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Ribosome profiling quantifies the genome-wide ribosome occupancy of tran-
scripts. With the integration of matched RNA sequencing data, the translation
efficiency (TE) of genes can be calculated to reveal translational regulation.
This layer of gene-expression regulation is otherwise difficult to assess on a
global scale and generally not well understood in the context of human disease.
Current statistical methods to calculate differences in TE have low accuracy,
cannot accommodate complex experimental designs or confounding factors,
and do not categorize genes into buffered, intensified, or exclusively transla-
tionally regulated genes. This article outlines a method [referred to as deltaTE
(�TE), standing for change in TE] to identify translationally regulated genes,
which addresses the shortcomings of previous methods. In an extensive bench-
marking analysis, �TE outperforms all methods tested. Furthermore, applying
�TE on data from human primary cells allows detection of substantially more
translationally regulated genes, providing a clearer understanding of transla-
tional regulation in pathogenic processes. In this article, we describe protocols
for data preparation, normalization, analysis, and visualization, starting from
raw sequencing files. C© 2019 The Authors.

Basic Protocol: One-step detection and classification of differential translation
efficiency genes using DTEG.R
Alternate Protocol: Step-wise detection and classification of differential trans-
lation efficiency genes using R
Support Protocol: Workflow from raw data to read counts
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INTRODUCTION

Next-generation sequencing methods have become commonplace tools in the life sci-
ences, allowing researchers to understand the molecular mechanisms underpinning cel-
lular processes, shaping phenotypic differences, and ultimately modifying disease sus-
ceptibility. While it is evident that mining every layer of gene expression would be
required for a thorough understanding of gene regulation, expression profiling studies
most commonly focus on the abundance of RNA molecules.

RNA sequencing (RNA-seq) is a methodology that quantifies fragments of RNA
molecules to assess the level of gene transcription. To achieve this, sequencing reads are
mapped to the genome and counted to quantify the expression of each gene. Significant
changes in these counts between conditions identify genes undergoing transcriptional
regulation. However, RNA-seq alone does not capture the full picture. While transcrip-
tion serves to generate a broad collection of transcripts, the final expression of a gene is
refined, and its fate determined, in the downstream stages of gene expression regulation,
such as translational regulation, protein stability, protein degradation, and others.

Ribosome profiling (Ribo-seq) offers a quantitative approach to study translational regu-
lation, a post-transcriptional process affecting protein levels. Transcriptome-wide trans-
lation is quantified via the capture of ribosome-protected RNA fragments (RPFs; Ingolia,
Ghaemmaghami, Newman, & Weissman, 2009; also see Fig. 1A). Changes in the number
of RPFs between conditions for a given gene can be used as a proxy for a change in the
translation of the encoded protein. However, reliably identifying differences in transla-
tional regulation is complicated by the fact that the mRNA abundance of the transcript
directly affects the probability of ribosome occupancy.

The number of ribosomes per transcript can be estimated by integrating RNA-seq and
Ribo-seq to calculate translation efficiency (TE), the ratio of the RPFs over mRNA
counts within a gene’s coding sequence (CDS). TE is essentially the number of ribo-
somes per gene, normalized to transcript abundance. Genes with changes in TE between
conditions are considered to undergo translational regulation [differential translation ef-
ficiency genes (DTEGs)]. Specifically, a gene is classified as DTEG if the changes in the
number of RPFs cannot be explained by variation in mRNA read counts. A gene with
a significant change in its mRNA counts and a concordant change in RPFs is transcrip-
tionally, but not translationally, regulated [differentially transcribed gene (DTG); Fig.
1B]. Conversely, genes that have significant changes in RPFs independent of changes in
mRNA counts are considered DTEGs (Fig. 1C).

A gene can be regulated transcriptionally and/or translationally, resulting in several
different regulatory profiles. For example, if a gene is not a DTG, but is a DTEG, then
it is exclusively regulated at the translational level. On the contrary, if a gene is both a
DTG and DTEG, it is categorized as translationally intensified or buffered depending on
the direction of the regulation (see Figure 1D, E for details).
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Figure 1 Transcriptional and translational regulation (A). Genome-wide quantification of mRNA counts and
ribosome-protected mRNA fragments (RPFs) using RNA sequencing (RNA-seq) and ribosome profiling (Ribo-
seq), respectively. Lines are not drawn to scale. In a hypothetical study with two conditions, control and
treatment, (B) a gene with change in mRNA counts and RPFs at the same rate is a differentially transcribed
gene (DTG) and, (C) a gene with change in RPFs independent of change in mRNA counts, which leads
to a change in translation efficiency, is defined as a differential translation efficiency gene (DTEG). TE =
translation efficiency = RPF/mRNA. (D-E) Classification of genes based on fold changes of RPF, mRNA, and
TE. (D) A gene could be either/both DTG and/or DTEG, and based on the direction of change would fall into
one of the eight gene-regulatory possibilities (sig: significant, n.s.: not significant). Translationally forwarded
genes are DTGs that have a significant change in mRNA and RPF at the same rate, with no significant
change in TE. Conversely, translationally exclusive genes are DTEGs that have a significant change in RPF,
with no change in mRNA leading to a significant change in TE. Several genes are both DTGs and DTEGs,
and their regulatory class is determined based on a combination of the relative direction of change between
transcription and translation efficiency. Specifically, translationally buffered genes have a significant change in
TE that counteracts the change in RNA; hence, buffering the effect of transcription. Translationally intensified
genes have a significant change in TE that acts with the effect of transcription. In all cases, the change in RNA
can be either positive or negative, and where buffering or intensifying takes place, the direction of change is
taken into account. For example, a gene that exhibits an increase in transcription and an increase in translation
efficiency is classified as intensified, while a gene that exhibits an increase in transcription but a decrease
in translational efficiency is classified as buffered. (E) Simulated data showing fold changes for each gene
in RNA-seq and Ribo-seq data. Translationally forwarded genes (in blue), exclusive genes (in red), buffered
genes (in purple), and intensified genes (in purple) are highlighted.

There are a number of existing approaches to detect DTEGs by combining Ribo-seq
and RNA-seq data, with the earliest report based on differences in TE (Ingolia et al.,
2009). However, this approach does not take into account the variance, low expression
of RPFs or mRNA counts, or batch effects, severely compromising the accuracy of
detection. Several other approaches to detect DTEGs by modeling changes in TE have

Chothani et al.

