-

alytic subunits to specific sites or inhibit PP1 activity at specific

subcellular localizations (Verbinnen et al., 2017). To determine

how NUAK1 affects PP1 activity, we performed phosphoproteo-

mic analyses of NUAK1-depleted U2OS cells. The analysis

showed that siRNA-mediated depletion of NUAK1 altered the

phosphorylation of a large set of nuclear proteins (Figure 2G).

Specifically, depletion of NUAK1 downregulated phosphoryla-

tion of many proteins that interact with PP1, suggesting that

NUAK1 inhibits their dephosphorylation (Figure 2H). A GO term

analysis showed that differentially phosphorylated proteins are

broadly involved in RNA processing (Figure 2I). In line with the

function of proteins identified in the NUAK1 interactome, a sub-

set of differentially phosphorylated proteins is involved in RNA

processing and splicing; this includes, for example, SRRM2, a

protein identified as a strong NUAK1 interactor (Figure S1D).

Finally, depletion of NUAK1 also altered the phosphorylation of

multiple proteins not found in the PP1 interactome, arguing

that NUAK1 also has PP1-independent effects and that some

changes in the phosphoproteome are indirect. We concluded

that NUAK1 associates with nuclear PP1 holoenzymes and

the spliceosome and is required for phosphorylation of multiple

proteins involved in RNA processing.

PNUTS Binds Chromatin via RNA and Promotes
Spliceosome Activity
To better understand how PNUTS, PPP1CB, and NUAK1

interact with chromatin, we performed fractionation experiments

upon treatment of nuclear extracts with RNase A, which discrim-

inates resident chromatin proteins from proteins that interact

with chromatin indirectly via RNA. As expected, treatment with

RNase A released a significant fraction of the splicing factor

SF3B1 and the spliceosome-associated NIPP1 protein from

chromatin, while actively transcribing (phosphorylated)

RNAPII or histone H2B remained bound to chromatin (Figures

3A and S3A). Intriguingly, RNase A released a significant fraction

of PNUTS and PPP1CB from chromatin, arguing that both pro-

teins are bound to chromatin at least in part via association

with RNA (Figures 3A and S3A). In contrast, RNase A treatment

did not affect chromatin association of NUAK1 (Figures 3A

and S3A).

The dependence of chromatin association of PNUTS on RNA

is consistent with the presence of an RNA-binding domain in

PNUTS and with previous observations that long noncoding

RNA (lncRNA) molecules can target PNUTS to specific genes

and that PNUTS binds nascent RNA (Bao et al., 2018; Kim
A3 vectors encoding HA-tagged rat wild-type or S313A/D/E-mutated PNUTS;

resents endogenous PNUTS, while the lower is the exogenous rat protein. VCL

shRNAs targeting NUAK1 and, where indicated, treated with DOX (1 mg/mL) for

onfirming its depletion. VCL was used as loading control (n = 3).

al annotation of respective proteins in a spike-in SILAC phosphoproteomic

ignificance is indicated by the dashed line (p < 0.05) (n = 3).

residues (p < 0.05) upon NUAK1 depletion. Orange, phosphosites of PP1-in-

were used as input for a GO term analysis (left: cell component; right: biological
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Figure 3. PNUTS Binds Chromatin via RNA and Promotes Spliceosome Activity

(A) Immunoblot documenting chromatin association of the indicated proteins in control cell lysates and in lysates upon RNase A treatment. Cell fractionation was

performed on U2OS cells expressing HA-tagged NUAK1. Nucleopl., nucleoplasmic fraction; chromatin, chromatin-bound fraction. SF3B1 and NIPP1 or

phosphorylated RNAPII and H2B were used as RNA- and chromatin-bound controls, respectively (n = 3).

(B) Expression of PNUTS-bound genes (n = 2,786) versus all expressed genes (n = 19,382). The p value was calculated with a two-tailed Wilcoxon rank-sum test.

CPM, counts per million.

(legend continued on next page)
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et al., 2003; Xing et al., 2014). To determine the sites on chro-

matin to which PNUTS is bound in an unbiased manner, we

performed chromatin immunoprecipitation followed by

sequencing (ChIP-seq). A correlation of ChIP-seq data with

RNA sequencing (RNA-seq) data showed that PNUTS-bound

genes display relatively high levels of expression but did not

reveal a significant enrichment of specific functional categories

of PNUTS-bound genes (Figure 3B). Importantly, ChIP-seq

showed that PNUTS bound both downstream of the tran-

scription start site (TSS) of 2,571 genes and close to the tran-

scription end site (TES) at 584 genes, as demonstrated both

by inspection of multiple individual genes and global analyses

(Figures 3C–3E). PNUTS binding downstream of the TSS peaked

around the RNAPII pause site and both immediately 50 and 30 of
the first exon-intron boundary (Figure 3D). Previous observations

have implicated PNUTS in transcription termination (Austenaa

et al., 2015; Cortazar et al., 2019). Consistently, a major PNUTS

peak was observed around the TES (Figures 3C and 3E). Our

analysis also confirmed previous observations that PNUTS

avidly binds histone clusters (Figure S3B) (Verheyen et al.,

2015). ChIP-seq with exogenous reference genome spike-in

(ChIP-RX) using the phospho-specific antibody showed that

chromatin association of phosphorylated pS313-PNUTS

closely resembled that of total PNUTS (Figures 3C–3E). ChIP ex-

periments upon RNase A confirmed that PNUTS bound to

both promoter-proximal and TES in part via interaction with

RNA (Figure 3F). Consistent with the observation that PNUTS

is part of the interactome of newly transcribed RNA (Bao et al.,

2018), treatment of cells with flavopiridol (FP), an inhibitor of

the CDK9 kinase that globally blocks nascent RNA synthesis,

attenuated PNUTS chromatin binding (Figures 3D and S3C).

We concluded that PNUTS binds chromatin in part via associa-

tion with nascent RNA.

The localization of PNUTS binding, its dependency on RNA,

and the co-precipitation of PNUTS with spliceosomal proteins

suggested that PNUTS has a role in splicing. Indeed, PP1 activity

affects the phosphorylation status of several splicing factors,

thereby regulating both spliceosome assembly and its catalytic

cycle (Aubol et al., 2017; Shi et al., 2006). To test this hypothesis,

we used two phospho-specific antibodies that recognize

phosphorylated T313 and T328 in the TP-rich domain of

SF3B1 (Figure S3E); these residues are phosphorylated exclu-

sively in catalytically active spliceosomes (Girard et al., 2012).

Indeed, the U2 spliceosome component SF3B1 is a well-

described PP1 target, which is hyperphosphorylated during the

first step of catalysis and dephosphorylated during the second

one (Girard et al., 2012; Shi et al., 2006; Tanuma et al., 2008).
(C) Genome Browser tracks showing PNUTS, phospho-S313-PNUTS (pPNUTS

control.

(D) Average density plots of PNUTS ChIP-seq (left y axis) and pPNUTS ChIP-R

start site.

(E) Average density plots of PNUTS ChIP-seq (left y axis) and pPNUTS ChIP-RX (r

indicates SEM.

(F) PNUTS ChIP performed upon RNase A treatment. IgG ChIP was used as antib

neg ct, negative control (mean ± SD of technical triplicates of a representative e

(G) Immunoblots documenting phosphorylation of SF3B1 at the indicated sites. U

treated with 25 nM calyculin A for 30 min. ACTB was used as loading control (n

See also Figure S3.
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Depletion of PNUTS strongly reduced phosphorylation at both

sites and inhibition of PP1 using the phosphatase inhibitors

calyculin A and okadaic acid (which target both PP1 and PP2A

phosphatases) reverted the inhibition (Figures 3G and S3D).

Collectively, the data indicate that PNUTS locally inhibits PP1

downstream of the TSS of actively transcribed genes to promote

spliceosome activity.

NUAK1 Controls Chromatin Association of PNUTS
To understand whether NUAK1 affects PNUTS function, we

incubated U2OS cells with the GILK peptide that blocks

NUAK1 interaction with PP1 and found that this led to a strong

decrease in SF3B1 phosphorylation (Figure 4A), indicating that

NUAK1 or a structurally related kinase is required for spliceo-

some activity. Consistently, both shRNA- and siRNA-mediated

depletion of NUAK1 reduced SF3B1 phosphorylation at T313

and T328, although the effects were not as strong as with the

GILK peptide (Figures 4B and 4C). We reasoned that this might

be due to the relatively slow kinetics of a depletion experiment,

whichmight allow cells to adapt to a decrease in NUAK1 activity.

To test this hypothesis, we used two chemically distinct small

molecules to acutely inhibit NUAK1. The first is BAY-880, which

we identified as a potent inhibitor of NUAK1 that inhibits 96% of

its kinase activity at 1 mM concentration (Figures S4A and S4B;

Table S1). Testing BAY-880 against a panel of 274 kinases

showed that NUAK1 is the best target and identified a small

number of additional kinases that may be inhibited by this

compound (Figure S4B; Table S1). Consistent with this, a phos-

phoproteomic analysis showed that the changes in phosphory-

lation induced by siRNA-mediated depletion of NUAK1 in

U2OS cells showed a statistically highly significant overlap with

changes induced by BAY-880 (Figure 4D; p = 1.5 3 10�13),

and a GO term analysis of changes of differentially regulated

phosphosites showed that processes targeted by BAY-880

highly overlapped with the ones targeted by depletion of

NUAK1 (Figure 4D). Importantly, both depletion of NUAK1 and

BAY-880 jointly targeted multiple proteins involved in RNA

metabolism and, specifically, RNA splicing, 30 end processing,

and localization (Figures 4D and S4C). In addition, we used a

well-characterized NUAK1 inhibitor, HTH-01-015 (Banerjee

et al., 2014a). Notably, potential off-target activities of BAY-

880 greatly differed from those of HTH-01-015, arguing that

joint targets of both inhibitors reflect on-target effects resulting

from NUAK1 inhibition (Figure S4B). We therefore confirmed

that both compounds decrease phosphorylation of S313-

PNUTS and observed that BAY-880 was more potent than

HTH-01-015 in inhibiting NUAK1 activity (Figures 4E and S4D).
), and RNAPII binding to representative genes. Input tracks are included as

X (right y axis). The shadow around tracks indicates SEM. TSS, transcription

ight y axis) centered to transcription end site (TES). The shadow around tracks

ody specificity control. TSS, transcription start site; 30RT, 30 readthrough site;

xperiment; n = 3).

2OS cells were transfected with a siRNA pool targeting PNUTS and, 48 h later,

= 3).
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Phosphoproteomic analyses showed that acute inhibition by

either inhibitor targeted highly overlapping sets of RNA-process-

ing proteins, as observed in response to depletion of NUAK1

(Figures S4E–S4G; compare with Figure S4C). A potentially rele-

vant off-target activity of BAY-880 is inhibition of CDK9; also,

PNUTS has been implicated in the phosphorylation of the CTD

of RNAPII at serine 5 (Ciurciu et al., 2013). However, both BAY-

880 andHTH-01-015 had onlyminor effects on S2- or S5-RNAPII

phosphorylation, while the CDK9 inhibitors FP and LDC00067 or

inhibitors of other transcription-associated CDKs essentially

abolished phosphorylation at S2 (Figure S5A). Furthermore,

comparison of the phosphosites identified by phosphoproteo-

mics upon BAY-880 or siRNA-mediated depletion of NUAK1

with recently described CDK9 targets (Sansó et al., 2016)

showed only a statistically nonsignificant overlap (Figure S5B).

We concluded that the effects of both drugs are not mediated

via inhibition of CDK9 and that NUAK1 has no direct role in

RNAPII phosphorylation. Both NUAK1 inhibitors reduced phos-

phorylation of SF3B1 at the sites that indicate spliceosome

activity; the decrease in phosphorylation was stronger in

response to BAY-880, correlating with the stronger inhibition of

NUAK1-dependent phosphorylation of S313-PNUTS (Figure 4E).

PNUTS ChIP-seq and pS313-PNUTS ChIP-RX showed that

chromatin association both at TSS and TES was strongly

reduced by inhibition of NUAK1 (Figures 4F, 4G, and S5C). Com-

parison of chromatin binding of wild-type PNUTS with S313A-

mutated PNUTS showed that this decrease was due partly to

the decreased phosphorylation at this site, but the magnitude

in the decrease observed after NUAK1 inhibition revealed that

other events (e.g., changes in spliceosomal proteins) contribute

to the decrease in association (Figure 4H). In contrast, S313A-

PNUTS showed no difference to wild-type PNUTS in terms of

binding to PP1 and nuclear localization (not shown). Finally,

BAY-880 effect on splicing activity was compared with that of

pladienolide B (PlaB), a well-characterized splicing inhibitor

(Kaida et al., 2007; Kotake et al., 2007). PlaB abolished SF3B1

phosphorylation, while BAY-880 inhibited SF3B1 phosphoryla-
Figure 4. NUAK1 Controls Chromatin Association of PNUTS

(A) Immunoblots documenting phosphorylation of SF3B1 at the indicated sites. U2

used as loading control (n = 3).

(B) Immunoblots documenting phosphorylation of SF3B1 at the indicated sites.

NUAK1 mRNA (shNUAK1 #3 in Figure 2F) was induced with DOX for 24 h. ACTB

(C) Same as B, but using and siRNA pool targeting NUAK1 (siNUAK1) or control

(D) Left: Venn diagram showing the overlap between significantly differentially regu

(48 h) or treatment with 10 mMBAY-880 (2 h) in a TMT phosphoproteomic experim

is a Venn diagram showing the overlap between all identified GO terms; below is

(E) Immunoblots documenting phosphorylation of PNUTS at S313 and of SF3B1

concentrations of BAY-880 or HTH-01-015. ACTB was used as loading control (

(F) Read density plot analysis of PNUTS ChIP-seq upon 4 h 10 mM BAY-880 trea

SEM. TSS, transcription start site; TES, transcription end site.

