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Abstract: Circular RNAs (circRNAs) may act as novel cancer biomarkers. However, a genome-wide
evaluation of circRNAs in clear cell renal cell carcinoma (ccRCC) has yet to be conducted. Therefore,
the objective of this study was to identify and validate circRNAs in ccRCC tissue with a focus to
evaluate their potential as prognostic biomarkers. A genome-wide identification of circRNAs in total
RNA extracted from ccRCC tissue samples was performed using microarray analysis. Three relevant
differentially expressed circRNAs were selected (circEGLN3, circNOX4, and circRHOBTB3), their
circular nature was experimentally confirmed, and their expression—along with that of their linear
counterparts—was measured in 99 malignant and 85 adjacent normal tissue samples using specifically
established RT-qPCR assays. The capacity of circRNAs to discriminate between malignant and
adjacent normal tissue samples and their prognostic potential (with the endpoints cancer-specific,
recurrence-free, and overall survival) after surgery were estimated by C-statistics, Kaplan-Meier
method, univariate and multivariate Cox regression analysis, decision curve analysis, and Akaike
and Bayesian information criteria. CircEGLN3 discriminated malignant from normal tissue with
97% accuracy. We generated a prognostic for the three endpoints by multivariate Cox regression
analysis that included circEGLN3, circRHOBT3 and linRHOBTB3. The predictive outcome accuracy
of the clinical models based on clinicopathological factors was improved in combination with
this circRNA-based signature. Bootstrapping as well as Akaike and Bayesian information criteria
confirmed the statistical significance and robustness of the combined models. Limitations of this study
include its retrospective nature and the lack of external validation. The study demonstrated
the promising potential of circRNAs as diagnostic and particularly prognostic biomarkers in
ccRCC patients.
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1. Introduction

Partial and radical nephrectomy is considered the standard of care for patients with localized clear
cell renal cell carcinoma (ccRCC) [1]. Nevertheless, approximately 25% of patients experience recurrence
after surgery with poor prognostic outcome within 5 years [2]. Consequently, precise stratification of
recurrence risk after nephrectomy is necessary for personalized follow-up and treatment strategies.
Existing prognostic models are based on conventional parameters such as tumor stage, grade, size, and
resection status [1], all of which offer limited predictive accuracy for clinical outcomes [3]. Moreover,
there is a broad consensus that molecular markers have, in addition to their diagnostic potential, the
capacity to improve risk assessment when combined with clinicopathological factors [1,4]. At present,
there are no recommended prognostic biomarkers in routine clinical use for ccRCC patients [1], though
many have been evaluated experimentally [5–10].

In this regard, circular RNAs (circRNAs) are interesting potential novel biomarkers in ccRCC.
CircRNAs are single-stranded, covalently closed RNA molecules without 3’- and 5’-ends and the poly(A)
tail of linear RNA (linRNA). They were first identified in 2012 and are expressed widely throughout the
human genome [11]; previously, they were regarded as transcriptional debris. Meanwhile, numerous
studies identified their differential expression patterns in various cancers compared to normal tissue
(reviewed in [12]). These expression patterns were found to be generally connected with their
diagnostic, prognostic, and predictive potentials, highlighting a possible functional relevance in disease
development [13,14].

Since circRNAs are a relatively new topic of scientific interest, the results of circRNA exploration
in ccRCC remain limited [15–18]. Three recent reports focused on single circRNAs, which were
mainly identified by database search for circRNAs fulfilling specific characteristics [15,16,18]. Only one
report used three paired malignant and non-malignant kidney samples in a microarray screening for
circRNAs [17]. However, with regard to the prognostic potential of circRNAs, subsequent analyses
were restricted on overall survival and did not exceed the univariate Kaplan-Meier analysis. Thus,
evaluation of the true prognostic potential of circRNAs in ccRCC based on genome-wide evaluation
is of particular interest to apply circRNAs as biomarkers in clinical decision-making. Therefore, this
study aimed to: (I) detect genome-wide differential expression patterns of circRNAs in ccRCC tissue
using microarray analysis; (II) identify and validate promising circRNA candidates; and (III) evaluate
the diagnostic and prognostic potentials of three circRNAs in 99 ccRCC samples and 85 adjacent
normal tissue samples. Applying a combined model of both circRNA levels and clinical features, this
study demonstrates the potential of circRNAs to improve prognostic value for cancer-specific (CSS),
recurrence-free (RFS), and overall survival (OS).

