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Single-cell RNA-sequencing of herpes simplex virus
1-infected cells connects NRF2 activation to an
antiviral program
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Herpesvirus infection initiates a range of perturbations in the host cell, which remain poorly

understood at the level of individual cells. Here, we quantify the transcriptome of single

human primary fibroblasts during the first hours of lytic infection with HSV-1. By applying a

generalizable analysis scheme, we define a precise temporal order of early viral gene

expression and propose a set-wise emergence of viral genes. We identify host cell genes and

pathways relevant for infection by combining three different computational approaches: gene

and pathway overdispersion analysis, prediction of cell-state transition probabilities, as well

as future cell states. One transcriptional program, which correlates with increased resistance

to infection, implicates the transcription factor NRF2. Consequently, Bardoxolone methyl and

Sulforaphane, two known NRF2 agonists, impair virus production, suggesting that NRF2

activation restricts viral infection. Our study provides insights into early stages of HSV-1

infection and serves as a general blueprint for the investigation of heterogeneous cell states

in virus infection.
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Herpes simplex virus-1 (HSV-1) is one of nine known
herpes viruses that affect humans. Although an estimated
80% of the worldwide population is infected in a quies-

cent, latent form, the virus may cause a variety of diseases during
lytic replication and reactivation1. A hallmark of HSV-1 is the
way it alters the cellular RNA metabolism and RNA content on
many levels. On the one hand, viral mechanisms activate tran-
scription of viral genes and interfere with splicing regulation,
RNA polymerase II transcription, and RNA stability to inhibit
synthesis of cellular proteins2–8. On the other hand, virus entry
affects a range of cellular pathways, which may in turn lead to
transcriptional activation or repression of downstream target
genes9.

Viral infection is a dynamic process driven by the interplay of
antiviral cellular pathways and viral mechanisms, which evolved
to suppress them. Incoming HSV-1 virions bind to receptors on
the cell surface, including NECTIN1/NECTIN2, the TNF receptor
superfamily member 14 (TNFRSF14)10, and the members of the
integrin family11, resulting in activation of cellular pathways such
as nuclear factor (NF-κB), or of the transcription factors IRF3 and
IRF711. After entry into the host cell, a range of pattern recog-
nition receptors sense viral DNA or RNA, such as the cyclic
GMP-AMP synthase MB21D1 (also known as cGAS)12,13. Even-
tually, these pathways can lead to the induction of inflammatory
cytokines and interferons10.

The characterization of cellular heterogeneity due to the acti-
vation of different host pathways and the progression of viral
infection is of great interest. Recent single-cell RNA-sequencing
(scRNA-seq) efforts provide an unbiased characterization of
virus–host interactions in individual cells, which are masked at
the population level14–23. However, deeper insights into unique
molecular signatures and discovery of specific cell subsets can be
obtained by increased sequencing depth and the application of
advanced analytical approaches to study the course of viral
infections.

Here, we profile deep transcriptomes of tens of thousands of
individual cells harvested before and at several times post HSV-1
infection. Our results relate the progression of infection to cell
cycle phases, and define a precise temporal order of viral gene
expression. The depth of data and using unspliced messenger
RNA (mRNA) as a predictor for future cell states allows us to
connect the course of infection to the activity of specific host cell
genes and pathways. Particularly, we investigate the relationship
of HSV-1 infection and the transcription factor NRF2, which is
activated during infection, and demonstrate that the NRF2 ago-
nists Bardoxolone methyl and DL-sulforaphane impair a pro-
ductive viral replication. Overall, our study provides insights into
early stages of HSV-1 infection, and an analytical framework to
study viral infections using scRNA-seq.

Results
scRNA-seq of HSV-1-infected primary fibroblasts. To investi-
gate the heterogeneity of molecular phenotypes in the first hours
of viral infection, we infected primary normal human der-
mal fibroblasts (NHDFs) with HSV-1 at a multiplicity of infection
(MOI) of 10 (Fig. 1a, b) and profiled the transcriptomes of
uninfected cells as well as cells harvested at 1, 3, and 5 h post
infection using the droplet-based single-cell sequencing (Drop-
seq)24,25. For further analysis, only cells with more than 2000
detected genes were used, a threshold that has been previously
shown to reduce technical variability26. An overview of the
dataset (Supplementary Table 1), number of characterized cells
(Supplementary Table 2), distribution of unique molecular
identifiers (nUMIs), that is, the number of individually detected
mRNA molecules per cell, and the number of detected genes

(nGene) (Supplementary Fig. 1a), as well as correlation between
scRNA-seq and bulk RNA-seq (Supplementary Fig. 1b) are pro-
vided in the Supplementary information. Low-reproducibility
genes (Supplementary Data 1) were subsequently omitted or
flagged.

The analyzed cells clustered based on harvesting time point,
cell cycle markers, and the amount of viral mRNA, suggesting
that the strongest contributors to cellular variability were cell
cycle state and the progression of infection (Fig. 1c). However,
cells did not separate by biological replicates, indicating that
replicates provided comparable and reproducible data (Fig. 1d).

The distribution of the viral gene expression per single cell at
the different harvesting time points indicated the progression of
infection over time (Fig. 1d). Separating cells based on their cell
cycle state (G1 vs. non-G1) showed that, for a given harvesting
time point, non-G1 cells generally contain more viral transcripts
(Fig. 1e), suggesting that S-, G2-, and M-phase cells are more
susceptible to viral infection, and/or that the infection progresses
faster in these cells.

Consequently, at 5 h post infection (hpi) we observed that cells
bearing high levels of HSV-1 mRNA (8–30%) showed a lower
nUMI count (host cell and viral genes together) relative to the
number of detected genes (Supplementary Fig. 1c), indicating less
complex transcriptomes due to a large number of viral transcripts
and/or reduction of host cell mRNAs likely as a consequence of
the beginning host cell shutoff2.

