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Kinetic modelling of quantitative proteome data predicts
metabolic reprogramming of liver cancer
Nikolaus Berndt1,2, Antje Egners3, Guido Mastrobuoni4, Olga Vvedenskaya4, Athanassios Fragoulis3, Aurélien Dugourd5, Sascha Bulik1,
Matthias Pietzke4, Chris Bielow4,6, Rob van Gassel7,8, Steven W. Olde Damink7,8,9,10,11, Merve Erdem3, Julio Saez-Rodriguez5,
Hermann-Georg Holzhütter1, Stefan Kempa4 and Thorsten Cramer3,7,8,10,11

BACKGROUND: Metabolic alterations can serve as targets for diagnosis and cancer therapy. Due to the highly complex regulation
of cellular metabolism, definite identification of metabolic pathway alterations remains challenging and requires sophisticated
experimentation.
METHODS: We applied a comprehensive kinetic model of the central carbon metabolism (CCM) to characterise metabolic
reprogramming in murine liver cancer.
RESULTS: We show that relative differences of protein abundances of metabolic enzymes obtained by mass spectrometry can be
used to assess their maximal velocity values. Model simulations predicted tumour-specific alterations of various components of the
CCM, a selected number of which were subsequently verified by in vitro and in vivo experiments. Furthermore, we demonstrate the
ability of the kinetic model to identify metabolic pathways whose inhibition results in selective tumour cell killing.
CONCLUSIONS: Our systems biology approach establishes that combining cellular experimentation with computer simulations of
physiology-based metabolic models enables a comprehensive understanding of deregulated energetics in cancer. We propose that
modelling proteomics data from human HCC with our approach will enable an individualised metabolic profiling of tumours and
predictions of the efficacy of drug therapies targeting specific metabolic pathways.
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BACKGROUND
Numerous initiatives around the world in conjunction with the
unprecedented development of high-throughput analytical meth-
odology have spiralled up the molecular knowledge about cancer
in dizzying heights.1 Clinical translation of the newly gained
information has resulted in the approval of a plethora of
molecular-targeted drugs with anti-proliferative activity. However,
despite all these advances, the overall death rate for cancer has
declined at a much slower pace in the past 40 years compared to
other major causes of mortality such as cardiovascular and
infectious diseases.2 This is, to a large extent, explained by
suboptimal long-term anti-proliferative efficacy of newly devel-
oped molecular-targeted drugs.3 Cancer cells display a marked
capability to compensate for the inactivation of signalling
pathways—and other growth-promoting mechanisms—that are
considered essential for neoplastic progression.4,5 This translates

into the emergence of therapy resistance, a major obstacle of
clinical oncology.6 To achieve effective and long-lasting therapy
responses it is therefore of pivotal importance to identify
processes that are at the same time essential and unique, thereby
avoiding resistance via usage of alternative pathways. Metabolism
represents such a process as it is essential for cellular survival and
growth, e.g. by providing energy, reductive power and building
blocks for anabolic reactions. In light of the uniqueness of
metabolic pathways, their functional inactivation can usually not
be compensated, resulting in robust cellular damage and/or
death.7

The notion that tumours display specific metabolic alterations
that can be exploited for diagnosis and therapy of cancer has
received widespread attention in recent years.8 However, it also
became evident that a reliable analysis of metabolism, especially
under in vivo situations, is challenging to perform.9 This is due to
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various factors, such as the rapid turnover of substrates and
products, the intricate complexity of the metabolic network, the
central importance of external stimuli such as hormones, growth
factors and the cellular microenvironment.10 One main reason for
the insufficient understanding of metabolic changes in tumours is
the strong focus on changes in the expression level of metabolic
enzymes and transporters. The importance of downstream kinetic
regulation, for instance by allosteric effects or reversible phos-
phorylation, has been underestimated or completely disregarded
in the last two decades.11 Choosing glucose metabolism of the
liver as an example, we have recently demonstrated the necessity
to combine existing knowledge on gene expression changes with
the complex kinetic regulation of enzymes in order to understand
the metabolic response of the liver to varying external
challenges.12 Here, we present an innovative concerted approach
to study cancer metabolism by combining a novel physiology-
based kinetic model of the central metabolism,13 with high-quality
quantitative proteomics data and molecular biological experi-
mentation to elucidate metabolic differences between liver cancer
(hepatocellular carcinoma, HCC) and the normal liver in a murine
model. Using relative changes in the expression level of metabolic
enzymes in HCC and normal liver cells to scale maximal enzyme
activities, we simulate the metabolic response of HCC and the
normal liver to variations in the metabolite and hormone profile of
the blood plasma. This enables the definition of conditions at
which the metabolism of the tumour becomes severely impaired
while the metabolism of normal liver cells remains largely
unaffected. We strongly believe that the herewith presented
approach bears translational potential and will outline a basic
roadmap to achieve this.