(G) Genome Browser track at the TPM1 gene of PNUTS ChIP-seq and phospho-S

880. Input tracks are included as control.

(H) ChIP experiments using an a-HA antibody showing chromatin association o

expression plasmids encoding HA-tagged PNUTS or empty vector (EV). IgG ChIP

readthrough site; neg ct, negative control (mean ± SD of technical triplicates of a

(I) Immunoblots documenting phosphorylation of SF3B1 at the indicated sites afte

4 h. VCL was used as loading control. Quantification of T313- and T328-SF3B1 ba

intensity from three independent experiments.

See also Figures S4 and S5 and Table S1.

1330 Molecular Cell 77, 1322–1339, March 19, 2020
tion by 50%–70%. (Figures 4I and S5D). Notably, PlaB did not

affect S313-PNUTS phosphorylation, confirming that PlaB activ-

ity on SF3B1 is PNUTS-independent (Figure S5D) (Kotake et al.,

2007). Interestingly, dephosphorylation of S313 upon NUAK1 in-

hibition by either BAY-880 or HTH 01-015 was essentially com-

plete within 1 h treatment (Figure S5D), suggesting that the ef-

fects of the inhibitors on PNUTS or SF3B1 phosphorylation are

direct. We concluded that phosphorylation by NUAK1 promotes

chromatin association of PNUTS and spliceosome activity.

NUAK1 Promotes Splicing and Transcription
Termination
To determine whether NUAK1 is required for co-transcriptional

splicing, we labeled nascent RNA using a pulse of 15 min with

4-thiouridine (4sU) and sequenced labeled RNA either immedi-

ately (pulse) or 2 h after 4sU withdrawal (chase; Figure S5E).

The experiment was performed in control (DMSO) cells as well

as in the presence of BAY-880 or PlaB. As expected, the per-

centage of exonic and spliced reads strongly increased during

the chase, reflecting processing of pre-mRNA (Figure 5A). PlaB

blocked the increase in exonic and spliced reads and caused a

marked increase in intronic reads, indicating that PlaB blocked

splicing (Figure 5A). Similarly, inhibition of NUAK1 impaired the

increase in spliced and exonic reads, although the effect was

weaker than for PlaB (Figure 5A). Inspection of individual genes

confirmed this observation (Figure 5B). Plotting the number of

spliced reads per gene confirmed that the number of reads per

gene increased during the chase in control (DMSO) cells but re-

mained constant in BAY-880-treated cells and slightly

decreased in PlaB-treated cells (Figure 5C).

The weaker effect of BAY-880 on overall splicing relative to

that of PlaB is consistent with the lesser extent of BAY-880-

mediated SF3B1 dephosphorylation (Figures 4I and S5D). We

reasoned that the role of NUAK1 might be restricted to a subset

of genes, compared with the genome-wide effect of PlaB. We

therefore performed a ranked sum gene set enrichment analysis

(GSEA) (Subramanian et al., 2005), ranking genes on the basis of
OS cells were treated 4 h with 50 mMGILK (or control [CT]) peptide. ACTB was

U2OS cells stably expressing a doxycycline (DOX)-inducible shRNA targeting

was used as loading control (n = 3).

siRNA pool. ACTB was used as loading control (n = 3).

lated phosphosites identified in response to siRNA-mediatedNUAK1 depletion

ent. Right: GO term analysis of differentially phosphorylated proteins. At the top

a pie chart of categories of 48 RNA-related GO terms.

at the indicated sites after 24 h incubation of U2OS cells with the indicated

n = 3).

tment (n = 3,172 PNUTS-bound genes). The shadow around tracks indicates

313-PNUTS (pPNUTS) ChIP-RX from U2OS cells treated 4 h with 10 mMBAY-

f wild-type PNUTS and of PNUTS S313A after transfection in U2OS cells of

was used as antibody specificity control. TSS, transcription start site; 30RT, 30

representative experiment; n = 3).

r treatment of U2OS cells with 10 mMBAY-880 or 1 mMpladienolide B (PlaB) for

nds was compared with DMSO-treated samples and normalized to VCL band
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Figure 5. NUAK1 Promotes Splicing and Transcription Termination

(A) Left: definition of read categories; orange reads represent mature mRNA, yellow reads pre-mRNA. Right: percentage (average ± SD) of reads identified in the

nascent RNA-seq analysis described in Figure S5F.

(B) Genome Browser tracks of 4sU-labeled RNA recovered from a pulse-chase experiment performed as described in Figure S5F. For each chased (C) sample,

three replicates (rep) are reported. Tracks were first normalized to overall reads, then exonic reads were electronically removed.

(C) Kernel density plot of the number of reads harboring splice junctions (spliced reads; see A). Read counts were normalized to the number of exons per gene and

the bandwidth was set to 0.3. Genes without spliced reads were removed. The mean over all replicates was plotted (DMSO, n = 16,257; BAY-880, n = 14,602;

PlaB, n = 13,216; DMSO pulse, n = 13,249).

(D) Gene sets identified by a GSEA on GO terms of genes showing splicing defects upon NUAK1 inhibition. Genes were ranked according to their splicing score.

Splicing score was defined as the ratio between reads harboring splice junctions (spliced reads; see A) and pre-mRNA reads (reads falling into introns and intron-

exon-spanning reads; yellow in A).

(legend continued on next page)
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a ‘‘splicing score’’ (defined as the ratio between spliced reads

and pre-mRNA reads). Intriguingly, this analysis showed that

the gene sets most strongly affected by NUAK1 inhibition were

enriched for genes encoding proteins of the basic transcription

machinery and nuclear structure (Figure 5D). Inspection of indi-

vidual genes in the top enriched gene sets illustrated the strong

effect of NUAK1 inhibition on intron retention of these mRNAs

(Figure S5F). The data suggest that expression of genes of the

core transcriptional machinery is particularly sensitive to defects

in NUAK1 activity.

Incubation of cells with BAY-880, but not with PlaB, also led to

a strong increase in intergenic reads (Figure 5A). As described

before, PNUTS also controls transcription termination (Austenaa

et al., 2015; Cortazar et al., 2019). Consistent with these obser-

vations, BAY-880 induced a marked increase of 30 readthrough
reads (TES-RT; positioned 30 of the TES), representing inaccu-

rately terminated transcripts (Figures 5E and 5F). We concluded

that NUAK1 promotes both termination genome-wide and

splicing of a specific subset of genes encoding proteins of the

transcription machinery.

NUAK1 Controls a MYC-Sensitive Feedback Control of
Transcriptional Elongation
To understand whether the role of NUAK1 in splicing affects

transcription, we performed both RNAPII ChIP-RX and 4sU

pulse labeling of nascent RNA. In control cells, NUAK1 inhibition

had no significant effect on RNAPII association with the TSS,

the pause site, or the first exon-intron boundary (Figures 6A

and 6B). In contrast, NUAK1 inhibition decreased overall

RNAPII occupancy at the TES, suggesting that transcription

elongation is impaired on many genes (Figure 6C). Consistent

with this interpretation, we noted that overall nascent RNA

synthesis, as tested by pulse labeling with 4sU, was significantly

reduced upon NUAK1 inhibition (Figures 7A and 7B).

To understandwhether elevated levels of MYC influence these

effects, we performed 4sU labeling and RNAPII ChIP-RX exper-

iments on samples treated with BAY-880 16 h after the activation

of a MYC-ER chimera. We first validated that induction of MYC

did not alleviate the dependence of SF3B1 phosphorylation on

NUAK1 (Figure S6A), indicating that it did not alter the depen-

dence of spliceosome activity on NUAK1. Analysis of nascent

RNA synthesis by a pulse of 4sU showed that activation of

MYC strongly enhanced nascent RNA synthesis (Figures 7A,

7B, and S6B). In addition, activation of MYC strongly attenuated

the decrease in nascent RNA synthesis caused by inhibition of

NUAK1 on multiple genes (Figure 7A). Global analyses showed

that MYC increased nascent RNA synthesis throughout the

gene body in control cells; in contrast, the MYC-dependent in-

crease was confined to promoter-proximal regions in the pres-

ence of BAY-880 (Figure 7B). Activation of MYC did not atten-

uate or override the block in transcription elongation caused
(E) Top: kernel density plot of the termination score. The mean over all replicates w

18,907; PlaB, n = 17,639; DMSO pulse, n = 16,342). Bottom: definition of terminati

reads are defined as all reads falling into introns and intron-exon-spanning reads

(F) Genome Browser tracks of nascent RNA expression of a representative gene

(cumulative gene browser picture from three independent replicates).

See also Figure S5.
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by inhibition of CDK9 using either FP or NVP-2, demonstrating

that MYC specifically overrides the inhibition of nascent RNA

synthesis caused by BAY-880 (Figures 7B and S6C). Remark-

ably and consistent with the 4sU data, RNAPII globally accumu-

lated downstream of the TSS upon NUAK1 inhibition in cells with

high levels of MYC (Figures 6A and 6B). Specifically, RNAPII

accumulated at the pause site and both 50 and 30 of the first

exon-intron boundary (Figure 6B). This localization closely paral-

leled the chromatin association of PNUTS (compare Figure 3D

with Figure 6B; Figure S6D). Comparison with published data

describing the changes in RNAPII chromatin association in

response to CDK9 inhibition (Olson et al., 2018) showed that

although inhibition of CDK9 causes an accumulation of RNAPII

at the pause site, the peaks 50 and 30 of the first exon-intron

boundary were observed only in response to inhibition of

NUAK1 (Figure S6E). We suggest that this accumulation reflects

a delay or block in transcription elongation in response to a

defect in mRNA splicing caused by inhibition of NUAK1.

Notably, RNA-seq showed that the accumulation of RNAPII

upon NUAK1 inhibition in cells with high MYC levels was not

paralleled by an increase in mRNA synthesis, arguing that

the accumulating RNAPII is non-productive (Figure S7A).

Consistently, RNAPII ChIP-RX showed that NUAK1 inhibition

strongly suppressed RNAPII occupancy at the TES also in

cells with active MYC (Figure 6C). Taken together, we

concluded that inhibition of spliceosome assembly exerts a

negative control on pause release or early steps of transcription

elongation, which is overridden by elevated levels of MYC,

leading to the accumulation of RNAPII at the first exon-intron

boundary. The 4sU pulse-chase experiment also showed that

inhibition of NUAK1 caused a striking increase in TES-RT/inter-

genic reads in both control and high-MYC cells, both on a global

scale and when inspecting individual genes, consistent with

the role of NUAK1 and PNUTs in termination (Figures S7B

and S7C).

To understand how inhibition of NUAK1 exerts the effects on

early elongation, we reasoned that splicing defects can lead to

the accumulation of stable hybrids of nascent RNA with DNA,

termed R-loops (Chen et al., 2018). To analyze this, we initially

chose two genes that require NUAK1 for splicing, ACTB and

NCL (Figures 7C and S7D). Comparison with a recently pub-

lished genome-wide sequencing dataset obtained from U2OS

cells showed that R-loops are widespread over both genes

(De Magis et al., 2019). Immunoprecipitations using a mono-

clonal antibody (S9.6) that specifically recognizes DNA-RNA

hybrids showed that inhibition of NUAK1 caused R-loop accu-

mulation at both ACTB and NCL gene loci (Figure 7D) and at

multiple other genes bearing R-loops, as shown in the

genome-wide analysis (Figures 7D and S7E). Incubation of

chromatin with RNase H, which selectively degrades DNA-

RNA hybrids, removed the signal, confirming its specificity
as plotted and the bandwidth was set to 0.3 (DMSO, n = 18,782; BAY-880, n =

on score as reads in TES or TES + 20 kb/pre-mRNA reads, whereas pre-mRNA

(i.e., yellow in A).

displaying termination readthrough. Tracks were generated as described in B
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Figure 6. NUAK1 Controls RNAPII-Mediated Elongation in a MYC-Dependent Manner

(A) RNAPII occupancy at three representative genes. Blue, Genome Browser tracks of RNAPII ChIP-RX upon treatment with 4 h 10 mM BAY-880 or DMSO in

control cells (� MYC) or upon 20 h MYC-ER activation with 100 nM 4-OHT (+ MYC). Red, read difference between BAY-880 and DMSO samples.

(B) Read density plots of RNAPII ChIP-RX analysis upon treatment with 4 h 10 mMBAY-880 or DMSO in control cells (�MYC) or upon 20 hMYC-ER activationwith

100 nM 4-OHT (+ MYC). Plots are centered to transcription start site (TSS, left), RNAPII pause site (middle), or first exon-intron boundary (right).

(C) Read density plots of RNAPII ChIP-RX analysis upon treatment with 4 h 10 mMBAY-880 or DMSO in control cells (�MYC) or uponMYC-ER activation (+MYC).

Plots are centered to transcription end site (TES). The shadow around tracks indicates SEM.

See also Figure S6.
(Figures 7D and S7E). In neuroblastoma cells, R-loop accumula-

tion correlates with stalling of RNAPII and with recruitment of

mRNAde-capping enzymes, which trigger transcription termina-

tion (Brannan et al., 2012; Herold et al., 2019). Consistent with

these observations, NUAK1 inhibition led to recruitment of

DCP1A, a core subunit of mRNA de-capping complexes, to

several promoter-proximal regions that we tested (Figure 7E).
Elevated MYC levels attenuated both R-loop accumulation and

the recruitment of mRNA de-capping factors in response to

NUAK1 inhibition (Figures 7D, 7E, and S7E). We concluded

that inhibition of NUAK1 and spliceosome activity induces

R-loop accumulation and recruitment of mRNA de-capping fac-

tors and that MYC overrides this feedback-like control, indi-

cating a model in which MYC drives transcriptional elongation
Molecular Cell 77, 1322–1339, March 19, 2020 1333
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Figure 7. NUAK1 Affects Nascent RNA Synthesis, R-Loop Formation, and De-capping enzyme Recruitment in a MYC-Dependent Manner

(A) Nascent RNA synthesis of two representative genes as determined by a 15 min pulse of 4sU incorporation (P). Blue, Genome Browser tracks of nascent RNA

upon treatment with 4 h 10 mM BAY-880 or DMSO in control cells (� MYC) or upon MYC-ER activation (+ MYC; 20 h). Flowchart of experiment is shown in

Figure S5E. Tracks were generated as described in Figure 5B. Gray, ratio of reads in DMSO and BAY-880-treated samples.

