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Purpose: To examine the performance of compressed sensing (CS) in reconstructing  
low signal-to-noise ratio (SNR) 19F MR signals that are close to the detection thresh-
old and originate from small signal sources with no a priori known location.
Methods: Regularization strength was adjusted automatically based on noise level. 
As performance metrics, root-mean-square deviations, true positive rates (TPRs), 
and false discovery rates were computed. CS and conventional reconstructions were 
compared at equal measurement time and evaluated in relation to high-SNR reference 
data. 19F MR data were generated from a purpose-built phantom and benchmarked 
against simulations, as well as from the experimental autoimmune encephalomyelitis 
mouse model. We quantified the signal intensity bias and introduced an intensity 
calibration for in vivo data using high-SNR ex vivo data.
Results: Low-SNR 19F MR data could be reliably reconstructed. Detection sensitiv-
ity was consistently improved and data fidelity was preserved for undersampling and 
averaging factors of α = 2 or = 3. Higher α led to signal blurring in the mouse model. 
The improved TPRs at α = 3 were comparable to a 2.5-fold increase in measurement 
time. Whereas CS resulted in a downward bias of the 19F MR signal, Fourier recon-
structions resulted in an unexpected upward bias of similar magnitude. The calibra-
tion corrected signal-intensity deviations for all reconstructions.
Conclusion: CS is advantageous whenever image features are close to the detection 
threshold. It is a powerful tool, even for low-SNR data with sparsely distributed 19F 
signals, to improve spatial and temporal resolution in 19F MR applications.
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1 |  INTRODUCTION

Fluorine (19F) MRI has been commonly used in cell tracking 
and molecular imaging.1-4 Its widespread applicability, along 
with the challenge that 19F is only sparsely available in vivo, 
has motivated the development of strategies that enhance  
signal-to-noise ratio (SNR) efficiency, for example, more sen-
sitive hardware5-7 and more time-efficient pulse sequences.8-10 
Digital signal processing, particularly compressed sensing 
(CS),11-13 is a new avenue to boost detection performance.

The first application of CS to 19F MR methods was in chemi-
cal shift imaging.14-16 When applied to 19F MRI, the potential of 
CS to improve acquisition time efficiency was demonstrated.17,18 
Under optimal conditions, CS improved SNR efficiency by 
a factor of ~8.5.17,18 At SNR = 58, even small features con-
sisting of fewer than 5 voxels were correctly recovered from  
32-fold undersampled phantom experiment data.17 However, 
lower SNRs (8 and 14) resulted in a loss of these features in 
all CS reconstructions.17 In a phantom experiment, reinvesting 
the time saved by undersampling into increased averaging low-
ered the detection threshold, when compared to fully sampled 
data at equal acquisition time.18 Application of CS to in vivo 19F 
MR was previously shown in situations where the location of 
19F signals in vivo was known: localized wound inflammation 
and transplantation of labeled pancreatic islets.17,18 In the latter, 
4-fold undersampling lowered the detection threshold, but also 
introduced false positives.18 Regarding reconstruction of the 
correct signal intensity (SI), CS was found to introduce a down-
ward bias of more than 50% in phantom experiments.17

From this rich body of literature, it is not clear how well CS 
performs under more challenging conditions (i.e., when study-
ing small features close to detection thresholds). It is these 
conditions which necessitate sensitivity improvements most 
to boost detection and make high resolutions viable. SNR ef-
ficiency does not convey information regarding edge preser-
vation,19,20 and image defects are generally not captured by 
known noise distributions.17 Given that CS is a nonlinear al-
gorithm,11-13 results cannot be extrapolated from experiments 
studying higher SNRs, and reconstruction methods must be 
compared at equal acquisition time.21 This is particularly rele-
vant for quantitative 19F MR studies and raises a fundamental 
question under which conditions CS improves detection per-
formance without compromising data fidelity. To draw valid 
conclusions about performance at low SNRs, a large number 
of reconstructions, signal distributions, and sampling patterns 
must be investigated to exclude random effects.

Unknown signal locations introduce additional chal-
lenges. The measured information and sparsity constraints 
need to be balanced in CS. For low-SNR data, case-by-case 
optimization based on visual inspection is not feasible. Given 
that the optimal choice depends on data scaling, noise level, 
undersampling factor, and image sparsity,22 adopting a value 
optimized for a reference data set is problematic. To address 

this issue, we propose automatic regularization strength se-
lection following Morozov’s discrepancy principle.23,24

Studying the distribution of 19F-labeled inflammatory 
cells in the central nervous system (CNS) during the dis-
ease course of experimental autoimmune encephalomyelitis 
(EAE) is 1 of many biomedical applications that could ben-
efit greatly from improved time efficiency,1,5,25-28 where ad-
dressing the aforementioned issues is necessary to conclude 
whether CS will be beneficial. EAE is a model of multiple 
sclerosis characterized by inflammatory lesions in the CNS,29 
which appear in arbitrary locations especially in the cere-
brum, but can also follow fine anatomical structures, such 
as white matter tracts, in the cerebellum.6 19F nanoparticles 
(NPs) are applied intravenously in animal models to study the 
distribution of inflammatory cell lesions in vivo.17-21

To study the performance of CS for 19F MRI applications 
that include low-SNR conditions, we compared undersampled 
and CS reconstructed data with conventional Fourier and de-
noised reconstructions of fully sampled data. Reliability of 
automatic regularization strength selection and dependence of 
CS performance on undersampling factor and noise level was 
investigated in digital and MR phantom experiments. Fully 
sampled 19F MR data of inflammation in EAE were acquired 
from ex vivo tissue phantoms and in vivo animals to allow 
preparation of 2000 k-spaces with different undersampling 
patterns and noise realizations by retrospective undersam-
pling. The 2 setups corresponded to different EAE cohorts. 
In a third cohort, prospectively undersampled in vivo data 
were acquired with a genuine CS sequence. For performance 
assessment, we examined the root-mean-square deviation 
(RMSD) from the reference as a universal metric of image 
quality, the number of recovered features or true positive rates 
(TPRs) to assess detection performance, false discovery rates 
(FDRs) to quantify data fidelity, and the relative SI deviation 
from the reference to investigate bias effects. Finally, we pro-
pose a scheme for signal-level–specific intensity calibration 
using the ex vivo tissue collection as calibration data and as-
sess the method’s performance for in vivo measurements.