METHODS
Transgenic HCC Model and tissue preparation
The murine HCC model (termed ASV-B; C57Bl/6 J background) was
established and initially characterised by Dubois and co-workers.14

Briefly, male ASV-B mice express the early region of the SV40 large
T (SV40lT) oncogene under control of the mouse antithrombin III
promoter. ASV-B mice show time-dependent liver tumour devel-
opment with first evidence of dysplasia at 8 weeks, adenomas at
12 weeks and hepatocellular carcinoma (HCC) at 16 weeks of age.
All mice were maintained under specific pathogen-free conditions
under a 12 h light/dark cycle with free access to food and drinking
water and cage enrichment at the animal facilities in Berlin
(Charité) and Aachen (Institut für Versuchstierkunde, University
Hospital Aachen). Animal procedures were performed in accor-
dance to approved protocols (Landesamt für Gesundheit und
Soziales Berlin and Landesamt für Natur, Umwelt und Verbrau-
cherschutz Recklinghausen) and followed recommendations for
proper care and use of laboratory animals. For tissue preparation,
16-weeks-old ASV-B or tumour-free male control mice (C57Bl/6 J,
Harlan Laboratories) were sacrificed by cervical dislocation and
liver tissue samples were snap-frozen in liquid nitrogen. Further
analyses of tissue samples were performed within 2–4 weeks.

Metabolic model
We have recently developed a comprehensive kinetic model of
the central metabolism of hepatocytes.13 The model was used to
simulate the impact of nutrient supply (including oxygen),
hormonal stimuli and protein abundance of metabolic enzymes
on the functional output of the liver. The model comprises the
central hepatic metabolic pathways of: glycolysis, gluconeogen-
esis, glycogen synthesis, glycogenolysis, fructose metabolism,
galactose metabolism, the creatine-phosphate/ATP shuttle sys-
tem, the pentose phosphate cycle composed of the oxidative and
non-oxidative branch, the citric acid cycle, the malate aspartate
redox shuttle, the glycerol-3-phosphate redox shuttle, the
mitochondrial respiratory chain, the beta-oxidation of fatty acids,

fatty acid synthesis, ketone body synthesis, cholesterol synthesis,
triglyceride synthesis and degradation, the synthesis and hydro-
lysis of triglycerides, the synthesis and export of the very-low
density lipoprotein (Vldl), the urea cycle, the metabolism of the
amino acids serine, alanine, glutamate, glutamine, aspartate and
ethanol metabolism. Furthermore, the model contains the key
electrophysiological processes of the inner mitochondrial mem-
brane including the mitochondrial membrane potential, mito-
chondrial ion homeostasis and the generation and utilisation of
the proton motive force. All modelled reactions and transport
processes are depicted in our previous publication (Berndt et al.13).
The metabolic model is coupled to a phenomenological model of
hormonal signalling by glucagon and insulin affecting the short-
term regulation of metabolic enzymes by reversible phosphoryla-
tion (see below). Uptake, metabolisation and generation of
glucose, fructose, galactose, pyruvate, lactate, glycerol, ammonia,
serine, alanine, glutamate, glutamine, fatty acids, ethanol, acetate,
urea, acetoacetate, β-hydroxybutyrate, oxygen and VLDL particles
are being described by the model.

Short-term regulation of liver metabolism by hormones
The metabolism of the liver is strongly controlled by hormones, in
particular insulin and glucagon.15 Glycolysis and gluconeogenesis
as well as fatty acid synthesis and β-oxidation are inversely
regulated by glucagon and insulin signalling via phosphorylation
and de-phosphorylation of key regulatory enzymes. In the model,
the plasma concentration of insulin and glucagon is directly
translated into the phosphorylation state of interconvertible
enzymes by a phenomenological sigmoid function (γ-function)
also used in the work published by Bulik et al.12 Moreover, we
used phenomenological transfer functions to compute the plasma
concentrations of insulin and glucagon and of non-esterified fatty
acids (NEFA) directly from the plasma level of glucose. This setting
rests on the assumption that the release of insulin and glucagon
from pancreatic islet cells is mainly controlled by the plasma
glucose level and that high concentrations of glucagon and
epinephrine stimulate the hormone-sensitive lipase (HSL) in
adipose tissues, thus creating an inverse relationship between
the plasma level of glucose and NEFA.