3 of 22

Current Protocols in Molecular Biology



Table 1 Summary of Functionalities of Published Tools for Detection of Translational Regulation

Tool Xtail RiboDiff RiboRex Anota2Seq
�TE (our
approach)

Sample-to-sample variance Yes Yes Yes Yes Yes

Based on established
statistical frameworks
partly/or completely

Yes Yes Yes

Allows for complicated
experimental design

Yes Yes

Allows for covariates like
batch effects

Yes Yes

Classifies regulatory layers Yes, but not all Yes

Runtime (for primary human
fibroblast dataset (Chothani
et al., 2019), four pair-wise
comparisons)

�120 min �60 min �5 min �20 min �5 min

been developed subsequently: Ribodiff (Zhong et al., 2017), Xtail (Xiao, Zou, Liu, &
Yang, 2016), Riborex (Li, Wang, Uren, Penalva, & Smith, 2017), and Anota2Seq (Oertlin
et al., 2019). At their core, all of these approaches either utilize existing differential
expression programs [e.g., DEseq2 (Love, Huber, & Anders, 2014) or EdgeR (Robinson,
McCarthy, & Smyth, 2010)], or apply similar statistical assumptions to model the data.
Unfortunately, these methods mostly miss essential functionalities of the underlying
tools, vastly reducing their effectiveness. For instance, none of these methods, with the
exception of Anota2Seq, allow for complex experimental design (i.e., with more than two
conditions) or the use of alternative statistical setups (such as likelihood ratio tests for
comparisons across time). Crucially, they do not account for the widespread batch effects
in next-generation sequencing datasets. Although stand-alone tools for batch correction
of sequencing data exist (Leek et al., 2010), differential expression tools require raw
read counts to accurately model sample-to-sample variation (Anders et al., 2013; also
see Table 1).

This article outlines detection of DTEGs by introducing an interaction term into the
statistical model of DESeq2, an approach that we refer to as �TE. We show that
the fold change of the interaction term is equivalent to changes in TE, which detect
DTEGs more accurately compared to all existing methods. When combining RNA-seq
and Ribo-seq from two conditions, the interaction term can be used to model condition
(untreated/treated) and sequencing methodology (Ribo-seq/RNA-seq). This allows the
identification of significant differences between conditions that are discordant between
sequencing methodologies. In order to do this, we design our generalized linear model
with three components: the condition (c), the sequencing type (s), and an interaction
term containing both (c:s); refer to the Commentary for details. The result is a �TE fold
change and an associated false discovery rate (FDR) for significant changes of this fold
change, which quantify the extent of translational regulation between conditions.

The protocols require the installation of R and basic familiarity with R or a Unix-like
environment. The workflow in the Basic Protocol includes a script, DTEG.R, which
can be run in one step. This script implements two processes: (a) detection of DTEGs
and (b) classification of genes into regulatory classes. An Alternate Protocol is included
that carries out the same functions step-by-step in R, allowing flexibility in the case of
complex experimental designs. Lastly, a Support Protocol is provided that outlines the
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workflow of obtaining count matrices from raw sequencing files, including a quality
check of the data.

The Basic Protocol and example results are provided in our github repository:
https://github.com/SGDDNB/translational_regulation.git.

STRATEGIC PLANNING

Ribo-seq can be carried out as described in the Current Protocols article Ingolia, Brar,
Rouskin, McGeachy, & Weissman (2013). Similar to RNA-seq analysis, careful exper-
imental design is crucial. At least three biological replicates per condition or group are
recommended for robust analysis of differential transcription, translation, and transla-
tional efficiency. The sample processing and library preparation should be carried out
together for different conditions and sequenced on the same lane of a sequencing ma-
chine, or in a randomized order across lanes, to avoid batch effects. It is not possible
to account for batch effects that are completely confounded by any other covariate. For
instance, if all the control samples were prepared in one batch and the treatment samples
in another batch, it would not be possible to distinguish differences due to treatment
versus control from differences arising due to separate preparation batches. Thus, it is
recommended to prepare control and treatment samples together. Alternatively, when
there are large sample sizes, it is important to split the samples in such a way that the
conditions are randomized. Samples should be sequenced to sufficient depth both in
RNA-seq and Ribo-seq. Despite the presence of an experimental step to remove riboso-
mal RNA (rRNA) fragments from the input RNA, sequenced Ribo-seq reads still include
a fraction of rRNA sequences, which should be discarded before �TE analysis. Thus, it
is recommended to sequence at least 20 million reads per sample. Single-end 50-bp read
sequencing is sufficient, since ribosome footprints are expected to be 29 bp in length.
After sequencing and processing the data, the fastq and alignment files should be checked
for several quality measures, as described in the Support Protocol.

BASIC
PROTOCOL

ONE-STEP DETECTION AND CLASSIFICATION OF DIFFERENTIAL
TRANSLATION EFFICIENCY GENES (DTEG) USING DTEG.R

The RNA-seq and Ribo-seq data should be processed first as described in the Support
Protocol, in order to determine translationally regulated genes. In the following steps,
we quantify the change in TE of each gene, calculate an FDR value for this change, and
categorize genes into regulation classes using the �TE approach. A DTEG is determined
based on significant change in TE (FDR < 0.05). This protocol describes a wrapper
script, DTEG.R, to detect and classify DTEGs. It also includes a script to visualize
the transcriptional, translational, and TE changes for a gene of interest. Alternatively,
the protocol can also be carried out step-by-step in R, allowing flexibility for complex
experimental designs (see Alternate Protocol).

Materials

Hardware

Computer running Unix, Linux or Mac OS X
Administrative privileges and internet connection to install packages

Software

DTEG.R and goi_viz.R script: These scripts can be downloaded from our github
page by typing the following command in the terminal window:
$ git clone https://github.com/SGDDNB/translational_regulation.git

R: https://cran.r-project.org/bin/windows/base/
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Rstudio: https://www.rstudio.com/products/rstudio/download/
DESeq2: https://bioconductor.org/packages/release/bioc/html/DESeq2.html
DESeq2 can also be installed in R by typing the following command:

> if(!requireNamespace("BiocManager", quietly =
TRUE)) install.packages("BiocManager")

> BiocManager::install("DESeq2")

Input files

ribo_counts.txt: RPF count matrix including genes as rows and samples as
columns

rna_counts.txt: mRNA count matrix including genes as rows and samples as
columns

sample_info.txt: Sample-wise information about experimental condition,
type of sample (RNA- or Ribo-seq), and sample batch where applicable

Preparing input files for DTEG.R

1. Generate read count matrices for both Ribo-seq and RNA-seq, as described in the
Support Protocol.

These files contain raw read counts obtained from read-counting tools and should not be
normalized or batch corrected. Each row represents a gene and each column represents
a sample as shown below:

Gene ID Sample 1 Sample 2 Sample 3 Sample 4
ENSG0000XX 1290 130 2 1000
ENSG0000XY 0 2 10 5
. . . . .. .. .. ..
ENSG0000ZZ 0 2 10 5

ribo_counts.txt

Gene ID Sample 5 Sample 6 Sample 7 Sample 8
ENSG0000XX 4000 2000 200 1200
ENSG0000XY 10 20 0 40
. . . . .. .. .. ..
ENSG0000ZZ 0 2 10 5

rna_counts.txt

2. Create a tab-separated sample information file with rows as samples and columns
as condition and sequencing methodology.