2 |  METHODS

Simulations, data preparation, image reconstruction, and 
analysis were performed in MATLAB (R2018a; The 
MathWorks, Inc., Natick, MA), using pvmatlab for data im-
port (Buker Biospin MRI, Ettlingen, Germany).

2.1 | Compressed sensing, denoising, and 
automatic regularization strength selection

CS reconstructions were computed identically for all setups, 
and denoised images were computed by applying the same 
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algorithm to fully sampled data. 19F MR images are generally 
sparse, with the main component being background. It has 
been shown that 19F chemical shift Imaging reconstructions 
enforcing strict data consistency and using only regulariza-
tion with the �1-norm of the image, ‖r‖1 =

∑
i
��ri
�� , necessitate 

additional postprocessing attributable to spike artifacts.14,15 
Similar to previous work,17 we therefore opted for relaxed 
data consistency, the common choice for noisy data,30 and 
also added a total variation constraint to ensure robustness at 
low SNRs and effective noise reduction. The CS reconstruc-
tion r̂ was computed as (Equation 1):

where Fu denotes the undersampled Fourier transform, y the 
measured k-space data, TViso (r) the isotropic total variation,31 
and λ the regularization strength controlling the balance be-
tween the regularization terms and the data and thereby the data 
consistency 𝜀=‖‖Fur̂−y‖‖

2

2
. The used regularization terms have 

the advantage of being easily interpretable compared to wavelet 
constraints commonly utilized in anatomical MRI.32 Equation 1  
was solved using an implementation of the accelerated alter-
nating direction method of multipliers33 with fast Fourier trans-
form–based exact inversion exploiting the circulant matrix 
structure that arises from periodic boundary conditions for the 
total variation.33,34

To determine the desired data consistency, we applied 
Morozov’s discrepancy principle.23,24 The data consistency 
of the reconstruction is matched with the accuracy of the data 
itself. Given noise standard deviation σ and n sampled com-
plex data points, the expected deviation of the data from true, 
but unknown, image rt is ��

⟨
‖‖Furt−y‖‖

2

2

⟩
=2n�2. Multiple 

reconstructions are performed until a value of λ is found for 
which ε ≈ ηε′ with η specifying the desired ratio of ε and 
ε′.24,35 To this end, we used the Illinois algorithm.36

We performed simulations based on a digital phantom to 
determine a suitable value of η. The [128 × 128] pixel phan-
tom consisted of 8 circular features (each with a diameter of 
4.9 pixels), with SI (1/8, 2/8, …, 8/8) forming a larger circle. 
Partial volume effects were emulated by creating the dig-
ital phantom image 20 times more resolved, before downs-
ampling. k-Space data were generated by adding complex 
Gaussian noise to the digital phantom before applying the 
Fourier transform and, if appropriate, an undersampling mask 
in 1 dimension (see “Data Preparation” section). We exam-
ined 5 different noise levels (σ = 0.01 to σ = 0.2 with 4-fold 
undersampling (fus = 1/4) and 5 different undersampling fac-
tors (fus = 1 to fus = 1/8) with σ = 0.04. For each condition 
and 20 values of η between 0.9 and 1.05, we performed 40 
reconstructions of data with individual noise realizations and 
undersampling masks. As a metric of image quality, we com-
puted the mean and standard deviation of the RMSD from the 
reference.

2.2 | MR measurements and 
experimental setups

We used 3 MR measurement setups to examine CS perfor-
mance. All MR experiments were carried out on a 9.4T MR 
system (BioSpec 94/20, Gmax = 440 mT/m, slew rate = 3440 
mT/m/ms, B-GA12, PV6.1 software, Bruker BioSpin MRI; 
Bruker Corporation, Billerica, MA), using an 19F/1H mouse 
head volume radiofrequency (RF) coil.5 Animal experiments 
were conducted in accord with procedures approved by the 
Animal Welfare Department of the State Office of Health and 
Social Affairs Berlin (LAGeSo, Ref0127-16) and conformed 
to guidelines to minimize discomfort to animals (86/609/
EEC).

2.2.1 | Setup 1: capillary tube phantom

Eight concentrically-arranged capillary tubes (inner diam-
eter, 1.15 mm) submerged in water (placed horizontally in 
the magnet bore) were filled with (1/8, 2/8, … 8/8) × 33% 
trifluoroethanol diluted in water and 1 mmol/L of gado-
linium (Magnevist; Bayer Vital, Leverkusen, Germany). 
Axial 2D images were acquired using rapid acquisition 
with relaxation enhancement (RARE; flip-back module, 
echo train length [ETL] = 8, TR = 600 ms, TE = 12 ms, 
[30 × 30] mm2 field of view [FOV], 128 × 128 matrix). 
To construct data with different noise levels, 6 slice thick-
nesses were used (0.1, 0.25, 0.5, 1, 2.5, and 5 mm) and 64 
repetitions/slice acquired. The digital phantom described 
in the preceding section was designed to conform to this 
phantom such that the MR experiment could be replicated 
by simulations.

2.2.2 | Setup 2: ex vivo EAE tissue

EAE was actively induced in female 3-month-old SJL/J mice 
(n = 5), by subcutaneously immunizing with the CNS antigen 
proteolipid protein (PLP139–151, 250 μg/animal) emulsified 
with Mycobacterium Tuberculosis H37RA (800 µg/animal  
in 100 μL of complete Freund's adjuvant).37 Pertussis toxin 
(1.25 ng/μL in 200 μL of phosphate-buffered saline [PBS]) 
was administered intraperitoneally on days 0 and 2. Animals 
were weighed daily, and a neurological scoring was per-
formed daily to assess the EAE symptoms. Adding up scor-
ing points (righting reflex weakness 0.5, tail paresis 0.5, tail 
paralysis 1, unilateral hindlimb paresis 0.5, bilateral hindlimb 
paralysis 1, unilateral forelimb paresis 0.75, and bilateral 
forelimb paralysis 1.5) results in the final EAE score.

