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Abstract: Within five to ten years after radical prostatectomy (RP), approximately 15–34% of prostate
cancer (PCa) patients experience biochemical recurrence (BCR), which is defined as recurrence of serum
levels of prostate-specific antigen >0.2 µg/L, indicating probable cancer recurrence. Models using
clinicopathological variables for predicting this risk for patients lack accuracy. There is hope that
new molecular biomarkers, like microRNAs (miRNAs), could be potential candidates to improve
risk prediction. Therefore, we evaluated the BCR prognostic capability of 20 miRNAs, which were
selected by a systematic literature review. MiRNA expressions were measured in formalin-fixed,
paraffin-embedded (FFPE) tissue RP samples of 206 PCa patients by RT-qPCR. Univariate and
multivariate Cox regression analyses were performed, to assess the independent prognostic potential
of miRNAs. Internal validation was performed, using bootstrapping and the split-sample method.
Five miRNAs (miR-30c-5p/31-5p/141-3p/148a-3p/miR-221-3p) were finally validated as independent
prognostic biomarkers. Their prognostic ability and accuracy were evaluated using C-statistics of the
obtained prognostic indices in the Cox regression, time-dependent receiver-operating characteristics,
and decision curve analyses. Models of miRNAs, combined with relevant clinicopathological factors,
were built. The five-miRNA-panel outperformed clinically established BCR scoring systems, while
their combination significantly improved predictive power, based on clinicopathological factors alone.
We conclude that this miRNA-based-predictor panel will be worth to be including in future studies.

Keywords: microRNAs; prostate cancer; radical prostatectomy; tissue-based biomarkers; prognostic
biomarkers; biochemical recurrence; prediction accuracy; predictive models

1. Introduction

Prostate cancer (PCa) is the second most common cancer among men worldwide [1]. Six recent
studies, including more than 1000 patients each, showed that approximately 15–34% of patients suffer
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from a biochemical recurrence (BCR), 5 to 10 years after radical prostatectomy (RP) [2–7]. The guidelines
of the European Association of Urology (EAU) and the American Urological Association define BCR as
a re-increase in prostate specific antigen (PSA) above 0.2 µg/L, which is confirmed by two consecutive
elevated values [8,9]. This definition of BCR is associated with 90% probability of subsequently
increasing PSA values [10]. At the moment, this PSA threshold is the most frequently used BCR
definition in studies, and generally accepted as standard BCR value [11]. A current systematic review,
based on fourteen studies which compared patients with and without BCR, confirmed BCR as decisive
risk factor for distant metastasis, as well as PCa-specific and overall mortality [12]. The BCR cannot
be equated with clinical recurrence after RP [9,12,13], but the clinician considers an increasing PSA
level as the first sign of local recurrence or metastasis [13]. Without a secondary therapy following
BCR, approximately 30% of patients experienced clinically manifested distant metastasis, and 19–27%
of patients who experience BCR may suffer PCa-specific mortality within 10 years [10,14]. Early and
more reliable prediction of PCa patients with high risk of BCR would aid the decision-making for
adjuvant therapy, or more frequent monitoring during follow-up.

Clinicopathological variables, such as pathological tumor stage (pT stage), Gleason score and PSA,
are important predictors, known to correlate with the survival of PCa patients. Currently, predictive
scoring systems including these variables, are widely used for recurrence risk prediction. In 1998,
D’Amico et al. [15] suggested a new risk classification method for BCR prediction in PCa patients.
Subsequently, the Cancer of the Prostate Risk Assessment Postsurgical Score (CAPRAS) was used to
predict BCR, based on pathological information from RP [16]. In 2005, Stephenson et al. proposed a
postoperative nomogram including a number of clinicopathological variables to predict the 10-year
probability of BCR after RP [17]. In addition, the National Comprehensive Cancer Network (NCCN)
guidelines also suggested a novel risk classification system based on clinicopathological variables [18].
Even though clinicopathological factors certainly have a prognostic value, predictions based on them
have a limited accuracy [19–21]. Despite the high value of the Gleason score for prognosis, there
is considerable evidence that patients with the same Gleason score may experience vastly different
clinical outcomes [22–24]. As one of the most powerful predictive scoring systems, CAPRAS was found
to lack sufficient prediction accuracy in two meta-analyses [25,26]. Therefore, it is hoped that new
tissue-based molecular biomarkers could be potential candidates to improve the disease recurrence
prediction [27–30].

Efforts have been made to find genetic variables such as microRNAs (miRNA, miR) that may
improve overall prediction accuracy [31–33]. We have recently reviewed all the related literature on
miRNA-based BCR markers [34]. We found that more than 80% of previous studies focused only
on single miRNA or multiple-miRNA-based models, while classical clinicopathological variables
with known predictive value have seldom been taken into consideration during model building.
However, miRNA-based predictors do not always outperform clinicopathological predictors [35].
A clinico-genomic model, combining well-defined prognostic models based on clinicopathological
variables and miRNAs, should be a possibility of further improving accuracy [36,37]. Based on previous
studies, it seems that models with multiple miRNAs (>2 miRNAs) perform better than a single miRNA
predictor in PCa prognosis [33,38].

In this study, we aimed to (a) evaluate and compare miRNAs in prostatectomy specimens with the
predictive potential of BCR reported in previous studies and filtered by a systematic literature search,
(b) validate the predictive capability of these selected miRNAs by reverse-transcription quantitative
real-time polymerase chain reaction (RT-qPCR), and using different evaluation approaches such as
Cox regression analysis with internal validation, time-dependent receiver-operating characteristic
curve analysis (ROC), and decision curve analysis, and (c) try to build a model, considering relevant
clinicopathological variables combined with a multiple miRNA panel, based on the mentioned
validation analyses.
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2. Results

2.1. Patient Characteristics and Flow Chart of the Study

This retrospective study was performed on formalin-fixed, paraffin-embedded (FFPE) tissue
specimens collected from 206 PCa patients, who underwent radical prostatectomy between 2001 and
2007 at the Charité–University Hospital. Patients were followed-up until October 2018. An alternate
selection of available samples, based on patients with BCR, was conducted, so that the cohort comprised
98 (48%) patients with BCR and 108 (52%) patients without BCR. The flow diagram (Figure 1) outlines
the steps performed in this study. The study was performed in accordance with the “Reporting
Recommendations for Tumor Marker Prognostic Studies (REMARK)” [39].
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Figure 1. Flowchart of the study. Fourteen and 15 out of 29 adjacent normal samples were from patients
without and with BCR, respectively. Between these two sample groups, expression of all microRNAs of
interest in this study shown in Figure 2 did not significantly differ (Mann-Whitney U-test, p-values
between 0.198 and 0.983) and the combined 29 samples were therefore used as “Normal adjacent tissue”.
Abbreviations: FFPE, formalin-fixed, paraffin-embedded; PCa, prostate carcinoma; BCR, biochemical
recurrence; RT-qPCR, reverse transcription real time quantitative polymerase chain reaction; MIQE,
Minimum Information for Publication of Quantitative Real-time PCR Experiments.

Clinicopathological characteristics of the patient cohort, and the follow-up and recurrence free
survival times, are summarized in Table 1. Statistically significant differences in most variables (age,
PSA, pT status, ISUP Grade groups, and surgical margin; details in Table 1) were observed between
recurrence-related PCa subgroups.
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Table 1. Clinicopathological characteristics of the study group.