Of note, we detected little or no mRNA of the immediate early
genes RL2 (coding for ICP0) and RS1 (coding for ICP4), both in
bulk RNA-seq and scRNA-seq, which was already observed in a
previous study27, likely being explained by the unusually high GC
content of these mRNAs.

Stepwise progression of viral gene expression. Within lytic
infection, viral genes have been classified as immediate early (α),
early (β), and late (γ, γ1, γ2)1,27. Since the temporal order of
genes expressed from the virus genome is intrinsically encoded in
their single-cell expression profiles, we developed an approach to
refine the viral gene expression cascade.

As an initial proxy for the sequential emergence of virus-
encoded transcripts, we counted, for each gene, the percentage of
infected cells in which it was detected (Fig. 2a, Supplementary
Data 2). Interestingly, viral gene transcription appears to start in
regions flanking the internal repeat regions, and around gene
UL23. To reduce the effects of the sampling error (mRNA capture
rate) when analyzing individual viral transcripts, we used only
cells where the amount of detected viral transcripts was not
dependent on the sequencing depth (“high” cells in Fig. 2b).

First, we focused on early viral transcriptional events, and
explored cells harvested at 1 and 3 hpi. For the first eight viral
genes as defined by the ordering in Fig. 2a, we calculated for each
gene pair the percentage of cells that have both genes present.
Clustering the gene pairs by co-occurrence frequencies showed a
grouping of viral genes (Fig. 2c), such as UL23 together with
UL50 or a set with UL56/UL42/UL49. For a temporal representa-
tion of viral gene expression, cells were first sorted according to
the emergence of the eight genes (Fig. 2d), and then by the
abundance of US1 (coding for ICP22), or, if absent, UL54
(ICP27). Under the assumption that the progression of infection,
at least in an early phase, is correlating with the accumulation of
viral transcripts, this represents a pseudo-time course of the lytic
infection. In agreement with previous findings1,27, US1 and UL54
were the first genes to be detected (Fig. 2d). Particularly, cells
harvested at 1 hpi mostly contained one of these two transcripts
(Fig. 2d). Interestingly, a considerable number of cells had only
one of the two transcripts present (Fig. 2b, left most part),
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indicating that at the very beginning of viral transcription, either
only US1 or only UL54 is turned on. The immediate early gene
RL2 (coding for ICP0) is displayed separately, since its mRNA
transcript might be difficult to detect.

Next, we connected the bimodal distribution of viral transcripts
per single cell (Fig. 1e) to the sequential expression of viral

genes in two ways. First, cells in the first peak (Fig. 2d)
contain mainly transcripts from one or two viral transcripts.
Second, we generated smoothened two-dimensional densities of
cells by plotting the number of detected genes vs. the percentage
of viral transcript per cell (Supplementary Fig. 2a). Together, this
indicates that the bimodality in Fig. 1e arises from the
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transition between US1/UL54 expression and later stages of
infection.

To include viral genes that are transcribed later, we analyzed
cells harvested at 5 hpi the same way as the 1/3 hpi cells in Fig. 2c,
d (Supplementary Fig. 2b, c). Again, the clustering revealed a set-
wise emergence of viral genes, that is, sets of genes being
transcribed together.

In order to extend the analysis on the entire transcriptome of
the cells, including host cell genes, we calculated the likelihood of

transitions between single cells based on diffusion maps28,29. Cells
were then clustered by these transition probabilities (Supplemen-
tary Fig. 2d for 1/3 hpi and Supplementary Fig. 2e for 3/5 hpi).
Here, discrete clusters of cells could be observed. These clusters
obviously have high transition probabilities within themselves.
However, they are also connected by high transition probabilities
to specific other clusters, indicating that the infection on the
transcriptional level progresses in a stepwise manner rather than
a continuum. Importantly, the set-wise emergence seen in Fig. 2c
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and Supplementary Fig. 2b is recapitulated here by discrete and
set-wise transitions of the occurrences of viral genes per cluster.

Decades of work have classified viral genes into immediate
early, early, and late (γ, γ1, γ2)1. Based on the single-cell data, we
now propose, as a refinement, a set-wise emergence of viral genes
as shown in Fig. 2e.

Infection-induced RASD1/RRAD genes reduce virion produc-
tion. To study changes in viral gene expression upon infection,
we first examined differential gene expression by bulk mRNA-seq
(Supplementary Fig. 3a). To identify genes differentially expres-
sed only in infected cells, we plotted the correlation of host gene
expression to viral transcripts in single cells against the maximal
fold change in the population mRNA-seq data (Fig. 3a, Supple-
mentary Data 3).

Among host genes, activated only in infected cells, we
identified hemoglobin α genes, HBA1 and HBA2 (Fig. 3a), which
were previously shown to be induced by the viral transcription
factor ICP47. Additionally, two genes encoding Ras-related small
GTPases, RASD1 (Fig. 3b) and RRAD (Fig. 3c), showed strong
positive correlations with viral transcripts. Similarly, we found
that RASD1 and RRAD were up-regulated in previously published
microarray, RNA-seq, and ribosome profiling datasets5,6,30,31,
indicating that the induction of these two genes is independent of
the cell type and virus strain. To investigate the influence of
RASD1 and RRAD on viral production, we depleted RASD1 and
RRAD by small interfering RNA (siRNA) knockdown prior to
infection (Fig. 3c–e), and observed increased virion production at
16 hpi, suggesting that both genes posses some antiviral activity.