High-fluorine-content Pluronic-PFCE NPs consisting 
of perfluoro-15-crown-5-ether (PFCE; Fluorochem Ltd, 
Hadfield, UK), emulsified in Pluronic F-68 (Sigma-Aldrich, 

(1)r̂= argminr
��Fur−y��

2

2
+𝜆

�
‖r‖1+TViso (r)

�
,
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Steinheim, Germany), were prepared (1.2 M) and charac-
terized as previously described.26,38 NPs containing 5 µmol 
of PFCE were administered daily from day 5 after immu-
nization until the end of the experiment.6 Animals were 
sacrificed on day 10 using a lethal dose of anesthetic and 
transcardially perfused (20 mL of PBS and 20 mL of 4% 
paraformaldehyde [PFA] fixative). Tissue was prepared for 
ex vivo MRI as described previously6 and secured within 
15-mL tubes filled with 4% PFA, keeping the CNS as well 
as draining lymph nodes in situ. A cylindrical cap (diameter 
3 mm, height 1 mm) containing NPs (2 mM of PFCE in 2% 
agarose) was fixed outside of the tube as an external stan-
dard. 19F MRI was conducted using 3D-RARE (flip-back 
module, ETL = 40, TR = 800 ms, TE = 4.1 ms, [40 × 16 × 
16] mm3 FOV, 100 × 40 × 40 matrix, 25 repetitions, each 
repetition = 6 averages). For 1H MR, 3D-RARE (flip-back 
module, ETL = 8, TR = 1000 ms, TE = 5.6 ms, [40 × 16 × 
16] mm3 FOV, 241 × 96 × 96 matrix, 1 average) was used.

2.2.3 | Setup 3: in vivo EAE model, 
measurements with retrospective 
undersampling

In a second cohort of EAE mice (n = 5), 11 fully sampled 
data sets were acquired between days 10 and 14 after induc-
tion. EAE was induced as described for setup 2. Mice were 
anesthetized using a mixture of isoflurane (0.5–1.5%) in 
pressurized air and oxygen as inhalation narcosis. The ani-
mal was placed on a warm animal MR bed and supplied with 
oxygen and air. Respiration was monitored using a respira-
tion pad and temperature by a rectal probe. To distinguish NP 
19F signals from isoflurane, excitation/refocusing RF pulses 
were restricted to a bandwidth of 3000 Hz. 3D MRI was per-
formed as in setup 2, keeping parameters including resolution 
the same, but reducing FOV and matrix size in the frequency-
encoding direction to [45 × 16 × 16] mm3 and 112 × 40 × 
40 or 270 × 96 × 96 for 19F or 1H imaging, respectively. In 
vivo, only 25 repetitions could be acquired. The PFCE NP 
cap used in setup 2 was positioned on the tooth bar.

2.2.4 | Setup 4: in vivo EAE model, 
measurements with prospective undersampling

In a third cohort of EAE mice (n = 4), 4 data sets with pro-
spective undersampling were acquired on days 12 to 14 after 
EAE induction (as described for setups 2 and 3). We devel-
oped a 2D-RARE CS protocol for 19F MRI (flip-back mod-
ule, ETL = 40, TR = 1020 ms, TE = 5.1 ms, [20 × 20] mm2  
FOV, 128 × 128 matrix, 3.2-mm slice thickness, 0.4-mm  
slice gap, 6 slices). Two hundred ninety-six, 592, and 
1184 averages were acquired with no, 2-fold, and 4-fold 

undersampling, respectively (acquisition time = 20 minutes). 
The fully sampled measurement was repeated 4 times as a 
reference (80 minutes), and a pure noise scan was acquired 
to determine the noise level.39 For 1H MR, 2D-RARE (no 
flip-back module, ETL = 4, TR = 1000 ms, TE = 5.5 ms,  
[20 × 20] mm2 FOV, 256 × 256 matrix, 0.8 mm slice thick-
ness, 0.4 mm slice gap, 18 slices, 8 averages) was used.

2.3 | Undersampling and data preparation

Undersampling patterns were generated based on polynomial 
variable-density distributions adapted from Zijstra et al.40 
For setups 1 to 3, undersampled data were created by retro-
spectively undersampling k-space data in the phase-encoding 
direction(s). For setup 4, undersampling was implemented 
prospectively in the data acquisition. Ten percent of the 
sampled k-space lines were assigned deterministically to the  
k-space center. The remaining lines were drawn randomly. 
For the 2D acquisitions (setups 1 and 4), undersampling 
masks were sampled from the 1D distribution (Equation 2):

where kx ∈ [−1, 1] denotes the x-position of the k-space line. 
Similarly, a 2D distribution was used to undersample the 3D 
data of setups 2 and 3 (Equation 3):

where kx, ky ∈ [−1, 1] denote x and y positions of the sampled 
lines. Both distributions are weighted toward lower spatial fre-
quencies by choosing an exponent >1.

We compared Fourier and denoised reconstructions of fully 
sampled data with CS reconstructions of undersampled data 
at equal scan time. For setups 1 to 3, multiple repetitions were 
averaged to offset the accelerated data acquisition (Figure 1A). 
Averaging was performed on the k-space data before image re-
construction. The factor α denotes undersampling and averag-
ing: α = 1 signifies fully sampled data (fus = 1); α = 3 signifies 
3-fold undersampling (fus = 1/3) with 3-fold averaging. Table 1 
summarizes the data preparation for all setups.

2.3.1 | Setup 1

For each slice thickness, the SI of the tube with the high-
est 19F signal was determined. Because of slice profile im-
perfections, the SI values are not simply proportional to the 
slice thickness. The data were scaled relative to each other 
by assigning the same SI to the tube with the highest 19F sig-
nal. Twelve noise-level conditions were examined (Table 1).  

(2)p
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These conditions signify different measurement times and 
are distinguished by peak SNR (pSNRF, the SNR of the high-
est SI tube in the Fourier reconstruction). For each noise 
condition and each undersampling and averaging factor  
(α = 1 to 8), 60 k-space data sets with individual undersam-
pling masks and combinations of averaged repetitions were 
generated. Artificial data were generated based on the digital 
phantom with the same noise conditions, undersampling and 
averaging factors, and number of data sets. Thus, for both the 

capillary tube phantom and digital phantom, 5760 different 
k-spaces were reconstructed.