Characteristics All Patients Patients with
Biochemical Recurrence

Patients without
Biochemical Recurrence p-value a

Patients, no. (%) 206 (100) 98 (48) 108 (52)

Age, median years (range) 63 (47–74) 64 (51–74) 62 (47–73) 0.014

PSA, median µg/L (range) 8.4 (1.3–50.6) 9.3 (1.4–50.6) 7.5 (1.3–32.9) 0.003

Prostate volume, median
cm3 (range) 33 (14–130) 33 (15–130) 32 (14–120) 0.465

DRE, no. (%) 0.260

Non-suspicious 122 (59) 54 (55) 68 (63)

Suspicious 84 (41) 44 (45) 40 (37)

pT status, no. (%) <0.0001

pT2a 18 (9) 5 (5) 13 (12)

pT2b 28 (14) 6 (6) 22 (20)

pT2c 76 (37) 31 (32) 45 (42)

pT3a 62 (30) 40 (41) 22 (20)

pT3b 21 (10) 15 (15) 6 (6)

pT4 1 (0.5) 1 (1) 0

ISUP Grade groups, no. (%)

1 52 (25) 14 (14) 38 (35) 0.0003

2 68 (33) 30 (31) 38 (35)

3 27 (13) 19 (19) 8 (7)

4 29 (14) 16 (16) 13 (12)

5 30 (15) 19 (19) 11 (10)

pN status, no. (%) b

pN0 113 (55) 57 (58) 56 (52) 0.207

pN1 10 (5) 7 (7) 3 (3)

pNx 83 (40) 34 (35) 49 (45)

Surgical margin, no. (%)

Negative 133 (65) 54 (55) 79 (73) 0.009

Positive 73 (35) 44 (45) 29 (27)

Follow-up after surgery

Median months (range) 108 (17–180) 101 (19–160) 121 (17–180) <0.0001

Recurrence free survival

Median months (95% CI) 52 (46–60) 16 (11-21) 80 (75–93) <0.0001

Abbreviations: CI, confidence interval; DRE, digital rectal examination; ISUP Grade groups, histopathological grade
system based on Gleason score according to the International Society of Urologic Pathology; pN, lymph node status;
PSA, prostate specific antigen; pT, pathological tumor classification. a p-values (Mann-Whitney U test; Chi-square
Cochran-Armitage test for trend or Fisher’s exact test) indicate the association of the patients with and without
biochemical recurrence with the clinicopathological variables. b In the following evaluation of data, with regard
to the pN status, patients with pNx (with no lymph node dissection) were considered node negative, and were
combined with pN0 patients into one group.

2.2. Selection of BCR-Related miRNAs and Their Differential Expression between Tumor and Normal Tissue
and between the Samples from Patients with and without BCR

We decided to include the 20 miRNAs listed in Table 2 in our study. This selection was based on
a comprehensive literature search, that we summarized in a systematic review on potential miRNA
candidates of BCR prediction [34]. That review was based on 53 studies published between 2008 and
2017, and resulted in 58 distinct miRNAs as potential BCR markers. Sixteen out of these 58 miRNAs
were recommended at least in two studies, or in a study with external validation, as well as partly
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supported by other study data when we carried out our analyses. The selection of four miRNAs
(miR-31-5p, miR-34a-5p, miR-204-5p, miR-494-3p, and miR-939-5p), out of the 20 miRNAs listed in
Table 2, was based on the subsequent literature data after the publication of the review [34], own data of
previous microarray analyses, and/or their functional evidence regarding prostate cancer progression.

Table 2. MicroRNAs analyzed in this study. The selection of microRNAs was based on a previous
systematic review of studies with microRNAs as potential BCR predictors after RP [34] and/or on other
study data after the publication of the review.

miRBase ID
Release 22

miRBase
Accession No. a

Reference to
BCR-Related miRNA

Differential
Expression: Tumor vs.

Normal Tissue b

Differential Expression:
Recurrence vs.

Non-Recurrence c

hsa-miR-1-3p MIMAT0000416 [35,40,41] n.s., p = 0.177 ↓, p = 0.0004

hsa-miR-21-5p MIMAT0000076 [42–46] ↑, p = 0.006 n.s., p = 0.271

hsa-miR-29c-3p MIMAT0000681 [47–49] n.s., p = 0.272 n.s., p = 0.390

hsa-miR-30c-5p MIMAT0000244 [50,51] ↑, p = 0.011 n.s., p = 0.056

hsa-miR-30d-5p MIMAT0000245 [52,53] ↑, p < 0.0001 n.s., p = 0.297

hsa-miR-31-5p MIMAT0000089 [54,55] ↓, p < 0.0001 ↓, p = 0.0007

hsa-miR-34a-5p MIMAT0000255 [47,56,57] n.s., p = 0.155 ↓, p = 0.0004

hsa-miR-141-3p MIMAT0000432 [45,47] n.s., p = 0.219 n.s., p = 0.099

hsa-miR-145-5p MIMAT0000437 [58–61] ↓, p = 0.011 ↓, p = 0.0004

hsa-miR-148a-3p MIMAT0000243 [47,62] ↑, p = 0.018 n.s., p = 0.809

hsa-miR-185-5p MIMAT0000455 [33] ↑, p = 0.015 n.s., p = 0.420

hsa-miR-195-5p MIMAT0000461 [63,64] ↑, p < 0.0001 n.s., p = 0.559

hsa-miR-204-5p MIMAT0000265 [65,66] ↓, p = 0.0001 ↓, p = 0.045

hsa-miR-221-3p MIMAT0000278 [33,45,59,60,67] ↓, p < 0.0001 ↓, p = 0.0001

hsa-miR-224-5p d MIMAT0000281 [68,69] ↓, p < 0.0001 ↓, p = 0.0001

hsa-miR-301a-3p MIMAT0000688 [38,70] ↑, p = 0.0002 n.s., p = 0.674

hsa-miR-326 MIMAT0000756 [33] ↑, p = 0.009 ↓, p = 0.033

hsa-miR-374b-5p MIMAT0004955 [71,72] ↑, p < 0.0001 n.s., p = 0.141

hsa-miR-494-3p MIMAT0002816 [73–75] n.s., p = 0.721 n.s., p = 0.821

hsa-miR-939-5p MIMAT0004982 [76] ↑, p = 0.028 n.s., p = 0.784

Abbreviations: BCR, biochemical recurrence; RP, radical prostatectomy; HR, hazard ratio; ↑, upregulated; ↓,
downregulated; n.s., not significant. a Further details about the characteristics of the analyzed microRNAs
(location on chromosomes, miRNA families, clustering with other miRNA, and assays) are summarized in Table S1.
b Expression difference (Mann–Whitney test) in all tumor samples (n = 206) vs. controls of adjacent normal tissue
samples as controls (n = 29), see also Figure S1. c Expression difference (Kruskal–Wallis test with Dunn’s post-hoc
test, see also Figure 2) in tissue samples from BCR patients vs. those from non-BCR patients. d Until miRBase 21;
however, this miRNA has now the miRBase ID eca-miR-224 (accession no. MIMAT0013206).