LC-MS/MS proteome analysis
Murine liver samples were immediately frozen in liquid nitrogen
and re-suspended in urea buffer (8 M urea, 100 mM Tris-HCl, pH
8.25) containing 100 µl of zirconium beads for protein extraction.
Samples were homogenised on a Precellys 24 device (Bertin
Technologies) for two cycles, 10 s at 6000 rpm. After centrifugation
to remove beads and tissue debris, protein concentration was
measured by Bradford colorimetric assay and 100 µg were taken
for protein digestion. Leftover samples were frozen at −80 °C. The
disulfide bridges of proteins were reduced in DTT 2mM for 30 min
at 25 °C and successively free cysteines alkylated in iodoacetamide
11mM for 20 min at room temperature in the dark. LysC digestion
was then performed by adding 5 µg of LysC (Wako Chemicals)
to the samples and incubating it for 18 h under gentle shaking at
30 °C. After LysC digestion, the samples were diluted three times
with 50 mM ammonium bicarbonate solution, 7 µl of immobilised
trypsin (Applied Biosystems) was added and samples were
incubated 4 h under rotation at 30 °C. Eighteen micrograms of
the resulting peptide mixtures were desalted on STAGE Tips16 and
the eluates dried and reconstituted to 20 µl of 0.5% acetic acid in
water. Five microliters were injected in duplicate on a UPLC
system (Eksigent Technologies) coupled to a LTQ Velos Orbitrap
(Thermo Fisher Scientific), using a 240 min gradient ranging from
5 to 45% of solvent B (80% acetonitrile, 0.1% formic acid; solvent
A= 5% acetonitrile, 0.1% formic acid). For the chromatographic
separation 30 cm long capillary (75 µm inner diameter) was
packed with 1.9 µm C18 beads (Reprosil-AQ, Dr. Maisch HPLC).
On one end of the capillary nanospray tip was generated using a
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laser puller, allowing fretless packing. The nanospray source was
operated with a spray voltage of 2.1 kV and an ion transfer tube
temperature of 260 °C. Data were acquired in data dependent
mode, with one survey MS scan in the Orbitrap mass analyzer
(60,000 resolution at 400m/z) followed by up to 20 MS/MS scans
in the ion trap on the most intense ions. Once selected for
fragmentation, ions were excluded from further selection for 30 s,
in order to increase new sequencing events.

Isolation and culture of primary murine hepatocytes and
establishment of ASV-B cell lines
Primary hepatocytes from C57Bl/6 J were isolated as described
earlier17 and maintained in Dulbecco’s modified Eagle’s medium
(DMEM; high glucose; Thermo Fisher Scientific) containing 10%
foetal bovine serum and 1% penicillin-streptomycin (Thermo
Fisher Scientific) in collagen-coated flasks. All experiments were
conducted within four days after primary cell isolation. HCC cells
were isolated from 16-weeks-old ASV-B mice and cultivated in the
medium described above. After an initial adaptation period of one
to two months they started to proliferate and grow stably under
cell culture conditions.

Preparation and treatment of precision cut liver slices
Precision cut liver slices (200 µm thickness) were prepared from
both normal and tumour-bearing murine livers based on a
published protocol18 with slight modifications. Mouse livers were
perfused with ice-cold University of Wisconsin organ preservation
solution (UW), submerged in UW and kept on ice. Cylindrical cores
with a diameter of 5 mm were prepared using a manual biopsy
punch (Kai Medical Europe) and placed in a Krumdieck tissue slicer
(model MD6000, Alabama Research & Development) containing
ice-cold oxygenated Krebs-Henseleit buffer (KHB, Sigma–Aldrich).
William’s E Medium (WME, Thermo Fisher Scientific) supplemen-
ted with 2.75 mg/ml D-glucose and 50 µg/ml gentamycin
(Sigma–Aldrich) was used as the standard culture medium. To
assess urea synthesis under stimulated conditions, DMEM (high
glucose) with additional urea cycle substrates (2 µM ornithine and
10 µM NH4Cl (both Sigma–Aldrich)) was used. To determine the
effect of complex I inhibition, PCLS were cultured in DMEM
standard medium with or without 0.5 mM metformin (Cayman
Chemical). Slices were incubated in a 6-well culture plate
containing three slices per well and 3.5 ml medium. After 1 h of
pre-incubation, slices were transferred to fresh medium and
incubated for 24 h. Viability of the cultured tissue was confirmed
by quantification of ATP with the Bioluminescence Assay Kit CLSII
(Merck) and results were normalised to total protein content.
Culture medium was collected and stored at −80 °C for later
analysis of urea production. The concentration was determined by
the University Hospital RWTH Aachen Central Laboratories
applying standard diagnostic procedures.