2. Results

2.1. Patient Characteristics and Study Design

The study included ccRCC tumor samples from 99 patients and adjacent normal renal tissue
samples from 85 patients undergoing radical or partial nephrectomy between 2003 and 2016 (Table 1).
Samples were obtained retrospectively, and sample size was determined by a power-adapted calculation
(α = 5%, power = 80%; Supplementary Information S1). The study was performed in three phases
(Figure 1): (I) the discovery phase to identify differentially expressed circRNAs using a microarray
screening approach; (II) the analytical validation phase to confirm the molecular characteristics of
selected circRNAs and to establish “fit-for-purpose” RT-qPCR assays; and (III) the clinical assessment
to evaluate the predictive value of these novel markers when applied alone and in combination with
conventional clinicopathological factors.
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Table 1. Characteristics of the ccRCC patients.

Characteristics Total
ccRCC, ccRCC,

p-value b
Non-Metastatic a Metastatic a

Patients, no. 99 82 17

Sex, female/male; n (%) 30/69 25/57 (30/70) 5/12 (29/70) 1

Age, yrs, median (range) 65 (36–87) 65 (36–87) 65 (37–78) 0.982

Pathological stage, no. (%)
pT1 43 40 (49) 3 (18)

0.004
pT2 8 8 (10) 0 (0)
pT3 47 34 (41) 13 (76)
pT4 1 0 (0) 1 (6)

TNM stage grouping, no. (%) c

I 40 40 -
II 8 8 -
III 34 34 -
IV 17 0 17

Tumor size, median mm (range) 57 (20–220) 50 (20–220) 75 (35–150) 0.029

Surgical margin, no. (%)
R0 85 73 (89) 12 (71)

0.138R1/2 11 7 (9) 4 (23)
Unclassified 3 2 (2) 1 (6)

Fuhrman grade, no. (%)
G1 9 8 1

0.025
G2 68 60 8
G3 20 12 8
G4 2 2 0

Events during follow-up, n, (%)
Metastasis - 22 (27) -
Cancer-specific death 26 (26) 14 (17) 12 (71) <0.0001
Overall death 42 (42) 30 (37) 12 (71) 0.014

Survival, months, median/mean (95% CI) d

Cancer-specific 125 (111–139) 140 (127–153) 27.2 (14.1–40.4)
Recurrence-free - 127 (113–141) -
Overall 126 (90.4–166) 160 (103–160) 11.8 (8.2–39.9)

Abbreviations: ccRCC, clear cell renal cell carcinoma; G, histopathological grading according to Fuhrman; pT,
pathological tumor classification; R, surgical margin classification; CI, confidence interval. a Imaging was used to
assess the presence/non-presence of metastases before surgery. b Calculated with Fisher's exact test, Chi-squared
test or Mann-Whitney U test between the two groups. c TNM stage grouping according to UICC classification
system. d Survival data obtained from the Kaplan-Meier analyses using the software MedCalc. The median
survival (overall survival) corresponds to the time at which the survival probability reaches 50% or below. As the
cancer-specific survival and recurrence-free survival did not reach this value in the non-metastatic cohort, the mean
survival time was calculated (as area under the survival curve in the total follow-up interval) for both groups for
comparison purposes.
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Figure 1. Flowchart of the study. Abbreviations: circRNA, circular RNA; ccRCC, clear cell renal cell 
carcinoma; RT-qPCR, reverse-transcription quantitative real-time polymerase chain reaction. 

2.2. Discovery of circRNAs in ccRCC Tissue Using Microarray Analysis 

2.2.1. Identification of Differentially Expressed circRNAs 

A total of 13,261 circRNAs out of 13,617 distinct probes on the array were detected in seven 
matched ccRCC samples using the ArrayStar microarray approach (Supplemental Microarray Excel 
File). The number of circRNAs that derive from a single host gene forming multiple circRNA 
isoforms can vary [19]. Our microarray data revealed that approximately 50% of the detected 
circRNAs originated from ~75% of the 6271 host genes that produce only one or two circRNAs. 
However, some host genes accounted for up to 32 different circRNAs; approx. 15% of the detected 
circRNAs derived from host genes (3.8% of all host genes) that generate more than five circRNAs 
(Figure 2A). Exonic, intronic, antisense, and intergenic genomic regions can serve as sources for 
circRNAs. In ccRCC, 85% of the detected circRNAs derived from exonic gene sequences (Figure 2B) 
corresponding to data found in other human tissues [20]. Exonic circRNAs are generally assembled 
by one to five exons [20,21]. Analyzing the microarray data, we found 78 up-regulated and 91 
down-regulated circRNAs with a higher than two-fold change (p < 0.05) in malignant compared to 
adjacent normal tissue samples (Figure 2C). This expression pattern resulted in a clear clustering of 
malignant vs. adjacent normal tissue using principal component analysis (Figure 2D). 