Expressions of the selected 20 miRNAs were then analyzed by RT-qPCR in 206 PCa specimens and
29 adjacent normal tissue samples. We identified 15 miRNAs, out of the 20 examined miRNAs, with
differential expression in PCa patients, compared to adjacent normal controls (Figure S1; significances
additionally indicated in Table 2). Of those, the expression of 10 miRNAs were found to be increased
in PCa, whereas five miRNAs showed reduced levels. The expression data between the PCa specimen
and adjacent normal tissue samples served only for controls and will not be further discussed.
The comparison of miRNA expression in tumor tissue samples from patients with and without BCR is
shown in Figure 2, and additionally included in Table 2. Significantly differential expression (p < 0.05)
was observed for eight miRNAs, with levels always being downregulated in tissue samples from BCR
patients, compared with expression levels in tissue samples from patients without BCR.
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Figure 2. Expression of 20 microRNAs examined in adjacent normal tissue samples and prostate cancer (PCa) 
tissue samples from patients with and without biochemical recurrence (BCR) are presented in subfigures (a–t). 
Normalized miRNA expression data are given as box- and whisker plots. Boxes represent the lower and upper 
quartiles with medians; whiskers illustrate the 10 and 90 percentiles of the cohorts. Kruskal–Wallis test with 
Dunn's post-hoc was performed. The p-value of the total Kruskal–Wallis test is indicated in the upper left-hand 
corner of the figure. Abbreviations: N, adjacent normal tissue (n = 29) as explained in legend of Figure 1; R (−), 
PCa tissue samples from patients without BCR (n = 108); R (+), PCa tissue samples from patients with BCR (n = 
98). 

2.3. Correlations of Clinicopathological Variables with miRNAs and Correlations between miRNAs 

Figure 2. Expression of 20 microRNAs examined in adjacent normal tissue samples and prostate
cancer (PCa) tissue samples from patients with and without biochemical recurrence (BCR) are
presented in subfigures (a–t). Normalized miRNA expression data are given as box- and whisker
plots. Boxes represent the lower and upper quartiles with medians; whiskers illustrate the 10 and
90 percentiles of the cohorts. Kruskal–Wallis test with Dunn’s post-hoc was performed. The p-value of
the total Kruskal–Wallis test is indicated in the upper left-hand corner of the figure. Abbreviations:
N, adjacent normal tissue (n = 29) as explained in legend of Figure 1; R (−), PCa tissue samples from
patients without BCR (n = 108); R (+), PCa tissue samples from patients with BCR (n = 98).
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2.3. Correlations of Clinicopathological Variables with miRNAs and Correlations between miRNAs

Correlations between the various clinicopathological variables and the miRNAs were calculated
by Spearman rank correlation analysis (Table 3).

Table 3. Spearman rank correlation coefficients between various clinicopathological factors and the
examined microRNAs in all tumor samples (n = 206). The eight significantly differentially expressed
miRNAs, according to biochemical recurrence status, and correlations with p < 0.05, are highlighted
in gray.

(A) miR-1 to miR-1 to miR148a
miR-1 miR-21 miR-29c miR-30c miR-30d miR-31 miR-34a miR-141 miR-145 miR-148a

Age rs −0.059 −0.087 0.104 0.009 0.073 −0.094 0.070 0.095 −0.036 0.042
p-value 0.403 0.214 0.139 0.901 0.294 0.178 0.318 0.174 0.604 0.546

PSA
rs −0.218 0.007 0.030 −0.107 0.019 −0.086 −0.119 0.156 −0.211 0.068

p-value 0.002 0.922 0.668 0.125 0.783 0.220 0.090 0.025 0.002 0.334

DRE
rs −0.119 0.132 −0.035 −0.127 0.021 −0.053 −0.031 −0.022 −0.062 0.005

p-value 0.087 0.059 0.622 0.068 0.765 0.446 0.657 0.757 0.376 0.945

Margin rs −0.146 −0.129 0.056 −0.139 −0.064 −0.198 −0.114 0.112 −0.184 0.184
p-value 0.037 0.065 0.425 0.047 0.358 0.004 0.102 0.108 0.008 0.008

pN status rs −0.110 0.022 −0.147 −0.122 −0.091 −0.129 −0.142 −0.046 −0.110 0.005
p-value 0.116 0.753 0.035 0.080 0.194 0.064 0.041 0.508 0.114 0.946

pT stage rs −0.218 0.146 0.029 −0.086 0.015 −0.085 −0.061 0.153 −0.179 0.144
p-value 0.002 0.036 0.677 0.222 0.828 0.225 0.385 0.028 0.010 0.038

ISUP
rs −0.351 0.198 0.188 −0.080 0.095 −0.232 −0.014 0.298 −0.265 0.249

p-value 0.0001 0.004 0.007 0.256 0.173 0.001 0.844 0.0001 0.0001 0.0003
(B) miR-185 to miR-939

miR-185 miR-195 miR-204 miR-221 miR-224 miR-301amiR-326 miR-374b miR-494 miR-939

Age rs −0.002 0.011 0.119 0.001 −0.088 −0.044 0.045 −0.036 0.038 0.000
p-value 0.976 0.870 0.090 0.983 0.208 0.528 0.517 0.611 0.584 0.999

PSA
rs 0.063 −0.137 −0.220 −0.080 −0.137 −0.030 0.048 −0.063 0.005 −0.027

p-value 0.371 0.050 0.002 0.253 0.049 0.670 0.495 0.367 0.945 0.702

DRE
rs 0.012 0.033 −0.062 −0.082 −0.038 0.001 0.000 −0.034 0.071 −0.003

p-value 0.860 0.634 0.373 0.244 0.588 0.990 0.994 0.632 0.311 0.966

Margin rs −0.096 −0.214 −0.124 −0.032 −0.175 −0.080 −0.092 −0.096 0.127 −0.030
p-value 0.169 0.002 0.076 0.652 0.012 0.254 0.186 0.168 0.069 0.672

pN status rs −0.020 0.031 −0.110 −0.048 −0.106 0.034 −0.080 −0.097 −0.031 −0.130

p-value 0.774 0.659 0.116 0.496 0.131 0.631 0.256 0.166 0.659 0.062

pT stage rs 0.088 0.032 −0.100 −0.083 −0.166 0.121 −0.023 −0.064 −0.049 −0.065
p-value 0.211 0.648 0.154 0.235 0.017 0.084 0.738 0.361 0.485 0.352

ISUP
rs 0.092 −0.042 −0.256 −0.015 −0.146 0.051 0.066 −0.059 0.056 −0.069

p-value 0.186 0.551 0.0002 0.825 0.036 0.467 0.346 0.402 0.423 0.323

Abbreviations: miR, microRNA in its abbreviated form to facilitate the readability of the table; full annotation in
Table 2; rs, Spearman rank correlation coefficient; PSA, prostate specific antigen; DRE, digital rectal examination
result; pN status, pathological lymph node status, positive/negative; pT stage, pathological tumor classification, see
Table 1; ISUP, histopathological grade system, see Table 1.