(legend continued on next page)
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in the absence of correctly assembled spliceosomes upon

NUAK1 inhibition (Figure 7F).

DISCUSSION

Previous work has established that NUAK1 takes part in a

trimeric complex with the catalytic subunit of PP1 and phos-

phorylates a regulatory subunit, MYPT1, in the cytoplasm (Za-

górska et al., 2010). Here, we extend this model by showing

that a large fraction of NUAK1 is localized in the cell nucleus, as-

sociates with nuclear PP1 holoenzymes, and phosphorylates

one of the major nuclear targeting subunits of PP1, PNUTS, at

S313. Consistent with previous work that has implicated

dephosphorylation by PP1 in controlling spliceosome activity,

NUAK1 associates with spliceosomes (Girard et al., 2012; Shi

et al., 2006; Tanuma et al., 2008). Both PNUTS and NUAK1

are required for spliceosome activity and splicing of large sets

of mRNAs. From these data, we propose a model in which

PNUTS localizes to chromatin via its interaction with nascent

RNA. As consequence, PNUTS comes into contact with chro-

matin-bound NUAK1, and its association with nascent RNA is

stabilized by NUAK1-dependent phosphorylation. The stabiliza-

tion locally inhibits PP1 activity toward spliceosomal proteins

and enables spliceosome activation (Figure 7F). Inhibition of

NUAK1 does not only impair spliceosome activity but also glob-

ally reduces nascent RNA synthesis and induces recruitment of

mRNA de-capping factors. This suggests that regulation of PP1

activity also plays a critical role in coordinating transcription

elongation with spliceosome activity. Previous observations

have shown that elongating RNAPII associates with spliceo-

somes and accumulates over intron regions when spliceosome

activity is perturbed (Chathoth et al., 2014; Nojima et al., 2018).

Furthermore, the spliceosomal U1 RNP is part of a control

mechanism that links pausing of RNAPII at the first stable nucle-

osome to premature polyadenylation-mediated termination

(Chiu et al., 2018). Loss of PNUTS enhances phosphorylation

of RNAPII at S5 in Drosophila embryos (Ciurciu et al., 2013).

Although this may suggest a direct dephosphorylation of

RNAPII by catalytically active PNUTS/PP1 holoenzymes in

Drosophila, this increase may also be due to stalling of RNAPII

(as seen in high-MYC cells) rather than to a direct role of

PNUTS/PP1 in de-phosphorylating RNAPII. This interpretation
(B) Transcription start site (TSS)-centered read density plot (n = 6,133) of 4sU-lab

1 mM flavopiridol (FP), 1 mM NVP-2, or DMSO in control cells (� MYC) or upon M

(C) Top: Genome Browser track of a region of chromosome 7 showing DRIP(DNA

bars, genes. Magnification shows detail of ACTB gene. Bottom: blue, Genome

treatment with 4 h 10 mM BAY-880 or DMSO in control cells (� MYC) or upon 20

BAY-880 and DMSO samples. Red arrows indicate the position of primers used

(D) Left: DRIP-qPCRs of U2OSMYC-ER cells treated with DMSO or 10 mMBAY-8

RNase H treatment and a negative region were used to test antibody specificity. R

ER cells treated as in the left plot. The plot shows average of 38 genetic loci (Figure

normalized to their respective DMSO/-MYC condition. Dots represent values in

performed to compare the different conditions (n.s., not significant).

(E) DCP1A ChIP of U2OS MYC-ER cells treated with DMSO or 10 mM BAY-880 f

tested genetic loci reside at the TSS of the indicated genes. IgG ChIP and a nega

(mean ± SD of technical triplicates of a representative experiment; n = 2).

(F) Model summarizing our findings. For details, see text.

See also Figures S6 and S7.
is consistent with the observation that phosphorylation of S5

of RNAPII slows down elongation to promote spliceosome ac-

tivity, whereas dephosphorylation of RNAPII enables rapid

transcription of exonic sequences (Nojima et al., 2015). Our

data argue that the localized inhibition of PP1 is a critical part

of these checkpoint-like processes that link elongation to spli-

ceosome activity.

Previous work has also established that a CDK9/PP1 switch is

critical for transcription termination, and PP1 loss of function

induces termination defects (e.g., readthrough transcription)

(Cortazar et al., 2019; Kecman et al., 2018; Parua et al., 2018).

Consistently, our and previously published (Austenaa et al.,

2015; Cortazar et al., 2019) observations implicate PNUTS in

transcription termination. The data represented here extend

this model to show that NUAK1 also affects the function of

PNUTS in transcription termination.

Previous work both in tissue culture and in vivo has estab-

lished that MYC-driven cells and tumors depend on NUAK1 for

growth (Liu et al., 2012; Monteverde et al., 2018; Port et al.,

2018). We did not observe any effect of NUAK1 depletion or in-

hibition onMYCphosphorylation at S62 and T58 orMYC stability

or an association of NUAK1 with MYC, hence it is unlikely that

the dependence of cells expressing deregulated MYC on

NUAK1 reflects a previously described role of PNUTS in MYC

turnover (Dingar et al., 2018). We show here that activation of

MYC did not remove the requirement for NUAK1 in spliceosome

activity. However, MYC strongly attenuated the reduction in

nascent RNA synthesis, abolished the recruitment of de-capping

complexes, and suppressed accumulation of R-loops upon

NUAK1 inhibition at all loci we tested. Upon NUAK1 inhibition

in cells expressing high MYC levels, RNAPII did not terminate

transcription but accumulated both at the pause site and at the

first exon-intron boundary. Notably, this increase in RNAPII as-

sociation caused by NUAK1 inhibition was not mirrored by a cor-

responding increase in RNA synthesis, arguing that RNAPII

accumulated in a non-productive form. Our data therefore sug-

gest a model in which the perturbed spliceosome function

upon NUAK1 inhibition induces RNAPII to terminate in cells

with physiological MYC levels. In contrast, upon NUAK1 inhibi-

tion in MYC-driven tumor cells termination is suppressed and

RNAPII is trapped in a form that is not involved in productive tran-

scription (Figure 7F).
eled nascent RNA (15 min pulse; P) upon 2 h treatment with 10 mM BAY-880,

YC activation (+ MYC; 18 h). The shadow around tracks indicates SEM.

-RNA-immunoprecipitation)-seq data in U2OS cells (GEO: GSE115957). Black

Browser tracks showing RNAPII occupancy at the ACTB gene locus upon

h MYC activation with 100 nM 4-OHT (+ MYC). Red, read difference between

for DRIP-qPCR (D).

80 for 4 h and, where indicated, co-treated with 100 nM 4-OHT for 20 h (MYC).

ight: box blot summarizing all performed DRIP-qPCR analyses of U2OSMYC-

S7I) tested in three biologically independent experiments. All sets of data were

the 10th to 90th percentiles. Wilcoxon matched-pairs signed rank tests were

or 4 h and, where indicated, co-treated with 100 nM 4-OHT for 20 h (MYC). All

tive region were used as antibody specificity controls. Neg ct, negative control
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A strongly enhanced sensitivity of MYC-driven cells to a

perturbation of the splicingmachinery has been observed before

in different biological systems; specifically, upregulation of the

core spliceosome machinery is an essential step in MYC-driven

lymphomagenesis, and MYC-driven lymphomas depend on

PRMT5, an arginine methyltransferase that methylates spliceo-

somal proteins (Koh et al., 2015). Furthermore, genetic or phar-

macological inhibition of the spliceosome in vivo impairs survival

and tumorigenicity of MYC-dependent breast cancers (Hsu

et al., 2015). Finally, activation of MYC renders cells sensitive

to inhibition of the CLK2 kinase, which has been linked to alter-

native splicing (Iwai et al., 2018). Similarly, the extreme sensitivity

of MYC-transformed cells to depletion of glutamine (Dang, 2011)

is linked to the ability ofMYC to drive transcriptional elongation in

the absence of a sufficient nucleotide supply, leading to R-loop

accumulation in the body of highly transcribed genes (Dejure

et al., 2017). The notion that deregulated expression of MYC

strongly sensitizes tumor cells toward a wide range of pro-

apoptotic stimuli is considered a mechanism that protects

from tumorigenesis (Lowe et al., 2004). Although the induction

of individual target genes by MYC, such as BIM1, contributes

to this sensitization (Muthalagu et al., 2014), the aggregate of

available data argues that tumor cells that express elevated

MYC levels ignore checkpoints that restrict early transcription

and that the ensuing trapping of RNAPII is a common mecha-

nism underlying these well-documented vulnerabilities of cells

expressing oncogenic levels of MYC, for example by causing

conflicts with the replication fork during S-phase that lead to

double-strand breaks (Hamperl and Cimprich, 2016).
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pBABE-Nuak1-HA-NT-puro This study N/A
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pINDUCER11-NUAK1#2 This study N/A
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Stearyl-R8-KRPKGILKKRS peptide LifeTein N/A

FITC-Stearyl-R8 peptide LifeTein Cat# LT12013

BAY-880, IUPAC name 7-cyclopentyl-5-ethyl-2-
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Bayer European Patent EP1399439B1, example 43

NUAK1i (structurally related to BAY-880) Bayer N/A

Calyculin A Santa Cruz Biotechnology Cat# sc-24000

Pladienolide B Santa Cruz Biotechnology Cat# sc-391691

HTH-01-015 Selleckchem Cat# S7318

WZ4003 Selleckchem Cat# S7317

P276-00 Selleckchem Cat# S8058

LDC000067 Selleckchem Cat# S7461

NVP-2 Tocris/Bio-Techne Cat# 6535/5

4-Thiouridine (4sU) Sigma-Aldrich Cat# T4509

BX795 Sigma-Aldrich Cat# 204001

Okadaic acid Sigma-Aldrich Cat# 459620

Flavopiridol Sigma-Aldrich Cat# F3055

4-hydroxytamoxifen Sigma-Aldrich Cat# H7904

Doxycycline Sigma-Aldrich Cat# D9891

Cholera toxin Sigma-Aldrich Cat# C8052

Insulin Sigma-Aldrich Cat# I9278

Hydrocortisone Sigma-Aldrich Cat# H0396

Protease inhibitor cocktail Sigma-Aldrich Cat# P8340

Phosphatase inhibitor cocktail 2 Sigma-Aldrich Cat# P5726

Phosphatase inhibitor cocktail 3 Sigma-Aldrich Cat# P0044

Duolink In Situ PLA Probe Anti-Rabbit PLUS Sigma-Aldrich Cat# DUO92002

Duolink In Situ PLA Probe Anti-Mouse MINUS Sigma-Aldrich Cat# DUO92004

Duolink In Situ Detection Reagents Red Sigma-Aldrich Cat# DUO92008

Puromycin InvivoGen Cat# ant-pr-1

Benzonase Merck Millipore Cat#70664-3

DAPI Roth Cat# 6335.1

RNase A Roth Cat# 7156.1

RNase H NEB Cat# M0297

EcoRI NEB Cat# R0101

BamHI NEB Cat# R0136

BsrGI NEB Cat# R0575

HindIII NEB Cat# R0104

SspI NEB Cat# R0132

XbaI NEB Cat# R0145

XhoI NEB Cat# R0146

Dynabead Protein A Thermo Fisher Scientific Cat# 10002D

Dynabead Protein G Thermo Fisher Scientific Cat# 10004D

Dynabeads MyOne Streptavidin T1 Thermo Fisher Scientific Cat# 65601

Dithiothreitol (DTT) Thermo Fisher Scientific Cat# 20291

Lipofectamine 2000 Thermo Fisher Scientific Cat# 11668019
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Lipofectamine RNAiMAX Thermo Fisher Scientific Cat# 13778-150

ibidi Mounting Medium Ibidi Cat# 50001

Odyssey Blocking Buffer in TBS LI-COR Biosciences Cat# 927-50000

peqGOLD Trifast PeqLab/WVR Cat# 30-2010

Critical Commercial Assays

Quant-iT PicoGreen dsDNA assay Thermo Fisher Scientific Cat# P7589

Quant-iT RiboGreen RNA Assay Kit Thermo Fisher Scientific Cat# R11490

NEBNext ChIP-Seq Library Prep Master Mix

Set for Illumina

NEB Cat# E6240

NEBNext Ultra Directional RNA Library Prep

Kit for Illumina

NEB Cat# E7420

NEBNext Ultra II RNA Library Prep Kit for

Illumina

NEB Cat# E7770

NEBNext rRNA Depletion Kit NEB Cat#E6310

NEBNext Ultra II RNA Library Prep Kit for

Illumina

NEB Cat# E7770

RNeasy MinElute Cleanup Kit QIAGEN Cat#74204

miRNeasy Mini Kit QIAGEN Cat# 217004

NextSeq 500/550 High Output Kit v2 Illumina Cat# FC-404-2005

Deposited Data

Raw and analyzed data This study GEO: GSE129925

Raw and analyzed data Walz et al., 2014 GEO: GSE44672

Raw and analyzed data De Magis et al., 2019 GEO: GSE115957

Raw and analyzed data Olson et al., 2018 GEO: GSE89384

Human reference genome GRCh37/hg19 Genome Reference Consortium https://support.illumina.com/sequencing/

sequencing_software/igenome.html

Raw images, proteomic data This study Mendeley Data https://dx.doi.org/10.17632/

rm56h9msym.1

Experimental Models: Cell Lines

U2OS ATCC RRID: CVCL_0042

U2OS MYC-ER Liu et al., 2012 N/A

HEK293TN ATCC RRID: CVCL_UL49

PlatE ATCC RRID: CVCL_B488

HeLa ATCC RRID: CVCL_0030

KPC Siveke lab N/A

IMR5 Eggert lab RRID: CVCL_1306

NGP Eggert lab RRID: CVCL_2141

SH-SY5Y ATCC RRID: CVCL_0019

Kelly Eggert lab RRID: CVCL_2092

MCF10A ATCC RRID: CVCL_0598

SKNAS ATCC RRID: CVCL_1700

NIH 3T3 ATCC RRID: CVCL_0594

Oligonucleotides

Primers for ChIP, DRIP and qPCR: Table S2 This study N/A

Primers for cloning: Table S3 This study N/A

Primers for DRIP: Table S4 This study N/A

mirE_shNUAK1#1: TGCTGTTGACAGTGAGCGC

ACGGTGGATGCTGATGGTGAATAGTGAAG

CCACAGATGTATTCACCATCAGCATCC

ACCGTATGCCTACTGCCTCGGA

This study N/A
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mirE_shNUAK1#2: TGCTGTTGACAGTGAG