Figure 1. Flowchart of the study. Abbreviations: circRNA, circular RNA; ccRCC, clear cell renal cell
carcinoma; RT-qPCR, reverse-transcription quantitative real-time polymerase chain reaction.

2.2. Discovery of circRNAs in ccRCC Tissue Using Microarray Analysis

2.2.1. Identification of Differentially Expressed circRNAs

A total of 13,261 circRNAs out of 13,617 distinct probes on the array were detected in seven
matched ccRCC samples using the ArrayStar microarray approach (Supplemental Microarray Excel
File). The number of circRNAs that derive from a single host gene forming multiple circRNA isoforms
can vary [19]. Our microarray data revealed that approximately 50% of the detected circRNAs
originated from ~75% of the 6271 host genes that produce only one or two circRNAs. However, some
host genes accounted for up to 32 different circRNAs; approx. 15% of the detected circRNAs derived
from host genes (3.8% of all host genes) that generate more than five circRNAs (Figure 2A). Exonic,
intronic, antisense, and intergenic genomic regions can serve as sources for circRNAs. In ccRCC, 85%
of the detected circRNAs derived from exonic gene sequences (Figure 2B) corresponding to data found
in other human tissues [20]. Exonic circRNAs are generally assembled by one to five exons [20,21].
Analyzing the microarray data, we found 78 up-regulated and 91 down-regulated circRNAs with
a higher than two-fold change (p < 0.05) in malignant compared to adjacent normal tissue samples
(Figure 2C). This expression pattern resulted in a clear clustering of malignant vs. adjacent normal
tissue using principal component analysis (Figure 2D).



Cancers 2019, 11, 1473 5 of 23
Cancers 2019, 11, 1473 5 of 23 

 

 
Figure 2. Microarray analysis results of matched clear cell renal cell carcinoma (ccRCC) tissue 
samples. (A) Number of circular RNAs (circRNAs) expressed per host gene in 7 matched ccRCC 
tissue samples. (B) Genomic origin of the detected circRNAs. (C) Volcano plot showing the up- and 
down-regulated circRNAs in malignant vs. adjacent normal tissue samples. Vertical and horizontal 
dashed lines indicate the thresholds of the 1.5-fold changes and the p-values of 0.05 in the t-test. The 
positions of the three detailed examined circRNAs in this study are marked. (D) Principal 
component analysis with the left cluster of tumor samples (C1–C7) and the right cluster with the 
paired adjacent normal tissue samples (N1–N7). (A and B adapted from [12]). 

2.2.2. Selection of Three circRNAs for Further Evaluation 

We further evaluated the differentially expressed circRNAs according to the following criteria: 
fold-change >4 with p < 0.05 and raw intensity above 500 on the microarray. Five up-regulated and 
eleven down-regulated circRNAs matched these ArrayStar microarray-related criteria. The 
nomenclature of circRNAs has not been standardized until now. In literature, different names occur 
depending on the reference database [12]. ArrayStar also uses its own designations. For the 
mentioned five up- and eleven down-regulated circRNAs, the circRNA IDs used in the databases 
ArrayStar and circBase [22] are summarized in Table 2. To identify circRNAs with a putative 
function in ccRCC initiation/progression, we selected circRNAs from host genes with putative roles 
in angiogenesis and hypoxia in ccRCC and other cancers including EGLN3, NOX4, and RHOBTB3 
[23–27]. Thus, corresponding circRNAs of the three host genes that are named according to the 
database circBase hsa_circ_0101692, hsa_circ_0023984, and hsa_circ_000744 were selected for further 
validation (Figure 2C). For greater clarity, the terms circEGLN3, circNOX4, and circRHOBTB3 are 
used hereafter for these circRNAs. 
  