2.3.2 | Setups 2 and 3

In the EAE model, 5 measurement times (192–960 sec-
onds) were investigated. Four CS undersampling and 
averaging factors were used (α = [2, 3, 4, 5]). For each 

F I G U R E  1  Data preparation and background subtraction. (A) In the MR experiments of setups 1 to 3, multiple repetitions of fully sampled data 
were acquired, which were then averaged to generate data with different noise levels. For the EAE experiments (setups 2 and 3), the acquisition of 
a single repetition took 3 minutes 12 seconds. Thus, for example, fully sampled data corresponding to a measurement time of 6 minutes 24 seconds 
was generated by averaging 2 randomly selected repetitions. These data were then either reconstructed using a simple Fourier transform or they 
were denoised. To generate 3-fold undersampled data for the same measurement time (α = 3), 6 randomly selected repetitions were averaged before 
application of an undersampling mask focusing on the k-space center. Multiple noise realizations were obtained by selecting different repetitions. 
(B) Before further analysis, image voxels were classified as either signal or background. Here, the used multistep procedure is demonstrated in 
a slice of an exemplary Fourier reconstruction and CS reconstruction of in vivo data (setup 3). The slice is cropped in read direction to focus the 
illustration on the fluorine signal. For the Fourier reconstructions only, first the Rician noise bias was corrected. Second, the data were thresholded at 
3.5σ (Fourier reconstructions) or 2σ (denoised and CS reconstructions), where σ denotes the noise standard deviation of the underlying k-space data. 
Last, remaining groups of <3 connected signal voxels were interpreted as outliers and removed from the data. Denoised reconstructions were treated 
identical to CS reconstructions. σF in the label of the color scale denotes the noise standard deviation of the Fourier reconstruction
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measurement time and each acquisition and reconstruction 
method, 5 k-space datasets were built. For the 5 ex vivo 
and 11 in vivo data sets, this led to overall 625 and 1375 
different k-spaces.

2.3.3 | Setup 4

No further data preparation was required because of prospec-
tive undersampling.

2.4 | Data analysis

Performance was assessed by comparing reconstructions 
with fully sampled high-SNR reference data. The average 
of 64 repetitions of the thickest slice (pSNR = 481.5) and 
the digital phantom itself were used in setup 1. In setup 2, 
a measurement time of 128 minutes and in setups 3 and 4 
measurement times of 80 minutes were used (Table 1).

Each data set of setup 3 was considered to be independent 
because the distribution of the 19F MR signal changed over time. 
Before further analysis, the 19F MR signal from the reference 
cap and investigated sample was segregated and only the latter 
part included in the evaluation of performance (setups 2 and 3).

2.4.1 | Rician noise bias correction

Conventional Fourier-reconstructed MR magnitude images 
are biased because of noise effects.41 The measured signal 
follows a Rician distribution.42 For true but unknown signal, 
St, the expected measured signal is43 (Equation 4):

where σ denotes the standard deviation of the Gaussian noise in 
the real and imaginary image and L1/2 a Laguerre polynomial. 

(4)<S>p(S|St)=𝜎

√
𝜋

2
L1∕2

(
−

S2
t

2𝜎2

)
,

T A B L E  1  Summary of acquired data, data preparation, and computed reconstructions

 

Setup 1 Setup 2 Setup 3 Setup 4

Capillary tube phantom Digital phantom EAE ex vivo EAE in vivo EAE in vivo

Dimension 2D 2D 3D 3D 2D

No. of individual 
datasets

1 1 5 11 4

Data in each dataset 6 slice thicknesses (0.1–5.0 
mm) with 64 repetitions 
each

- 40 repetitions 25 repetitions Fourier: 4 
repetitions 
α = 2: 1 
rep. α = 4: 
1 rep.

Ground truth Average of 64 repetitions,  
slice thickness 5 mm  
(pSNRF = 481.5)  

Digital phantom Average of 40 rep-
etitions (meas. time 
128 min)

Average of 25 
repetitions 
(meas. time 
80 min)

Average of 4 
repetitions 
(meas. time 
80 min)

No. of investigated 
measurement times

12 12 5 5 1

Corresponding fully-
sampled data

0.1 mm slice thickness, 1 
average (pSNRF = 1.0) to 
2.5 mm slice thickness, 2 
averages (pSNRF = 41.1)

pSNRF = 1.0 to  
pSNRF = 41.1

1 repetition (192 
sec) to 5 averaged 
repetitions (960 
sec)

1 repetition 
(192 sec) to 
5 averaged 
repetitions 
(960 sec)

1 repetition

Investigated acquisi-
tion and reconstruc-
tion methods

Fourier, denoised, CS α = 2 
to CS α = 8

Fourier, denoised,  
CS α = 2 to CS α = 8

Fourier, denoised, 
CS α = 2 to CS 
α = 5

Fourier, 
denoised, CS 
α = 2 to CS 
α = 5

Fourier, 
denoised, 
CS α = 2, 
CS α = 4

No. of reconstructions 
for each measure-
ment time and 
method

60 60 5 5 1

Overall no. of recon. 6480 6480 750 1650 16

pSNRF denotes the peak SNR of the Fourier reconstruction at equal measurement time and α the factor of undersampling and averaging.
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This function cannot be analytically inverted to yield a func-
tion St(〈S〉). Thus, we inverted it by means of a lookup table 
to implement the noise correction.41 Noise bias correction was 
applied only to Fourier reconstructions (Figure 1B).

2.4.2 | Background subtraction

All reconstructions were thresholded to distinguish signal 
and background voxels based on the noise standard deviation 
of the underlying k-space data σ (Figure 1B). The threshold 
was set to 3.5σ for Fourier reconstructions and to 2σ for CS 
and denoised reconstructions (reflecting reduced background 
noise level). Groups of <3 connected signal voxels were re-
moved as outliers (Figure 1B).

2.4.3 | Performance metrics

As a general metric of image quality, we used the RMSD from 
the reference. To visualize image quality gains between meth-
ods, we computed the relative RMSD (RMSD divided by the 
average RMSD of the Fourier reconstructions at equal meas-
urement time). For setups 2 and 3, also the standard deviation 
of the relative RMSD over all reconstructions with a given 
measurement time and reconstruction method was calculated.

In setup 1, the number of detected tubes was counted as 
a measure of detection performance. Tubes were counted as 
detected if more than half of the corresponding voxels were 
classified as signal. For setups 2, 3, and 4, we used TPRs as 
a statistical measure of sensitivity and FDRs as a measure of 
reliability (Equations 5 and 6):

where nTP, nFN, and nFP denote the number of true positives, 
false negatives, and false positives, respectively. We used a slid-
ing window approach to compute signal-level–specific TPRs 
(Figure 2) and FDRs: All reconstructions were scaled to σF 
(noise standard deviation of the Fourier reconstruction at equal 
scan time) to make results at different measurement times com-
parable. The TPR was computed for different levels of the ref-
erence signal, Sr, whereas the FDR was computed for different 
levels of the measured signal, S. Four hundred windows with 
a width of 0.5 σF and equally spaced centers between 0 and 
8 σF were considered. To combine the results for different re-
constructions, the weighted mean and standard deviation were 
computed with weights given by the number of true signal vox-
els for the TPR and the number of observed signal voxels for 
the FDR (Figure 2). For setup 4, only the weighted mean was 
computed because of the smaller sample size.