CGAGCTGAAGAAATCCAAGAAAGATAG

TGAAGCCACAGATGTATCTTTCTTGGA

TTTCTTCAGCGTGCCTACTGCCTCGGA

This study N/A

mirE_shNUAK1#3: TGCTGTTGACAGTG

AGCGATAGGGATTTACTGGCATGGTATA

GTGAAGCCACAGATGTATACCATGCCAG

TAAATCCCTACTGCCTACTGCCTCGGA

This study N/A

ON-TARGETplus Non-targeting Pool Dharmacon / Horizon Discovery Cat# D-001810-10-50

ON-TARGETplus Human NUAK1 siRNA -

SMARTpool

Dharmacon / Horizon Discovery Cat# L-004931-01-0005

ON-TARGETplus Human PPP1R10 siRNA –

SMARTpool

Dharmacon / Horizon Discovery Cat# L-011358-00-0005

PPP1R10 Silencer Select siRNA Thermo Fisher Scientific Cat# 4392420 - s328

Recombinant DNA

pBABE-puro Liu et al., 2012 N/A

pBABE-Nuak1-FLAG-NT-puro This study N/A

pBABE-Nuak1-FLAG-CT-puro This study N/A

pBABE-Nuak1-HA-NT-puro This study N/A

pBABE-Nuak1-HA-CT-puro This study N/A

pcDNA3 Thermo Fisher Scientific Cat# V79020

pcDNA5/TO-Flag-mPNUTS Skalnik Lab Lee et al., 2010

pcDNA3-Ppp1r10-HA-wt-puro This study N/A

pcDNA3-Ppp1r10-HA-S313A-puro This study N/A

pcDNA3-Ppp1r10-HA-S313D-puro This study N/A

pcDNA3-Ppp1r10-HA-S313E-puro This study N/A

pINDUCER11 Trono lab Meerbrey et al., 2011

pINDUCER11-NUAK1#1 This study N/A

pINDUCER11-NUAK1#2 This study N/A

pINDUCER11-NUAK1#3 This study N/A

psPAX2 Addgene Cat# 12260

pMD2.G Addgene Cat# 12259

Software and Algorithms

Max Quant Cox and Mann, 2008 http://www.coxdocs.org/doku.php?

id=:maxquant:start

Spotfire TIBCO N/A

Image Studio Lite v5.2.5 LI-COR Biosciences N/A

ImageJ v1.49 Schneider et al., 2012 https://imagej.net/ImageJ

Prism v6 GraphPad N/A

Integrated Genome Browser v9.0.2 Freese et al., 2016 https://bioviz.org/

Bowtie v2.3.5 Langmead et al., 2009 http://bowtie-bio.sourceforge.net/index.shtml

TopHat v2.1.1 Kim et al., 2013 https://ccb.jhu.edu/software/tophat/index.shtml

Bedtools v2.26.0 Quinlan, 2014 https://github.com/arq5x/bedtools2/releases

SAMtools v1.3 Li et al., 2009 http://samtools.sourceforge.net

DeepTools v2.3.5-3-2c5f94d Ramı́rez et al., 2016 https://deeptools.readthedocs.io/en/develop/

index.html

ngsPlot v2.61 Shen et al., 2014 https://github.com/shenlab-sinai/ngsplot/

R (v 3.4.4 or 3.5.1) R Core Team, 2017 https://www.r-project.org/

TreeView 1.16r4 Saldanha, 2004 http://jtreeview.sourceforge.net/
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FastQC v0.11.5 N/A http://www.bioinformatics.babraham.ac.uk/

projects/fastqc/

GSEA v2.2 Subramanian et al., 2005 http://software.broadinstitute.org/gsea/index.jsp

MSigDB database v6.0 Liberzon et al., 2011 http://software.broadinstitute.org/gsea/msigdb/

index.jsp

macs v1.4.1 Zhang et al., 2008 https://taoliu.github.io/MACS/

AmiGO v2 Carbon et al., 2009 http://amigo.geneontology.org/amigo

Perseus v1.6.2.3 Tyanova et al., 2016 https://maxquant.net/perseus/
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Martin

Eilers (martin.eilers@biozentrum.uni-wuerzburg.de). There are restrictions to the availability of BAY-880 due to the lack of an external

centralized repository for its distribution and our need to maintain the stock. All other unique reagents generated in this study are

available from the Lead Contact without restriction.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Employed cell lines
U2OS, HeLa, HEK293TN and PlatE human female; KPC andNIH 3T3mousemale cell lines were cultured at 37�C (5%CO2) in DMEM

(Thermo Fisher Scientific) supplemented with 10% fetal bovine serum (FBS, Sigma-Aldrich). SKNAS, SH-SY5Y, Kelly (female) and

NGP, IMR-5 (male) human neuroblastoma cell lines were grown in RPMI-1640 (Thermo Fisher Scientific) supplemented with 10%

fetal bovine serum. MCF10A female human cell line was cultured in DMEM/F-12 (Thermo Fisher Scientific) supplemented with

5% horse serum (Sigma-Aldrich), 100 mg/ml cholera toxin, 10 mg/ml insulin, 0.5 mg/ml hydrocortisone and 20 ng/ml EGF. All cell lines

were verified by single tandem repeat profiling and routinely tested for mycoplasma contamination.

Cell culture treatments
For siRNA transfection, 10 ml of 20 nM siRNA were mixed with 10 ml Lipofectamine RNAiMAX in 1 mL OptiMEM (Thermo Fisher Sci-

entific). After 5 min incubation at RT, the mixture was added to cells overnight.

For plasmid transfection, FBS concentration was first adjusted to 2%. 10 mg DNA were then mixed with 10 ml Lipofectamine or

polyethylenimine (PEI, Sigma-Aldrich) in 1 mL OptiMEM. After 20 min incubation at RT, the mixture was added to cells overnight.

For retroviral infection, PlatE cells were cultured till 80% confluence, then the FBS concentration was adjusted to 2%. 30 mg DNA

were then mixed with 24 ml PEI in 1 mL OptiMEM. After 20 min incubation, the mixture was added to cells overnight. Cells were then

cultured with 10% FBS for two days, collecting virus-containing supernatant every 24 h. Dead cells were removed from supernatant

by employing 0.45 mmfilters. Target cells were then cultured to 80% confluence and added 3mL supernatant, 2 mL DMEMwith 10%

FBS and 4 mg/ml Polybrene (Sigma-Aldrich).

For lentiviral infection, HEK293TN cells were cultured to 80% confluence, then the FBS concentration was adjusted to 2%. 8 mg

vector DNA, 8 mg psPAX2 and 2 mg pMD2.G were then mixed with 24 ml polyethylenimine in 1 mL OptiMEM. After 20 min incubation,

the mixture was added to cells overnight. Cells were then cultured with 10% FBS for two days, collecting virus-containing superna-

tant every 12 h. Dead cells were removed from the supernatant by employing 0.45 mm filters. Target cells were then cultured to 30%

confluence and added 500 ml supernatant, 5 mL DMEM with 10% FBS and 6 ug/ml Polybrene.

For peptide treatment, peptides were dissolved in water and added directly to cell culture medium. Peptides were designed with a

stearyl-8xArg tail to facilitate cell penetration. GILK peptide sequence encompasses residues 395 to 407 within the GILK site #1 of

NUAK1 (Zagórska et al., 2010).

BAY-880 – originally described in the European Patent EP 1399439B1 – was identified as a potent NUAK1 inhibitor by Bayer in an

ultraHTS campaign screening 2.6 million compounds. The assay in the primary HTS used recombinant NUAK1 to phosphorylate a

synthetic peptide. The phospho-readout was by TR-FRET. Primary hits were confirmed in an orthogonal ADP-Glo assay.

METHOD DETAILS

Immunofluorescence
Depending on the downstream application, cells were seeded in m-Slide 8-well or 18-well chambers (Ibidi) or in 96-well mclear plates

(Greiner). At the appropriate time point, cells were fixed with 4% PFA in PBS and permeabilized at least 20 min in ice-cold 100%

methanol. Cells were then incubated at least 30 min in 5% BSA in PBS (‘‘blocking solution’’). First antibody in blocking solution
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was then added overnight. Wells were washed 3x with PBS, then added 1:1000 Alexa Fluor-conjugated second antibody in blocking

solution for 1 h. 1:1000 DAPI in blocking solution was then added to wells were then added of for 5 min and washed 3x with PBS.

Wells were added of ibidi Mounting Medium or PBS and stored at 4�C up to one week. Proximity ligation assays (PLA) were carried

out using the Duolink In Situ Kit according to the manufacturer’s protocol. Imaging was performed with a Nikon Eclipse-Ti confocal

microscope (equipped with the NIS-elements AR 3.22.15 software) or with the Operetta High-Content Imaging System

(Perkin Elmer).

Cell fractionation
Plates were washed in ice-cold PBS (containing 1:1000 protease and phosphatase inhibitors) and cells were collected with a scraper

and pelleted by 250 g centrifugation for 40 min. Pellets were resuspended in 1 mL sucrose buffer (10 mM HEPES pH 7.9, 0.34 M

Sucrose, 3 mM CaCl2, 2 M magnesium acetate, 0.1 mM EDTA) with 0.5% NP-40 and incubated on a rotator for 10 min. Nuclei

were then pelleted by 3900 g centrifugation for 20 min. The supernatant was collected as cytoplasmic fraction, while pellets were

washed in 1 mL sucrose buffer and pelleted again by 3900 g centrifugation for 20 min. Pelleted nuclei were resuspended in 1 mL

nucleoplasmic extraction buffer (20mM HEPES pH 7.9, 3 mM EDTA, 10% glycerol, 150 mM potassium acetate, 1.5 mMMgCl2), ho-

mogenized with a Dounce homogenizer and, after 40min incubation, homogenized again. When applicable, samples were treated at

this stage for 15 min with 20 mg RNase A at 37�C. Samples were then incubated 1 h with 25U benzonase and then centrifuged by

13000 rpm for 30 min. The supernatant was collected as nucleoplasmic fraction, while pellets were resuspended in 150 mM HEPES

pH 7.9, 1.5 mMMgCl2, 150 mM potassium acetate with 2.5 U benzonase. After incubation for 30 min on a rotating wheel at RT, sam-

ples were pelleted and supernatants were collected as chromatin fraction.

Immunoblotting
Whole-cell extracts were prepared using RIPA buffer (50 mM Tris pH 7.4, 150 mMNaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1%

NP-40). Briefly, plates were washed in ice-cold PBS (containing 1:1000 protease and phosphatase inhibitors) and cells were

collected with a scraper and pelleted by 13000 rpm centrifugation for 5 min. Pellets were resuspended in RIPA buffer and incubated

30 min on ice. Tubes were then centrifuged at 13000 rpm for 5 min and supernatants were collected for further use. Protein lysates

were quantified according to standard procedures (i.e., Bradford assay or bicinchoninic acid assay), separated employing Bis-Tris

acrylamide gels and transferred on PVDF membranes (Merck-Millipore). Membranes were blocked 1 h with 20% Odyssey Blocking

Buffer in TBS, incubated overnight with listed first antibodies in 20% Odyssey Blocking Buffer in TBS, washed 3x with TBS-T, incu-

bated 1 h with IRDye 680RD or 800CW second antibodies, washed 3x with TBS-T and imaged and quantified with the Odyssey CLx

Infrared Imaging System (LI-COR Biosciences).

Co-immunoprecipitation
Plates were washed in ice-cold PBS (containing 1:1000 protease and phosphatase inhibitors) and cells were collected with a scraper

and pelleted by 1500 rpm centrifugation for 10 min. Pellets were lysed in HEGN buffer (20 mM HEPES-KOH pH 7.8, 0.2 mM EDTA,

0.1% NP-40, 10 mM sodium pyrophosphate, 140 mM KCl, 10% glycerol, containing 1:1000 protease and phosphatase inhibitors),

sonicated with a Branson sonifier 4x5 s at 20% amplitude and incubated 30 min on ice. Lysates were cleared upon repeated cen-

trifugations and quantified according to standard procedures (i.e., Bradford assay of bicinchoninic acid assay). 1%–2% lysate was

kept as input control. Unless otherwise noted, lysates were added 1 mg antibody (including a sample with 1 mg IgG control antibody,

Sigma-Aldrich) and incubated 3-6 h on a rotating wheel at 4�C. 7.5 ml protein A/G Dynabeads per immunoprecipitation were washed

three times in HEGN, then incubatedwith the lysate overnight. Beadswerewashed three timeswith HEGN, then resuspended in 60 ml

1X L€ammli buffer and processed for immunoblotting.

Proteomic analysis of NUAK1 interactors
U2OS cells stably expressing N-terminal or C-terminal FLAG-tagged murine Nuak1 (or empty pBABE vector) were harvested and

subjected to standard immunoprecipitation with minor modifications. Briefly, lysates were incubated overnight with anti-FLAG M2

magnetic beads (Sigma-Aldrich) and immunoprecipitates were eluted with 150ng/ml 3X FLAG peptide (Sigma-Aldrich) and

acetone-precipitated. 5% of samples were loaded on Bis-Tris gels for checking actual FLAG-Nuak1 immunoprecipitation by immu-

noblotting or silver staining.

Acetone-precipitated samples were dissolved in NuPAGE LDS sample buffer (Thermo Fisher Scientific), reduced with 50 mM DTT

at 70�C for 10min and alkylated with 120mM Iodoacetamide at room temperature for 20min. Separation was performed onNuPAGE

Novex 4%–12%Bis-Tris gels (Thermo Fisher Scientific) withMOPS buffer according tomanufacturer’s instructions. After washing 3x

with water, gels were stained for 1h with Simply Blue Safe Stain (Thermo Fisher Scientific). After washing with water for 1 h, each gel

lane was cut into 15 slices, destained with 30% acetonitrile in 0.1 M NH4HCO3 (pH 8), shrunk with 100% acetonitrile, and dried in a

vacuum concentrator 5301 (Eppendorf). Samples were then digested with 0.1 mg trypsin per gel band overnight at 37�C in 0.1 M

NH4HCO3 (pH 8). Peptides were extracted from the gel slices with 5% formic acid.