This file contains sample information for samples in both ribo_counts.txt and
rna_counts.txt. The sample IDs should be unique and exactly match the sample
names in the count matrices. This file contains two columns, Condition (treatment) and
SeqType (sequencing methodology). Additionally, if there is a known batch effect in the
dataset, it can also be included as another column, as shown below. If your experiment
has more than one batch covariate, it is recommended to use the Alternate Protocol.

Sample ID Condition SeqType Batch
Sample 1 1 RIBO 1
Sample 2 1 RIBO 2
Sample 3 2 RIBO 1
Sample 4 2 RIBO 2
Sample 5 1 RNA 1
Sample 6 1 RNA 2
Sample 7 2 RNA 1
Sample 8 2 RNA 2

sample_info.txtChothani et al.
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Figure 2 Translational regulation in sample data using DTEG.R script. Principal component analysis of
(A) Ribo-seq and (B) RNA-seq datasets. (C) Scatter plot of log fold change values across both sequencing
methodologies. Differentially transcribed genes (DTGs) and differential translation efficiency genes (DTEGs)
are marked. (D-G) Gene profiles of exemplars in each regulation class, translationally forwarded (D), exclusive
(E), buffered (F), and intensified (G).

Detecting and categorizing differentially transcribed genes and differential
translation efficiency genes

3. Open a Unix/Linux command line environment (“Terminal” application in a Linux
operating system or Mac OS). Run script DTEG.R using the following command
line:

$ Rscript DTEG.R arg1 arg2 arg3 arg4 arg5 arg6
where command arguments arg1-6 are as follows:

Argument 1 (arg1): Ribo-seq count matrix file
path

Argument 2 (arg2): RNA-seq count matrix file path
Argument 3 (arg3): Sample information file path
Argument 4 (arg4): Batch effect covariate: yes=1,
or no=0

Argument 5 (arg5): Save Rdata file as a record
for future use (optional, Default = 1)

Argument 6 (arg6): Verbose mode (optional,
Default = 0)

Example:

$ Rscript DTEG.R ./ribo_counts.txt ./rna_counts.txt
./sample_info.txt 1

This command creates a Results/ directory including fold changes, gene lists for each
regulatory group, and visualizations, as shown in Figure 2A-G. For further details on the
different output files created, refer to Understanding Results.
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Visualizing changes in mRNA counts, RPFs, and TE for a gene of interest

4. Run goi_vis.R.

This step includes a one-step script to visualize the fold changes across the condition
given in the study for a gene of interest as shown in Figure 2D-G:

$ Rscript goi_viz.R arg1 arg2 arg3 arg4
where command arguments arg1-6 are as follows:

Argument 1 (arg1): Ribo-seq fold change file
path.

Argument 2 (arg2): RNA-seq fold change file path.
Argument 3 (arg3): TE fold change file path.
Argument 4 (arg4): ENSEMBL gene ID

The fold change files (arg1, arg2, and arg3) are generated in step 3 and are located in
the results directory within the fold_changes subdirectory. ENSEMBL gene ids
for your gene of interest can be obtained from https://www.ensembl.org/index.html. It
is required to use the same genome version as used for obtaining the count matrix by
Support Protocol.

Example:

$ Rscript goi_viz.R
path/to/Results/directory/fold_changes/deltaRibo.txt
path/to/Results/directory/fold_changes/deltaRNA.txt
path/to/Results/directory/fold_changes/deltaTE.txt
ENSG00000095752

This script is also part of the github directory and is automatically downloaded
with the git clone command described in Materials, Hardware, above. Running this
script saves an output file in the current directory (gene_id.pdf). This file saves a
visualization of the ΔRPF, ΔmRNA, and ΔTE for the gene of interest. A line plot is used
to show fold changes of the mRNA, RPF, and TE for the gene of interest across conditions
as shown in Figure 2D-G.

ALTERNATE
PROTOCOL

STEP-WISE DETECTION AND CLASSIFICATION OF DIFFERENTIAL
TRANSLATION EFFICIENCY GENES USING R

This protocol performs the same task as the Basic Protocol, but step-wise in R, describing
each step allowing flexibility to users for complex experimental designs.

Materials

Hardware

Computer running Unix, Linux or Mac OS X
Administrative privileges and internet connection to install packages

Software

R: https://cran.r-project.org/bin/windows/base/
Rstudio: https://www.rstudio.com/products/rstudio/download/
DESeq2: https://bioconductor.org/packages/release/bioc/html/DESeq2.html
DESeq2 can also be installed in R by typing the following command:

> if(!requireNamespace("BiocManager", quietly =
TRUE)) install.packages("BiocManager")

> BiocManager::install("DESeq2")
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Input files

ribo_counts.txt: RPF count matrix including genes as rows and samples as
columns

rna_counts.txt: mRNA count matrix including genes as rows and samples as
columns

sample_info.txt: Sample-wise information on sequencing methodology
used, condition and batch

1. Prepare input files as described in steps 1 and 2 of the Basic Protocol.

Additionally, using this protocol, the sample information file can have more columns for
other covariates that can be included in the model design, as described in step 3.

2. Open Rstudio and load count matrices and sample information file:

> ribo_counts = read.delim(“ribo_counts.txt”)
> rna_counts = read.delim(“rna_counts.txt”)
> sample_info = read.delim(“sample_info.txt”)

These commands assume that all required files are within your working directory. In case
they are not, provide the full path to the input file in the read.delim command.

3. Create DESeq2 object for the combined dataset of Ribo-seq and RNA-seq counts.
The interaction term should be included in the linear model design as follows:

> ddsMat = DESeqDataSetFromMatrix(
countData=cbind(ribo_counts,rna_counts),
colData=sample_info,
design=� Condition+SeqType+Condition:
SeqType)

The data can be tested for batch effects using principal component analysis (PCA). If there
is a batch effect/other covariate, the design can be modified by adding the covariate to the
design as: � Batch + Condition + SeqType + Condition:SeqType.