Subpopulation of cells defined by the expression of marker
genes. To identify distinct subpopulations of cells, defined by a
particularly high or low expression of specific marker genes, we
used an overdispersion analysis. Overdispersion analysis selects
genes that have variance of mRNA expression, higher than
expected, for their average level of expression. Such high variance
indicates that these genes are highly expressed in only a subset of
cells in the population. Not surprisingly, cell cycle, viral genes,
and host cell genes correlating with viral infection, such as
RASD1, appeared as the strongest gene expression markers
(Fig. 4a–e). In addition, two other gene sets, not directly related to
the progression of infection and the cell cycle, defined distinct
subpopulations. Importantly, the genes discussed here do not
necessarily by themselves influence the infection, but rather are
indicators of a specific cellular state that could favor or impair the
infection.

The first subpopulation was marked by high mRNA levels of
the sulfatase SULF1 (Fig. 4f), and the oxytocin receptor OXTR

(Supplementary Fig. 4a). The second set was characterized by
high mRNA levels of the NAD(P)H quinone dehydrogenase 1
(NQO1) (Fig. 4g) and the ferritin heavy chain 1 (FTH1)
(Supplementary Fig. 4b), as well as the ferritin light chain
(FTL) (not shown) and sequestosome 1 (SQSTM1) (not shown).

Whereas SULF1 was previously shown to be induced by tumor
necrosis factor-α (TNFα) in MRC-5 fibroblasts32, we found no
clear activators for OXTR, but indications that pro-inflammatory
cytokines, such as IL-1β, IL-6, and TNFα might induce its
transcription33. For the activation of NQO1 and the correlating
genes FTH1, FTL, and SQSTM1, several reports pointed to the
transcription factor NFE2L2 (also known as NRF2)34–36.

Pairwise gene expression analysis revealed a strong anti-
correlation of SULF1 and NQO1 expression in single cells,
whereas FTH1 and FTL correlated well with NQO1 (Fig. 4h). On
the other hand, OXTR expression levels correlated with SULF1
but not with NQO1, indicating the existence of subpopulations of
cells with distinct marker gene expression.

Next, we related these subpopulations to the progression of
infection. To this end, we used graph abstraction (PAGA37),
which calculates transition probabilities between groups of cells
(Fig. 4i, Supplementary Fig. 4d). Cells with high NQO1 levels
(group B in Fig. 4i), and therefore high preceding NRF2 activity,
had a relatively low probability to progress further into the
infection, compared to cells from groups D and F in Fig. 4i.

RNA velocity shows transcription bursts and cell cycle arrest.
To infer expression dynamics in individual cells, we used RNA
velocity38. RNA velocity uses sequencing reads originating from
introns to measure the amount of nascent mRNA being produced
from a certain locus. The ratios of nascent mRNA to mature
mRNA transcripts, across multiple cells, can be used to derive
transcriptional rates. Changes in transcriptional rates, in multiple
effector genes belonging to the same signaling pathway, are an
indicator of the pathway’s activity.

RNA velocity values and the number of nascent reads for two
genes induced by the infection, RASD1 and HOXA9 (Fig. 3), are
shown in Fig. 4c, j, and Supplementary Fig. 4d–g. We observed
that these two genes were transcriptionally induced in different
subgroups of cells, and that the apparent transcriptional shutoff
of RASD1 does not necessarily reflect a general shutoff with the
progressing infection, since HOXA9 transcription is observed in
cells in later stages of infection (compare Supplementary Fig. 4d,
f). The transcriptional bursts for RASD1 and HOXA9 are also
reflected in the clusters shown in Supplementary Fig. 2e, where
they co-occur with the emergence of specific sets of viral
transcripts.

RNA velocity values are shown for the genes mentioned in the
previous section are shown in Fig. 4k–n and Supplementary

Fig. 2 Onset of viral gene expression shows a set-wise emergence of viral transcripts. a Arrangement of viral genes on the HSV-1 genome. Immediate early
genes were shown in red, early genes in brown, and late genes (gamma) in orange, γ1 in light brown, and γ2 in dark yellow. Genome segments were shown
as light gray (unique regions) and dark gray areas (IRL, IRS: large/small internal repeats; TRL, TRS: large/small terminal repeats). Overlapping genes were
merged. The bar plot on top shows in which percentage of “HSV-1 high” cells (see b for definition) the respective gene was detected. b Relationship
between normalized levels of HSV-1 transcripts and the number of detected genes (human and viral) shows two categories of cells. Cells with at least one
viral transcript were sorted by normalized HSV-1 transcript UMIs. Each cell is repesented by a red dot (log(2)-transformed sum of HSV-1 transcript UMIs,
left axis) and a green dot (number of genes detected, right axis). Note that only cells with more than 2000 detected genes were used. The horizontal black
line denotes the cutoff between high and low. For subsequent analysis, only the 3896 “high HSV-1” cells were used, in order to reduce the sampling error
caused by the detection rate. c Percentages indicating co-occurrences of genes. Read as following, for example: 85% of cells that have US1 also have UL54
(top row, second field from left, dark orange) but only 29% have UL37 (top row, last field, dark blue), whereas 99% of cells that have UL37 also have US1
(bottom row, first field from left, red). d Heatmap of expression values of the first eight expressed viral genes in “HSV-1 high” cells, harvested at 1 and 3 hpi.
Rows (genes) and columns (cells) were sorted as described in the main text. Above the heatmap, cell cycle, harvesting time point, and log 10-transformed
percentage of viral transcripts. For the latter, blue colors indicate values in the first and second peak of the bimodal distribution from Fig. 1e, respectively.
e Proposition for a refined scheme of temporal categorization of viral genes
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Fig. 4a, b. Cells in the G1 phase that show high GMNN RNA
velocity (Fig. 4k) are therefore cells that are about to enter the S
phase. Interestingly, cells in a more progressive state of infection
had low RNA velocity values for both GMNN and TOP2A
(Fig. 4k, l, top part of the maps), which reflects the interruption of

the cell cycle by the virus39. In addition, RNA velocity allows the
prediction of the future state of individual cells on a timescale of
hours. The progression of infection clearly emerged as the
predominant transition (Fig. 4o), confirming the validity of the
approach. Since viral genes barely have introns, the directionality
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of infection progression is driven by virus-induced host cell genes
such as RASD1 (Fig. 4c, j).