NanoLC-MS/MS analyses were performed on an LTQ-Orbitrap Velos Pro (Thermo Fisher Scientific) equipped with an EASY-Spray

Ion Source and coupled to an EASY-nLC 1000 (Thermo Fisher Scientific). Peptides were loaded on a trapping column (2 cm x 75 mm

ID. PepMap C18, 3 mm particles, 100 Å pore size) and separated on an EASY-Spray column (25 cm x 75 mm ID, PepMap C18, 2 mm
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particles, 100 Å pore size) with a 30-minute linear gradient from 3% to 30% acetonitrile and 0.1% formic acid. MS scans were ac-

quired in the Orbitrap analyzer with a resolution of 30,000 at m/z 400, MS/MS scans were acquired in the Orbitrap analyzer with a

resolution of 7,500 at m/z 400 using HCD fragmentation with 30% normalized collision energy. A TOP5 data-dependent MS/MS

method was used; dynamic exclusion was applied with a repeat count of 1 and an exclusion duration of 30 s; singly charged pre-

cursors were excluded from selection. Minimum signal threshold for precursor selection was set to 50,000. Predictive AGC was

used with AGC target a value of 1e6 for MS scans and 5e4 for MS/MS scans. Lock mass option was applied for internal calibration

in all runs using background ions from protonated decamethylcyclopentasiloxane (m/z 371.10124).

Raw MS data files were analyzed with MaxQuant version 1.6.2.2 (Cox and Mann 2008). Database search was performed with

Andromeda, which is integrated in the utilized version ofMaxQuant. The search was performed against the UniProt Human database.

Additionally, a database containing common contaminants was used. The search was performed with tryptic cleavage specificity

with 3 allowed miscleavages. Protein identification was under control of the false-discovery rate (1% FDR on protein and peptide

level). In addition to MaxQuant default settings, the search was performed against following variable modifications: Protein N-termi-

nal acetylation, Gln to pyro-Glu formation (N-term. Gln) and oxidation (Met). Carbamidomethyl (Cys) was set as fixed modification.

For protein quantitation, the LFQ intensities were used (Cox et al., 2014). Proteins with less than two identified razor/unique peptides

were dismissed.

Further data analysis was performed using R scripts developed in-house. LFQ intensities were used and missing LFQ intensities in

the control samples were imputed with values close to the baseline. Data imputation was performed with values from a standard

normal distribution with a mean of the 5% quantile of the combined log10-transformed LFQ intensities and a standard deviation

of 0.1. For the identification of significantly co-immunoprecipitated proteins, mean log2 transformed protein ratio were calculated

from the two replicate experiments and boxplot outliers were identified in intensity bins of at least 300 proteins. Log2 transformed

protein ratios of CoIP versus control with values outside a 1.5x (potential) or 3x (extreme) interquartile range (IQR), respectively,

were considered as significantly co-immunoprecipitated. GO term analyses of the dataset were performed with the web-available

tool AmiGO (Carbon et al., 2009).

Label-free phosphoproteomics
U2OS cells were treated for 2 h with 10 mM BAY-880, 10 mM HTH-01-015 or DMSO, then plates were washed in ice-cold PBS (con-

taining 1:1000 protease and phosphatase inhibitors). Cells were then collected with a scraper, pelleted by 1500 rpm centrifugation for

10 min and flash-frozen in liquid nitrogen.

Samples were then digested in trifluoroacetic acid (TFA) and phosphopeptide-enriched according to the EasyPhos protocol with

some changes (Humphrey et al., 2015).

Pellets were first resuspended in GdmCl lysis buffer (6 M GdmCl, 100 mM Tris pH 8.5, 10 mM TCEP, 40 mM CAA). Samples were

then added 50 mM DTT, shaken 10 min at 70�C, added 120 mM iodoacetamide and incubated 30 min in the dark. After adding 50 ml

1M ABC buffer, samples were added 4X acetone and proteins precipitated overnight. After centrifugation at 2000 g for 15min, pellets

were washed 3x with cold acetone and dried up. Pellets were then resuspended in 750 ml digestion buffer (10% TFA in 100mM ABC

buffer) and sonified in a Bioruptor (5 cycles of 30sec). Samples were added 1:100 LysC and incubated 1 h at 37�C, then added 10 mg

sequencing-grade modified trypsin (Promega) and incubated overnight at 37�C upon shaking. Digested samples were centrifuged at

16000 g for 20 min, then lyophilized overnight. Samples were dissolved in 2% ACN, 0.5% FA with the help 3x30 s Bioruptor cycles

and 20 min shaking. Samples were then centrifuged for 5 min at 5000 g and cleaned up with Sep Pak C18 cartridges (Waters). 10 ml

sample was collected for protein measurement, while the rest dried up lyophilized. Phosphopeptides were enriched with PhosphTio

tips 3 mg/ 200 ml (GLSciences) and eluted in 150 ml 15% ACN, 5% ammoniumhydroxide before overnight lyophilization. Samples

were redissolved in 100 ml 200 mM citric acid with 20 ml ACN and 1 ml formic acid shortly before NanoLC-MS/MS measurement.

NanoLC-MS/MS analyses were performed on an Orbitrap Fusion (Thermo Fisher Scientific) equipped with a PicoView Ion Source

(New Objective) and coupled to an EASY-nLC 1000 (Thermo Fisher Scientific). Peptides were loaded on capillary columns (PicoFrit,

30 cm x 150 mm ID, New Objective) self-packed with ReproSil-Pur 120 C18-AQ, 1.9 mm (Dr. Maisch) and separated with a 90-minute

linear gradient from 3% to 40% acetonitrile and 0.1% formic acid and a flow rate of 500 nl/min.

Both MS andMS/MS scans were acquired in the Orbitrap analyzer with a resolution of 60,000 for MS scans and 15,000 for MS/MS

scans. HCD fragmentation with 35% normalized collision energy was applied. A Top Speed data-dependent MS/MS method with a

fixed cycle time of 3 s was used. Dynamic exclusion was applied with a repeat count of 1 and an exclusion duration of 45 s; singly

charged precursors were excluded from selection. Minimum signal threshold for precursor selection was set to 50,000. Predictive

AGC was used with AGC a target value of 2e5 for MS scans and 5e4 for MS/MS scans. EASY-IC was used for internal calibration.

Raw MS data files were analyzed with MaxQuant version 1.5.7.4. Database search was performed with Andromeda, which is in-

tegrated in the utilized version of MaxQuant. The search was performed against the UniProt Human database. Additionally, a data-

base containing common contaminants was used. The search was performed with tryptic cleavage specificity with 3 allowed mis-

cleavages. Protein identification was under control of the false-discovery rate (1% FDR on protein and peptide level). In addition to

MaxQuant default settings, the search was performed against following variable modifications: oxidation (Met), Gln to pyro-Glu for-

mation (N-term. Gln) and Phospho (STY). Carbamidomethyl (Cys) was set as fixed modification. For protein quantitation, the LFQ

intensities were used (Cox et al., 2014). Proteins with less than two identified razor/unique peptides were dismissed. Intensities

from MaxQuant Phospho (STY) table were used for relative quantitation of phosphorylation sites.
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Spike-in SILAC phosphoproteomics
U2OS cells were transfected overnight with siRNA targeting NUAK1 and grown for further 48 h after transfection start in standard

DMEM. In parallel, SILAC reference cells were cultured with SILAC media (DMEM (-Lys, Arg, Gln), 10% dialyzed FBS, 1X LysH,

1XArgH, 1XGlnH) and grown until complete heavy label incorporation (> 98%). At themoment of harvesting, cells were then collected

with a scraper, pelleted by 1500 rpm centrifugation for 10 min and flash-frozen in liquid nitrogen.

Cell pellets were lysed with 8 M urea, 2 mM EDTA in 50 mM Tris HCl buffer, containing protease and phosphatase inhibitor cock-

tails. Cells were sonicated for 20 s with 2 pulses at 60% power (Sonoplus HD2070, Bandelin, Germany).

Protein concentration was determined by Bradford colorimetric assay. 1.75mg of each sample wasmixed with an equal amount of

SILAC reference sample and proteins were reduced in DTT 2mM for 30min at 25�C and successively free cysteines were alkylated in

11 mM iodoacetamide for 20 min at room temperature in the darkness.

LysC digestionwas performed by adding LysC (Wako) in a ratio 1:40 to the sample and incubating it for 16 h under gentle shaking at

30�C. After LysC digestion, the samples were diluted 3 times with 50 mM ammonium bicarbonate solution; afterward, trypsin was

added in a 1:50 ratio and samples were incubated 4 h at 30�C. 15 mg of digested samples were desalted on STAGE Tips, dried

and reconstituted to 25 ml of 0.5% acetic acid in water (Nguyen et al., 2018; Rappsilber et al., 2003).

The rest of the peptide mixtures was desalted on 3 mL SepPak C18 columns according to manufacturer’s instructions and then

dried under vacuum. Samples were dissolved before enrichment in buffer C.

Pre-packed 200 ml TiO2 Tips (GLSCience, Japan) were first washed with 20 ml of buffer B (80% ACN with 0.1% trifluoroacetic acid)

and then 20 ml of buffer C. Then peptide sample was loaded on the tip and the beadswashedwith 20 ml of buffer C and 20 ml of buffer B.

For elution, 20 ml of 5% ammonium hydroxide in water were used. The eluate was acidified and purified STAGE Tips, dried and

reconstituted to 7 ml of 0.5% acetic acid in water (Rappsilber et al., 2003).

5 ml were injected on a LC-MS/MS system (NanoLC-Ultra [Eksigent] and LTQ-Orbitrap Velos (Thermo Fisher Scientific), using a

240 min gradient ranging from 5% to 40% of solvent B (80% acetonitrile, 0.1% formic acid; solvent A 5 5% acetonitrile, 0.1% formic

acid). For the chromatographic separation, a 20-cm-long capillary (75 mm inner diameter) was packed with 3 mm C18 beads (Re-

prosilPur C18 AQ, Dr. Maisch). On one end of the capillary a nanospray tip was generated using a laser puller (P-2000 Laser Based

Micropipette Puller, Sutter Instruments), allowing fretless packing. The nanospray source was operated with a spray voltage of 2.1 kV

and an ion transfer tube temperature of 260�C. Data were acquired in data dependent mode, with one surveyMS scan in the Orbitrap

mass analyzer (resolution 60,000 at m/z 400) followed by up to 20 MS\MS scans in the ion trap on the most intense ions (intensity

threshold, 500 counts). To improve the fragmentation of phosphopeptides, the multistage activation algorithm in the Xcalibur soft-

ware was enabled for each MS/MS spectrum using the neutral loss values of 97.97, 48.99, 32.66 and 24.49 m/z units. Once selected

for fragmentation, ions were excluded from further selection for 30 s, to increase new sequencing events.

Raw data was analyzed using the MaxQuant proteomics pipeline (v. 1.4.0.5) and the built-in Andromeda search engine (Cox et al.,

2011) with the Uniprot Human database. Carbamidomethylation of cysteines was chosen as fixed modification, oxidation of methi-

onine and acetylation of N terminus were chosen as variable modifications. The search engine peptide assignments were filtered at

1%FDR and the featurematch between runs was not enabled; second peptide feature was enabled, while other parameters were left

as default. For SILAC samples, two ratio counts were set as threshold for quantification.

The MaxQuant output was further analyzed in Perseus v1.6.2.3 for Windows 10 (Tyanova et al., 2016). Filtering was performed to

exclude contaminants, reverse proteins, peptides with Andromeda score < 40, peptides with localization probability % 0.75, pep-

tides with posterior error probabilityR 0.05, and any peptide that did not present all valid values in at least one group of the dataset.

Differentially phosphorylated sites were assessed by two-sided t test with permutation-based FDR truncation, using the default pa-

rameters, on the transformed log2 of the inverted ratio H/L normalized siRNA NUAK1 against the transformed log2 of the inverted

ratio H/L normalized control. GeneOntology (GO) terms (TheGeneOntology Consortium, 2019) represented in the differentially phos-

phorylated sites that presented p value% 0.05 were evaluated with the in-built Fisher exact test. PPP1CA, PPP1CB, PPP1CC inter-

actome curated in IntAct database (Orchard et al., 2014) were merged, filtered for human proteins and connections, and overlapped

with differentially phosphorylated sites that presented p value% 0.05 in R version 3.4.4 for macOS High Sierra (R Core Team, 2013).

The differentially phosphorylated sites, the GO terms, and PPP1C interactors were graphically represented using ggplot2 (Wickham,

2016) in R version 3.4.4 for macOS High Sierra (R Core Team, 2013).

Tandem Mass Tag (TMT) phosphoproteomics
U2OS cells were transfected overnight with a siRNA pool targetingNUAK1 (or a non targeting control pool) and grown for further 48 h

after transfection start in standard DMEM or treated 2 h with 10 mM BAY-880 (or DMSO) and then immediately washed with PBS to

stop the treatment. Lysis buffer (2% SDS in 50 mM HEPES buffer, pH 8.5) was then immediately added to the plates and cells

collected with a scraper. Lysates were incubated for 5 min at 95�C and subsequently placed on ice for 5 min. Finally, lysates

were sonicated 30 s (5 s on/10 s off) with a Branson sonifier and protein concentration was determined using the BCA Protein Assay

Kit (Thermo Scientific).

A total of 500 mg protein of each samplewas precipitated using chloroform-methanol. Proteinswere reconstituted in 8Murea. Reduc-

tionofCyswasperformedusing10mMDTTat 30�C for 30min. The reactionwasquenchedby50mMchloroacetamide for 30min.Sam-

pleswere diluted to 1.6Murea using 50mMTris-HCl (pH 8). Digestionwas performed by adding trypsin (Promega) at a 1:50 enzyme-to-

substrate ratio and incubated overnight at 30�C. Digests were acidified by adding formic acid to 0.5%, centrifuged to pellet insoluble
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matter, anddesaltedusing tC18RPsolid-phaseextractioncartridges (WatersCorp.;washsolvent:0.1%formicacid (FA); elutionsolvent:

0.1% FA in 50% acetonitrile). Eluates were frozen at �80�C and dried by vacuum centrifugation.