Proteomic data analysis
Proteomics raw data were analysed using the MaxQuant
proteomics pipeline v1.4.1.2 and the built in Andromeda search
engine19,20 with the mouse UniProt database (24,552 protein
entries) and a common contaminants database (247 protein
entries). Carbamidomethylation of cysteines was chosen as fixed
modification, oxidation of methionine and acetylation of N-
terminus were chosen as variable modifications. Two missed
cleavage sites were allowed, and peptide tolerance was set to 7
ppm. The search engine peptide assignments were filtered at 1%
FDR at both the peptide and protein level. The ‘match between
runs’ feature was not enabled, ‘second peptide’ feature was
enabled, while other parameters were left as default. For protein
quantification LFQ intensities calculated by MaxQuant were
used.21 The minimum LFQ ratio count was set to 2 and a MS/
MS spectrum was always required for LFQ comparison of the
precursor ion intensities; only unique and unmodified peptides

were used for LFQ quantification, in order to keep the LFQ
calculation isoform specific. Before comprehensive data analysis,
data quality was evaluated using the in-house developed quality
control software PTXQC.22

Bioinformatic analyses
In total, 28 proteomic samples were analysed, coming for 14
mouse livers, with seven healthy and seven tumourous livers.
Hence, the dataset comprised seven biological replicates for each
condition, with two technical replicates per mouse liver. All
bioinformatic analyses were performed in R. For each protein,
technical replicates were averaged. Box and density plots were
generated to assess the homogeneity of the sample distributions.
Clustering was performed over complete cases of proteomics
samples using the complete method and Euclidean distance (see
pheatmap and hclust R packages) as well as principal component
analysis. Differential analysis was performed using the LIMMA R
package.23 This package assesses the significance of fold changes
using parallel linear models sharing variance parameters. This
method was originally developed for microarray data but turns
out to be particularly suited for shotgun proteomics as it alleviates
the scarcity of the measurement matrix by sharing the variance
between proteins. Out of 2124 detected proteins, 1579 were used
and tested for significance of their fold changes (detected in at
least two samples in each condition). Nine hundred and thirty four
proteins were found to have significant fold changes (FDR 5%).
Metabolically relevant pathways for mouse were obtained from
the GSKB R package,24 which propose a pre-processed metabolic
pathway collection. The Piano R package was used to estimate the
significance of the directional regulation of the pathways.25 The
methods used to generate a consensual p-value in PIANO were:
mean, median, sum, maxmean, stouffer, fisher, reporter, tail-
Strength, wilcoxon and PAGE. The FDR and t-values yielded by the
LIMMA package were used as gene level statistics. The scripts and
data can be accessed here: https://github.com/adugourd/
Berndt_Egners_Mastrobuoni.

Statistical analysis
All data are presented as mean ± standard error of the mean
(SEM). Statistical analysis was performed by unpaired, two-tailed
Students t-test using the GraphPad Prism 5.0 software (GraphPad
Software) if not denoted otherwise. Differences were considered
statistically significant at p < 0.05.

Generation of tumour-specific instantiations of the kinetic model
For the generation of the tumour-specific kinetic model we used
the quantitative proteomics data together with Hepatokin1, a fully
kinetic model of the central carbon metabolism of the liver.13 We
used the protein abundance data obtained from the murine
samples to scale the activity (maximal velocity (Vmax) values) of
the metabolic enzymes to generate tumour-specific kinetic
models. These tumour-specific kinetic models were constructed
by scaling the maximal activity of each enzyme and transporter in
the network according to

vtumour
max ¼ vcontrolmax

Etumour

Econtrol
(1)

Here, Etumour and Econtrol denote the LFQ intensity of the enzyme
in the tumour and the control tissue. vcontrolmax denotes the maximal
enzyme activity of the control (healthy liver) as defined in
Hepatokin1.13 Equation1 is based on the fact that the LFQ
intensity is proportional to the protein amount for each protein.
While the proportionality constant depends on characteristic
features of the peptides used as protein identifiers, the protein
ratio is independent from this unknown constant as it cancels out
in Eq.1. If the ratio of enzyme intensities in Eq. 1 could not be
determined due to missing values of LFQ intensities, it was put to
unity. This means that the corresponding enzyme is assumed to
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be unchanged compared to control conditions. The coverage
was 67.5%.