The transcription factor NRF2 is activated upon infection. We
used the inferred RNA velocity (transcriptional rates) as a precise
read out of activation of upstream signaling pathways. To
visualize pathway activity, we mapped the cells on a two-
dimensional embedding not based on the mature mRNA
expression levels as in Fig. 4, but based on the RNA velocity
values (Fig. 5a, b). Cells with larger amounts of viral transcripts
showed relatively high NRF2 activity as deduced from high NQO1
RNA velocity (Fig. 5d, lower panel) suggesting that NRF2 is
activated as a part of the cellular defense against the progressing
infection. We again applied the PAGA37 algorithm to cells clus-
tered based on transcriptional activity (Fig. 5e). The highest
probability to proceed into infection are cells in the S/G2/M
phases (groups F, N, J), supporting again that these phases of the
cell cycles favor infection.

To summarize, we made two observations regarding NRF2
activity and HSV-1 infection. The analysis of mature mRNA
distribution showed that cells with a high level of transcripts of
NRF2-driven genes, and therefore high preceding NRF2 activity,
have a low transition probability into later stages of infection
(Fig. 4). Looking at RNA transcription however showed that cells
at later stages of infection appear to respond by increasing
transcription of NRF2 target genes (Fig. 5), which could reflect a
cellular defense mechanism against HSV-1 infection.

In order to strengthen our interpretation of the data, we also
analyzed an independent experiment with again two biological
replicates, where a procedure for synchronized infection at 4 °C40

was applied (Supplementary Fig. 5a, Supplementary Table 1).
Whereas overall the infection progressed less (compare Supple-
mentary Fig. 5b with Fig. 1e), key aspects of our analysis were
reproducible. This included the cell cycle dependency (Supple-
mentary Fig. 5c), the viral gene expression cascade (Supplemen-
tary Fig. 5d) and the induction of RASD1/RRAD (Supplementary
Fig. 5e). Due to the weaker infection, there are less infected cells
as a separated part on the two-dimensional projection (compare
Supplementary Fig. 5f, g with Fig. 4a, b). Still, the anti-correlation
of NQO1/SULF1 and the low transition probability of cells with
high NQO1 levels into infection was observed (Supplementary
Fig. 5f–j).

Activated NRF2 restricts HSV-1 infection. Our analysis sug-
gested that NRF2 activation occurs in a subset of infected cells.
Under physiological conditions, NRF2 is repressed by KEAP1,
which sequesters NRF2 and facilitates its ubiquitination and
degradation41. Upon disruption of this interaction in response to
oxidative stress, NRF2 translocates into the nucleus, and induces
transcription of a number of target genes, including NQO1. Using

the NRF2 agonist bardoxolone methyl42 at final concentrations of
0.1–0.4 µM, we observed an increase in NQO1 mRNA expression
in primary fibroblasts (Supplementary Fig. 6a, left panel) and in
HEK 293 cells (Supplementary Fig. 6b), as expected for NRF2
activation43,44. In addition, we used a second NRF2 agonist,
sulforaphane, which induced NQO1 expression at the previously
reported low micromolar range45 (Supplementary Fig. 6a). At the
concentrations applied here, bardoxolone methyl did not have
any apparent effect on cell growth (data not shown). Since, as
described above, the progression of infection depends on the cell
cycle, we also probed mRNA levels for the cell cycle markers
GMNN and TOP2A introduced in the previous sections (Sup-
plementary Fig. 6a, b, right panels). In the primary fibroblasts but
not HEK293 cells, the levels of these mRNAs were somewhat
reduced, indicating that bardoxolone methyl could also dampen
cell cycle progression or promote cell cycle exit. An experiment
with bardoxolone methyl from a different source is shown in
Supplementary Fig. 6c.

Next, we tested whether the two NRF2 agonists modulate HSV-
1 infection. To this end, cells were infected and bardoxolone
methyl or sulforaphane were added right after removal of the
virus inoculum. Both compounds reduced the levels of produced
virions at 16 hpi, as measured by plaque assays (Fig. 6a), the
amount of viral DNA in the supernatant (Fig. 6b, left panel). The
mRNA of the early UL29 and particularly the late UL6 gene
(Fig. 6c) was also reduced, suggesting that late stages of viral
transcription/replication and/or virion production are impaired
in cells treated with NRF2 agonists. Similar effects were observed
in treated HEK 293 cells (Supplementary Fig. 6e).

To support the hypothesis that high NRF2 activity counteracts
the progression of HSV-1 infection, we performed a fluorescence-
activated cell sorting (FACS)-based assay using a reporter plasmid
to monitor NRF2 activity in HSV-1-infected cells. This reporter
plasmid (Fig. 6d) encodes green fluorescent protein (GFP), which
is preceded by eight antioxidant response elements
GTGACNNNGCANNN46, known as NRF2-binding sequences,
followed by a minimal promoter (see Supplementary File 1 for the
sequence). A constitutively expressed BFP controls for transfec-
tion efficiency. As expected, transfection of the reporter plasmid
into bardoxolone methyl-treated HEK 293 cells increased GFP to
BFP ratios when compared to solvent-treated cells (Fig. 6e,
Supplementary Fig. 6g), indicating that the reporter plasmid can
be used to monitor NRF2 transcriptional activity. The separation
of subpopulations and the gating strategy is shown in
Supplementary Fig. 6f.

To monitor the progression of HSV-1 infection, we used a
HSV-1 virus with mCherry fused to the late VP26 gene, encoding
the small capsid protein47. Higher mCherry expression per cell
indicates a more productive infection. As shown before, the
VP26-mCherry virus showed impaired infection upon treatment
with bardoxolone methyl (Fig. 6f).