4. Run DESeq2:

> ddsMat = DESeq(ddsMat)

This step carries out estimation of size factors, estimation of dispersion, and model
fitting. The relevel function in R can be used prior to running DESeq2 to assign a
reference level from which comparisons will be made. It is important that the reference
level for sequencing type be RNA-seq; the reference level for condition can be selected
based on the experiment.

5. Obtain fold changes for TE:

> res = results(ddsMat, name=“Condition2.SeqType
RIBO”)

This step calculates the gene-wise fold change and its statistical significance for a given
comparison. DESeq2 calculates this change between different groups that are described
in the sample information file and model design. The calculated comparisons can be ob-
tained by using resultsNames(ddsMat). For instance, name=“Condition_2_
vs_Condition_1” quantifies changes between condition 2 and condition 1 using the
reference level RNA-seq (see step 4). Similarly, name=“Sequencing_Ribo_vs_
RNA” quantifies the difference between Ribo-seq counts and RNA-seq counts using the
reference level as condition 1. These can also be supplied using the contrast parameter
instead of the name parameter as follows: contrast=c(“Condition”,“2”,“1”)
and contrast=c(“SeqType”,“RIBO”,“RNA”), respectively. For interaction term
fold change we use name=“Condition2.SeqTypeRIBO”. This quantifies the
change in TE in condition 2 versus baseline condition 1. Refer to Commentary for
the mathematical proof that the interaction coefficient is equivalent to TE.
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Detecting differential translation efficiency genes

6. Store the list of DTEGs in a file:

> write.table(res[which(res$padj<0.05), ],
“DTEGs.txt”, quote=F)

DTEGs are genes which have a significant interaction term fold change. FDR values can
be chosen based on user preference; here we recommend using FDR < 0.05.

7. Run DESeq2 for mRNA counts in order to obtain DTGs:

> ddsMat_rna = DESeqDataSetFromMatrix(
countData=rna_counts,
colData=sample_info[which
(samples_info$SeqType ==
“RNA”),],

design=�Condition)
> ddsMat_rna = DESeq(ddsMat_rna)
> res_rna = results(ddsMat_rna, name="Condition_2_

vs_1")
> res_rna = lfcShrink(ddsMat_rna,name="Condition_2_

vs_1",res=res_rna)
> write.table(res_rna[which(res_rna$padj<0.05), ],

“DTGs.txt”, quote=F)
DTGs are genes that have a significant change in the mRNA counts. To obtain DTGs, we
run DESeq2 separately for mRNA counts and use the same FDR as above (FDR < 0.05).
These data may also be tested for batch effects using PCA, and if any batch effects are
identified, they should be included in the sample_info.txt file and in the design as
�Condition + Batch.

Categorizing genes into different regulation groups

8. Run DESeq2 for RPFs (Ribo-seq counts):

> ddsMat_ribo = DESeqDataSetFromMatrix(
countData=ribo_counts,
colData=sample_info[which

(samples_info$SeqType ==
“RIBO”),],

design=�Condition)
> ddsMat_ribo = DESeq(ddsMat_ribo)
> res_ribo = results(ddsMat_ribo,

name="Condition_2_vs_1")
> res_ribo =
lfcShrink(ddsMat_ribo,name="Condition_2_vs_1"),

res=res_ribo)
In order to classify genes into different regulation classes, quantification of the change in
the RPFs is required. Similar to mRNA counts, these data should also be tested for batch
effects, and, if any batch effects are identified, the batches should be included in the file
sample_info.txt and the model design.

9. Obtain genes for each regulation class described in Figure 1D, E.

For each gene, the change in RPFs (ΔRPF), change in mRNA counts (ΔRNA), and
change in its TE (ΔTE) are combined to determine its regulation group, as shown in
Table 2. It is recommended to use an FDR threshold of 0.01 or 0.05.

a. Forwarded: Genes driven by transcriptional regulation. These genes do not have
a change in TE, and the change in RNA drives the change in RPFs. Hence, genesChothani et al.
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Table 2 Classification of Genes into Regulatory Classes Shown in Figure 1Da ,b

Class �RPF �RNA �TE Fold change direction DTG/DTEG Schematic

No change n.s. n.s. n.s. No change at either
regulatory levels

None

Forwarded sig sig n.s. Change in RPF is in
the same direction as
change in RNA

DTG

Exclusive sig n.s. sig Change in RPF is
not driven by change
in RNA

DTEG

Intensified sig sig sig Change in TE is
counteracting the
change in RNA

DTG and DTEG

Buffered sig sig sig Change in TE is
completely
counteracting the
change in RNA;
No change in RPF

DTG and DTEG

Buffered
(special case)

n.s. sig sig Change in TE is
intensifying change
in RNA

DTG and DTEG

aDTG, differentially transcribed gene; DTEG, differential translation efficiency gene; n.s., not significant; sig, significant.
bGenes with any other combinations, i.e., (1) RPF: n.s.; RNA: sig, TE: n.s.; (2) RPF: sig; RNA: n.s., TE: n.s.; and (3) RPF: n.s.; RNA: n.s., TE: sig;
are considered as undetermined as they cannot be grouped into any of the classes.

that have significant �RPF and �RNA but that do not have a significant �TE
fall into this class.

> forwarded = rownames(res)[which(res$padj > 0.05
& res_ribo$padj < 0.05 & res_rna$padj < 0.05)]

b. Exclusive: Genes regulated exclusively by translation. This means that the change
in TE is driven by change in RPFs exclusively, and there is no change in Chothani et al.
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mRNA counts. Hence, genes with significant �TE and �RPFs but no significant
change in mRNA counts belong to this group.

> exclusive = rownames(res)[which(res$padj < 0.05
& res_ribo$padj < 0.05 & res_rna$padj > 0.05)]

c. Intensified and buffered: Genes regulated both by transcriptional and transla-
tional regulation (significant �RNA, �RPFs, and �TE) include intensified and
buffered genes. These genes are both DTGs and DTEGs.

> both = rownames(res)[which(res$padj < 0.05 &
res_ribo$padj < 0.05 & res_rna$padj < 0.05)]

In order to further categorize these genes into intensified and buffered genes, the
direction of the transcriptional change (�RNA) and translational efficiency change
(�TE) are compared.