Figure 2. Microarray analysis results of matched clear cell renal cell carcinoma (ccRCC) tissue samples.
(A) Number of circular RNAs (circRNAs) expressed per host gene in 7 matched ccRCC tissue samples.
(B) Genomic origin of the detected circRNAs. (C) Volcano plot showing the up- and down-regulated
circRNAs in malignant vs. adjacent normal tissue samples. Vertical and horizontal dashed lines indicate
the thresholds of the 1.5-fold changes and the p-values of 0.05 in the t-test. The positions of the three
detailed examined circRNAs in this study are marked. (D) Principal component analysis with the left
cluster of tumor samples (C1–C7) and the right cluster with the paired adjacent normal tissue samples
(N1–N7). (A and B adapted from [12]).

2.2.2. Selection of Three circRNAs for Further Evaluation

We further evaluated the differentially expressed circRNAs according to the following
criteria: fold-change >4 with p < 0.05 and raw intensity above 500 on the microarray.
Five up-regulated and eleven down-regulated circRNAs matched these ArrayStar microarray-related
criteria. The nomenclature of circRNAs has not been standardized until now. In literature, different
names occur depending on the reference database [12]. ArrayStar also uses its own designations.
For the mentioned five up- and eleven down-regulated circRNAs, the circRNA IDs used in the
databases ArrayStar and circBase [22] are summarized in Table 2. To identify circRNAs with a putative
function in ccRCC initiation/progression, we selected circRNAs from host genes with putative roles in
angiogenesis and hypoxia in ccRCC and other cancers including EGLN3, NOX4, and RHOBTB3 [23–27].
Thus, corresponding circRNAs of the three host genes that are named according to the database
circBase hsa_circ_0101692, hsa_circ_0023984, and hsa_circ_000744 were selected for further validation
(Figure 2C). For greater clarity, the terms circEGLN3, circNOX4, and circRHOBTB3 are used hereafter
for these circRNAs.
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Table 2. List of circular RNAs (circRNAs) with at least a fourfold differential expression between the
matched malignant vs. adjacent normal tissue samples (n = 7) in the microarray discovery study phase.
The three circRNAs selected for further examination in this study are marked in bold letters.

circRNA in
Manuscript

circRNA ID in
ArrayStar a,b

circRNA ID in
circBase a,c

Fold Change
Expression in

Tumor vs. Normal
Tissue (p-value)

Best Transcript Official Gene
Symbol

Up-regulated circRNAs

circEGLN3 circRNA_405198 circ_0101692 7.32 (0.0033) NM_022073 EGLN3
- circRNA_101202 circ_0029340 5.68 (0.0006) NM_005505 SCARB1
- circRNA_101341 circ_0031594 5.16 (0.0038) NM_022073 EGLN3
- circRNA_101803 circ_0003520 4.39 (0.0011) NM_018092 NETO2
- circRNA_103980 circ_0006528 4.01 (0.0024) NM_138492 PRELID2

Down-regulated circRNAs

- circRNA_103093 circ_0060937 −12.3 (0.0049) NM_000782 CYP24A1
- circRNA_101120 circ_0027821 −6.73 (0.0342) NR_024037 RMST

circNOX4 circRNA_100933 circ_0023984 −6.44 (0.0475) NM_016931 NOX4
- circRNA_100562 circ_0006577 −5.87 (0.0093) NM_012425 RSU1
- circRNA_031282 circ_0031282 −5.58 (0.0028) NM_012244 SLC7A8
- circRNA_103091 circ_0060927 −5.58 (0.0048) NM_000782 CYP24A1
- circRNA_023983 circ_0008350 −5.26 (0.0239) NM_016931 NOX4
- circRNA_1011001 circ_0025135 −4.89 (0.0132) NM_001038 SCNN1A
- circRNA_035435 circ_0035435 −4.84 (0.0002) NM_032866 CGNL1

circRHOBTB3 circRNA_007444 circ_0007444 −4.45 (0.0013) NM_014899 RHOBTB3
- circRNA_101528 circ_0035436 −4.18 (0.0001) NM_032866 CGNL1

a The obligatory prefix hsa_ was omitted to facilitate the readability. b More detailed annotations including
source, chromosome localization, strand, circRNA type, and sequences are listed for all detected circRNAs in the
Supplemental Microarray Excel File. c http://www.circbase.org and [22].