RESULTS
Proteome analysis of the central carbon metabolism in normal and
malignant murine liver
In order to generate a detailed expression profile of enzymes of
the central carbon metabolism, HCC samples from ASV-B mice as
well as liver tissue from tumour-free control mice were analysed
by a mass spectrometry-based shotgun proteomics approach.20

The proteomics experimental design consisted of 2 conditions
(HCC and control (ctr)), seven biological replicates per condition
and two technical replicates per biological replicate. In total, 2124
proteins were detected across the 28 samples. Each pair of
technical replicates was averaged resulting in 14 biological
samples (Fig. S1A, S1B). Principal Component Analysis showed
that the variance of the mouse samples was well explained by
their status (ctr or HCC). The control and tumour samples are
clearly separated along the first principal component, which
explains 71.11% of the variance of the dataset (Fig. 1a, S1C).
Furthermore, the second component shows that the tumour
samples display a greater inter-sample variability than the control
samples, as expected given the aberrant regulation of tumours. A
clustering of the proteomic profiles of the samples visually
confirmed this, as the tumour profiles clearly display a greater
heterogeneity than the controls (F test p-value: 3 × 10-6, Fig. 1b,
S1D). The minimum correlation between pairs of biological
replicates ranged from 0.65 to 0.95 (Fig. S1D). A differential
expression analysis was performed between the control and
tumour samples using linear models in order to estimate the
significance of the changes in protein abundances (HCC/ctr,
Fig. 1c and Methods). Out of 2124 proteins, 1579 were quantified
in at least two samples in each condition (control and cancer) and
the significance of their fold change was tested using the LIMMA R
package. Out of 1579 tested proteins, 934 were associated with a
false discovery rate (FDR) < 5% (Fig. 1d). The log2 fold change
appears to be symmetrically distributed around zero. Gene set
analysis was performed using the PIANO package25 in order to
find consensual significant directional alteration of metabolism-
related pathways, by incorporating fold-change directionality in
the statistical enrichment analysis. The gene set collection
originates from the GSKB R package, a mouse-tailored gene set
resource similar to MSigDB. Many central metabolic pathways
were found to be significantly downregulated (FDR ≤ 5%, Fig. S2),
such as oxidative phosphorylation, citrate cycle and fatty acid
metabolism (Fig. 1e). This observation suggests a robust
reprogramming of cellular metabolism in the tumour samples
towards downregulation of energy metabolism-related proteins.
In particular, we found that the majority of glycolytic enzymes

such as Pfkl (the liver-specific 6-phosphofructokinase isoform) and
Gapdh (glyceraldehyde-3-phosphate dehydrogenase) are signifi-
cantly upregulated in HCC tissues (Fig. S3). Furthermore, the
fructose-bisphosphate aldolase isoforms A and C show a more
than two-fold higher expression, which, unlike isoform B,
preferentially contribute to glycolytic rather than gluconeogenic
metabolite turnover. In contrast, enzymes of other important
metabolic pathways are downregulated such as pyruvate carbox-
ylase, citrate synthase, succinate dehydrogenase, carnitine O-
palmitoyltransferase 2, glutaminase (liver isoform), glutamine
synthetase and ornithine carbamoyltransferase (Fig. S3).
In order to evaluate a potential contribution of infiltrating

immune cells to the proteomics profiles we performed immuno-
histochemistry against CD45 and F4/80, established markers for
leukocytes and macrophages, respectively. As can be seen in Fig.
S4, abundance of both cell types is very low in murine HCC,
suggesting a minor relevance of infiltrating immune cells for the
obtained proteomics data.

Prediction of tumour-specific metabolic capacity via mathematical
modelling
Relative changes of protein abundances were mapped onto the
maximal capacities (see methods) of the respective enzymes to
generate a kinetic model of the central metabolism of murine
HCC. To assess the functional consequences of alterations in
metabolic enzyme expression, we applied the model to a typical
24 h physiological plasma concentration profile of exchangeable
metabolites and the hormones insulin and glucagon. We used the
plasma profile as model input and computed the diurnal
variations in the concentrations of all model metabolites and
fluxes for normal liver and murine HCC (Fig. 2). Compared with
normal hepatocytes, the simulated metabolic response of murine
HCC revealed a number of significant alterations (Fig. 2, right
panels). The activity of glycolysis is strongly elevated while
gluconeogenesis is almost completely suppressed. In line with
these alterations, HCC is predicted to operate continuously as a
strong lactate producer, while normal hepatocytes take up lactate.
Fatty acid uptake, ß-oxidation of fatty acids, fatty acid and
cholesterol synthesis are strongly diminished. Oxygen consump-
tion is lower in HCC compared to normal liver. In addition,
ammonia detoxification and urea synthesis in HCC are also clearly
reduced (Fig. 2).
The model takes into account metabolic alterations that are

caused by changes of enzyme abundance levels. In our
computations we assumed that the regulation of enzyme activities
in the tumour by hormone-dependent reversible phosphorylation
is not altered compared to the control. As storage and
degradation of glycogen is controlled by interconvertible
enzymes, the discrepancies between predicted and measured
glycogen content point to alterations in the signalling pathways of
insulin and glucagon. A molecular resolved model of the
underlying signalling pathways together with phospho-
proteomics would be needed to improve the signalling part of
the kinetic model. Another limitation of the current computational
approach arises from the neglect of changes in the tissue
architecture which may influence the exchange of metabolites
between liver cells and sinusoid and thus may have a significant
impact on metabolic functions.26