PSA, surgical margin status, pN status, pT stage, and ISUP grade were significantly correlated
with five, six, six, two, and nine different miRNAs, out of 20 examined miRNAs, respectively, while no
correlations were found between age and DRE status (Table 3). For the dichotomous variables DRE,
surgical margin, and pN status, and the ordinal scale variables pT stage and ISUP grade, additional
calculations using the Mann–Whitney test and the Kruskal–Wallis test were compiled (Tables S2–S5).
In addition, Figures S2 and S3 illustrate the behavior of the different miRNAs, depending on the pT and
ISUP scale. However, all statistically significant correlations between clinicopathological variables and
miRNAs are small and did not exceed the low correlation coefficient level of 0.30, with one exception
(miR-1-3p and ISUP; rs = −0.351). In addition, significant associations were not observed between all
clinicopathological factors and differentially expressed miRNAs with regard to BCR status (Fisher’s
exact test, p-values between 0.161 and 1.000).
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Correlations between the 20 analyzed miRNAs are summarized in Table S6. Approximately 25%
of all Spearman rank correlation coefficients were higher than 0.50. However, all analyzed miRNAs
were not clustered to other miRNAs forming the analyzed miRNA panel in this study, and were not
related to other miRNAs of the miRNA gene family (Table S1).

2.4. Prognostic Potential of miRNAs Predicting BCR

Given the mostly weak or absent correlation of the differentially expressed miRNAs with
clinicopathological variables, we hypothesized that our panel of miRNA might function as useful
additional markers to predict BCR. According to particular recommendation of the REMARK
guidelines [39], the continuous miRNA expression data and uncategorized data were used for all
further miRNA analyses to avoid reduced power in detecting associations between miRNAs and BCR
prediction. Univariate Cox regression analysis was performed to evaluate the predictive capability of all
20 examined miRNAs in tumor samples (Table 4). Those 16 miRNAs with p-values < 0.2 were selected
for multivariate Cox regression analysis to avoid type II errors (Table 4). MiRNAs that were verified as
independent factors (p < 0.05) in subsequent multivariate Cox regression analysis in a full model, and
after stepwise backward elimination, are shown in Table 4. Six miRNAs (miR-30c-5p, miR-30d-5p,
miR-31-5p, miR-141-3p, miR-148a-3p, and miR-221-3p) with p < 0.05, except for miR-30d-5p with
p = 0.075, remained in the final model after backward elimination. In the following, this miRNA
signature was named six-miR-panel.

Table 4. Construction of a miRNA-based predictive classifier for biochemical recurrence, using a
bootstrapping approach of Cox regression analysis with all 206 tumor samples. a

miRNA

Univariate Cox Regression for
All miRs Multivariate Cox Regression with Significant Univariate miRs b

Full Model Backward Elimination

HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value

miR-1-3p 0.67 (0.52–0.87) 0.003 0.82 (0.58–1.16) 0.262

miR-21-5p 1.12 (1.01–1.24) 0.049 1.35 (0.86–2.12) 0.188

miR-29c-3p 1.06 (0.81–1.39) 0.660

miR-30c-5p 0.56 (0.34–0.92) 0.023 0.46 (0.23–0.93) 0.031 0.49 (0.28–0.85) 0.011

miR-30d-5p 1.22 (1.05–1.42) 0.009 1.79 (1.12–2.85) 0.015 1.27 (0.98–1.66) 0.075

miR-31-5p 0.78 (0.68–0.90) 0.001 0.83 (0.69–0.98) 0.030 0.78 (0.67–0.91) 0.001

miR-34a-5p 1.09 (0.96–1.23) 0.174 0.61 (0.36–1.03) 0.063

miR-141-3p 1.25 (1.10–1.41) 0.001 1.96 (1.25–3.07) 0.003 1.92 (1.32–2.79) 0.001

miR-145-5p 0.68 (0.51–0.90) 0.008 1.17 (0.65–2.11) 0.604

miR-148a-3p 1.15 (0.99–1.34) 0.064 0.58 (0.35–0.95) 0.031 0.60 (0.44–0.81) 0.001

miR-185-5p 1.06 (1.01–1.12) 0.024 0.99 (0.68–1.43) 0.955

miR-195-5p 0.91 (0.68–1.23) 0.553

miR-204-5p 0.76 (0.59–0.98) 0.033 1.31 (0.92–1.88) 0.138

miR-221-3p 0.81 (0.67–0.98) 0.033 0.67 (0.48-0.95) 0.024 0.74 (0.61–0.90) 0.002

miR-224-5p 0.67 (0.50–0.89) 0.006 0.79 (0.51–1.22) 0.280

miR-301a-3p 0.83 (0.61–1.14) 0.241

miR-326 1.03 (1.01–1.05) 0.008 0.97 (0.80–1.18) 0.749

miR-374b-5p 0.85 (0.52–1,38) 0.509

miR-494-3p 1.00 (1.00–1.01) 0.023 1.01 (0.99–1.04) 0.447

miR-939-5p 1.02 (1.00–1.05) 0.021 0.98 (0.80–1.21) 0.869

Abbreviations: HR, hazard ratio; CI, confidence interval. a Ninety-nine patients with biochemical recurrence
and 108 patients without biochemical recurrence. b The 16 miRNAs with p-values < 0.200 in univariate Cox
regression analysis were used in the Full model of multivariate Cox regression analysis, and the six miRNAs with
p-values < 0.05 in this Full model were subsequently used in a Backward elimination approach.
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Furthermore, we used the split-sample method as additional internal validation method splitting
the patient cohort into a training (n = 140) and validation (n = 66) set. Multivariate Cox regression
analysis, with stepwise backward elimination in the training set, resulted in a model with the same five
miRNAs mentioned above, without miR-30d-5p, and was named five-miR-panel (Table S7). Using the
Cox regression, we tested the predictive capacity of this five-miR-panel and the above-mentioned
six-miR-panel in the total cohort, as well in the training and the test set (Table 5). C-statistics of the
prognostic indices from both panels did not differ significantly, confirming that miR-30d-5p does
not add a significant prediction advantage (Table 5). This was also confirmed in the decision curve
analysis, showing similar curves for the five- and six-miR-panel (Figure S4). For practical reasons, we
considered the five-miR-panel in further analyses.

Only two miRNAs (miR-31-5p and miR-221-3p) of this final five-miR-panel overlap with the eight
miRNAs that showed significantly differential expression according to BCR status (p < 0.05, Table 2).
Taking into account a p-value threshold of <0.100 with regard to the differential expression according to
BCR status, four miRNAs (miR-31-5p, miR-221-3p, miR-30c-5p, and miR-141-3p) of this panel coincide
with the respective 10 miRNAs (Table 2).

Table 5. Comparison of the C-statistics of prognostic indices for BCR prediction using two miRNA
panels in Cox regression analyses.

miRNA
Panel

All Samples
(n = 206)

Training Set
(n = 140)

Test Set
(n = 66) p-value a

AUC (SE) AUC (SE) AUC (SE)

five-miR-panel 0.774 (0.040) 0.735 (0.069) 0.625

0.745 (0.034)

six-miR-panel 0.779 (0.040) 0.741 (0.058) 0.587

0.749 (0.034)

p-value b 0.623 0.930 0.947

Abbreviations: AUC, area under the receiver operating characteristics curve; SE, standard error of the mean. a

Values indicate that there are no significant differences obtained both with the five-miR-panel and six-miR-panel,
using the training or the test set of samples. b Values indicate that there are no significant differences between the
five-miR-panel and six-miR-panel using all samples, the training or test set of samples.

2.5. 5-miR-Panel Outperformed Models Based only on Clinicopathological Variables in Predicting BCR

Models based on clinicopathological variables are the conventional tools that are used for BCR in
clinical practice to date. We therefore built models containing both clinicopathological information
and miRNAs, to evaluate whether miRNAs might add a significant benefit to the prediction models
based on clinicopathological factors.