Intensified: Genes for which the translational regulation acts with the transcriptional
regulation change. These genes have the translational change in the same direction
as their transcriptional change:

> intensified = rownames(res)[both[which(res[both,
2]*res_rna[both,2] > 0)]]

Buffered: Genes for which the translational regulation counteracts the transcrip-
tional regulation change. In these genes, the transcriptional change (�RNA) and
translational efficiency change (�TE) are in the opposite direction:

> buffered = rownames(res)[both[which(res[both,2]
*res_rna[both,2] < 0)]]

There is also a special case of buffered genes wherein the transcriptional change is
cancelled out by the change in TE to the point of no significant change in RPFs.
Hence, genes with significant �TE and �RNA but that do not have a significant
�RPF are also considered as translationally buffered.

> buffered = c(rownames(res)[which(res$padj < 0.05
& res_ribo$padj > 0.05 & res_rna$padj < 0.05)],
buffered)

10. Visualize the global translational and transcriptional regulation as in Figure 1E.

> max_val = max(res_ribo[,2],res_rna[,2],na.rm = T)
> plot(y=res_ribo[,2],x=res_rna[,2],

xlab="RNA-seq log2 fold change",
ylab = "Ribo-seq log2 fold change", asp=1,
pch=16,

col=rgb(128/255,128/255,128/255,0.1), ylim=
c(-

max_val,max_val), xlim=c(-max_val,max_val),
cex=0.4)

> abline(a=0,b=1,col="gray")
> abline(h=0,v=0,col="gray")
> points(y=res_ribo[forwarded,2], x=res_rna
[forwarded,2],

pch=16,col=rgb(0,0,1,1))
> points(y=res_ribo[exclusive,2], x=res_rna
[exclusive,2],

pch=16,col=rgb(1,0,0,1))
Chothani et al.
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> points(y=res_ribo[intensified,2], x=res_rna
[intensified,2],

pch=16,col=rgb(1,0,1,1))
> points(y=res_ribo[buffered,2], x=res_rna
[buffered,2],

pch=16,col=rgb(1,0,1,1))
These steps plot the global fold changes of mRNA counts versus the RPFs, as shown in
Figure 1E. Refer to Understanding Results for more details.

Visualizing changes in mRNA counts, RPFs, and TE for a gene of interest

11. Visualize the transcriptional, translational, and TE changes of a given gene id [id]
using a line plot.

> ymax=max(res_ribo[id,2],res_rna[id,2],res[id,2],0)
> ymin=min(res_ribo[id,2],res_rna[id,2],res[id,2],0)
> plot(c(0,1), c(0,res_ribo[id,2]), type="l",

col="gray",
ylim=c(ymin,ymax), ylab="Log2 fold change",
xlab="",xaxt="n")

> lines(c(0,1), c(0,res_rna[id,2]),type="l",
col="blue")

> lines(c(0,1), c(0,res[id,2]), type="l",
col="red")

> legend("bottomleft",c("RNA","Ribo","TE"),
fill=c("blue","gray","red"),

cex=1, border = NA, bty="n")
> axis(1,at=c(0,1),labels=c(1,2),las=1)

This step carries out the same function as step 4 of the Basic Protocol. It requires a gene id
for your gene of interest, which can be obtained from https://www.ensembl.org/index.html,
or can be based on the genome annotation file used to obtain count matrices with Support
Protocol. The input id should be a row name in the count matrix file.

SUPPORT
PROTOCOL

WORKFLOW FROM RAW DATA TO READ COUNTS

The raw sequencing data should be processed prior to the Basic Protocol or Alternate
Protocol, as shown below. It is also strongly recommended to carry out quality check for
the raw and processed data as described in the following steps.

Materials

Hardware

Computer running Unix, Linux or Mac OS X

Software

Trimmomatic: http://www.usadellab.org/cms/?page=trimmomatic
Bowtie2: http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
STAR: https://github.com/alexdobin/STAR
subread: http://subread.sourceforge.net/
FastQC: https://www.bioinformatics.babraham.ac.uk/projects/download.html
MultiQC: https://multiqc.info
Ribo-TISH: https://github.com/zhpn1024/ribotish/blob/master/INSTALL.rst

Input files

seq.fastq.gz: Raw sequencing files for both Ribo-seq and RNA-seq
adaptors.fa: List of adaptor sequences in a fasta format Chothani et al.
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abundant.fa: List of abundant sequences (rRNA, transfer RNA (tRNA), and
mitochondrial RNA (mtRNA)) in fasta format

organism.fa: Genome sequence in fasta format for the organism used in the
study

organism.gtf: Genome-wide transcript annotations in gene transfer format
(GTF) for the organism used in the study

Processing the raw sequencing data to generate gene expression count matrix files

1. Trim adaptor sequences from reads:

$ java -jar trimmomatic-0.36.jar SE -phred33
seq.fastq.gz outfile ILLUMINACLIP:adaptors.fa:
2:30:10 MAXINFO:20:0.5 MINLEN:20

where:

seq.fastq.gz is the raw sequencing file;
outfile is the output file prefix;
adaptors.fa is the list of sequences of adaptors used for sequencing in

fasta format;
MINLEN is the minimum length of reads required to retain.

The arguments are based on Trimmomatic V0.36, and other parameters can be ex-
plored as described in the manual, which can be obtained from http://www.usadellab.org/
cms/?page=trimmomatic. The minimum length required is set to 20, as the expected read
length for RPFs is 29. This command trims the adaptor sequences from raw read se-
quences and saves an output file (outfile.fastq.gz) which is used as input file for
step 2.

2. Remove reads mapping to abundant sequences.

This step first prepares a bowtie2 index for the known abundant sequences: rRNA, tRNA,
and mtRNA. These sequences are considered contaminants of Ribo-seq data, since we
want to capture only RPFs. Therefore, reads mapping to these contaminant sequences
are removed prior to further analysis:

$ bowtie2-build abundant.fa index

Where:

abundant.fa is the list of abundant sequences (rRNA, tRNA, and mtRNA)
in fasta format;

index is the prefix for the bowtie index output files.
$ bowtie2 -L 20 -x index --un-gz outfile -U infile
-S samfile

Where:

infile is the trimmed sequencing fastq.gz file, which was the
outfile obtained in step 1;

outfile is the output filename for unmapped reads in fastq.gz format;
samfile is the output filename for mapped reads in SAM format;
index is the prefix used for the bowtie index.

The arguments are based on Bowtie2 (V2.2.9), and other parameters can be explored as
described in the manual. This function builds the index for abundant sequences, aligns
the reads to the same, and saves a fastq.gz file, retaining only the unmapped reads.
This output fastq.gz file comprises a cleaned set of reads that do not map to the
abundant sequences and represent the RPFs. The reads in this file are further mapped to
the genome in the next step.

Chothani et al.
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3. Align reads to the genome file using the transcriptome index.