Fig. 4 Marker genes define subpopulations with different transition probabilities into infection. a Cells were projected on a two-dimensional map using
UMAP based on gene expression values, with cells colored by harvesting time point. Main distinguishing features were marked in gray. b Cells colored by
amount of HSV-1 transcripts. Cells without HSV-1 transcripts are colored in light gray. c–g Cells colored by expression values of the indicated genes. Color
scales are shown to the right of these panels. Areas containing cells with relatively high expression levels were marked with a light green ellipse. The dark
green and blue ellipse denote S and G2/M phase cells, respectively. h Correlation of gene expression with NQO1 expression (horizontal axis) and SULF1
expression (vertical axis) in cells harvested at 3 hpi. Every dot represents a gene, colored by the slope of the linear correlation with NQO1. Selected genes
were labeled by name. To calculate correlations, only cells with relative normalized expression above a certain threshold were used as for Fig. 2 and viral
transcripts (Supplementary Fig. 4c). i Groups of cells according to PAGA were labeled A to Q. The line thickness of the connections (graph edges) between
the cell clusters (graph nodes) indicate the likelihood that cells can move from one cluster to the other (right). Probabilities (arbitrary scale) are noted in
red. Areas of interest are marked with light green ellipses. j–n Cells colored by RNA velocity values of the indicated genes. Cells for which no value could be
calculated were colored in light gray. o RNA velocity arrows projected on the UMAP. Cells containing at least one detected viral transcript were colored in
light orange, and all others in light gray
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To correlate NRF2 activity to the progression of HSV-1
infection, we infected HEK 293 cells, transfected with the NRF2
reporter plasmid, with a HSV-1 VP26-mCherry virus and
monitored fluorescent protein expression by FACS analysis. This
analysis revealed that infected cells with high NRF2 transcrip-
tional activity (population NRF2 high) displayed lower mCherry
signals compared to the NRF2 low population (Fig. 6g). These
results provide further support that high NRF2 activity impairs
HSV-1 infection. As an internal control, we defined two
populations of cells that were separated perpendicular to the
NRF2 high/low populations (Fig. 6f). The mCherry signal in these
two control groups showed no apparent difference (Fig. 6h). In
addition, plasmid transfection of HEK 293 cells does not alter
VP26-mCherry virus infection efficiency (Supplementary Fig. 6h).
Taken together, these experiments confirm the observation from
the scRNA-seq data that high NFR2 activity restricts HSV-1 viral
infection.

Discussion
We performed scRNA-seq of primary human fibroblasts at early
stages of infection with HSV-1. Using the resolution of scRNA-
seq, we showed that cells in the S/G2/M cell cycle phases bear
more viral transcripts. The relationship between the cell cycle and
the progression of infection has been studied for decades48–51,
with most reports pointing to a G1 or G1/S arrest upon HSV-1
infection. scRNA-seq now allows for perturbation-free analysis of
the relationship between the cell cycle and progression of

infection, reducing the risk of experimental artifacts. We have
seen that cells in S/G2/M phases on average bear more viral
transcripts (Fig. 1f). This is corroborated by recent findings that
the activity of CCNE1 (also known as cyclin E) and CDK2, which
promote the G1/S transition, correlates with productive infec-
tion52. Similarly, high levels of the G1/S transition marker GMNN
(also known as geminin) favored infection in microscopy-based
experiments53. We observed that, under the conditions used here,
the fibroblast populations doubled every 40–50 h. Since about half
of the measured cells were in the S/G2/M phases, these would last
more than 20 h, much longer than the intervals between infection
and harvesting. Our results therefore indicate that cells in S/G2/M
phases provide a more favorable cellular environment to establish
the infection compared to G1 cells. Extending measurements to
later time points could then also detail the cell cycle state in which
infected cells are arrested.

Herpes viral genes are classified into immediate early, early,
and late1. Still, studies so far averaged large numbers of cells, and
were not able to distinguish how viral gene expression starts in
individual cells. By using clustering of viral gene co-occurence
and transition probabilities on diffusion maps, scRNA-seq
allowed us to propose a refined model for a set-wise emergence
of viral transcripts (Fig. 2), an approach that should be applicable
to a number of other viruses. The causes for such a stepwise
progression of HSV-1 transcription remain to be investigated.
Co-overexpression UL23 and UL50 before infection did not alter
early viral transcript expression as measured by quantitative
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Fig. 6 NRF2 activity counteracts HSV-1 infection. a–c NHDF cells were infected with HSV-1 at an MOI of 1. After removal of virus inoculum and washing
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using plaque assays (a), by probing viral DNA in the supernatant using qPCR (b), and by measuring viral mRNAs in the RNA isolated from the cells using
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two representative experiments. h as for g but with the distribution of the mCherry signal in the two control populations as defined in Supplementary Fig. 6f
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reverse transcription PCR (RT-qPCR) (Supplementary Figure 6i).
It is therefore likely that the progression of infection is largely
shaped by the cellular environment. While our efforts focused on
early time points of infection, future studies including later time
points may describe previously described modulations of splicing
and transcription by the HSV-1 infection4–6 into account.

Virus infection leads to changes in host cell transcription. We
have identified a number of deregulated genes in bulk RNA-seq;
however, only by using the scRNA-seq data we could distinguish
how deregulation is related to progression of infection in the
same cell. Two small GTPases, RASD1 and RRAD, were directly
induced by the infection. We have observed that both possesses
antiviral properties (Fig. 3). Interestingly, these two genes are
usually not expressed in epithelial cells. They are however puta-
tive targets of the primate specific gene DUX454. This germline
transcription factor was recently shown to be induced in HSV-1-
infected cells55. Correlating host gene expression with viral gene
expression generally emerges as a focus in scRNA-seq studies of
virus-infected cells15,17, and comparative studies might reveal
common topics and modulators of viral infection.