Experimental validation of model predictions
Next, we sought to perform a functional validation of selected
model predictions. To validate the predicted changes of glycolysis
(Fig. 2, output panel 1) and mitochondrial function (Fig. 2, output
panel 8), extracellular flux analyses of normal primary hepatocytes
(isolated from healthy C57Bl/6 J mice) and isolated HCC cells (from
ASV-B mice) were performed. As can be seen in Fig. 3a, the
extracellular acidification rate (ECAR) as a quantitative read-out of
glycolytic activity is significantly elevated in HCC cells. Moreover,
in contrast to hepatocytes, HCC cells are capable of further
increasing the glycolytic rate after inhibition of mitochondrial
respiratory chain complexes. In line with these results, we found
that isolated primary hepatocytes are not affected by glucose
restriction in the culture medium (Fig. 3b). In contrast, HCC cells
isolated from ASV-B mice grew significantly slower in medium
without glucose compared to standard medium (25mM glucose;
Fig. 3c). Pulsed stable isotope-resolved metabolomics (pSIRM)
revealed higher label incorporation into lactate after intraperito-
neal administration of 13C-glucose by ASV-B tumours compared to
normal liver (Fig. 3d). This argues for elevated glycolytic activity of
murine HCCs, well in line with the above outlined model
prediction (Fig. 2, output panel 1). To test the mathematically
predicted changes in oxygen uptake (Fig. 2, output panel 8), the
oxygen consumption rate (OCR) was determined and found to be
decreased in HCC cells (Fig. 3e). In addition, calculation of the
OCR/ECAR-ratio showed that primary hepatocytes prefer oxidative
phosphorylation over glycolytic energy production to a signifi-
cantly greater extent than their HCC counterparts (Fig. S5A). To
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further analyse this, we quantified the cellular mitochondrial
content with electron microscopy. As can be seen in Fig. 3f and
S5B, these analyses indicated that the number of mitochondria is
indeed significantly different between normal liver and murine
HCC. Taken together, these functional assays display reduced

mitochondrial activity in murine HCC and hence nicely confirm the
model prediction shown in Fig. 2 (output panel 8). As outlined
above, model calculations reveal a diminished capacity of HCC
tumour tissue to synthesise urea in order to detoxify ammonia
(Fig. 2, output panel 14). We validated this prediction by
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measuring the urea concentration in the cell culture supernatant
and indeed found significantly less urea in the supernatant of ASV-
B cells (Fig. 4a). Comparing the amount of urea produced by
precision cut liver slices (PCLS) from normal and HCC liver
supports this result (Fig. 4b). Additionally, we challenged the
model prediction of impaired triacylglyceride production capacity
in HCC cells (Fig. 2, output panel 18) by analysing the intracellular
amount of triacylglycerides of cells without and after supplemen-
tation of the culture medium with oleic acid. Triacylglycerides
were readily detectable in primary hepatocytes and their amount
was increased by providing oleic acid. In contrast, no triacylgly-
cerides were detectable in ASV-B cells regardless of the presence
or absence of oleic acid (Fig. 4c). One key function of the liver is
the intracellular storage of glycogen, which was predicted to be
completely abolished in HCC tumours (Fig. 2, output panel 17). By
performing Periodic acid–Schiff (PAS) staining for glycogen
detection on sections from normal and ASV-B liver we in fact
observed diminished staining in murine HCC tumours (Fig. 4d).