2.3. Analytical Validation of Selected circRNAs

2.3.1. Experimental Confirmation of the Circularity of Transcripts

We developed RT-qPCR assays for the three selected circRNAs and their linear counterparts on the
basis of SYBRGreen I. The analytical specificity of all RT-qPCR products was verified by melting curve
analysis and gel electrophoresis (with Supplemental Tables S1–S3 and Figure S1). Detection of circRNAs
by sequencing or microarray analysis, as in our case, needs additional experimental confirmation
of the circular nature of the identified transcripts to avoid false-positive results by measurement of
non-circular RNA molecules with sequences similar to the specific backsplice junction [28]. Therefore,
different molecular biology-based tests are recommended to validate circRNA-specific backsplice
junctions [13,21,28,29]. Figure 3 summarizes our validation results based on the characteristics of
circRNAs with regard to their resistance to the RNase R [13], their lack of a poly-A-tail [30], the
amplification results in complementary DNA (cDNA) and genomic DNA (gDNA) using divergent and
convergent primers, and the proof of the backsplice junctions by Sanger sequencing.

http://www.circbase.org
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Figure 3. Analytical validation of the circular nature of circEGLN3, circNOX4, and circRHOBTB3. (A) 
Stability of circular RNAs (circRNAs) after RNase R treatment. CircRNAs are stable while linear mRNAs 
are degraded when treated with RNase R. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA 
(glyceraldehyde-3-phosphate dehydrogenase), VNL mRNA (vinculin), circ4, and circ9 were used as 
additional controls [13,31]. Data of triplicate experiments normalized to controls without RNase treatment 
are presented. (B) Random hexamer vs. oligo(dT) primers for cDNA synthesis. Random hexamer primers 
are used for amplification during cDNA synthesis of circRNAs as covalently closed structures of circRNAs 
lack a poly-A-tail. The binding capacity of oligo(dT) primers is therefore reduced without polyadenylated 
binding sites. In consequence, quantitation cycle (ΔCq) values in RT-qPCR are distinctly reduced when 
using random hexamer primers in comparison to oligo(dT) primers for circRNA cDNA synthesis. GAPDH 
and TMEM45A (transmembrane protein 45A) were used as mRNA controls. Significantly different mean 
values between the six circRNA samples and four mRNAs of GAPDH and TMEM45A as mRNA controls 
(mean values: −4.33 vs. 1.18, p < 0.0001) confirmed this characteristic feature of circRNAs. Different mean 
values of the circRNAs between the tissues were not observed (p > 0.799). (C) Gel electrophoresis of PCR 
products obtained from cDNA and genomic DNA (gDNA). Divergent (◄►) primers used for circRNA 
measurements amplify sequences only in cDNA. Convergent (►◄) primers show amplification of 
circRNA composing exons in cDNA and gDNA. (D) Base sequence of circRNA backsplice junction 
pictured by Sanger sequencing. Sanger sequencing was performed with forward (→) and reverse (←) 

Figure 3. Analytical validation of the circular nature of circEGLN3, circNOX4, and circRHOBTB3.
(A) Stability of circular RNAs (circRNAs) after RNase R treatment. CircRNAs are stable while linear
mRNAs are degraded when treated with RNase R. Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) mRNA (glyceraldehyde-3-phosphate dehydrogenase), VNL mRNA (vinculin), circ4, and
circ9 were used as additional controls [13,31]. Data of triplicate experiments normalized to controls
without RNase treatment are presented. (B) Random hexamer vs. oligo(dT) primers for cDNA synthesis.
Random hexamer primers are used for amplification during cDNA synthesis of circRNAs as covalently
closed structures of circRNAs lack a poly-A-tail. The binding capacity of oligo(dT) primers is therefore
reduced without polyadenylated binding sites. In consequence, quantitation cycle (∆Cq) values in
RT-qPCR are distinctly reduced when using random hexamer primers in comparison to oligo(dT)
primers for circRNA cDNA synthesis. GAPDH and TMEM45A (transmembrane protein 45A) were
used as mRNA controls. Significantly different mean values between the six circRNA samples and
four mRNAs of GAPDH and TMEM45A as mRNA controls (mean values: −4.33 vs. 1.18, p < 0.0001)
confirmed this characteristic feature of circRNAs. Different mean values of the circRNAs between
the tissues were not observed (p > 0.799). (C) Gel electrophoresis of PCR products obtained from
cDNA and genomic DNA (gDNA). Divergent (
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2.3.2. Analytical Performance of RT-qPCR Assays

In addition to the analytical specificity of the established assays, the repeatability (intra-assay
variation) and reproducibility (inter-assay variation) of the measurements should be characterized as
decisive indicator for the performance and robustness of quantitative tests. Data in Table 3 prove that
the assays and measurements are suitable for “fit-for-purpose” RT-qPCR in first clinical studies.

Table 3. Repeatability and reproducibility of RT-qPCR measurements.