The development of pseudo-time inference algorithms for
scRNA-seq data56 enabled us to order cells along defined tra-
jectories and made it possible to deduce relationships between
biological mechanisms, without artifact-prone perturbances such
as gene knockdowns/knockouts. We first used overdispersion
analysis57 to find genes with inhomogeneous expression across
the entire dataset, which might therefore play a role in
the infection (Fig. 4). Overdispersion analysis selects genes that
have variance of mRNA expression, indicating that these genes
are highly expressed in only a subset of cells in the population.
The relationship of these genes to the progression of infection was
then analyzed using RNA velocity38 and graph abstraction. We
focused on target genes of the transcription factor NRF2, as
represented by NQO1. Remarkably, in bulk RNA-seq data, these
genes do not appear as differentially expressed and, without
single-cell data, would therefore likely not be considered for
subsequent studies.

NRF2 has previously been linked to viral infections58; however,
without a defined function. In a recent influenza virus scRNA-seq
study, NRF2 activity was associated with high expression of viral
transcripts15. For rotavirus, a double-strand RNA virus, NRF2
activation was recently shown to reduce virus production59. Our
analysis suggests that NRF2 becomes active in a subset of cells
(Fig. 5.) that leads to an escape state, diverging from a progressing
lytic infection (Fig. 4). For herpes infections, reports on the role of
NRF2 so far are mixed. Treatment of mice with the NRF2 agonist
tert-butylhydroquinone protected them from murine cytomega-
lovirus infection60. In contrast, HSV-1 infection in A549 was
drastically reduced upon a 2-day RNA interference of NRF261.
This treatment, however, induced the antiviral genes, STING and
IFI16, which could confound the direct effect of the NRF2
depletion. In another study, as observed here for HSV-1, KSHV
infection increased NRF2 protein levels62.

Following up on these observations, we showed that two NRF2
agonists, sulforaphane and bardoxolone methyl, the latter cur-
rently being in phase 3 clinical trials for treating chronic kidney
disease63,64, impaired HSV-1 virus replication. Furthermore, a
FACS-based reporter assay confirmed that NRF2 activity was
correlated with lower efficiency of infection in single cells. At
which stage of the infection viral production is impaired, and
whether the mere presence of nuclear NRF2, the expression of its
target genes, or the interaction of NRF2 with the NF-κB path-
way41 plays a role remains to be investigated.

In summary, our study provides a detailed analysis of the
events at the beginning of HSV-1 infection in primary human
fibroblasts. We could relate the activity of single genes to the

progression of infection. Using overdispersion and cellular tra-
jectory analysis allowed the identification of relevant pathways,
demonstrating how scRNA-seq can provide detailed insight into
biological processes influencing viral infections.

Methods
Cells and virus. Primary normal human dermal fibroblasts (PromoCell C-12300)
were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with
10% fetal bovine serum, 100 U/ml penicillin, 100 μg/ml streptomycin, and 1%
NAEE (ω-oxidize ethyl nonanoate) at 37 °C and 5% CO2. Primary cells were
cultured until passage 10. Wild-type HSV-1 was derived from a patient isolate and
was obtained from Department of Virology, Saarland University Medical School
(Homburg, Germany). The same isolate was used in our previous study5. The use
of primary human HSV-1 isolates was approved by the ethics committee of the
“Ärztekammer des Saarlandes” (Saarland Medical Association, approval no. 10/18).
Written consent was obtained from the patients prior to the isolation of virus. The
virus was propagated in NHDF cells. At 72 hpi, viral supernatant was collected and
sterile filtered through a 0.45 μm pore size filter and stored at −80 °C. Viral titers
were determined by plaque assay as described previously5.

Infections. Cells were seeded in 10 cm dishes (for scRNA-seq) and in 6-well plates
(for bulk RNA samples and slides for immunofluorescence). For the non-
synchronized infection at 37 °C, half of the medium (conditioned medium) was
removed, and then cells were incubated for 30 min with HSV-1 (MOI 10) or were
mock infected. The supernatant was removed and cells were washed with
phosphate-buffered saline (PBS), followed by re-applying the conditioned medium.
We harvested uninfected cells and at early time points (1, 3, and 5 hpi) in two
biological replicates.

Following the same protocol of infection for synchronized infection, cells were
incubated for 20 min at 4 °C prior to infection. Virus containing supernatant was
also incubated for 1 h at 4 °C. After inoculation cells were washed with PBS and
then complete fresh DMEM media was applied and cultured at 37 °C. For Drop-
seq all cells were washed with cold PBS and fixed in ice cold methanol (80%).

Drop-seq scRNA-seq. Cells were fixed and used for Drop-seq single-cell
sequencing as previously described25. Monodisperse droplets of about 1 nl in size
were prepared on a self-built Drop-seq setup following closely the instrument setup
and library generation procedure as described24. Principle: Upon nanoliter droplet
formation, individual cells are co-encapsulated with individual, uniquely barcoded
beads, and become lysed. Released polyadenylated RNA molecules then hybridize
to polyd(T) primers that are attached to the uniquely barcoded beads. Each cap-
tured mRNA molecule is tagged with a barcode, indicating its cell of origin and a
UMI. Nanoliter droplets are collected and broken, and RNA molecules are reverse
transcribed into complementary DNA (cDNA), amplified by PCR, size selected for
mRNA, fragmented, and 3′ ends sequenced in bulk.

cDNA libraries had large average sizes of about 1.5 kb, indicating high-quality
RNA and cDNA molecules. Six hundred picograms of each cDNA library was
fragmented and amplified for sequencing with the Nextera XT v2 DNA Library
Preparation kit (Illumina, San Diego, CA, USA). Single-cell libraries at 1.8 pM
(final average insert sizes ranging from 580 to 680 bp) were sequenced in paired-
end mode on Illumina Nextseq 500 sequencers using Illumina Nextseq 500/550
High Output v2 kits (75 cycles). Read 1: 20 bp (bases 1–12 cell barcode, bases
13–20 UMI; Drop-seq custom primer 1 Read1CustSeqB), index read: 8 bp, and
read 2 (paired end): 64 bp.