In a first step, univariate Cox regression analysis of all clinicopathological variables was performed,
resulting in six variables with p < 0.2, which were selected for further multivariate analyses (Table 6).
The “full model” with all six clinicopathological factors and a “reduced model”, after stepwise
backward elimination, finally including only pT stage and ISUP group grade as remaining independent
predictors in the model, were established. C-statistics between the reduced and full model did not
differ significantly (0.712 vs. 0.723, p = 0.230; Table 7).
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Table 6. Construction of a predictive BCR classifier Cox regression in a bootstrapping approach with
clinicopathological variables in the 206 patients.

Variable a
Univariate Cox Regression Multivariate Cox Regression with Significant Variables

Full Model b Reduced Model after Backward
Elimination c

HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value

Age 1.04 (1.00–1.08) 0.029 1.02 (0.98–1.07) 0.231

PSA 1.04 (1.01–1.07) 0.004 1.02 (0.99–1.05) 0.207

DRE 1.24 (0.83–1.95) 0.286

Margin 1.72 (1.16–2.56) 0.008 1.42 (0.64–3.11) 0.548

pN status 2.66 (0.88–4.10) 0.103 1.14 (0.74–1.75) 0.396

pT stage 1.12 (1.08–1.17) <0.0001 1.08 (1.03–1.14) 0.002 1.10 (1.04–1.15) 0.001

ISUP Group 1.37 (1.19–1.57) <0.0001 1.19 (1.02–1.40) 0.027 1.23 (1.06–1.43) 0.007
a Abbreviations and stratifications of the variables as indicated in Table 1; HR, hazard ratio. b The full model
included all variables of the univariate Cox regression with hazard ratios and p-values < 0.200. c Reduced model
after backward elimination with entry p < 0.05 and removal p > 0.100.

C-statistics of the obtained prognostic indices were performed, to compare their discriminative
abilities with those of other established predictive reference models mentioned in the Introduction,
like CAPRAS [16], NCCN [18], according to D’Amico et al. [15] and Stephenson et al. [17] (Table 7).

Table 7. Improved prediction of biochemical recurrence after radical prostatectomy, using
clinicopathological-based tools in combination with the five-miR based panel.

Prediction Tool
Clinicopathological-Based Tool

Clinicopathological-Based
Tool Combined with
the five-miR-Panel

p-value

AUC (95% CI) AUC (95% CI)

Reference models

D’Amico et al. [15] 0.590 (0.519–0.657) 0.759 (0.695–0.816) <0.0001

CAPRAS 0.692 (0.624–0.754) 0.769 (0.706–0.825) 0.008

NCCN 0.642 (0.572–0.707) 0.757 (0.693–0.814) 0.0005

Stephenson et al. [17] 0.664 (0.595–0.728) 0.747 (0.682–0.805) 0.017

Present study

Full model 0.723 (0.657–0.783) 0.793 (0.731–0.8465) 0.007

Reduced model 0.712 (0.638–0.677) 0.783 (0.720–0.837) 0.007

Abbreviations: AUC, area under the receiver operating characteristics curve; CI, confidence interval; CAPRAS, Cancer
of the Prostate Risk Assessment Postsurgical Score, calculated according to [16]; NCCN, National Comprehensive
Cancer Network, calculated according to [18]; Full model, according to the Cox regression model described in
Table 6, with all clinicopathological factors except for digital rectal examination; Reduced model, according to the
Cox regression model described in Table 6 after backward elimination and finally including only the variables pT
stage and ISUP Group grade.

As shown in Table 7, the CAPRAS model demonstrated the best AUC value among the four
reference models, but its AUC value did not significantly differ from the values of our full and
reduced models, (p = 0.187 and 0.618, respectively). We then added the five-miR-panel to all six
clinicopathological models, to test whether this miRNA panel was able to improve BCR prediction
significantly (Table 7). The discriminative ability of all six models based on clinicopathological variables
could be significantly improved by the addition of the five-miR-panel (p-values of <0.0001 to 0.017).

To confirm the predictive benefit of all models, time-dependent ROC curve analyses were
performed based on different postoperative time points (Figure 3). Depending on the median
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recurrence-free survival time of the total cohort after RP, the postoperative time points of 1, 2, 3, 4,
and 5 years were applied. As shown in Figure 3a, the AUCs of the five-miR-panel and six-miR-panel
were consistently higher than those of all six clinicopathological variable-based prediction models.
The AUC lines of our full and reduced model, as well as the CAPRAS model, were quite similar, and
consistently higher than those of the three remaining reference models at all time points. However, as
shown in Figure 3b, inclusion of the five-miR-panel into the clinicopathological variable-based models
improved all AUCs, which is consistent with the results in Table 7.

Cancers 2019, 11, x FOR PEER REVIEW 12 of 25 

 

The AUC lines of our full and reduced model, as well as the CAPRAS model, were quite similar, and 
consistently higher than those of the three remaining reference models at all time points. However, 
as shown in Figure 3b, inclusion of the five-miR-panel into the clinicopathological variable-based 
models improved all AUCs, which is consistent with the results in Table 7. 

 
Figure 3. Time-dependent receiver-operating characteristics (ROC) curve analyses of (a) separate and 
(b) combined miRNA panel-based and clinicopathological factors-based models at different 
postoperative time points. Areas under the time-dependent ROC curve (AUCs) of all models were 
computed based on a cumulative case/dynamic control approach [77] at postoperative 1, 2, 3, 4, and 
5 years, respectively. The models of miRNA-panels are described in Table 4 and Table S7. The four 
reference clinical models [15-18] and our full model are explained in Tables 6 and 7. Abbreviations: 
CAPRAS, Cancer of the Prostate Risk Assessment Postsurgical Score, calculated according to [16]; 
STEPH, calculated according to Stephenson et al. [17]; NCCN, National Comprehensive Cancer 
Network, calculated according to [18]; D'AMICO, calculated according to D'Amico et al. [15]; Full 
model, according to the Cox regression model described in Table 6 with all clinicopathological factors 
except for digital rectal examination. 

We also applied decision curve analysis as recommended most informative metrics [78] to 
demonstrate the incremental prognostic value of the five-miR-panel. It is exemplarily shown in the 
curves of Figure 4 for the reference models according to D'Amico et al. [15] and CAPRAS [16] ,as well 
as for our "full model", in comparison to those of the five-miR-panel and the combined models. The 
curves indicate the benefit of the combined models in comparison to both single models, whereas C-
statistics is not able to detect differences between the results of the combined models and the five-
miR-panel (Table S8). 

Figure 3. Time-dependent receiver-operating characteristics (ROC) curve analyses of (a) separate and (b)
combined miRNA panel-based and clinicopathological factors-based models at different postoperative
time points. Areas under the time-dependent ROC curve (AUCs) of all models were computed based
on a cumulative case/dynamic control approach [77] at postoperative 1, 2, 3, 4, and 5 years, respectively.
The models of miRNA-panels are described in Table 4 and Table S7. The four reference clinical
models [15–18] and our full model are explained in Tables 6 and 7. Abbreviations: CAPRAS, Cancer
of the Prostate Risk Assessment Postsurgical Score, calculated according to [16]; STEPH, calculated
according to Stephenson et al. [17]; NCCN, National Comprehensive Cancer Network, calculated
according to [18]; D’AMICO, calculated according to D’Amico et al. [15]; Full model, according to
the Cox regression model described in Table 6 with all clinicopathological factors except for digital
rectal examination.