Desalted peptides (100 mg per experimental condition) were reconstituted in 50 mM HEPES (pH8.5) and labeled by tandem mass

tags (Thermo Fisher) as described (Zecha et al., 2019). TMT labeled samples were combined and enriched for phosphopeptides us-

ing immobilized metal affinity chromatography as described (Ruprecht et al., 2015). Subsequent high pH reversed phase fraction-

ation of phosphopeptides was performed as described (Ruprecht et al., 2017). The resulting six phosphopeptide fractions were dried

down and stored at �20�C until LC-MS measurement.

Nanoflow LC-MS/MS was performed on an Ultimate 3000 RSLCnano chromatography system coupled online to an Orbitrap

Fusion Lumos Tribrid mass spectrometer (Thermo Fisher Scientific). Phosphopeptides were reconstituted in 50 mM citric acid,

0.1% FA and loaded on a 75 mm x45cm analytical column (packed in-house with 3 mm C18 resin; Reprosil Gold, Dr. Maisch). Phos-

phopeptides were separated using a 90-min linear gradient from 4% to 32% LC solvent B (0.1% FA, 5%DMSO in ACN) at a flow rate

of 300 nl/min. The mass spectrometer was operated in data dependent and positive ionization mode. MS1 spectra were recorded at

a resolution of 60,000 using an automatic gain control (AGC) target value of 4e5 and a maximum injection time (maxIT) of 50 ms. For

peptide identification, peptides were fragmented by collision-induced dissociation (CID) at 35% normalized collision energy with

multistage activation in the ion trap and using an AGC target value of 5e4 and a maxIT of 60ms. Fragment ions were recorded at

30,000 resolution in the Orbitrap. For TMT quantification peptides were fragmented in the ion trap as above using an AGC of

1.2e5 and a maxIT of 120ms and fragment ions were subjected to synchronous precursor selection (SPS) and fragmented in the

HCD cell at a normalized collision energy of 55% and the resulting MS3 spectrum was recorded in the Orbitrap at a resolution

of 50,000.

Peptide identification and quantification were performed using MaxQuant (version 1.6.2.10) with its built-in search engine

Andromeda. Tandemmass spectra were searched against the UniProt Human database supplemented with common contaminants.

The search was performed with carbamidomethylated cysteine and TMT-modified lysine side chain and peptide N-termini as fixed

modifications and oxidation (Met), N-terminal protein acetylation and phosphorylation (STY) as variable modifications. Results were

filtered to 1% false discovery rate (FDR) on peptide spectrum match (PSM) level. The MaxQuant results was further analyzed in

Perseus v1.6.1.1, also part of the MaxQuant software suite. Hits to the reverse and contaminant databased were removed. Relative

abundances of phosphopeptides were determined using TMT reporter ion intensities from all PSMs and log2 transformed intensity

value are reported throughout. Phosphopeptides were filtered for a minimum of 2 or 3 valid values in the four biological replicates.

Differential phosphopeptide abundance was assessed by two-sided t tests with permutation-based FDR truncation, using default

parameter for s0 (value of 0.1) and 1% FDR. Enrichment analysis of significantly regulated phosphopeptides for biological processes

was performed using the Gene Ontology database. Only phosphosites with at least 3 valid values out of 4 biological replicates were

considered.

Chromatin IP (ChIP)
The ChIP protocol was performed as described before (Herold et al., 2019) with minor modifications. Briefly, plates were added 1%

formaldehyde (Roth) for 5-10 min to crosslink proteins to DNA, then added 1 M glycine (Roth) for 5 min and finally washed in ice-cold

PBS (containing 1:1000 protease and phosphatase inhibitors). Cells were then collected with a scraper and pelleted by 1500 rpm

centrifugation for 5 min at 4�C. Pellets were resuspended in lysis buffer I (5 mM PIPES pH 8, 85 mM KCl, 0.5% NP-40) for 20 min

on ice and again collected by 1500 rpm centrifugation for 5 min at 4�C. Pellets were resuspended in lysis buffer II (50 mM HEPES

pH 7.9, 140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS) for 10 min on ice and then sonified

with either a Branson sonifier (20 min, 10 s on/30 s off, 25% amplitude) or a Covaris M220 instrument (30 min, duty factor 12, cy-

cles/burst 220). 25 ml of sonified samples were decrosslinked (see below), DNA was purified with phenol/chloroform extraction

and run in a 2% agarose gel to confirm sonication efficiency. 1% of sample was kept as input control.

15 ml each of protein A and G Dynabeads per immunoprecipitation were washed three times in 5% BSA in PBS (BSA-PBS), then

added with 3 ml of antibody, then incubated overnight on a rotating wheel at 4�C. Beads were washed three times in BSA-PBS, then

added to the samples and incubated overnight on a rotating wheel at 4�C. Immunoprecipitates were then washed 3x with washing

buffer I (20mM Tris HCl pH 8, 150mMNaCl, 2mM EDTA, 0,1% SDS, 1% Triton X-100), 3x with washing buffer II (20mM Tris HCl pH 8,

500mMNaCl, 2mM EDTA, 0,1% SDS, 1% Triton X-100), 3x with ChIP wash buffer III (10mM Tris HCl pH 8, 250mM LiCl, 1mM EDTA,

1%NP40, 1%Deoxycholic acid sodium salt), incubating the samples 5min on ice between each wash. Samples were then eluted by

adding 2x 150-250 ml elution buffer (1% SDS, 50mMNaHCO3 in TE, pH 8.0) and incubated for 15 min on a rotating wheel @RT. Sam-

ples were added 10 mg RNase A and incubated for 1 h at 37�C. Samples were then de-crosslinked by incubating overnight at 65�C
and finally incubated with 2 mg proteinase K for 2 h at 45�C. Samples were then purified with phenol/chloroform extraction and

quantified with qPCR. Where applicable, lysates were treated with 20 mg RNase A for 15 min at 37�C before incubating them with

antibody-conjugated beads.

To perform ChIP followed by deep sequencing (ChIP-Seq), 100 million cells per condition were collected and processed as for a

standard ChIP. Samples were then processed to build libraries for deep sequencing with the NEBNext ChIP-Seq Library PrepMaster

Mix Set for Illumina according tomanufacturer’s instruction. To performChIP-Seq with exogenous reference genome spike-in (ChIP-

RX), 10 million mouse NIH 3T3 untreated cells were fixed, harvested, resuspended in lysis buffer I and added to every sample in lysis

buffer I (i.e., from 100 million cells).
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DNA-RNA immunoprecipitation (DRIP)
The DRIP protocol was derived from (Ginno et al., 2012). Plates were washed in ice-cold PBS (containing 1:1000 protease and phos-

phatase inhibitors) and cells were collected with a scraper and pelleted by 1500 rpm centrifugation for 5 min. Pellets were resus-

pended in 2mL lysis buffer (0.5%SDS, 5 mg proteinase K in TE, pH 8.0) and incubated on a rotating wheel overnight at 37�C.Genomic

DNA was then extracted with phenol/chloroform purification and resuspended in 500 ml TE. Genomic DNA was digested with 60 U

each of BsrGI, EcoRI, HindIII, SspI and XbaI by incubating overnight at 37�C. Aliquots of genomic DNA were pooled and additionally

incubated with 60 U RNase H. Digested genomic DNA was then extracted with phenol/chloroform purification and resuspended in

1 mL ChIP binding buffer (10 mM sodium phosphate, 140 mMNaCl, 0.05% Triton X-100 in TE, pH 8.0). 10 ml sample was run in a 2%

agarose gel to confirm restriction efficiency. 1% genomic DNA was collected as input control.

15 ml each of protein A and G Dynabeads per immunoprecipitation were washed three times in BSA-PBS, then added with 4 mg of

anti-DNA-RNA hybrid antibody, then incubated overnight on a rotating wheel at 4�C. Beads were washed three times in BSA-PBS,

then added to genomic DNA samples and incubated overnight on a rotating wheel at 4�C. Immunoprecipitates are then washed and

eluted as for ChIP. Samples were finally incubated 2 h with 2 mg proteinase K, then purified with phenol/chloroform extraction and

quantified with qPCR.

Nascent RNA analysis by 4-thiouridine (4sU) labeling
U2OS cells were treated for 2 h with 10 mMBAY-880, 1 mM pladienolide B or DMSO, then added 200 mM 4sU for 15 min (pulse), then

washed with PBS and treated in 4sU-free medium for additional 2 h (chase).

Treatment was stopped by adding Qiazol (QIAGEN). Total RNA was extracted using miRNAeasy kit according to manufacturer’s

instruction. 4sU-RNA was enriched and libraries were then prepared as previously described (Baluapuri et al., 2019). Briefly, 100 mg

RNA was first biotinylated (EZ-Link Biotin-HPDP) with 2 h rotation at RT in biotin labeling buffer (10 mM Tris pH 7.4, 1 mM EDTA).

Biotinylated RNA was cleaned up in MaXtract tubes, then pulled down using Dynabeads MyOne Streptavidin T1 beads for 15 min

at 25�C with rotation. Beads were magnetically separated and repeatedly washed with wash buffer (2 M NaCl with 10 mM Tris pH

7.5, 1 mM EDTA and 0.1% Tween 20). 4sU-RNA was finally eluted using freshly prepared 100 mM DTT and cleaned using RNeasy

MinElute Spin columns.

4sU-RNA was quantified with the RiboGreen Assay and processed for cDNA library preparation using NEBNext rRNA Depletion

and Ultra RNA Library Prep kits for Illumina according to manufacturer’s instructions.

Directional RNA Sequencing
U2OSMYC-ER cells were induced with 4-OHT for 20 h with co-treatment of DMSO or 10 mMBAY-880 for the last 4 h. Treatment was

stopped by adding Qiazol (QIAGEN), then lysates were homogenized by passing them 5 times through 0.6 mm needles. RNA extrac-

tion was performed with the miRNeasy Mini Kit according to manufacturer’s instruction and using in-column DNase digestion. RNA

quality was assessed employing a Fragment Analyzer (Agilent) and directional libraries were generated using the NEBNext Ultra II

DNA Library Prep Kit for Illumina (NEB) according to manufacturer’s instructions.

RNA extraction and quantitative PCR (qPCR)
RNA extraction was performed by resuspending cells in peqGOLD Trifast, then followingmanufacturer’s instructions. cDNAwas syn-

thesized from 1 mg RNA adding M-MLV reverse transcriptase (Promega), random hexamers (Roche), dNTPs (Roth) and RiboLock

RNase Inhibitor (Thermo Fisher Scientific).

qPCR was then performed with PowerUp SYBR Green Master Mix (Thermo Fisher Scientific) on a StepOnePlus thermocycler

(Thermo Fisher Scientific) according to manufacturer’s instructions and employing the listed primers (Tables S2 and S4).

Cloning
FLAG- or HA-tagged NUAK1 vectors

A vector containing murine Nuak1 CDS was used as template for PCR with primers bearing HA or FLAG at amino- (NT) or carboxy-

terminus (CT). All NT andCT primers contained respectively also a BamHI and a EcoRI restriction site to allow for downstream cloning

in pBabe puro retroviral vectors (Table S3).

Phospho mutant PNUTS vector

pcDNA5/TO-Flag-mPNUTS, a vector containing rat Ppp1r10 CDS (a kind gift of David Skalnik, Indiana University), was used as tem-

plate for two PCRs (one for the coding region from ATG to S313, one for the one from S313 to stop codon) employing primers

with mismatches on the S313 codon designed to generate a Ser to Ala, Asp or Glu mutant (Table S3). Both PCR products (as

well as pcDNA5/TO-Flag-mPNUTS) were used as templates for a subsequent PCR with primers bearing a BamHI restriction site

at NT and a HA tag with a EcoRI restriction site at CT (Table S3). BamHI-EcoRI restriction allowed for downstream cloning in pcDNA3

vector for further transfection.

Doxycycline-inducible shNUAK1 vectors

Three NUAK1-targeting sequences selected according to (Fellmann et al., 2011) and included in the mirE backbone as previously

described. The three constructs, named mirE shNUAK1#1, #2 and #3, were then used as template for a PCR with primers bearing
Molecular Cell 77, 1322–1339.e1–e11, March 19, 2020 e10



EcoRI and XhoI for subsequent cloning into the pINDUCER 11 lentiviral vector (Meerbrey et al., 2011). NUAK1-targeted sequences

are TAAGGACAAAATTAAGGATGA (#1), GCTGAAGAAATCCAAGAAAGA (#2) and TAGGGATTTACTGGCATGGTA (#3).

QUANTIFICATION AND STATISTICAL ANALYSIS

Bioinformatic analyses and statistical analyses
Fastq files were generated using Illumina’s base calling software GenerateFASTQ v1.1.0.64 and overall sequencing quality was

analyzed using the FastQC script.

For 4sU-seq, readsweremapped to the human genome (hg19) using Tophat v2.1.1 (Kim et al., 2013) andBowtie2 v2.3.2 (Langmead

and Salzberg, 2012) using the parameters –g 1 –no-coverage-search. For 4sU-Seq including NVP-2/FP, the parameters were -N 1.

Reads mapping to ribosomal rRNA (defined by UCSCs RepeatMasked table filtered for rRNA) were removed and all samples were

normalized to the sample with the smallest number of mapped reads. Bedgraph files were generated with ‘‘bedtools genomecov’’

function after removal of reads falling in exons. Reads falling into different regions of genes (exons, the first intron of a gene, all introns,

intron-spanning (‘‘spliced’’), exon-intron-overlapping, TES (defined as annotated transcriptional end site (TES) to TES+20kb), TES-

overlapping (‘‘TES-RT’’)) were filtered using the UCSC hg19 RefGene table. Reads falling into introns were normalized by the intron

length and ‘‘spliced’’ reads were normalized for the number of exons per gene. For each gene and region analyzed, the mean from

three replicates was calculated. The termination score is defined as: (TES reads + TES-RT reads) / pre-mRNA reads whereas pre-

mRNA reads are all reads falling into introns and overlapping exon-intron-boundaries. Accordingly, the splicing score is defined as:

spliced reads / pre-mRNA reads. Kernel density plots were calculated with the ‘‘density’’ function in R and a bandwidth of 0.3. 2D

Kernel density plots were generated with the ‘‘smoothScatter’’ function in R and default settings. For gene set enrichment analysis

(Subramanian et al., 2005) the splicing score for each gene was calculated for each replicate separately and the analysis was per-

formed with Signal2Noise ratio, 1000 permutations and the C5 and ‘‘Hallmark’’ gene sets from MSigDB v6.1 (Liberzon et al., 2011).