RNA

Repeatability a Reproducibility b

Cq Value
Mean (%RSD)

Concentration
(AU)

Mean (%RSD)

Cq Value
Mean ± SD

(%RSD)

Concentration (AU)
Mean ± SD (%RSD)

circEGLN3 23.47 (0.284) 1.185 (4.51) 22.49 ± 0.138 (0.62) 2.132 ± 0.199 (9.33)
circNOX4 24.16 (0.493) 0.808 (9.35) 22.77 ± 0.108 (0.47) 1.118 ± 0.082 (7.30)
circRHOBTB3 25.64 (0.459) 0.0268 (9.27) 24.81 ± 0.190 (0.76) 0.036 ± 0.005 (14.2)
linEGLN3 20.83 (0.521) 32.72 (7.00) 23.93 ± 0.042 (0.18) 1.658 ± 0.046 (2.75)
linNOX4 27.65 (0.405) 0.204 (7.67) 25.50 ± 0.046 (0.18) 0.483 ± 0.015 (3.10)
linRHOBTB3 24.90 (0.214) 1.901 (3.43) 23.43 ± 0.147 (0.63) 3.791 ± 0.386 (10.2)
PPIA 19.33 (0.329) 32.01 (4.16) 19.18 ± 0.081 (0.42) 33.36 ± 1.745 (5.23)
TBP 25.18 (0.331) 2.330 (5.07) 24.99 ± 0.104 (0.42) 2.423 ± 0.156 (6.44)

Abbreviations: Cq, quantitation cycle; AU, arbitrary units; %RSD, percent relative standard deviation; SD, standard
deviation; PPIA, peptidylprolyl isomerase A; TBP, TATA-box binding protein. PPIA and TBP served as reference
genes [32]. a n = 21; %RSD was calculated from duplicate measurements using the root mean square method based
on Cq values and calculated concentrations, respectively. b n = at least 8; %RSD (Cq) corresponds to the percent
relative standard deviation calculated on the basis of the Cq values. %RSD (Concentration) corresponds to the
percent relative standard deviation calculated on the basis of the normalized relative quantities (arbitrary units).

2.4. Clinical Assessment

2.4.1. Differential Expression of circRNAs in Relation to Clinicopathological Factors

In this first step of the clinical assessment phase, the expression data of the three circRNAs and
their linear transcripts were measured and evaluated in all samples of the studied cohort. In Figure 4,
the RT-qPCR normalized expression data of these three circRNAs and their corresponding linear
transcripts (named in the following with the prefix “lin”) in normal tissue and non-metastatic and
metastatic primary tumor samples are shown. While the expression differences between tumor samples
and adjacent normal tissue samples were significant for all circular and linear transcripts, no significant
expression differences were found in primary tumors without (M0) and with (M1) metastasis.

The expression data of all three circRNAs and their linear transcripts in the tumor samples were
not associated with age, sex, TNM stage, TNM-stage grouping, Fuhrman grade, surgical margin, tumor
size, or metastatic status (Spearman rank correlation, Mann-Whitney U-test or Kruskal-Wallis test;
p > 0.10; Supplementary Information with Table S5). Only EGLN3 showed a significant progressive
down-regulation from Fuhrman grade 1 to grade 4 for circEGLN3 (from 11.9 to 9.07, 7.76, and 0.742;
p = 0.006, Kruskal-Wallis test with Jonckheere-Terpstra trend test) and for linEGLN3, respectively (from
6.47 to 5.25, 4.51, and 0.461; p = 0.004).