Before aligning the reads, it is required to generate a transcriptome index for the
organism of interest. The required input files, the genome fasta and annotation files,
can be downloaded from the Ensembl database at https://asia.ensembl.org/info/data/ftp/
index.html. These files should be for the same organism and same genome build. Run
the following commands to generate the index, followed by alignment of reads to the
same:

$ STAR --runMode genomeGenerate --genomeDir --
genomeFastaFiles organism.fa --sjdbGTFfile
organism.gtf

Where:

organism.fa is the genome sequence in fasta format;
organism.gtf is the genome-wide transcript information;
genomeDir is the directory name for the output STAR index files.
$ STAR --runThreadN 16 --alignSJDBoverhangMin 1 --
alignSJoverhangMin 51 --outFilterMismatchNmax 2 --
alignEndsType EndToEnd --genomeDir star2.5.2b_
genome_index --readFilesIn infile --readFiles
Command gunzip -c --outFileNamePrefix outPrefix --
quantMode GeneCounts --outSAMtype BAM SortedBy
Coordinate --limitBAMsortRAM 31532137230 --
outSAMattributes All

Where:

genomeDir is the directory name for the STAR index files generated in the
previous step;

infile is the cleaned fastq.gz file, which was the outfile in step 2;
outPrefix is the prefix for the output filenames.

The arguments are based on STAR version 2.5, and other parameters can be explored as
described in the manual. This function builds a STAR index for a given fasta and GTF,
aligns the reads to the same, and saves an alignment file in the BAM format.

4. Count reads mapped to coding regions of genes:

$ featureCounts -t CDS -g gene_id -O -s 1 -J -R -G
organism.fa -a organism.gtf -o outfile infile_
path/*bam

Where:

organism.fa is the genome sequence in fasta format;
organism.gtf is the genome-wide transcript information;
outfile is the output file name for the count matrix;
infile_path is the path to the directory containing all bam files obtained

in step 3.

The arguments are based on FeatureCounts V1.5.1, and other parameters can be explored
as described in the manual. This function counts the reads that have mapped to a given
region and summarizes gene-wise counts for each alignment file. This script requires all
bam files to be in one directory to make a combined count matrix for all files. Alternatively,
this command can be run for each .bam file generated in step 3, and then the individual
count files can be combined into one matrix prior to the Basic Protocol or Alternate
Protocol.
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Figure 3 Quality check of Ribo-seq data using Ribo-TISH. The tool RiboTISH provides several
visualizations to investigate the data quality of Ribo-seq. First, it includes the length distribution for
the Ribo-seq reads as a histogram. As the length of ribosome-protected mRNA fragment (RPF)
is expected to be around 29 base pairs, the length distribution of the sequenced reads is used
as a quality measure. Second, the 3-nucleotide periodicity of the RPFs mapped on all known
protein-coding genes is shown for each read length. As shown, in these data, we have a high
(93%) percentage of reads in Frame 1 with the predominant read length (29 bp). This is shown
using a histogram of read coverage in the three frames, a barplot of the number of RPFs in each
position around the START codon and STOP codon, and lastly a density plot for read coverage
on the coding sequence across all genes.
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Quality check of the raw sequencing data and processed files

5. Run FastQC:

$ fastqc [filename].fastq.gz

The user needs to replace [filename]with the name of the raw sequencing or trimmed
files. This command saves an .html file that documents the sequencing data quality.
This includes sample-wise read quality, %GC content, adaptor content, over-represented
sequences in the reads, read length distribution, etc. Refer to the Resources for the
FastQC manual, which includes more details.

6. Run MultiQC to summarize QC for all the steps in Support Protocol:

$ multiqc/path/to/parent/directory/of/all/log/files/

The path to the parent directory for results from steps 1 to 4 needs to be provided as
an argument to MultiQC. This command saves an .html file which summarizes the
sequencing quality, trimming results, abundant sequence removal, mapping, and read
counting results for all samples together. Refer to the Resources for link to the MultiQC
website.

7. Calculate and visualize periodicity of Ribo-seq dataset:

$ samtools index [bam_file_prefix].bam
$ ribotish quality -b [bam_file_prefix].bam -g
ensemble.gtf

The first step creates an index for the alignment file (.bam) generated in step 3. The
user should replace [bam_file_prefix] with the outfile prefix specified in step 3
for alignment files. The second step evaluates the quality of the alignment file. This step
saves a .pdf that shows the read-length distribution and periodicity of the Ribo-seq
data, as shown in Figure 3.

COMMENTARY

Background Information
Several methods have been developed for

read alignment and read counting since the ad-
vent of RNA-seq (see Current Protocols article
Ji & Sadreyev, 2018). In the Support Protocol,
we use STAR, bowtie2, and feature counts for
both Ribo-seq and RNA-seq datasets. These
tools can be chosen based on user preferences.
Due to the slightly different nature of Ribo-
seq reads, it is important to modify parameters
accordingly. For instance, since the RPFs are
expected to be around 29 bp, soft clipping of
reads can be quite detrimental to alignment
pipelines and is not recommended. Further-
more, RNA-seq pipelines use six to eight al-
lowed mismatches, but this can be quite large
in a 29-bp read. We recommend one to two
allowed mismatches for a robust downstream
analysis.

In this protocol, we describe an interaction
term–based TE analysis using DESeq2, but a
similar model can also be incorporated in other
generalized linear model–based differential
expression tools such as edgeR. Previously,
several publications have used DESeq2
to identify DTEGs, but in a suboptimal
manner. For instance, these tools are used to

calculate �RPF and �RNA, following which
changes in TE are calculated using the ratio
�RPF/�RNA. The translationally regulated
genes are then identified using |z-score| > 1.5
(Xu et al., 2017). This approach is referred
to as the Ratio method in the benchmarking
analyses. Another approach used previously
also involves quantification of �RPF and
�RNA using DESeq2. However, in this case,
the translationally regulated genes are defined
as genes with significant changes in either RPF
or mRNA levels, but not both (Schafer et al.,
2015). This approach falsely calls genes as
translationally exclusive or buffered in cases
where counts have a large variance across
samples or are very low in either sequencing
methodology. It would be unable to differenti-
ate between a case where a gene is translation-
ally regulated and a case where a gene has low
counts/high variation in one of the sequencing
methodologies. This is referred to as the Over-
lap method in the benchmarking analyses.

In order to benchmark the performance of
our approach, we use three independent sim-
ulation datasets, two derived from previous
publications (Oertlin et al., 2019, Xiao et al.,
2016) and a third that was newly generated to
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evaluate the performance of the tools in the
presence of a batch effect. Despite DESeq2
being a key component of many existing ap-
proaches, it was either not included or not used
correctly in previous benchmarks.