We also applied decision curve analysis as recommended most informative metrics [78] to
demonstrate the incremental prognostic value of the five-miR-panel. It is exemplarily shown in the
curves of Figure 4 for the reference models according to D’Amico et al. [15] and CAPRAS [16], as
well as for our “full model”, in comparison to those of the five-miR-panel and the combined models.
The curves indicate the benefit of the combined models in comparison to both single models, whereas
C-statistics is not able to detect differences between the results of the combined models and the
five-miR-panel (Table S8).
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Figure 4. Decision curve analysis to demonstrate the benefit of the inclusion of the five-miR-panel
into only clinicopathological variables-based biochemical recurrence predictive tools, according to (a)
D’Amico et al. [15], (b) Cancer of the Prostate Risk Assessment Postsurgical Score (CAPRAS) [16], and
(c) the “full model” used in this study (Table 6).

2.6. Functional Links Between miRNAs of the 5-miR-Panel and Prostate Cancer

Validated functional links between the miRNAs of the five-miR-panel and PCa are given in
Table 8. Both tumor suppressive and oncogenic effects were observed for miR-141-3p, miR-148a-3p,
and miR-221-3p. The differences of the five miRNAs, with regard to their expression levels (Table 2),
hazard ratios (Table 4), and tumor suppressive/oncogenic functions (Table 8), show that associations
between the molecular mechanisms and the outcome results are not evident. This is not surprising,
because every miRNA can affect numerous target genes in different ways, whereas outcome results,
here as predicted BCRs, are related to the integration of several data.
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Table 8. Functional links between miRNAs of the five-miR-panel and prostate cancer.

miRNA
[Reference]

Tumor Suppressor
Oncogene Target Gene Molecular Mechanism

miR-30c-5p [79] Tumor suppressor ASF/SF2
Inhibition of tumor cell proliferation,

promotion of apoptosis through the inhibition
of ASF/SF2

[80] Tumor suppressor KRAS Inhibition of tumor cell proliferation,
migration, and invasion

[51] Tumor suppressor BCL9 Correlation of disease progression via
BCL9/Wingles-type signaling

miR-31-5p [81] Tumor suppressor E2F6 Promotion of apoptosis, reduced prostate
cancer growth

[82] Tumor suppressor Androgen receptor Inhibition of cell proliferation and cell cycle

miR-141-3p [83] Tumor suppressor IGF1R
inhibit malignant transformation of benign

prostate epithelial cell via IGF1R-AKT/STAT3
signaling pathway

[84] Tumor suppressor TRAF5, TRAF6 Suppression of invasion and migration of PCa
cells via inhibiting activation of NF-kB

[85] Oncogene KLF9
Regulation of proliferation, spheroid formation,
and expression of the stemness factors OCT-4,

SOX9, and CCND1

miR-148a-3p [86] Tumor suppressor RTN4 Inhibition of cell proliferation and cell cycle
blocked in G2/M phase

[87] Oncogene CAND1 Increased cell proliferation

[88] Tumor suppressor MSK1 Inhibition of cell growth, migration, and invasion

miR-221-3p [89] Tumor suppressor Runx1, Runx2 Inhibition of prostate tumorigenesis

[82] Tumor suppressor
Androgen receptor

and its receptor
coactivators

Inhibition of cell proliferation and targeted key
oncogenic pathways, including cell cycle

[90] Oncogene PI3K/AKT, P53 Associated with signal transduction and
cell communication

Abbreviations: ASF/SF2, serine and arginine rich splicing factor 1; KRAS, KRAS proto-oncogene, GTPase; BCL9,
BCL9 transcription coactivator; E2F6, E2F transcription factor 6; IGF1R, insulin like growth factor 1 receptor;
AKT/STAT3, serine-threonine kinase/ signal transducer and activator of transcription; TRAF5, TNF receptor
associated factor 5; TRAF6, TNF receptor associated factor 6; NF-kB, nuclear factor kappa B subunit 1; KLF9,
Kruppel like factor 9; OCT-4, organic cation/carnitine transporter4; SOX9, SRY-box transcription factor 9; CCND1,
cyclin D1; RTN4, reticulon 4; CAND1, cullin associated and neddylation dissociated 1; MSK1, mitogen- and
stress-activated kinase 1; Runx1, runt related transcription factor 1; Runx2, runt related transcription factor 1;
P13K/AKT, phosphatidylinositol 3-kinase/serine-threonine kinase; P53, tumor protein 53.

3. Discussion

In this retrospective study, we evaluated the potential of 20 individual miRNAs alone, or in
combinations with clinicopathological variables, to predict BCR after RP. As shown in the present
study, five miRNAs (miR-30c-5p, miR-31-5p, miR-141-3p, miR-148a-3p, and miR-221-3p) were finally
validated as independent prognostic panel of BCR. Thus, the five-miR panel, together with standard
clinicopathological factors, is a novel promising predictor of BCR, and will aid in decision-making and
treatment management of PCa patients at risk of recurrence after RP.

As briefly outlined in the Introduction, the present study was designed to avoid the numerous
shortcomings of previous studies, that we characterized in a systematic review of studies that used
microRNAs as BCR predictors after RP [34]. For example, 44 out of the evaluated 53 studies (83%)
measured expression levels of only one or two miRNAs; 18 studies (34%) calculated the predictive
ability of miRNAs only in univariate analyses, without considering clinicopathological variables; and
only nine studies (17%) showed an improved BCR prediction ability of miRNAs, in comparison to the
prediction ability with clinicopathological variables; only 10 studies (19%) included a BCR group with
more than 30 patients; and internal/external validation of the predictive models using miRNAs was
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reported in only eight studies (15%) [34]. Therefore, the present study was prepared with a total of
206 patients, including 98 patients suffering from BCR, and determination of 20 miRNAs. As these
miRNAs were already proven in other studies as potential BCR predictors (Table 2), this approach
provided a good opportunity to overcome the deficiencies of the previously reviewed miRNA-oriented
BCR prediction studies. In this respect, two objectives were outlined in the present study, namely to
(i) generate a robust multiple miRNA-based classifier and (ii) combine this classifier with relevant
standard clinicopathological variables to a reliable model [36,91]. Nam et al. [38] described a panel
of five miRNAs as a novel and promising predictor, after adjustment and combination with known
clinicopathological variables. In addition, Kristensen et al. [33] showed that the prognostic benefit
of a model with clinicopathological variables could be improved by the inclusion of three miRNAs.
Both studies provide good examples for the establishment of clinico-genomic prediction models, based
on miRNA classifier with multiple miRNAs.

By multivariate Cox regression analyses, we developed a six-miR-panel and five-miR-panel as
effective BCR predictor classifiers. Two independent internal validation approaches, bootstrapping
and the split-sample method, confirmed the robustness of these models, in line with the meaning of a
“fit-for purpose” method [92]. C-statistics and decision curve analysis of both panels indicated similar
performance for both panels (Table 5, Figure S4). We therefore decided to use the five-miR-panel as the
final classifier for further analyses, in accordance with the principle “do not utilize more laboratory
tests than absolutely necessary” [93].