For setup 1, we determined the signal deviation (measured 
signal divided by reference signal, S/Sr) averaged over all true 
positive voxels. For setups 2 and 3, the signal deviation of 
true positive voxels in each reconstruction was computed for 
windows of the measured signal, S (Figure 2), whereas mean 
and standard deviation were computed as weighted by the 
number of true positives in the subinterval. 19F concentration 
was determined in the reference measurements by comparing 
signal intensities in tissue with those in the NP cap.

2.4.4 | Signal intensity calibration

Signal deviations measured in setup 2 (ex vivo) were used to 
compute a signal-level and method-specific correction factor, 
which was then applied to calibrate the reconstructions of 
setup 3 (in vivo), as illustrated in Figure 3. A fifth-degree 
polynomial was fitted to the signal deviation observed in the 
reference setup, yielding a function fβ

(
S

�F

)
 for every recon-

struction method β smoothly approximating the deviation at 
S/σF. The corrected signal S(c)

i
 for voxel i of the in vivo data 

was then computed as (Equation 7):

3 |  RESULTS

3.1 | Automatic regularization strength 
selection

Choice of parameter η strongly influenced the suppression 
of background noise and the rendering of low-SNR features, 
following qualitative assessment (Figure 4A). Dependence of 
image quality on η was quantified by computing the RMSD 
from the reference (Figure 4B,C). For 4-fold undersampling, 
image quality was barely affected at 0.93 < η < 0.98 for 
various noise levels (Figure 4B). In this range, RMSD dif-
ferences remained below random data variability. The same 
held true for fus = 1/6 and fus = 1/8 (Figure 4C). Pure denois-
ing and fus = 1/2 results, however, depended more critically 
on η (Figure 4C), with optimal performance at η = 0.979 and 
η = 0.963, respectively. Thus, η = 0.97 was chosen for all 
further reconstructions.

3.2 | Performance of CS in phantom 
experiments

Compared to Fourier reconstructions at the same measure-
ment time, CS improved image quality and increased the num-
ber of detected features in phantom experiments (Figure 5A). 
No false positives occurred. At pSNRF = 1.0, the RMSD was 

(5)TPR=nTP∕
(
nTP+nFN

)

(6)FDR=nFP∕
(
nTP+nFP

)
,

(7)S
(c)

i
=

(
fβ

(
Si

�F

))−1

Si.
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F I G U R E  2  Computation of signal-level–specific TPRs. Based on data with a long scan time, a reference was computed for each data set. 
This reference typically contained a few hundred voxels above the detection threshold (A). The voxels are shown in an arbitrary order. A given 
reconstruction correctly detected a subset of these signal voxels (true positives), while other voxels are classified as background (false negatives; 
B). It is expected that the detection performance mainly depends on the SNR. Thus, the signal level is normalized by the noise standard deviation 
of the Fourier reconstruction at equal scan time σF to allow comparisons between different reconstruction methods and data sets. Considering only 
a subinterval of the signal range, a signal-level–specific TPR can be computed (I and II). Computing TPRs for a moving window yields a TPR 
curve summarizing the detection performance in a single reconstruction (C). The number of reference signal voxels in the window determines 
the reliability of the obtained results. Thus, it is used as a weight when averaging results for, for example, CS α = 4 reconstructions from all data 
sets and investigated measurement times (d). The weighted standard deviation serves as a measure of variability. FDRs and SI deviations were 
computed analogously.  arb. units = arbitrary units

F I G U R E  3  Signal intensity calibration. The figure shows artificial example data for 2 hypothetical reconstruction methods. (A) The intensity 
deviation is computed at different signal levels for a given reconstruction method based on a high-SNR reference. These reference calibration data 
should have a signal distribution similar to the in vivo data that need correction. The calibration data could be ex vivo data from a different animal 
cohort as shown in this article. For retrospective studies, this could also be ex vivo data acquired from the same animals postmortem. Even phantom 
or simulated data could be used. A smooth approximation of the observed deviation is achieved by fitting a fifth-degree polynomial function. 
(B) The inverse of this polynomial fit yields a method- and signal-level–specific correction factor. (C) Signal deviation observed in in vivo data 
reconstructed with the 2 methods. (D) Multiplication with the correction factor yields on average unbiased estimates
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equally high for all methods given that only few signal voxels 
were detected (Figure 5B). CS reconstructions were advanta-
geous in the range of pSNRF = 1.5 to 29.1. Between pSNRF = 
2.1 and pSNRF = 16.1, CS reduced the RMSD by more than 
20%. Whereas the largest reduction was achieved with α = 8 
(46%), most of the improvement was already achieved with  
α = 4 (up to 45%; Figure 5B). At pSNRF = 1.5, only α > 4 
offered an improvement >2%. At pSNRF = 29.1, only α < 6 
was beneficial. Fourier reconstructions were only superior to 
CS at pSNRF = 41.1, but here the absolute error in CS recon-
structions was still small.

CS reconstructions consistently detected more image fea-
tures (Figure 5C). Performance improved with increasing 
α though the difference between α = 6, 7, or 8 was small 
(Figure 5C). The strongest improvement was achieved in con-
ditions where few or no features were observed using conven-
tional methods: at pSNRF = 3.0 on average 5.1 tubes were 
detected with CS α = 8, 4.3 with α = 4, 2.8 with α = 2, and 
only 0.1 in the Fourier reconstructions. At pSNRF = 6.2, the 
difference between α = 8 and α =2 was reduced to an average 
of 6.9 and 6.0 detected features. At pSNRF = 41.1, all tubes 
were detected regardless of the method.