Model-based predictions and functional validation of metformin
treatment
We hypothesised that the reduced capacity of oxidative
phosphorylation in HCC can be exploited for cancer therapy by
serving as a metabolic target to selectively impair HCC
metabolism while leaving healthy liver intact. This was further
strengthened by modelling the oxygen consumption as a
function of mitochondrial complex I activity, demonstrating
consistently lower values of tumour compared to control liver
(Fig. 5a). The antidiabetic drug metformin has been shown to
inhibit neoplastic growth by multiple mechanisms,27 one of them
being complex I inhibition.28 In addition, it was shown that
metformin acts as non-competitive inhibitor of mitochondrial
glycerol-3-phosphate dehydrogenase (G3pdh), explaining its
antidiabetic properties.29 Using the reported inhibition concen-
trations of metformin of 0.5 mM for complex I28 and 0.055 mM for
G3pdh,29 we simulated the effect of metformin on HCC and
healthy liver. We put the external conditions to their mean value
over one day and varied the metformin concentration from 0 to 1
mM. Figure 5b depicts the mitochondrial membrane potential of
healthy liver and HCC as a function of the metformin concentra-
tion. As mitochondria induce apoptosis in response to energy
depletion (once the mitochondrial membrane potential [MMP]
rises above ~−80 mV), the simulations predict damage to the
liver tumours already at 0.27 mM metformin, while healthy
hepatocytes remain viable up to metformin concentrations of
0.7 mM. We functionally validated these results by treating freshly
isolated HCC cells and primary hepatocytes with metformin. In
line with model predictions, exposure to 0.65 mM metformin only
mildly affected healthy liver cells derived from control mouse 1,
whereas ctr2 cells were completely unaffected (Fig. 5c). In
contrast, treatment with 0.65 mM metformin resulted in robust
growth inhibition of HCC cells. A significant blockade of
proliferation was also observed after treatment of HCC precision
cut liver slices (PCLS) with metformin (Fig. 5d). In compliance with
model predictions, exposure to higher metformin concentrations

(1.5 mM) strongly decreased the viability of primary hepatocytes
(Fig. 5e).

DISCUSSION
The fundamental metabolic reprogramming processes that tumour
cells undergo to support growth and survival have received
widespread attention in recent years and are now considered as
an emerging hallmark of cancer.8,30 However, exploitation of
metabolic vulnerabilities to identify effective and specific anti-
cancer agents remains challenging. The advancement of analytical
technologies like shotgun proteomics opened the way for global
snapshots of the molecular makeup of healthy tissues and
tumours.31,32 The increased sensitivity of these technologies together
with improved data reproducibility enable for the first time to
map the biochemical network in its totality.9 However, due to
(i) enormous plasticity and dynamics, (ii) multi-level regulatory
mechanisms and (iii) a highly complex network of reactions, cellular
metabolic processes are difficult to study. Mathematical models are
useful tools to unravel this complexity, and various tools have been
established to develop and analyse genome-scale metabolic models
cells.33 Using omics data to scale cell-wide network models of
metabolism has led to the identification of novel drug targets and
biomarkers.34 Naturally, mathematical models are always simplifica-
tions of multi-level biological phenomena; however, hitherto
published metabolic models of liver metabolism specifically lack
important regulatory aspects, e.g. hormonal influences and allosteric
parameters. In addition, they are very often not based on data that
have been established experimentally but on information solely
extracted from published literature.
Here, we used a comprehensive kinetic model of the central

carbon and lipid metabolism of hepatocytes that incorporates not
only the metabolic reaction network but also enzyme regulation
by allosteric effectors and by reversible phosphorylation due to
changing insulin and glucagon signalling as in Berndt et al.13 The
influence of fluctuating nutrient (like glucose and glutamine) and
oxygen concentrations within a physiological range are also taken
into account. As demonstrated by us earlier, these parameters are
at least equally important for modelling the metabolic perfor-
mance as the changes in enzyme abundance (see Bulik et al.12).
Applying the model to the central metabolism of HCC, we took
advantage of the fact that HCCs originate from hepatocytes,35 i.e.
metabolic enzymes in normal and malignant cells only differ in
their expression level. This enabled us to re-parameterise the
hepatocyte model by scaling the enzyme activities between HCC
and normal hepatocytes according to the observed changes of
protein abundances that we assessed by quantitative mass
spectrometry. It has to be taken into account that relative
abundances of cell types other than HCC cells also contribute to
the determined protein expression profiles to a certain extent.
Immunohistochemistry staining, however, demonstrated negligi-
ble infiltration of immune cells in HCC tumour nodules. We
therefore assume that the contribution of other cell types to the
final proteomics datasets is rather small. This assumption is
substantiated by the fact that experimental results obtained from