Figure 4A-C shows accuracy curves for de-
tection of DTEGs in each of these benchmark-
ing datasets across typically used FDR thresh-
olds. A full receiver operating characteristic
(ROC) and area under the curve (AUC) anal-
ysis can be found in the associated web re-
source. Our benchmarking shows that �TE
has a superior accuracy in comparison to ex-
isting methods, especially in the presence of
a batch effect. The only method that performs
at a similar level to �TE is RiboDiff, in the
case of the data from Oertlin et al. (2019) (Fig.
4A). However, in the presence of a batch effect
or based on the data from Xiao et al. (2016),
�TE is superior.

To further verify that this effect is not con-
fined to simulated data, we analyzed RNA-
seq and Ribo-seq data derived from our re-
cent study on cardiac fibrosis (Chothani et al.,
2019). This experiment contained cardiac fi-
broblasts from four different individuals, and,
as a result, has a pronounced patient-related
batch effect accounting for roughly 25% of
the variance within the data. While it is not
possible to quantify the accuracy of these real
data, it is consistent with the benchmark re-
sults. For instance, the overlap and ratio meth-
ods predict the highest number of DTEGs, but
were shown to have high FP rates in the bench-
marking. Conversely, other existing tools that
detect very few genes consistently showed the
worst accuracy in the benchmark containing
batch effects.

Taken together, the three benchmark studies
and real data analysis strongly suggest that
the �TE method is the most suitable for any
integrative analysis of Ribo-seq and RNA-seq
data, being both accurate and robust regardless
of the data being analyzed.

Critical Parameters and
Troubleshooting

Experimental design is one of the most
important factors for efficient detection of
DTEGs. In best-case scenarios, designs should
avoid batch effects. Unavoidable batch effects
should not be completely confounded with the
groups of interest. This would lead to a non-
full-rank design in DESeq2, which makes cor-
rection of the batch effect impossible within
the model. It is recommended to evaluate sam-
ples for batch effects or outliers using PCA
prior to analysis. Batch effects can be checked

by visualizing PC1 and PC2, which account
for most variance, and the remaining PCs
can also be explored to identify minor batch
effects.

Installation of tools can be quite cumber-
some due to different platforms and versions.
Apart from the standard installation proce-
dures provided in the protocols, the required
tools can also be installed using the Anaconda
software package https://docs.anaconda.com/
anaconda/install/. For instance, some of the
tools used in Support Protocol can be installed
with the following commands:

conda install -c bioconda
trimmomatic

conda install -c bioconda
bowtie2

conda install -c bioconda
subread

conda install -c bioconda
star

Statistical Analysis
DESeq2 utilizes the Wald test for differen-

tial expression analysis in pair-wise data (i.e.,
two conditions). If the experimental design in-
cludes a time-series, each time point can be
compared pair-wise using the Wald test. Al-
ternatively, the likelihood ratio test within DE-
Seq2 can be used, which is more suitable to
identify differences across a time-series.

Mathematical proof: Interaction term
coefficient is equivalent to the changes in
translation efficiency

The interaction term in a generalized linear
model provides a coefficient that models the
non-additive effects of two variables. The de-
sign described in the protocol corresponds to
the following linear equation (Equation 1):

log
(
count sc,s

) = β0 + β1c+ β2s+β3c × s

Equation 1

where c = condition and s = sequencing
methodology. When this is used to model
changes in the gene expression between con-
ditions, it is possible to disentangle the tran-
scriptional and translational contributions. For
example, in an experimental setup with Ribo-
seq (s = 1) and RNA-seq (s = 0) carried out
over two conditions (c = 0 or 1), the gene-
wise transcriptional and translational changes
are calculated as follows.

First, the coefficients contributing towards
the mRNA levels (s = 0) are identified for each
condition (c = 0 or 1) separately. We then
compute the difference of the identified
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Figure 4 Benchmarking of published tools to detect differential translation efficiency genes (DTEGs). Simula-
tion datasets (A) derived from Oertlin et al. (2019), (B) derived from Xiao et al. (2016), and (C) generated using
the Polyester package to introduce batch effects were used. All three simulations show that �TE outperforms
all other published methods. Comparisons are made using all the DTEGs as the true set. Since Anota2Seq
has two different functions for obtaining exclusive and buffered genes, the results are combined prior to com-
parison. Riborex is omitted in simulated datasets without batch effects (A, B), since it is equivalent to the
�TE approach in these cases. The ratio method is based on quantifying the ratio of DESeq2 fold changes
for mRNA counts and RPF. The overlap method identifies DTEGs as genes which have either significantly
changing mRNA counts or RPFs but not both. (D) Analysis on published data showed inability of previous tools
to reliably identify DTEGs.

coefficients to obtain the change in
transcription.

mRNA levels given condition (c = 1)
and sequencing methodology (s = 0) using
Equation 1:

log
(
count sc = 1,s = 0

)

= β0 + β1 × (1) + β2 × (0)

+ β3 × (1) × (0)

= β0 + β1

mRNA levels given condition (c = 0) and
sequencing methodology (s = 0):

log
(
count sc = 0,s = 0

)

= β0 + β1 × (0) + β2 × (0)

+ β3 × (0) × (0)

= β0

Change in mRNA levels between the two
conditions:

log
(
count sc = 1,s = 0

) − log
(
count sc = 0,s = 0

)

= (β0 + β1) − β0

= β1 = transcriptional changes

Similarly, the coefficients contributing to-
wards the RPF counts (s = 1) can be quanti-
fied, and the differences signify the change in
RPFs of a gene across conditions.