The signal was underestimated by up to 39% (S/Sr = 0.61)  
averaged over all true positive pixels in CS and denoised 
reconstructions (Figure 5D). The largest deviations were 
observed in noisy conditions (pSNRF = 2.1–4.3) and with 
higher α factors. However, the trend was reversed at the 
lowest SNRs, and in some cases an overestimation occurred 
(CS α = 5 at pSNRF = 1.0 and denoised reconstructions at 
pSNRF = 2.1). The average deviation dropped to <20% at 
pSNRF ≥ 11.4 for all α values. Fourier reconstructions also 
displayed an SI bias despite Rician noise bias correction.  

In contrast to CS, the signal was overestimated by up to 41% 
close to the detection threshold (pSNRF = 3.0). For pSNRF 
≥ 8.8, the average signal overestimation was below 5%.

3.3 | Performance of CS in simulations of a 
digital phantom

The results obtained from the experimental phantom setup 
could be accurately replicated in simulations (Figure 5E–H). 
It was only at high SNRs, especially at pSNRF = 41.1, that 
CS performed better in simulations compared to measured 
MR data: This was the case for relative RMSD (Figure 5F) 
and signal deviation (Figure 5H), but not signal detection 
(Figure 5G).

3.4 | Performance of CS in animal 
experiments

We next studied CS performance using retrospective under-
sampling in the EAE animal model. In this animal model, 
some of the 19F signals are close to the detection threshold 
as shown from representative reconstructions of both ex vivo 
(Figure 6A) and in vivo (Figure 6E) data. Additional recon-
structions can be found under: central.xnat.org/data/projects/
CSperf_19F-MRI. Compared to Fourier and denoised recon-
structions, more true-signal voxels were detected with CS; 
already, CS α = 2 identified features that would have re-
mained undetected using conventional approaches. Although 
more true positive 19F signals were uncovered with increas-
ing α, more false positives also emerged; these generally had 

F I G U R E  4  Automatic regularization strength selection. The discrepancy principle selects a value for the regularization strength by matching 
the data consistency of the reconstruction ε with the deviation of the data from the true, but unknown, image ε′. Their desired relation is specified 
by parameter η = ε/ε′. (a) Digital phantom reference with example reconstructions (fus = 1/4, σ = 0.1). For η = 0.8, the image is only partially 
denoised and retains aliasing artifacts, making it difficult to distinguish between true features and noise. With η = 0.97, most features are well 
delineated and distinguishable from the background. With η = 1.1, the reconstruction is oversmoothed. Signal intensities are depressed and low-
intensity features are missing. (b) RMSD from the reference for different values of η at 4-fold undersampling (fus = 1/4) and 5 different noise 
standard deviations σ. The shaded area is given by the standard deviation of the metric over 40 reconstructions. The circle labels the minimal mean 
RMSD. (c) Analogous results for 5 different undersampling factors at σ = 0.04
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F I G U R E  5  Phantom experiments (setup 1). (A) to (D) show results for the capillary tube phantom MR data and (F) to (H) for the digital 
phantom simulations. (A,E) Example reconstructions. The second line depicts the same reconstructions as the first with true positives (TPs) in 
green/yellow and false negatives (FNs) in blue/turquoise. No false positives occurred in these examples. (B,F) RMSD from the reference relative 
to the RMSD of the Fourier reconstruction at equal scan time. pSNRF denotes the peak SNR in the Fourier reconstruction at equal scan time. (C,G) 
Average number of detected features. A tube was counted as detected if half of its voxels were classified as signal. (D,H) Signal deviation averaged 
over all true positive voxels. The deviation was calculated as measured signal divided by reference signal
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intensities close to the detection threshold and were localized 
at the edges of true 19F features. This blurring was more pro-
nounced in the in vivo data (Figure 6E).

Image quality was clearly improved in CS reconstructions 
compared to Fourier reconstructions, as shown by a consis-
tently reduced relative RMSD (Figure 6B,F). This improve-
ment increased with growing α. Denoising impaired image 
quality. For all measurement times except 192 seconds, im-
age-quality improvements exceeded the variability (i.e., the 
standard deviation of the relative RMSDs). At measurement 

times longer than 384 seconds (ex vivo) and 768 seconds (in 
vivo), a differentiation in image-quality improvement ap-
peared between α = 2 and α = 5.

Detection sensitivity, estimated from signal-level– 
specific TPRs, improved with increasing α (Figure 6C,G). 
Whereas TPRs for all reconstructions converged to 1 at 
high signal levels (reference signal Sr ≥ 6σF), TPRs for CS 
reconstructions were consistently superior to other recon-
structions at lower signal levels. For voxels with Sr < 4σF 
(ex vivo) or Sr < 4.5σF (in vivo), improvements exceeded 

F I G U R E  6  Detection performance for imaging inflammation in the EAE mouse model (setups 2 and 3). (A) to (D) show results for the 
ex vivo condition (setup 2) and (E) to (H) for the in vivo condition (setup 3). A legend is displayed in (D). (A,E) Comparisons of the different 
acquisition and reconstruction methods for exemplary slices. The reconstructions in both subfigures correspond to a measurement time of  
16 minutes (960 seconds). A whole view of the slice with 19F MR signal is shown in the reference image (far left) in the standard red hot color 
scale. True positives (TP) shown in green/yellow, false negatives (FN) in blue/turquoise, and false positives (FP) in red/violet were calculated in 
accord with the reference. (B,F) RMSD from the reference relative to the RMSD of the Fourier reconstruction at equal measurement time. Bars 
show the standard deviation of the measured improvement. (C,G) True positive rates (TPRs). Circles indicate the signal level where a TPR of 90% 
is reached. σF is the noise standard deviation of the Fourier reconstruction at equal measurement time and Sr the signal level in the reference. The 
shaded area marks the weighted standard deviation (see Figure 2). (D,H) FDRs. S denotes the measured signal level. Panels (B) to (D) and (F) to 
(H) summarize results from 750 and 1650 reconstructions, respectively
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the variability. CS TPRs increased with increasing α, yet 
the differences were smaller than those compared to Fourier 
or denoised reconstructions. Lower TPRs were observed 
for denoised than Fourier reconstructions. Supporting 
Information Table S1 shows the reference signal levels at 
which a TPR of 90% was reached. In vivo, this level was 
at 5.5σF (Fourier), 4.0σF (CS α = 2), and 3.0σF (CS α = 5). 
The achieved improvement in detection performance with 
CS would translate to a 1.9- and 3.4-fold reduced measure-
ment time compared to a Fourier reconstruction for α = 2 
and α = 5, respectively.