Fig. 1 Detected metabolic enzymes in normal and HCC mouse liver and data quality control. a Principal Component Analysis (first two
components, 71.11%+ 10.59% of variance). Control (blue) and tumour (red) samples are well separated on the first component. b Clustering of
the complete cases of proteomic samples. Control and tumour samples cluster together, respectively. c Volcano plot showing the log2 fold
changes of proteins (HCC/control) with respect to the −log of FDR. The left side corresponds to proteins that are downregulated in tumour,
while the right side corresponds to proteins that are upregulated in tumour tissue. Gapdh and Pfkl are highlighted in green. d Bubble plot
showing the relations between the different protein sets considered in the study. Out of the 16,853 reviewed proteins present in the SwissProt
database (of which 8786 are associated with metabolism), 2124 were identified by mass spectrometry. Significance of the fold changes
between tumour and control could be estimated for 1579 proteins, of which 934 passed the threshold of 5% FDR. e Histomap showing the
highly significant fold changes of 145 proteins (FDR ≤ 0.01%) associated with 6 significantly downregulated metabolic pathways (FDR ≤ 5%,
protein sampling). Gapdh and Pfkl are highlighted in green.
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isolated HCC cells were well in line with calculated model
predictions. The present study proves that our approach is able to
transform mass spectrometry protein data into biologically and
clinically meaningful metabolic predictions about the HCC tissue
turnover activity of various metabolites. Comparison of simulated
normal and HCC liver metabolic performance reveals funda-
mental differences. We validated several of the calculated model
output parameters successfully using different experimental
approaches. Glycolytic and respiratory activity were determined
by measuring the extracellular acidification and oxygen con-
sumption rates, confirming that HCC cells show increased
glycolytic and reduced mitochondrial activity. These findings
are well in line with earlier reports using transcriptomics,
metabolomics or enzyme activity measurements on different
murine HCC models.36–38 Increased glycolytic activity is consis-
tently found in independent analyses of human HCC tissue with
different omics approaches and non-invasive imaging (NMR

spectroscopy), pointing towards the Warburg effect as a
metabolic hallmark of human liver cancer.39–41

The kinetic model predicted HCC-specific alterations of urea
and triacylglyceride synthesis as well as glycogen storage, all of
which represent key functions of normal liver. The functionality of
the urea cycle in HCC tissue has been under debate for quite some
time. It had been established rather early on that HepG2 cells,
one of the most widely used human HCC cell lines, harbour a
defective urea cycle and it was later shown that this is due to
ornithine transcarbamylase and arginase I deficiency.42 Butler et al.
showed that the human hepatocellular carcinoma cell lines Huh-7,
HepG2 and LH86 do not express the urea cycle enzyme carbamoyl
phosphate synthetase 1.43 A comprehensive microarray analysis of
521 patient-derived HCC samples revealed suppression of urea
cycle-associated enzymes.44 On the other hand, arginase I and
carbamoyl phosphate synthetase (Cps) were found overexpressed
in human HCC and their detection via immunohistochemistry was
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suggested to improve the histopathological diagnosis of HCC.43,45

Our approach now reveals—for the first time—reduced urea cycle
activity in a murine HCC model, nicely confirming that systematic
integration of protein expression data is a prerequisite to
comprehend metabolic pathway activity.46 The analysis of HCC-
specific changes of lipid metabolism has received a lot of
attention recently (over 20 studies using human samples and
different omics approaches were published in the last 10 years47).
The reported results are very heterogeneous, precluding the
identification of an HCC-specific lipid metabolism pattern. If
anything, activation of fatty acid catabolism (most importantly β-
oxidation) could be considered a hallmark of HCC-specific lipid
metabolism as it was reported by the majority of publications.47 Of
note, the activity of anabolic lipid metabolism pathways in HCC
has received significantly less attention. Our approach of
combining quantitative proteomics with mathematical modelling
predicted reduced activity of several anabolic lipid pathways in
HCC, e.g. synthesis of triacylglycerides, cholesterol and fatty acids
as well as VLDL secretion. We were able to functionally validate
the calculated reduction of triacylglyceride synthesis, under-
scoring the eligibility of the comprehensive kinetic model to
forecast alterations of lipid metabolism in HCC. In summary, the

results of all validation experiments show striking consistency with
the calculated model simulations indicating that our kinetic model
is indeed a powerful tool to reproduce HCC metabolism in a
reliable manner.
The feasibility of the translational application of our kinetic

model to estimate and evaluate the performance of therapeutic
agents with prediction of possible adverse effects is demon-
strated by calculating the outcome of metformin treatment on
HCC viability. The antidiabetic drug metformin received a lot of
attention in recent years after it was reported to reduce cancer
risk and mortality in diabetic patients.48 Metformin was
subsequently shown to exert anti-tumour effects against
established human HCC cell lines and in HCC xenografts in
nude mice.49 Our results confirm the cell line data reported by
Miyoshi et al. and furthermore show that primary hepatocytes
are not affected by metformin at the doses found to inhibit HCC
cells. These results demonstrate the versatility of our kinetic
model as, in addition to depicting metabolic activities, it is able
to predict metabolic vulnerabilities. We propose that the
herewith outlined experimental approach will also be able to
identify innovative targets for the therapy of human HCC. One
could even envision an application in a clinical setting where
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mathematical modelling of biopsy-derived quantitative mass
spectrometry-based proteomics data could assist the design of a
personalised therapy tactic. Future work with patient samples
will need to thoroughly test this hypothesis before a potential
exploitation for HCC therapy.
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