RPFs given condition (c = 1) and sequenc-
ing methodology (s = 0) using Equation 1:

log
(
count sc = 1,s = 1

)

= β0 + β1 × (1) + β2 × (1)

+ β3 × (1) × (1)

= β0 + β1 + β2 + β3
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RPFs given condition (c = 0) and sequenc-
ing methodology (s = 0) using Equation 1.

log
(
count sc = 0,s = 1

)

= β0 + β1 × (0) + β2 × (1)

+ β3 × (0) × (1)

= β0 + β2 = β0 + β2

Changes in RPFs between the two condi-
tions:

log
(
count sc = 1,s = 1

) − log
(
count sc = 0,s = 1

)

= (β0 + β1 + β2 + β3)

− (β0 + β2) = β1 + β3

In order to obtain the translational
changes that are independent of transcriptional
changes, we subtract the changes in mRNA
from the change in RPFs. This is equivalent to
the interaction term coefficient β3 as follows:

Changes in RPFs – Changes in mRNA lev-
els:

= (β1 + β3 ) − β1 = β3

Thus, β3, which is the interaction term coef-
ficient, is equal to translational changes that are
independent of transcriptional changes. Im-
portantly, it is also possible to show that this
interaction term coefficient is equivalent to the
fold change in TE:

β3 = Changes in RPFs

− Changes in mRNA levels

= [log(count sc = 1,s = 1)

− log(count sc = 0,s = 1)]

− [log(count sc = 1,s = 0)

− log(count sc = 0,s = 0)]

= [log(count sc = 1,s = 1)

− log(count sc = 1,s = 0)]

− [log(count sc = 0,s = 1)

− log(count sc = 0,s = 0)]

= log
count sc = 1,s = 1

count sc = 1,s = 0

− log
count sc = 0,s = 1

count sc = 0,s = 0

= log
#RPFs in condition1

#mRNAs in condition1

− log
#RPFs in condition0

#mRNAs in condition0

Further, since TE is defined as the ratio of
mean normalized Ribo-seq counts (RPFs) over
RNA-seq counts,

β3 = log(TE in condition 1)

− log(TE in condition 0)

= �TE

where TE is the translation efficiency.
As a result, the fold change (and associ-

ated adjusted p-value) obtained using the inter-
action term coefficient β3 describes, for each
gene, the change in TE. Genes with a signifi-
cant adjusted p-value for �TE are considered
as DTEGs. Since this is a linear model, the
design can also be extended to facilitate more
complex experimental designs, such as batch
effects or other covariates, making it a power-
ful tool for identifying DTEGs.

Understanding Results
The Basic Protocol implements the

script DTEG.R from our github repository
(https://github.com/SGDDNB/translational_
regulation). This generates a results directory
which includes two subdirectories (fold_
changes/, gene_lists/) and one file
(Results_figures.pdf).

In order to demonstrate the usage and out-
put of DTEG.R, we utilized Ribo-seq and
RNA-seq count data from our recent study
(Chothani et al., 2019) on primary human
fibroblasts stimulated with TGFB1. We ob-
tained a subset of this dataset using four pa-
tients and two conditions (unstimulated, stim-
ulated). The results directory generated after
following the Basic Protocol on this dataset is
also saved in the github repository.

The subdirectory fold_changes/ con-
tains three files, namely: deltaRibo.txt,
deltaRNA.txt, and deltaTE.txt.
These files store gene-wise expression
changes across the given conditions in RPF,
RNA, and TE, respectively. The results are
obtained using DESeq2 and are saved in its
standard output format. The two important
columns, gene-wise log fold changes and
the associated adjusted p-values, are used to
determine gene expression changes between
the two conditions. Generally, padj < 0.05 is
used as a threshold for determining genes that
are changing significantly. A threshold for
the absolute log fold change can also be used
to select only high-effect sizes. The genes
obtained using these thresholds are considered
as significantly changing across the given
condition or treatment. Genes passing these
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thresholds in deltaRNA.txt are those
with a significant change in RNA and are
considered DTGs, and genes passing these
thresholds in deltaTE.txt are considered
DTEGs.

Furthermore, the combination of changes
in RPF, RNA, and TE are used to deter-
mine a gene’s regulatory class, as shown in
Figure 1D. A subdirectory, gene_lists/,
contains files that list genes from each regula-
tory class. These include genes that have been
identified as either DTG or DTEG and then fur-
ther classified into translationally forwarded,
buffered, exclusive, or intensified (see details
in Table 2). Genes that are classified as for-
warded are transcriptionally driven and exhibit
no change in TE. On the contrary, translation-
ally exclusive genes exhibit changes in TE but
no change in transcription, which implies that
these genes are only regulated translationally.
Buffered and intensified genes have changes
in TE as well as changes in RNA. If these
changes in RNA counteract the change in TE,
we consider them as translationally buffered,
while if RNA changes act with changes TE, we
consider them intensified. In each case, these
genes are under both transcriptional and trans-
lational regulation.

Beyond what is described in these proto-
cols, to understand the potential functions of
the different gene regulatory classes, a gene
set enrichment analysis (GSEA) or gene on-
tology (GO) overrepresentation analysis is rec-
ommended. Furthermore, hierarchical cluster-
ing of the gene-wise fold changes can also be
performed to identify subgroups of genes that
have a similar regulatory profile.

Lastly, the script generates a file, Re-
sults_figures.pdf, which includes
three main visualizations of (1) a PCA, (2)
global fold changes, and (3) gene-wise fold
changes.

The PCA is conducted for both the
Ribo-seq and RNA-seq count data. A PCA
transforms the data in such a way that each
component captures a different source of vari-
ation within the data, with the first component
(PC1) capturing the largest source of variance
in the data. Thus, a PCA can be used to deter-
mine any batch effect that is a source of varia-
tion in the data. In the example data, it shows
that PC1 accounts for 42% of the variance in
the Ribo-seq and 46% of the variance in the
RNA-seq data. Importantly, PC1 separates the
individual patients in both the datasets, indicat-
ing that the largest variance in these data is due
to the difference between patients in the study.
Since these datasets were generated to study

the changes in different conditions (unstim-
ulated/stimulated), it is important to remove
this patient effect (Fig. 2A, B). Therefore, in
this case, the DTEG.R script should be run
with the batch effect parameter (Argument 4)
set to 1.

The .pdf file also includes a visualization
of the global fold changes, as shown in Figure
2C. This is drawn using a scatter plot of the
fold changes in RNA and RPFs. The plot also
highlights whether the gene is a DTG and/or
a DTEG. This plot gives an overview of the
overall impact of translational regulation in
the system. As such, it can be used to deter-
mine the dominant mode of regulation in the
dataset and visualize the overall effect sizes of
the different regulation types. For instance, if
there were very few DTEGs and many DTGs
found, it would imply that there is very lit-
tle translational regulation in the system, and
most of the changes occur via transcriptional
regulation.

In order to look at individual examples,
the file further visualizes the gene-wise fold
changes for the genes with the strongest effect
in each category (Fig. 2D-G). A line plot is
used for visualizing the changes from unstim-
ulated to stimulated in this study. These line
plots can be generated for any gene of interest
using step 4 in the Basic Protocol or step 11 in
the Alternate Protocol.

Time Considerations
The protocol takes a couple of minutes on

a standard computer for the example dataset,
which includes four samples and two condi-
tions. This could vary based on the number of
samples and conditions to be tested.
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