FDRs were generally lower in ex vivo (Figure 6D) com-
pared to in vivo data (Figure 6H). In all cases, the highest 
levels were reached just above the background detection 
threshold, and FDRs increased with increasing α: In vivo 
FDRs reached a maximum of 9%, 12%, and 40% for Fourier, 
CS α = 2, and CS α = 5 reconstructions, respectively. Values 

for all reconstruction methods are shown in Supporting 
Information Table S1. FDRs dropped with increasing signal 
level. In vivo CS and denoised reconstructions FDRs con-
verged to 0 at signal levels greater than 3σF and for Fourier 
reconstructions FDRs approached 0 at S ≥ 4.7σF (Figure 6H). 
An overlap of the measured FDR variation was observed be-
tween all CS reconstructions.

3.5 | Performance of CS with prospective 
undersampling

In vivo experiments with prospective undersampling confirmed 
the above results. Compared to conventional Fourier recon-
structions, the number of detected 19F signal voxels was greatly 
enhanced with CS α = 2 (Figure 7A). Slight blurring was only 
present at the edges of true positive features. The number of 

F I G U R E  7  Detection performance for 19F MRI in the EAE mouse brain using prospective undersampling. (A) Representative slice 
comparing conventional Fourier and CS reconstructions (20 minutes’ measurement time) with the reference (Fourier reconstruction, 80 minutes’ 
measurement time). The first row shows an overlay of the 19F signal (red hot), normalized by the noise standard deviation of the Fourier 
reconstruction σF, on an anatomical image. The second row shows true positives (TP) in green/yellow, false negatives (FN) in blue/turquoise, and 
false positives (FP) in red/violet. Panels (B) and (C) show quantitative results for all 4 data sets acquired with prospective undersampling. (B) TPRs 
computed for different levels of the reference signal Sr using a sliding window approach. Circles indicate the signal level where a TPR of 90% is 
reached, and σF is the noise standard deviation of the Fourier reconstruction at equal measurement time. (C) FDRs computed for different levels of 
the measured signal S
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true positives was further increased with α = 4, but so was the 
blurring effect. CS showed improved TPRs at all signal lev-
els (Figure 7B). A TPR of 90% was reached at 5.5σF (Fourier), 
4.5σF (denoised), 3.9σF (CS α = 2), and 3.6σF (CS α = 4). FDRs 
in CS reconstructions, on the other hand, were elevated at low 
signal levels, especially for α = 4 (Figure 7C). All reconstruc-
tions of prospectively undersampled data can be found under: 
central.xnat.org/data/projects/CSperf_19F-MRI.

3.6 | Signal intensity bias in animal 
experiments

Deviation of measured signal from reference signal was com-
puted over an SI range for the EAE data (Figure 8). The SI bias 
ex vivo and in vivo (Figure 8) showed patterns similar to the 
observations in phantoms (Figure 5D). Fourier reconstruc-
tions overestimated SI by 10% (S = 8σF) to 35% (S = 3.5σF;  
Figure 8A); denoised (Figure 8B), and CS (Figure 8C–F)  
reconstructions underestimated the 19F signal. CS reconstruc-
tions underestimated the signal by ~30% and denoised recon-
structions by ~40% (Figure 8B–F). For all reconstructions, 
deviations increased with decreasing SI. The largest downward 
deviations were observed in CS α = 4 and α = 5. In vivo and ex 
vivo results showed a similar bias, except for CS reconstructions 

at lower SI. All CS reconstructions showed a similar bias at 
signal levels S < 3σF. At S < 4σF, the signal bias in CS recon-
structions was up to 10% smaller in ex vivo than in in vivo data.

Using the calibration method for correcting in vivo  
images (Figure 3), bias was reduced for both conventional 
(Figure 8A,B) and CS (Figure 8C–F) reconstructions. 
Average signal deviation did not exceed 10% in the corrected 
reconstructions. Variability remained unchanged, and the best 
accuracy was achieved in cases where ex vivo and uncor-
rected in vivo data showed similar biases. In corrected Fourier 
(Figure 8A), denoised (Figure 8B), and CS α = 2 (Figure 8C) 
in vivo data, deviations did not exceed the result variability 
at any signal level. For CS α = 3, 4, and 5 (Figure 8D–F), 
correction reduced bias in the in vivo data to <5% for mea-
sured signals S > 5.5σF. For lower signal levels, the larger dis-
crepancies between ex vivo and in vivo data resulted in signal 
deviations of ~10% in the in vivo data following correction.

Nearly all voxels in Fourier reconstructions show an 
overestimated 19F signal, whereas most voxels in CS recon-
structions show an underestimated signal before correction 
(Figure 9B, upper panel). Correction resulted in a more bal-
anced distribution of the observed SI around the correct value 
(Figure 9B, lower panel). When studying NP concentrations 
measured in the reference data (Figure 9A), we observed 
that for both in vivo and ex vivo conditions, the occurrence 

F I G U R E  8  Signal intensity bias for imaging inflammation in the EAE mouse model (setups 2 and 3). (A–F) Average signal deviations for 
Fourier, denoised, and CS reconstruction. α denotes the factor of undersampling and averaging. Each subfigure gathers results for 1 acquisition 
and reconstruction method and contains the signal deviation measured in the ex vivo condition (setup 2), a polynomial fit of this measurement, 
the signal deviation measured in vivo (setup 2), and results for the corrected in vivo data (see also Figure 3 for an illustration of the calibration 
method). A legend is shown in (A), and the shaded areas mark the variability of the results
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rates closely followed a negative exponential distribution that  
decayed with increasing signal level (Figure 9C).

4 |  DISCUSSION AND 
CONCLUSION

Our study shows that CS can be successfully applied to re-
construct small, low-SNR 19F MR features without an a 
priori known location. The automatic regularization strength 
selection we propose reconstructed high-quality images 
without the need of any manual input. We demonstrated that 
CS improves detection performance and provides reliable in-
formation, not only for high-SNR signals, but even for small 
image features close to the detection threshold. Although 
previous work had shown that CS has potential for 19F MRI, 
our results constitute the first thorough validation of CS for 
a challenging 19F MRI application. In order to maintain reli-
ability, the undersampling factor and background subtraction 
threshold need to be chosen with care. Negative SI bias is 
inherent to CS35,44 and poses a challenge for quantitative 19F 
MRI.17,45 However, and quite unexpectedly, Fourier recon-
structions also showed an SI bias with a similar magnitude. 
The intensity calibration we propose provides a strategy to 
obtain close to unbiased results, yet it necessitates additional 
MR reference measurements and postprocessing.