For ChIP-seq, reads were mapped to the human genome (hg19) with bowtie v1.2 (Langmead et al., 2009) and default settings.

Input samples for all biological conditions (DMSO, BAY-880, FP) were sequenced to a lower depth and combined after mapping.

Duplicated reads were removed using ‘‘samtools rmdup’’ tool (Li et al., 2009) and samples were normalized to the sample with

the smallest number of reads by randomly picking reads. For ChIP-RXseq, readswere independentlymapped to hg19 and themurine

spike-in genome (mm10) with bowtie v1.2 and default settings and a normalization factor was calculated as described previously

(Herold et al., 2019). Bedgraph files were generated with ‘‘bedtools genomecov’’ function and vizualized with the Integrated Genome

Browser (Freese et al., 2016). Peakswere calledwithMACS v1.4.2 (Zhang et al., 2008) using the input sample as control with a p value

of 1e-8. Proximity to promoters (defined as TSS +-1kb) was analyzed with bedtools ‘‘closestBed’’ function and the UCSC hg19 Re-

fSeq gene table. Average read density around the TSS (for all RefSeq listed genes), pause sites and first exon-boundary were calcu-

lated and plotted with deeptools (Ramı́rez et al., 2016) using all genes with a PNUTS peak in the promoter. The mean of all analyzed

genes is indicated by a solid line and the SEM is presented as shadow. For read density profiles, themean is shown including the SEM

as shadow. The pause site is defined by RNAPII peaks (condition EtOH/DMSO) called with MACS v1.4.2 (parameters: keep-dup 1, p

value 1e-15,–call-subpeaks) without input control to avoid standard sequencing depth normalization. Peaks in the input were called

independently with the same parameters and peaks present in the RNAPII and input sample were removed. Finally, RNAPII peaks

were annotated to RNAPII TSS and all peaks in a region of TSS to TSS+250bp were selected as viewpoint for density plots of the

pause site. ChIP-seq data for RNAPII were taken from GSE44672 (Walz et al., 2014) or GSE89384 (Olson et al., 2018) and analyzed

as described above.

For RNA-seq, reads were aligned to the human genome (hg19) using Tophat v2.1.1 and Bowtie2 v2.3. using the parameters –g 1 –n

1–library-type fr-firststrand –no-coverage-search and samples were normalized to the number of mapped reads in the smallest sam-

ple. For gene expression analysis, reads per gene (Ensembl gene database) were counted with the ‘‘summarizeOverlaps’’ function

from the R package ‘‘GenomicAlignments’’ using the ‘‘union’’-mode and non- or weakly expressed genes were removed (mean read

count over all samples < 1).

In boxplots, the central line shows themedian, the borders of the box indicate the first and third quartile and the whiskers extend to

1.5 of the interquartile range. Outliers are shown as black dots. P values comparing medians were calculated with an unpaired two-

tailed Wilcoxon rank sum test.

Statistical significance throughout experimental conditions was addressed by employing the inherent test with the Prism software

(GraphPad). P values < 0.05 were considered statistically significant.

DATA AND CODE AVAILABILITY

RNA-, ChIP- and 4sU-seq data generated for this study are available at the Gene Expression Omnibus (GEO) under accession num-

ber GSE129925.

Raw pictures (immunostainings, immunoblotting) and proteomic data are available at the Mendeley Data repository at the address

http://dx.doi.org/10.17632/rm56h9msym.1.
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Figure S1. Characterization of nuclear NUAK1 complexes, Related to Figure 1.
A. Immunofluorescence using an a-NUAK1 antibody of the described cell lines. DAPI is used as

nuclear counterstain (n=3).

B. Immunofluorescence using an a-HA antibody of U2OS or MCF10A cells expressingHA-tagged

NUAK1 (and their empty vector, EV, counterpart). DAPI is used as nuclear counterstain (n=3).

C. Immunoblots of FLAG immunoprecipitates from U2OS cells expressing amino(NT)-,

carboxy(CT)-terminally FLAG-tagged NUAK1 or empty vector (EV). Input corresponds to 1% of

samples used for the immunoprecipitation. VCL was used as loading control and as negative

control for the IP.

D. Diagram illustrating the presence of PP1 interactors (orange, according to the PPP1CA/B/C

BioGrid interactome), nuclear proteins (green,GO termanalysis), and splicing factors (yellow,GO

term analysis) in the MS analysis of FLAG-NUAK1 IP. Dot size is according to number of peptides

identified by MS (average of n=2).

E. Immunofluorescence of endogenous NUAK1 and the nuclear speckle marker SC35 in U2OS

cells. DAPI is used as nuclear counterstain.

F. Venn diagram comparing nuclear NUAK1 interactors (n=107) with nuclear interactors of MYC

(n=70) and of RNAPII (n=97).
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Figure S2. Phosphorylationof PNUTS by NUAK1, Related to Figure 2.
A. Specificity control of the proximity ligation assay (PLA) shown in Figure 2B. The assay was

performed using only the HA antibody. DAPI is used as nuclear counterstain (n=3).

B. Immunoblot documenting siRNA-mediated depletion of NUAK1 and phosphorylation of PNUTS.

U2OS cells were transfected with a siRNA pool targeting NUAK1 for 48 h. VCL was used as

loading control (n=3).
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Figure S3. Chromatin association of PNUTS, Related to Figure 3.
A. Quantification of band intensity of selected proteins from the experiment shown in Figure 3A

(mean±SEM of biological quadruplicates). “Nucleopl.”, nucleoplasmic fraction; “chromatin”,

chromatin-bound fraction. Band intensity was normalized to the non-RNase A-treated, chromatin-

bound sample.

B. Left: Genome browser tracks of PNUTS occupancy in a representative histone cluster. Right:

Magnification of the section highlighted in the left panel.

C. PNUTS ChIP performed upon 4 h flavopiridol treatment (50nM). IgG ChIP was used as control.

Indicated primers refer to gene transcription start site (data show mean±SDof technical triplicates

of a representative experiment, n=3).

D. Immunoblot showing phosphorylation of SF3B1 at the indicated sites upon incubation of U2OS

cells with 2 µM okadaic acid (OA) for 4 hr. ACTB was used as loading control (n=3).

E. NUAK1-dependent phosphosites in the TP-rich domain of SF3B1. From top downwards:

position of the TP-rich domain in the SF3B1 protein; position within the TP-rich domain of the

downregulated phosphorylation sites (“x”) identified by phosphoproteomic analysis upon 2 h 10

µM BAY-880 or HTH-01-015 treatment. The two sites recognized by the phospho-specific

antibodies are highlighted with an antibody symbol.
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Figure S4. Comparison of NUAK1 inhibitorsused in this study, Related to Figure 4.
A. Chemical structure of BAY-880.

B. Left: Histogram showing kinase activity (as percentage of control) upon incubation with 1 µM

BAY-880. Only kinases showing less than 50% activity are shown (33 out of 274 screened, listed

in Table S1). Right: Activity of 139 kinases previously screened upon treatment with 1 µM HTH-

01-015. Data are taken from (Banerjee et al., 2014a). Kinases included in both graphs are

highlighted and labeled. Red dashed line, NUAK1 activity level upon HTH-01-015 treatment

(11%).

C. RNA-related GO terms of differentially phosphorylated proteins identified in response to siRNA-

mediated depletion of NUAK1 (48 h) or 2 h treatment with 10 µM BAY-880. Two GO terms from

each of the categories identified in Figure 4D are shown. For each term, the number of identified

hits, the fold enrichment and the false discovery rate (FDR) are reported.

D. Immunoblots documenting effect of the indicated concentrations of BAY-880 and HTH-01-015

on PNUTS levels and phosphorylation at S313. U2OS cells were incubated for 24 h. VCL was
used as loading control (n=3).

E. The 350 strongest downmodulated phosphosites identified in a label-free phosphoproteomic

analysis performed upon 2 h BAY-880 or HTH-01-015 treatment were used as input for a GO term

analysis. Top: Venn diagram of top 15 identified GO terms in each condition. Bottom: Same as

above, but including only splicing-related GO terms.

F. GO terms of differentially phosphorylated proteins identified in response to both BAY-880 and

HTH-01-015. For each term and each treatment, the ranking, the number of identified hits, the fold

enrichment and the false discovery rate (FDR) is reported.

G. Top: Venn diagram of proteins with the phosphosites identified as described in Figure 4D.

Bottom: Same as above, but including only splicing-related proteins.
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Figure S5. Additionalcharacterization of BAY-880, Related to Figures 4 and 5.
A. Immunoblots showing pS2 or pS5 phosphorylation of RNAPII upon 24 h treatment with 10 µM

BAY-880, NUAK1i (a compound structurally related to BAY-880), WZ4003, HTH-01-015, BX795,

1 µM flavopiridol (FP), 2 µM P276-00, 20 µM LDC000067, 50 µM DRB. VCL was used as loading

control (n=3).

B. Venn diagram showing the overlap between direct target sites of CDK9 (n=374) and

significantly down-regulated phosphopeptides identified in response to 2 h treatment with 10 µM

BAY-880 (n=1020) in a TMT phosphoproteomic experiment.

C. PNUTS chromatin immunoprecipitation (ChIP). Where indicated, cells were treated for 4 h 10

µM BAY-880. IgG was used as antibody specificity control. TSS, transcription start site; 3’RT, 3’

readthrough site; neg ct, negative control (mean±SD of technical triplicates of a representative

experiment, n=3).

D. Immunoblots documenting phosphorylation of PNUTS or SF3B1 at the indicated sites after

treatment of U2OS cells with 10 µM BAY-880, 10 µM HTH-01-015 or 1 µM pladienolide B (PlaB)

for the indicated times. VCL was used as loading control (n=3).

E. Layout of nascent RNA-sequencing experiments.

F. Genome browser tracks of nascent RNA expression of MAFK, a gene representing the gene

set “Transcription from RNAPII promoter” described in Figure 5D. Tracks were first normalized to

overall reads, then exonic reads were electronically removed. Cumulative gene browser picture

from 3 independent replicates are shown.
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Figure S6. NUAK1 affects nascent RNA synthesis in a MYC-dependent manner,
Related to Figures 6 and 7.
A. Immunoblot using the indicated antibodies. U2OS MYC-ER cells were incubated with 100 nM

4-OHT for 20 h and treated with 10 µM BAY-880 for the last 4 h. VCL was used as loading control

(n=3).

B. Histogram representing the ratio of pre-mRNA reads (defined in Figure 5A) between 4-OHT

treated (“+MYC”) and EtOH treated cells (“- MYC”) of all genes in the 4sU-labeling experiment.

Samples upon 15 min 4sU incorporation (“pulse”, “P”) are shown.

C. Blue, browser tracks documenting nascent RNAsynthesis at the indicated genes as determined

by a 15 min pulse (“P”) of 4sU incorporation. Where indicated cells, were treated with 1 µM

flavopiridol (FP), 1 µM NVP-2 or DMSO for 2 h in control cells (“- MYC”) or upon MYC-ER

activation (“+MYC”; 20 h). Grey, ratio of reads in DMSO and FP-treated samples.

D. Blue, RNAPII ChiP-RX genome browser tracks of representative genes upon 4 h 10 µM BAY-

880 in MYC activated cells (“+ MYC”). Grey, phospho-S313-PNUTS (“pPNUTS”) ChIP-RX or
PNUTS ChIP-Seq occupancy.

E. Read density plots from Figure 6B of RNAPII ChIP-RX analysis upon 20 h MYC-ER activation

with 100 nM 4-OHT and treatment with 4 h 10 µM BAY-880 or DMSO in U2OS cells compared to

RNAPII ChIP-Seq upon CDK9 inhibition by NVP-2 or THAL-SNS-032 (GEO:GSE89384). Plots

are centered to transcription start site (TSS, left), RNAPII pause site (middle) or first exon-intron

boundary (right). The shadow around tracks indicates SEM.
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Figure S7, Related to Figure 7. NUAK1 affects R-loop formation and decapping enzyme
recruitment in a MYC-dependent manner.
A. Scatter plot comparing change in expression of all expressed genes (n=11,891) in response to

BAY-880 treatment in control cells (“- MYC”) and MYC-expressing cells (“+MYC”). Each black dot

represents a single gene. Red line indicates linear regression curve for the overall density (note

the difference to the diagonal, grey dashed line).

B. Bar plot depicting percentage (mean±SD,n=3) of “TES-RT” and intergenic reads (defined in

Figure 5A) in the 4sU-labeling experiment, representing defective termination. Chase samples

(“C”) are shown.

C. Genomebrowser tracks of nascent RNA expressionof RPS3, a representative gene displaying

termination readthrough. Chase samples (“C”) are shown.

D. Red, DRIP(DNA-RNA-Immunoprecipitation)-Seq data (GEO:GSE115957) of the NCL gene in

U2OS cells. Blue, genome browser tracks of nascent RNA synthesis (15 min 4sU incorporation,

“pulse”) of NCL upon treatment with 4 h 10 µM BAY-880 or DMSO in control cells (“- MYC”) or

upon MYC activation (“+ MYC”).Grey, read ratio between DMSO and BAY-880 samples. The red

arrow indicates the position of primers used for DRIP-qPCR (Figure 7D, S7H).