Bulk RNA-seq and analysis. RNA was extracted from cells using Trizol (Thermo
Fisher) and the RNA clean and concentrator kit (Zymo). Sequencing libraries were
prepared using the TruSeq Stranded mRNA kit (Illumina) according to the
manufacturer’s instruction and sequenced on a HiSeq4000 device using 2 × 76 nt
paired-end sequencing. Sequencing reads were aligned to the hg38 version of the
human genome using tophat265. Standard differential expression analysis was
performed using quasR66 for counting reads (using the Gencode gene annotation
version 28) and edgeR67.

scRNA-seq data processing. The scRNA-seq data was processed using the PiGx
pipeline68. In short, polyA sequences are removed from reads. The reads are
mapped to the hg38 version of the human genome using STAR69 with gene models
from Gencode version 28. The number of cells, for each sample, is determined
using dropbead25. Finally, a combined digital expression matrix is constructed,
containing all sequenced experiments. This table is available at the GEO entry.
Cells containing <2000 detected genes were filtered from the analysis. Raw counts
for each cell were normalized by scaling to the total number of UMI, per cell, and
log 2 transformed. Normalized distributions were subsequently scaled to have 0
mean, and standard deviation of 1. Principal component analysis was computed
based on the scaled expression values of variable genes (defined using FindVar-
iableGenes function). First 20 principal components were used for T-distributed
stochastic neighbor embedding (tSNE). The analysis was performed using the
Seurat package57. Cell cycle was assigned to each cell using the CellCycleScoring
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function. Cell cycle gene sets were taken from ref. 70. Normalized total HSV-1
transcription was calculated by summing up raw counts of all detected viral genes,
divided by the total number of raw counts, multiplied by a scaling factor of 10,000
and log(2) transformed. Overdispersion analysis was performed using the Find-
VariableGenes function from the Seurat package. First, the average expression and
dispersion are calculated for each gene. Genes are then stratified into 20 categories
based on their average expression, and a z-score is calculated for dispersion in each
of the bins. Genes that have unexpectedly high dispersion for their corresponding
average expression value are selected for further downstream analysis. Plots were
generated using ggplot271, pheatmap72, or ComplexHeatmap73.

To demonstrate that the distributional properties of single-cell data did not bias
the correlation statistic, we have repeated the correlation analysis in Fig. 3b (Y-axis)
with variance stabilized data using sctransform74. sctransform uses negative
binomial regression to remove any apparent relationship between mean and
variance, making the data homoscedastic.

Supplementary Figure1d shows correlation of gene expression across cells, with
the viral load before (X-axis) and after the variance stabilizing transformation (Y-
axis). Transformed correlation statistic does not differ significantly from the non-
transformed statistic, demonstrating that the conclusions based on the correlation
statistic were unbiased.

Diffusion maps. Transition probabilities between cells were estimated based on the
diffusion pseudo-time distances29, implemented in the destiny Bioconductor
package28. Diffusion pseudo-time distance between two cells represents the
cumulative probability of traveling from one cell to the other on a probabilistic
graph. The graph is constructed by embedding cells using gaussian kernels.
Obtained distances were converted to transition probabilities using a Laplacian
kernel.

Binning and correlations. Correlations of host cell gene expression with HSV-1
gene expression (Fig. 3), SULF1 or NQO1 expression (Fig. 4), were calculated using
binned cells to reduce noise. For this, cells with “high” expression (see Fig. 2b and
Supplementary Fig. 4c) were first sorted according to normalized values of HSV-1
transcripts, SULF1 or NQO1. Then, cells were binned with 20 cells per bin. Each
bin was then treated as a metacell. Normalized gene expression values for the
metacells were calculated by summing up, per gene, all raw values in the bin,
dividing by the total raw count in the entire metacell, multiplied by a scaling factor
of 10,000 and log(2) transformed. Then, the linear Pearson’s correlation coefficient
and slope for each gene or antisense transcript group with HSV-1 transcripts,
SULF1 or NQO1, respectively, were calculated.

RNA interference. NHDF cells were plated in 6-well plates and incubated at 37 °C.
After 24 h, cells were transfected with siRNAs (final amount 15 pmol) using
Lipofectamine® RNAiMax (Thermo Fisher) according to the manufacturer’s
instructions. Briefly, siRNAs were diluted in 125 μL of reduced serum medium
(OPTI-MEM I; Invitrogen). The Lipofectamine RNAiMax reagent was diluted in
125 μL of OPTI-MEM I and the two solutions were then mixed and incubated for
10 min at room temperature before addition to the cells. Eight hours after trans-
fection, cells were infected with HSV-1 (MOI 1) as mentioned above. After that
cells were again transfected with the siRNAs and RNA samples and cell super-
natants were harvested 16 h after infection. siRNAs that were used in this study to
transfect NHDF cells are described in Supplementary Table 3.

Measuring viral DNA in cell culture supernatant. Cell culture supernatant was
treated with 2 mg/ml proteinase K (Thermo Fisher) in 30 mM Tris, pH 8, and 0.5%
Triton for 10 min at 70 °C, followed by inactivation of the proteinase for 10 min at
95 °C. After 1:1 dilution in water, the samples were used for qPCR using the UL29
primer pair (Supplementary Table 4). A standard curve for relative quantification
was prepared from serial dilution of a virus stock with 1 PFU/ml (measured using
plaque assays) treated in parallel to the samples. For all experiments, four mea-
surements were done for two biological replicates.