We observed that CS achieved a favorable trade-off between 
undersampling losses and averaging gains whenever image 
features were close to the detection threshold. The undersam-
pling patterns that we used focus on the low spatial frequen-
cies, which contain the bulk of contrast information. Allocating 
a larger share of acquisition time to these data points and thus 
measuring them with higher SNR lifts features above the noise 
background. Missing high-spatial-frequency information did 

not introduce false positives in phantom experiments, even with 
8-fold undersampling. This is probably attributable to the ex-
treme sparsity of the images. In the animal model data, reduced 
sparsity and more complex-shaped features led to slight blurring 
at the feature edges for α > 2. The blurring increased with the 
degree of undersampling. Higher FDRs in the in vivo compared 
to ex vivo experiments can be attributed to movement artifacts 
and shorter reference data measurement times. Given that the 
detection performance consistently increased with higher α, op-
erators must decide on a balance between sensitivity and data 
fidelity. For in vivo studies similar to the present one, we recom-
mend 2- to 3-fold undersampling. It should be noted that FDRs 
dropped to 0 or close to 0 rapidly with increasing SI, so that 
higher background subtraction thresholds can always be cho-
sen post hoc to obtain more conservative results. At SNRs that 
were high enough for all features to be detected regardless of the 
method, only minor differences in image quality were observed 
between Fourier and CS reconstructions. These SNRs are prac-
tically not reached in challenging in vivo 19F MR applications.

The large number of reconstructions (>2000) of ex vivo 
and in vivo measurements leading to these conclusions guar-
antees that the observed improvment is not attributable to 
randomness. Our in vivo experiments with prospective under-
sampling showed good agreement with results from retrospec-
tively undersampled data and demonstrate the applicability 
of CS for preclinical imaging studies. The automatic regular-
ization strength selection we used provides a method to opti-
mize CS reconstructions based on objective criteria that yields 
high-quality images. Because of the small matrix typical of 19F 
MR images, the increased reconstruction time does not pose 
practical problems. Required knowledge of the noise level can 
easily be made available by performing a pure noise scan,39 
which should also be executed to facilitate data analysis. It is a 
recognized problem of CS-MRI that regularization parameter 

F I G U R E  9  Signal intensity calibration example and NP concentration rate of occurrence. (A) Nanoparticle concentration measured in the 
reference (in vivo). (B) Deviation of the reconstructed SI from the reference before correction (upper panel) and following correction (lower panel). 
Only true positive voxels are shown, and the cutout is marked in (A). Blue color indicates overestimation, and red color indicates underestimation. 
(C) Histogram of NP concentrations measured in the references of ex vivo and in vivo data sets (setups 2 and 3). The dashed lines show fits of the 
negative exponential distribution with rate parameters φ = 1.89mM−1 and 1.68mM−1 for ex vivo and in vivo data, respectively
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values are not reported or the choice is not sufficiently substan-
tiated.32 Automatic selection provides independence from man-
ual adjustments, making CS more accessible to nonexpert users 
and improving the reproducibility and comparability of results.

Contrary to our expectation,17 we observed a positive SI 
bias in Fourier reconstructions despite Rician noise bias cor-
rection. This bias is explained by the exponentially decaying 
rate of occurrence of NP concentrations (Figure 9C): Assuming 
a negative exponential prior distribution over the true SI (St) 
with rate parameter φ and a simplified Gaussian forward 
model, the expected true SI for measured SI S is 
<St >p(St|S)=S−

𝜑𝜎2

2
, which is smaller than S itself (see the 

Appendix for details). In CS and denoised reconstructions, this 
effect reduced the signal underestimation. Our proposed inten-
sity calibration corrected the systematic deviations. Therefore, 
high-quality ex vivo scans of comparable signal distributions 
are recommended for in vivo applications utilizing CS and  
19F MR for quantitative analyses. Taking not only the SI, but 
also feature size into account could further improve perfor-
mance and applicability of the method. This method could po-
tentially also be used in human in vivo studies, but would 
require long ex vivo reference MR measurements of similar 
tissue (e.g., from biopsy or autopsy material). Given that simi-
lar bias effects would pose a major challenge for future 19F MR 
studies, further detailed investigations are required to seek and 
correct discrepancies as early as possible.

Another avenue for future CS research is to offset motion 
artifacts and long-term drift effects.46 Although the increased 
averaging reduces the magnitude of motion artifacts, espe-
cially in cardiac and abdominal applications, shortened scan 
times would reduce the influence of signal drift. However, 
investigating these highly circumstantial effects would ne-
cessitate proper controls, which is challenging, given that 
parallel acquisitions of reference measurements, even motion 
correction data, introduce a technical hurdle.

We expect the demonstrated improvement of signal detec-
tion without impaired data fidelity or necessarily compromised 
quantification to hold for other 19F MRI preclinical applica-
tions with similar signal distributions. Besides lowering the 
detection threshold, increased 19F sensitivity can be translated 
into shorter measurement times or improved spatial resolu-
tion. CS will be particularly useful in studies that involve small 
amounts of 19F, as is the case in pharmacokinetic studies47 
as well as studies involving 19F-target–specific theranostic 
nanoparticles,48 19F/1H MR smart probes,49,50 or 19F-labeled 
cells administered as therapies for tumor disease.2,51
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SUPPORTING INFORMATION
Additional supporting information may be found online in 
the Supporting Information section.

TABLE S1 Detection performance in the EAE model. Ex 
vivo and in vivo refer to setups 2 and 3, respectively. Rows 2 
and 3 show the reference signal level at which a TPR of 90% 
is reached. Rows 4 and 5 show the FDR at signal levels just 
above the background subtraction threshold and rows 6 and 
7 the overall FDR
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APPENDIX SIGNAL INTENSITY BIAS 
IN FOURIER RECONSTRUCTIONS
Following Figure 9C, we assume that the SI rate of occur-
rence follows an exponential distribution. Thus, the prior 
distribution over the true signal intensities is (Equation A1):

with rate parameter φ. We consider a simplified forward 
model with additive Gaussian noise (Equation A2):

where S denotes the measured signal and σ the noise standard 
deviation. The posterior distribution follows from the Bayes 
theorem (Equation A3):

Thus, the expected true signal for measured signal S is 
(Equation A4):
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