The predictive potential of the individual miRNAs included in our final five-miR-panel was
reported in previous studies (Table 2). For instance, downregulated expression of miR-30c-5p
was an independent BCR marker in multivariate regression analysis including clinicopathological
variables, [50] and reduced levels of miR-30c-5p were also found to be significantly associated
with Gleason score and pathological stage [50], an association that was not confirmed in our study.
In addition, downregulated miR-30c-5p expression, combined with expression of its target gene BCL9,
was considered an independent predictor in multivariate regression analysis in another study [51].
Five previous studies focused on the role of miR-221-3p in predicting BCR [33,45,46,59,67]. Three of
these studies confirmed reduced miR-221-3p levels to be a promising predictive biomarker, using
multivariate Cox regression analysis, with adjustment of clinicopathological variables [33,45,67].
Furthermore, a strong correlation was found in these three studies between miR-221-3p expression,
pathological stage, Gleason score, and pre-operative PSA levels, which was also not confirmed in
our study. Two studies failed to detect the predictive potential of miR-221-3p in PCa patients in
multivariate analyses, which may have resulted from the short follow-up time (median <2 years) as
well as analytical reasons [46,59]. In two other studies [45,47], downregulated miR-141-3p was found
to be associated with BCR, but validation as an independent predictor failed in multivariate regression
analysis. Reduced levels of miR-148a-3p were observed to correlate with BCR in the study of Lichner
et al. [47]. MiR-31-5p was already described as a deregulated miRNA in PCa [54,94] and reported
in relationship to BCR [55], but was confirmed as a predictive biomarker of BCR in our multivariate
prediction model for the first time.

We found important particularities between our study and the studies by Nam et al. [38] and
Kristensen et al. [33]. Nam et al. [38] used five miRNAs in their signature, including miR-301a, which
was most strongly associated with PCa recurrence. This miRNA was also included in our initial 20 miR
measurement panel, but was not statistically significant when associated with BCR in univariate Cox
regression analysis (p = 0.246, Table 4). The multiple miRNA signature by Kristensen et al. [33] consists
of three miRNAs: miR-185-5p, miR-221-3p, and miR-326. All three miRNAs were also used in our
initial panel and were significantly associated with BCR (Table 4), but only miR-221-3p remained as an
independent marker in the final panel of multivariate Cox regression analysis after stepwise backward
elimination (Table 4). Thus, it is worth noting that significant miRNAs in the other signatures failed in
their inclusion in our final panel. After we had finished the experimental work in our study, three
other panels for prediction of PCa outcome after RP based on multiple miRNA have been published.
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The working group of Sorensen et al. [95,96], with the above-mentioned panel of three miRNAs,
introduced two novel panels. These are a four-miRNA ratio (miR-23a-3p x miR-10b-5p/miR-133a x
miR-374b-5p), named MICaP [95], and a panel based on nine miRNAs, among them miR-185-5p and
miR-221-3p, combined with three methylation markers, named miMe [96]. Nam et al. [97] introduced
a new five-miRNA panel associated with metastasis after RP, while no miRNA was identical with
those miRNAs recommended in their preceding report [38]. All these new panels showed promising
predictive capacities, but the panels differed and were not compared within the same working group.
Consistently good prediction accuracy data under conditions of differing miRNAs in the panels may
be the result of different starting conditions, in particular the initial measurements of miRNAs, and the
multivariate assessment of data. Ultimately, it is scarcely surprising that our five-miR-panel contains
only two miRNAs with significantly different expression levels (p < 0.05) between the two BCR groups
and three other miRNAs with p-values > 0.05. This panel is the result of multivariate data assessment
that considers possible interactions between the various factors. On the other hand, it additionally
confirms our selection approach of including all miRNAs in multivariate Cox regression analysis that
had p-values < 0.200 in univariate Cox regressions. This procedure enables us to avoid type II errors,
because all five miRNAs show characteristics of independent factors (Table 4).

The missing or weak correlations/associations of individual miRNAs of the final five-miR-panel,
with conventional clinicopathological variables and among each other, characterize their potential as
orthogonal predictors (Table 3, Table S5) [98]. Orthogonal biomarkers are characterized by the fact that
they can improve the prediction accuracy of BCR, due to their additional information, independently
from other variables. Associations of miRNAs with clinicopathological variables, for example, ISUP
grading with miR-31-5p, miR-141-3p, and miR-148a-3p, did not exclude their potential as common
independent predictive BCR biomarkers (Table 3, Table S5) [47].

Until now, the BCR prediction and other outcomes in clinical practice were generally based
on prediction tools using standard clinicopathological variables (Table 7). In addition, a current
systematic review of the prognostic impact of BCR on oncological outcome considered only clinical
factors and tumor characteristics [12]. The limited prognostic accuracy of different approaches has
been critically discussed [19–21,26]. Recently, several tissue-based tests known as Decipher, OncoType
DX Prostate, Prolaris, and ProMark, using multigene or multiprotein expression data, have been
introduced into clinical practice for PCa risk stratification and prognosis (reviewed in [99]). The NCCN
Prostate Cancer Guidelines Panel stated in their 2019 guidelines that these tests might be considered
for an initial risk stratification, based on biopsy samples and RP specimens [99]. Other current reports
support this view [27–30,100–102]. Yet, the particularly different prognostic outcome results obtained
by a head-to-head comparison of three tests (namely Decipher, Prolaris, and Oncotype), obviously
complicate the routine implementation of these tests [103]. MiRNA-based panels, like the here
presented five-miR-panel, have a great advantage in comparison to the mentioned multigene tests,
because miRNAs are more robust molecular analytes than mRNAs [104]. This is particularly important
under clinical routine conditions to procure stable tissue samples.

We would also classify the analysis of molecular biomarkers (specifically miRNA expression) in
tissue specimens, either FFPE or fresh-frozen samples, from RP, as a promising tool to improve the
prognostic accuracy of clinicopathological factors only. C-statistics and decision curve analysis clearly
indicates that the five-miR-panel significantly improved the predictive accuracy of all clinicopathological
models. Even the CAPRAS tool, which outperformed all other clinical models, was significantly
improved. Our results indicate that there is considerable potential for improvement of the predictive
ability and accuracy of the currently existing prognostic models (Table 7, Figures 3 and 4). The mentioned
studies by Nam et al. [38] and Kristensen et al. [33] support this view. We want to add that the sole
focus on molecular markers to improve the prognostic accuracy contradicts the necessary global view
in translational medicine to consider all aspects of disease associated features appropriately [105].

Besides identifying novel biomarkers, the identification of dysregulated miRNAs can also help
improve understanding of the mechanisms of prostate cancer recurrence, which may provide a basis
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for novel therapeutic strategies or a better understanding of current treatment response. MiRNAs
can function as both oncogenes and tumor suppressors [106]. The complexity of interpreting the
functional role of the miRNAs that are relevant markers for BCR prediction can be illustrated by
miR-141-3p and 148-3p, both included in the five-miR-panel. MiR-141-3p was characterized as a tumor
suppressor in PCa, and inhibits PCa cell proliferation and migration by repressing genes involved in
extracellular matrix-mediated pathways [47]. On the other hand, miR-141-3p was also described to act
as an oncogene in untreated PCa and castration-resistant PCa, by enhancing PCa cell proliferation,
even though no target genes have been described [107]. MiR-148-3p was shown to act as an oncogene
by promoting prostate cancer cell growth due to repression of its target CAND1 [87], but it was also
described as a tumor suppressor, by inhibiting the growth of androgen-refractory PCa cells through
repression of mitogen- and stress-activated protein kinase 1 [88]. Regarding the different types of
prostate cancer cells used in these studies, we assume that the expression of both miR-141 and miR-148a
might be continuously altered during PCa progression. Both examples highlight that it might not
be meaningful to characterize specific effects of individual miRNAs without considering possible
interactions between the different molecular components. MiRNAs are part of a large network of
competing endogenous RNAs, which further consists of mRNAs and long non-coding RNAs, that are
regulated via miRNA responsive elements [108]. Changes in this network could explain the different
functional outcome of an expressed miRNA in a specific setting, like in forthcoming BCRs. Moreover,
the functional impact of a biomarker might explain the biological rationale of its effect, but does not
reflect its clinical applicability and validity [109]. This view is supported by the fact that a concordance
between the expression levels of the BCR and non-BCR samples, the hazard ratios, and the functional
mechanisms of the miRNAs of the five-miR-panel, is not evident (Tables 2, 4 and 8).