The expression levels of the circRNAs and their linear transcripts correlated closely with each
other, showing similar correlation coefficients in both malignant and adjacent normal tissue samples
(circEGLN3 and linEGLN3, rs = 0.742 and 0.624; circNOX4 and linNOX4, rs = 0.849 and 0.851;
circRHOBTB3 and linRHOBTB3, rs = 0.749 and 0.849; p < 0.0001 in all cases). However, the ratios of
the circRNAs to their linear transcripts were significantly lower (Wilcoxon test with paired samples) in
the adjacent normal tissue samples than in the tumor samples (median circEGLN3/linEGLN3 of 0.68
vs. 1.57, p < 0.0001; circNOX4/linNOX4 of 0.79 vs. 1.16, p < 0.0001; circRHOBTB3/linRHOBTB3 of 0.95
vs. 0.99, p = 0.022).
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Figure 4. Expression of circular RNAs (circRNAs) and the linear transcripts of their host genes in tissue
samples from patients suffering from clear cell renal cell carcinoma. Expression data of (A) circEGLN3,
(C) circNOX4, and (E) circRHOBTB3 as well as the corresponding linear transcripts of the host genes (B)
EGLN3, (D) NOX4, and (F) RHOBTB3 are shown in adjacent normal tissue distant from tumor (n = 85),
in tissue from non-metastatic (M0, n = 82) and metastatic primary tumors (M1, n = 17) of patients with
clear cell renal cell carcinoma at the time of surgery. CircRNA and linRNA expression ratios of M0
(n = 60) and M1 (n = 16) tissue samples in relation to their paired adjacent normal tissue samples did
not statistically differ (p values between 0.302 to 0.712). PPIA (peptidylprolyl isomerase A) mRNA
and TBP (TATA-box binding protein) mRNA were used as normalizers. Boxes in the box-and whisker
plots represent the lower and upper quartiles with medians, whiskers illustrate the entire range of the
samples. Significant differences between the study groups were estimated by the Kruskal-Wallis test
with multiple comparisons corrected according to Holm-Sidak.

These ratio changes and numerous significantly different correlations for each of the circRNAs with
the three linear transcripts (Table S6A–C) support the hypothesis of differential regulatory mechanisms
in normal and cancer tissue. These data encouraged us to always include the corresponding linear
transcripts in subsequent investigations.

Based on the expression data, receiver-operating characteristics curve (ROC) analysis was
performed to test the discriminative ability of circRNAs and the linear transcripts in differentiating
between malignant and adjacent normal ccRCC tissue (Table 4). The strong discriminative potential of
both circEGLN3 and linEGLN3 with regard to sensitivity, specificity, and overall accurate classification
of ~95% of tissues is remarkable.
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Table 4. Receiver-operating characteristic curve analyses of circRNAs and their linear transcripts to
discriminate between adjacent normal and malignant tissue.

RNAs AUC (95% CI)
p-Value

Different to
AUC = 0.5

Differentiating Ability at the
Youden Index a % Overall

Correct
ClassificationSensitivity

(95% CI)
Specificity
(95% CI)

circEGLN3 0.98 (0.95–0.99) <0.0001 95 (89–99) 95 (88–99) 94.6
circNOX4 0.81 (0.74–0.86) <0.0001 91 (83–96) 71 (60–80) 80.4

circRHOBTB3 0.82 (0.76–0.87) <0.0001 72 (62–80) 91 (82–96) 69.0
linEGLN3 0.98 (0.96–0.99) <0.0001 96 (89–98) 99 (94–100) 95.7
linNOX4 0.85 (0.79–0.90) <0.0001 99 (95–100) 78 (67–86) 88.0

linRHOBTB3 0.86 (081–0.91) <0.0001 72 (62–80) 94 (87–98) 75.0
circEGLN3 +linEGLN3 b 0.99 (0.96–1.00) <0.0001 95 (89–98) 99 (94–100) 95.7

Abbreviations: AUC, area under the receiver-operating characteristics curve; CI, confidence interval. a The Youden
index as a measure of overall diagnostic effectiveness is calculated by [(sensitivity + specificity) − 1]. When equal
weight is given to sensitivity and specificity of a test, the cutoff at the maximum value of this index, which graphically
corresponds to the maximum vertical distance between the ROC curve and the diagonal line, is referred to as
optimal criterion. b Calculated by binary logistic regression.

2.4.2. CircRNAs as Prognostic Markers and Elaboration of RNA Signatures

To assess the prognostic value of the new markers, we defined prediction accuracy of CSS as
primary and RFS and OS as secondary endpoints. The endpoints were defined as the time from the
surgery until the time of the corresponding event or the last follow-up.

Kaplan-Meier analysis was used to assess the association of the expression data of the three
circRNAs and linear transcripts with the outcome endpoints. For that purpose, X-tile software [33]
was applied to define optimized cutoff-points (Figure 5; Supplementary Information with Table S7 and
Figure S2A,B).