RT-qPCR. RNA was extracted from cells using Trizol (Thermo Fisher) and the
RNA clean and concentrator kit (Zymo). DNase treatment using DNase I ampli-
fication grade (Thermo Fisher) and RT using SuperScript III (Thermo Fisher) was
performed according to the manufacturer’s protocol. For all experiments, four
measurements were done from two biological replicates. Power SYBR Green PCR
Master Mix on a StepOnePlus system (both Thermo Fisher Scientific) was used for
qPCR. Data were normalized to the indicated timepoint/sample and the GAPDH
(glyceraldehyde 3-phosphate dehydrogenase) signal using the ΔΔCt method75.
Primers for qPCR were designed using the Universal ProbeLibrary (Roche Life
Sciences), tested for efficiency and a single amplicon and listed in Supplementary
Table 3.

Uniform Manifold Approximation and Projection. For visualization purposes, we
employed in Figs. 4 and 5 the Uniform Manifold Approximation and Projection
(UMAP) dimensionality reduction algorithm76 instead of tSNE as in the previous
figures. The reason was that the directionality, which the RNA velocity algorithm

calculates based on all detectable genes, and then projects as arrow clouds on the
two-dimensional map (Fig. 4c), could not be visualized when using tSNE.

Variable genes were defined using the FindVariableGenes function with the
default parameters. First 20 principle components were calculated using the defined
variable genes. Dimensionality reduction was performed with UMAP76. The cells
were clustered using Louvain algorithm with a set of resolution parameters ranging
from 0.5 to 2.

Velocity and graph abstraction. The data was pre-processed using the Velocyto
CLI pipeline. Only cells with more than 500 intronic and more than 500 exonic
reads were kept for further analysis. Intronic signal represented about 3% of all
sequencing reads.

The following parameters were used within the Velocyto analysis:
vlm.score_detection_levels()
vlm.filter_genes(by_detection_levels= True)
vlm.score_cv_vs_mean(2000, max_expr_avg= 55)
vlm.filter_genes(by_cv_vs_mean= True)
vlm.normalize_by_total()
vlm.pca= pca(n_components= 10, svd_solver= ‘arpack’, random_state= 1)
vlm.pcs= vlm.pca.fit_transform(vlm.S_norm.T)
vlm.knn_imputation(k= 100, balanced= True, b_sight= 3000, b_maxl=

1500, n_jobs= 16)
vlm.fit_gammas(weighted= False)
vlm.estimate_transition_prob(hidim= “Sx_sz”, embed= “ts”, transform= ‘log’)
vlm.calculate_embedding_shift(sigma_corr= 0.05, expression_scaling= False)
vlm.calculate_grid_arrows(smooth= 0.8, steps= (40, 40), n_neighbors= 100)
For the nascent RNA clustering, the Velocyto estimated transcriptional rates

were processed using scanpy77. The rates were used to calculate the principal
components, UMAP embeddings, cluster the cells using the Louvain algorithm,
and compute PAGA37.

Bardoxolone methyl treatment. Bardoxolone methyl was purchased from Sigma-
Aldrich (SMB00376) or MedChemExpress (HY-13324). Stock concentrations of
100 and 400 µM were prepared in dimethyl sulfoxide (DMSO), and then diluted
1:1000 into the cell culture medium. Sulforaphane was purchased from Sigma-
Aldrich (S4441). Stock concentrations of 2 and 5 mM were prepared in DMSO, and
then diluted 1:1000 into the cell culture medium. For the assays combining
treatment with HSV-1 infection, half of the medium was removed, virus inoculum
at an MOI of 1 was added to the remaining medium, and half an hour later the cells
were washed with warm PBS, the conditioned medium added back to the cells with
bardoxolone methyl or sulforaphane supplied at the indicated concentrations.

FACS-based reporter assay. The DNA fragment containing the elements before
the GFP gene shown in Fig. 6 was synthesized (Biocat) and inserted using EcoRI/
XhoI. The sequence is shown in Supplementary Data 4. The plasmid is available
through Addgene. For the assay, HEK 293 cells were transfected within the plasmid
using Lipofectamine 2000 (Thermo Fisher), and 24 h later they were infected with
HSV-1 VP26-mCherry47 at an MOI of 1. At 16 hpi, cells were harvested using
Trypsin, washed in PBS, filtered through 35 µm cell strainer, and analyzed on a BD
Aria Fusion device. Figures were generated using FlowJo version 10. To generate
the histograms shown in Fig. 6 and Supplementary Fig. 6a, subsets of equal size
were generated using the DownSample v3 plugin.

Cloning of UL23/UL50/UL33/US2 expression constructs. Coding sequences of
these HSV-1 genes were synthesized as codon-optimized variants (Biocat). The
sequences are listed in Supplementary Data 4. To generate expression constructs
with either an N-terminal or C-terminal StrepHA tag, the sequences were cloned
into previously described vectors78 using KpnI/NotI restriction enzymes. The
plasmids are available through Addgene. Note that qPCR primer pairs used to
detect viral UL23 and UL50 do not detect the codon-optimized overexpression
constructs.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Raw sequencing reads as well as raw read counts for both the bulk RNA-seq and the
scRNA-seq, along with normalized counts and tSNE coordinates and cell cycle
information, are available in the NCBI GEO repository, accession number GSE123782.
Data underlying Figs. 3a–c, 6a–c, Supplementary Figs. 6a–e, i are provided in the Source
Data file, and, for Fig. 3a, in Supplementary Data 3. Viral read counts are provided in
Supplementary Data 2. All other data are available from the corresponding author upon
requests.

Code availability
Custom R, Python, Perl, awk, and bash scripts are readily available from the authors
upon request.
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