Despite our effort to avoid deficiencies observed in previous studies, as discussed above, some
limitations of our study should be noted. These are the retrospective nature of the study, the sample
collection from only a single center, and the lack of external validation. Another limitation is the
focus on BCR as an endpoint, without considering clinical endpoints like metastasis-free survival or
cancer-specific-free survival. Because of partially unclear or unavailable data, corresponding analyses
were not possible, but were also not primarily intended. Future studies should focus on validating the
predictive power of the five-miRNA panel in a prospective and multi-institutional setting. It would be
worthwhile to include a head-to-head comparison with other multiple-miRNA-based tools, using a
currently published novel EAU BCR risk stratification system as outcome endpoint [110].

4. Materials and Methods

4.1. Patient Selection and Data Collection

This retrospective study was approved by the local Ethics Committee of the Charité–University
Hospital (EK-CCM-2004-09-14, approval date: September 20, 2004; EA1/153/07, approval date:
October 22, 2007; EA1/134/12, approval date: June 22, 2012) and informed patient consent was obtained.
The study was carried out in accordance with the Declaration of Helsinki. FFPE tissue specimens
were collected from 206 PCa patients who underwent RP between 2001 and 2007 at Charité–University
Hospital. Patients were treatment-naive before RP and were followed-up until October 2018. Follow-up
data were based on medical records, telephone contacts with the patients’ urologists and patients or
family members. Sample size was determined by a power-adapted calculation (α = 5%, power = 80%;
Supplementary Information S1). The cohort comprised 98 (48%) patients with BCR, and 108 (52%)
patients without BCR, in the follow-up after RP (Table 1). According to the guidelines of the European
Association of Urology (EAU) and the American Urological Association (AUA), BCR was defined as a
re-increase of PSA above 0.2 µg/L, which is confirmed by consecutive elevated values [8,9]. Twenty-nine
samples from adjacent normal tissues were used as controls.

Histopathological evaluation, grading, staging, and determination of margin status are critical
parameters for prognostic considerations in PCa. Pathological specimens were reviewed by two
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independent pathologists (E.K., A.E), in order to provide an unbiased and unanimous pathological
diagnosis for all cases. Criteria of the International Union Against Cancer and the World Health
Organization/International Society of Urological Pathology (ISUP) were applied.

4.2. RNA Extraction and Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR)

All procedures were carried out as documented in detail in our previous
publications [32,54,104,111,112], taking into account the items of “Minimum Information for
Publication of Quantitative Real-time PCR Experiments” (MIQE guidelines) [113]. Briefly, total RNA
was extracted from dissected FFPE tissue using the miRNeasy FFPE kit (Qiagen, Hilden, Germany),
according to the manufacturer’s protocol. The RNA concentration and purity were measured on
a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). RNA
extracts showed absorbance ratios of 260 nm to 280 nm and of 260 nm to 230 nm between 1.84 to
2.04 and 1.71 to 1.92, respectively, confirming their appropriate purity for further measurements.
The selection of the 20 potential miRNA candidates for BCR prediction in this study has been
explained in the above-mentioned Section 2.2. RT-qPCR analyses were carried out on the Light
Cycler 480 Instrument (Roche Diagnostics, Mannheim, Germany) using TaqMan miRNA assays
(Applied Biosystems, Foster City, CA, USA; Table S1). Expression values of all examined miRNAs
were normalized to the geometric mean of let-7g-5p and miR-103a-3p, using the software qBasePLUS,
v.3.0 software (Biogazelle, Zwijnaarde, Belgium). The suitability of both miRNAs as stable reference
miRNAs in the normalization process is shown in Figure S5.

4.3. Statistical Analysis

IBM SPSS Statistics for Windows, version 25 (IBM Corp., Armonk, NY, USA) with bootstrap
module, GraphPad Prism 8.20 (GraphPad Software, La Jolla, CA, USA), and MedCalc 19.06 (MedCalc
Software, Ostend, Belgium) were used for statistical analysis. Nonparametric statistical tests used
in our study included the Mann–Whitney U test, Chi-square or Fisher’s exact test, and Spearman
rank correlation test. Univariate and multivariate Cox regression analyses were carried out for the
prediction of BCR. For the internal validation of the models, bias-corrected and accelerated bootstrap
calculations with the total cohort and the split-sample method (total cohort was randomly divided into
a training (n = 140) and test (n = 66) set) were performed. Output data of Cox regression analyses
defined as prognostic indices were utilized for C-statistics and decision curve analyses, as previously
described [114,115]. AUCs under the time-dependent ROC curves of all models were additionally
computed based on a cumulative case/dynamic control approach [77] at postoperative 1, 2, 3, 4, and 5
years, respectively. A p-value of < 0.05 (two-sided) was regarded as statistically significant.

5. Conclusions

In conclusion, we have identified miRNAs that are significantly associated with BCR after
RP in prostate cancer, namely miR-30c-5p, miR-31-5p, miR-141-3p, miR-148a-3p and miR-221-3p.
The inclusion of this five-miRNA-panel significantly improved the predictive accuracy of known
clinicopathological models. Our study provides a good example of the benefit of incorporating
molecular biomarkers, like miRNAs, into previously established risk prediction models based only
on clinicopathological factors. Such an approach would be useful to identify patients at risk, set up
personalized surveillance protocols, counsel patients, and select patients for adjuvant treatment trials.
However, future prospective studies are needed, and comparison with other genomic classifiers, to
implement a robust and reliable tool into the decision-making process of clinical practice.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/10/1603/s1,
Supplementary Information S1: Sample size and power calculations, Table S1: TaqMan MicroRNA assays used for
RT-qPCR, Table S2: MicroRNAs in tumor samples in relationship to DRE, 3: MicroRNAs in tumor samples in
relationship to the surgical margin status, Table S4: MicroRNAs in tumor samples in relationship to the lymph
node status, Table S5: Associations between clinicopathological variables and microRNAs, Table S6: Spearman
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rank correlation coefficients among the microRNAs, Table S7: miRNA-based predictive BCR classifier using
sample splitting approach, Table S8: C-statistics of three predictive BCR models, Figure S1: Expression of the
20 microRNAs, Figure S2: Expression of the 20 microRNAs analyzed in PCa tissue samples categorized according
to the pT stages, Figure S3: Expression of the 20 microRNAs analyzed in PCa tissue samples categorized according
to the ISUP grades, Figure S4: ROC curve and decision curve analysis of the 5-miR-panel and the 6-miR-panel,
Figure S5: Stability of let-7g-5p and miR-103a-3p as suitability criterion for their use as normalizers.
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