E. DRIP-qPCRs (using S9.6 antibody) of U2OS MYC-ER cells treated with DMSO or 10 µM BAY-

880 for 4 h and, where indicated, co-treated with 100 nM 4-OHT for 20 h (“MYC”). RNase H

treatment and a negative region were employed to test antibody specificity (mean±SDof technical

triplicates of a representative experiment, n=3).



kinase % kinase % kinase % kinase %
NUAK1 4 FLT1 53 ALK2 76 IGF1R 87

CDK2 4 GCK 53 EPHB2 76 MST1 87

CDK3 4 TBK1 54 FGFR2 76 TAO2 87

CDK9 4 CSK 55 JAK1 77 WNK2 87

CDK4 9 MST2 55 MSSK1 77 DYRK1B 88

AURKB 15 CAMK2D 56 AXL 78 FGFR3 88

CLK1 16 MST3 56 EPHA4 79 P70S6K 88

CLK4 17 PTK5 56 LKB1 79 PRAK 88

FLT3 17 LRRK2 57 RSK1 79 WEE1 88

AURKC 19 DRAK1 58 TAK1 79 CK2A2 89

TYK2 20 HCK 58 BTK 80 HASPIN 89

CDK5 22 LCK 58 FAK 80 TLK1 89

SRC 22 NEK9 60 LIMK1 80 CHK2 90

MLK1 27 FES 61 MNK2 80 CLK3 90

CDK1 28 LOK 61 PIM1 80 IKKB 90

IRAK1 30 DDR1 62 RIPK2 80 TIE2 90

EPHA1 33 GSK3A 62 BRSK1 81 TSSK2 90

MER 34 ALK 63 DYRK1A 81 EPHA3 91

CDK6 35 EPHA2 63 TAO3 81 GCN2 91

YES 35 IR 63 PKCA 82 MRCKB 91

LYN 36 IRR 65 CRAF 83 PLK3 91

AMPKA2 37 ARG 66 MAPK2 83 TXK 91

FLT4 39 ITK 66 MELK 83 ATM 91

SIK 40 BLK 67 NIM1 83 DMPK 92

CAMK2G 43 CDK7 67 PKCZ 83 EPHB4 92

FYN 43 BRSK2 69 WNK3 83 PKCE 92

AMPKA1 44 CAMKK2 69 CAMK2B 84 ULK1 92

STK33 44 KDR 70 KIT 84 VRK2 92

CLK2 50 PYK2 70 MSK2 84 PIP4K2A 92

GSK3B 50 TAO1 70 PKBA 84 ALK4 93

Rsk3 50 ABL 72 NLK 85 PKCM 93

TEC 50 CHK1 72 TLK2 85 PI3K 93

ACK1 51 FGR 72 EPHA5 86 LTK 94

BMX 51 IKKE 72 JAK2 86 MKK7B 94

EPHB1 52 RSK2 72 SAPK3 86 PKBG 94

FGFR1 52 PDGFRA 73 ALK1 87 PKCI 94

MET 52 ULK3 74 DDR2 87 SGK3 94

AURKA 53 NEK3 75 ERBB4 87 SNK 94



kinase % kinase % kinase % kinase %
TSSK1 94 CK1 99 ALK6 104 PKR 108

ATR 94 DAPK1 99 FMS 104 PLK1 108

ARAF 95 MAPK1 99 JNK2A2 104 ROCK1 108

GRK1 95 MUSK 99 NEK11 104 ZAP-70 108

MARK1 95 PKBB 99 PKCBI 104 EEF2K 109

PEK 95 ROCKII 99 PKCG 104 GRK5 109

PIM3 95 ChAK1 100 PRKX 104 MINK 109

PKCD 95 CK1D 100 RET 104 CAMKIV 110

TRKA 95 DYRK2 100 ASK1 105 PIP5K1G 110

PI3KC2 95 FER 100 DAPK2 105 HIPK2 111

BRAF 96 HIPK3 100 MRCKA 105 SAPK4 111

GRK7 96 IKKA 100 RSK4 105 PIM2 112

MAPKAPK2 96 MKK6 100 SGK2 105 SRPK2 112

PKA 96 ULK2 100 TGFBR1 105 SYK 112

PKCBII 96 DNAPK 100 CAMK1D 106 ZIPK 112

PKCT 96 SAPK2A 101 CK2 106 CK1G2 113

PI3KC2A 96 SAPK2B 101 EPHA8 106 NEK7 113

JAK3 97 SRPK1 101 IRAK4 106 PHKG2 113

JNK1A1 97 STK25 101 MST4 106 NEK2 114

PAK5 97 BRK 102 PAK2 106 TRKB 114

PAK6 97 EGFR 102 PAK4 106 DCAMKL3 115

PAR1BA 97 PKG1A 102 CK1G1 107 ERBB2 115

PKCN 97 FGFR4 103 GRK6 107 EPHB3 117

EPHA7 98 MEK1 103 PAK1 107 SGK 118

MAPKAPK3 98 MKK4 103 PKG1B 107 RON 120

PASK 98 MLCK 103 RSE 107 CK1G3 124

PDK1 98 MOK 103 HIPK1 108 DCAMKL2 124

PKD2 98 FKBP12 103 IRE1 108 JNK3 127

PRK2 98 PDGFRB 103 MSK1 108 SNRK 128

TRKC 98 ROS 103 MTOR 108

CAMKI 99 PIP5K1A 103 NEK6 108

Table S1. BAY-880 selectivity screening, Related to Figure 4
The kinase selectivity screening was performed employing the KinaseProfiler Assay (Eurofins).

%, percentual residual kinase activity upon 1uM BAY-880 treatment.



Table S2. Primers for ChIP, Related to STAR Methods
Primers employed for ChIP-qPCR of the respective genes.
TSS, transcription start site; 3’RT, 3‘ readthrough.

Gene (region) Forward primer Reverse primer

ACTG1 (TSS) CGCTCACCGGCAGAGAAA CGGTCGGTCTCAGTCGC

ARGHDIA (3’RT) CACACCAAGCCTTTTCGCTG CTGAGGCAGGAAGTAGGTGC

CYR61 (3’RT) ATGAGCTTGAAGCATGACTTGTG TTGGCCCTCACGCTATTGG

CYR61 (TSS) GGCCCGTATAAAAGGCGGG GCGTCTTTCGCTCGAGGTC

FASN (TSS) CGTCTCTCTGGCTCCCTCTA GCCAAGCTGTCAGCCCAT

FASN (intron 1) CTGGTCTGGCCACTTGCAC ACCCCGCGTGAATAGCAA

HIST2H3C (TSS) TCTGGTAGCGCCGGATCTC CAAGGCCCCGAGGAAGC

HIST2H3C (3’RT) GGAGCCGGACCGCCAAA CAATTGGCCTATCCGCACTGG

FSTL3 (TSS) CGTCTCTGCGTTCGCCAT CATGGAGCTCACGAAGCCC

LDHA (TSS) GGATCTCATTGCCACGCG CTCTACCCGCCCATCCCT

ACTB (TSS) CGGGGTCTTTGTCTGAGC CAGTTAGCGCCCAAAGGAC

LDLR (TSS) AGACTTGTGGGGTAATGGCA AAAGAAGATGCGGTCCCTCA

Negative control TTTTCTCACATTGCCCCTGT TCAATGCTGTACCAGGCAAA



Primer name Aim Sequence

NUAK1 fwd

FLAG/HA-

NUAK1 cloning GATCGGATCCATGGAAGGGGCGGCAGT

NUAK1 rev

FLAG/HA-

NUAK1 cloning GATCGAATTCCTAGTTGAGCTTGCTGCAGATCTC

NTD-FLAG-

NUAK1 fwd

FLAG/HA-

NUAK1 cloning

GATCGGATCCATGTGGTCGCATCCGCAGTTCGAGAAGGATTACA

AGGATGACGATGACAAGAGTGCAGAAGGGGCGGCAGTGTC

CTD-FLAG-

NUAK1 rev

FLAG/HA-

NUAK1 cloning

GATCGAATTCCTACTTCTCGAACTGCGGATGCGACCACTTGTCAT

CGTCATCCTTGTAATCTGCACTGTTGAGCTTGCTGCAGATCTCC

NTD-HA-NUAK1

fwd

FLAG/HA-

NUAK1 cloning

GATCGGATCCATGTACCCATACGATGTTCCAGATTACGCTGAAG

GGGCGGCAGTGT

CTD-HA-NUAK1

rev

FLAG/HA-

NUAK1 cloning

GATCGAATTCCTAAGCGTAATCTGGAACATCGTATGGGTACGTTG

AGCTTGCTGCAGATC

PNUTS_fwd

HA-PNUTS

cloning GATCGGATCCATGGGTTCAGGTCCCATAGACCCC

PNUTS_rev

HA-PNUTS

cloning GATCGAATTCCTAGGGCAGTGGGGGCCC

NTD-HA-PNUTS

for

HA-PNUTS

cloning

GATCGGATCCATGTACCCATACGATGTTCCAGATTACGCTGCATC

GGGTTCAGGTCCCATAGACCCC

CTD-HA-PNUTS

rev

HA-PNUTS

cloning

GATCGAATTCCTAAGCGTAATCTGGAACATCGTATGGGTATGCAC

TGGGCAGTGGGGGCCC

S313A-PNUTS

sense

PNUTS

mutagenesis AGAAGAAGGTACTATCGCCGACTGCTGCCAA

S313A-PNUTS

antisense

PNUTS

mutagenesis TTGGCAGCAGTCGGCGCTAGTACCTTCTTCT

S313D-PNUTS

sense

PNUTS

mutagenesis AGAAGAAGGTACTAGATCCGACTGCTGCCAA

S313D-PNUTS

antisense

PNUTS

mutagenesis TTGGCAGCAGTCGGATCTAGTACCTTCTTCT

S313E-PNUTS

sense

PNUTS

mutagenesis AGAAGAAGGTACTAGAGCCGACTGCTGCCAA

S313E-PNUTS

antisense

PNUTS

mutagenesis TTGGCAGCAGTCGGCTCTAGTACCTTCTTCT

Table S3. Primers for cloning, Related to STAR Methods
Primers employed for the reported cloning aim.



Gene (region*) Forward primer Reverse primer

ACTB (intron 1) CGGGGTCTTTGTCTGAGC CAGTTAGCGCCCAAAGGAC

ACTB (intron 3) TAACACTGGCTCGTGTGACAA AAGTGCAAAGAACACGGCTAA

APEH CTCATTGGTCCCATTCCCCT CTGAGTCCTGGGCCTCTTAC

ARIDIA TTGGAGACTGGGGCTACTTG AAGCTGCCTTCGGTCTACTT

CNBP CGACTATACCCACCCCATCC TCTTCGTCCTGGAAAGCTGG

CSRNP1 TATAGCTCCCCTTGGGGCAT GGACATGGCCATTACGGGAA

CTNNB1 TGACTCAGACCGCTTCGAGA TCCATTTGGCCAGCTTTGGA

EIF3B TGGGTGTGCTGTGAGTGTAG ATGGACAATTCTGAGGGGCA

EIF4A1 ACGTGTGAGAGTGCAGGG TTAGTTCCTAGTCGCTCCGG

FASN (intron 1) CTGGTCTGGCCACTTGCAC ACCCCGCGTGAATAGCAA

FASN (intron 8) CACTTCCTGTCCCCAACCTA CCAACACCCATGATCACTCA

GTF3C4 GTCCTGGGGTTGTCGAAGA GTAGTCTTGTCCCTACCCGC

HNRNPK CTAGTCCCCAGGCCTCAAAA CTCCGCCTAGTAGCACGTAG

IMPDH2 CAGTTGAAGAGCTGCTGTGC TGGTTTATATTGGCGCGGC

KPNB1 ACCCCGAACTCCTCTCCTTA TTGGGATGGGGTAGGAGAGA

LDLR AGACTTGTGGGGTAATGGCA AAAGAAGATGCGGTCCCTCA

LRRFIP2 CAGCTAGCGCCTGTTAAACC TAGACGCCACACTACGGTTC

MRPS25 GCGCGAGAAGCATTCAGAAC GACACCCCAGGACGAATCTG

NCL CTACCACCCTCATCTGAATCC TTGTCTCGCTGGGAAAGG

NFYC AATACACACACACGCCCCTA GGAGGCGGAATGAGATCTGA

NHP2 AGGCATCACTTCCAGGTCAT CCCTTGCCTCACATTCCCT

POLD1 GGAGGCGGAGTTAAGGGAAT CCTCTACTCACCCGCTTCAA

POLG CTTCTCAAGGAGCAGGTGGA TCATAACCTCCCTTCGACCG

PPIA CCTTGAGAGTCGTTGGGCT CATGGACGGGCTCACACC

PTPN23 CCAGTCTCCGGTCAGTGATT CGTATTGTCAAGAGCCGTGG

RAN CCGTGACTCTGGGATCTTGA CAAGGTGGCTGAAACGGAAA

RBM12 GAGTCTTACCGGGGAAAGCT CATTTTGTGAAGCGGCGAAG

RPL22 GCGGAGTTAGAAAGGGAGGT TTCCTTCCCCAGAAACCCTC

RPS16 CCGAGCGTGGACTAGACAA GTTAGCCGCAACAGAAGCC

SERBP1 ACTACAATTCCCAGGACGCA GCACTTTCGCGAGTCAGTTA

SLC39A10 CGAATGATAAAGGGCGCTCC CCAGTTGCGTAAAGGAGTCG

SRSF1 GGAAACAGCGATTCGATCCC CTGGTCACTCTGTTCGCAAA

TIPIN TCACCTCACGCAGAAAACAC CAGTAGGGCGGAAATTGTGG

TRMU TGTCCCCGGAAACCTGTC CACACCTCCGACTACACAGG

USP1 GTGCCTGCGTTGTTTGAAAC CGCGTTTTCCTCAGTCTCAG

WTAP GCGGAGTTAGAAAGGGAGGT TTCCTTCCCCAGAAACCCTC

ZBTB47 TGCAGGTACAGGATGTCTGC GCCAGAATACGTAGGGCCTC

Negative control TTTTCTCACATTGCCCCTGT TCAATGCTGTACCAGGCAAA

Table S4. Primers for DRIP, Related to STAR Methods
Primers employed for DRIP-qPCR of the respective genes. If not elsewhere stated,

every primer pair targets the transcription start site of the gene.
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