For the primary CSS endpoint (Figure 5), increased expression values of both circEGLN3 and
linEGLN3 were associated with better survival rates even though both transcripts were increased in
malignant tissue in comparison to normal tissue (Figure 5A,B). Both circNOX4 and linNOX4 were
not correlated to CSS (Figure 5C,D). Furthermore, circRHOBTB3 and linRHOBTB3 showed differing
impacts on cancer-specific survival (Figure 5E,F). While high expression levels of circRHOBTB3 were
associated with improved outcome, high levels of linRHOBTB3 were associated with reduced survival
rates. The results were comparable using the two secondary endpoints (Figure S2A,B). The results
for the linear transcripts were validated using the The Cancer Genome Atlas Kidney Renal Clear Cell
Carcinoma (TCGA-KIRC) dataset, as this data collection does not contain circRNAs. Low expression
of linEGLN3 and linNOX4 as well as high expression of linRHOBTB3 were associated with shorter
overall survival of TCGA ccRCC specimens (Figure S3A–C).

In univariate Cox regression analysis, the hazard ratios of RNAs corresponded with the results
from Kaplan-Meier curves (Table S7, Supplemental Figure S2A,B, and Figure 5). Subsequently,
multivariate Cox regression analysis was performed including all circRNAs and linRNAs and a
backward elimination approach (entry: p < 0.05, removal: p > 0.100) was used. Only circEGLN3,
circRHOBTB3, and linRHOBTB3 remained in the reduced models for all three endpoints (Table 5).
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Figure 5. (A–F) Kaplan-Meier analysis of circular RNAs (circRNAs) and their linear transcripts with
regard to cancer-specific survival after surgery. CircRNAs were dichotomized using the optimized
cutoffs indicated by software X-tile [33] to discriminate between deceased and alive. Green curves
represent patients with expression values above the cutoff; red curves represent patients with values
equal or below the cutoff. The number of patients in the dichotomized groups and the cutoffs are
indicated at the curves. The log-rank test was used to confirm significant differences between the
survival probabilities.

C-statistics data for the models including all six RNA variables (“full model”) compared with
those obtained after backward elimination (“reduced model”), were not different (full vs. reduced
model; CSS: 0.730 ± 0.060 vs. 0.726 ± 0.056, p = 0.863; RFS: 0.764 ± 0.057 vs. 0.735 ± 0.059, p = 0.478; OS:
0.741 ± 0.048 vs. 0.738 ± 0.046, p = 0.897; values given as AUC ± SE of the prognostic indices calculated
in Cox regression analyses). We therefore used the reduced models with circEGLN3, circRHOBTB3,
and linRHOBTB3 for the three outcome endpoints in the further evaluation and termed them “RNA
signatures” (Table 5).
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Table 5. Multivariate Cox Proportional Hazard Regression Analyses of Different Prediction Models for
Outcome after ccRCC Nephrectomy a.

Variable b Cancer-Specific Survival Recurrence-Free Survival Overall Survival

HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value

RNA signature. c,d,e

circEGLN3 0.24 (0.10–0.57) 0.001 0.53 (0.18–1.03) 0.074 0.49 (0.23–0.95) 0.037
circRHOBTB3 0.26 (0.09–0.73) 0.010 0.14 (0.04–0.49) 0.003 0.15 (0.05–0.49) 0.002
linRHOBTB3 2.57 (0.95–6.90) 0.062 11.1 (2.79–43.8) 0.001 4.46 (1.52–13.0) 0.006

Clinical model

Tumor stage grouping
(III+IV/I+II) 3.54 (1.16–10.8) 0.027 0.79 (0.25–2.48) 0.685 2.02 (0.95–4.27) 0.064

Fuhrman grading (3+4/1+2) 2.68 (1.03–7.02) 0.044 13.4 (4.06–44.3) <0.0001 3.00 (1.32–6.82) 0.009
Surgical margin (R1/R0) 2.82 (1.05–7.59) 0.040 7.09 (1.75–28.7) 0.006 2.26 (0.91–5.59) 0.078
Tumor size (≥7 cm<) 1.10 (0.42–2.87) 0.838 1.03 (0.35–2.97) 0.963 0.99 (0.46–2.14) 0.988

Clinical model + RNA signature

Tumor stage grouping
(III+IV/I+II) 3.16 (0.93-10.8) 0.066 0.67 (0.19–2.37) 0.536 2.81 (1.23–6.42) 0.014

Fuhrman grading (3+4/1+2) 2.04 (0.73–5.74) 0.177 9.98 (2.99–33.4) 0.0002 2.25 (0.99–5.12) 0.053
Surgical margin (R1 vs. R0) 3.97 (1.28–12.3) 0.017 3.48 (0.76–15.9) 0.109 2.12 (0.87–5.18) 0.099
Tumor size (≥7 cm<) 1.16 (0.44–3.11) 0.762 1.22 (0.36–4.13) 0.746 0.76 (0.36–1.64) 0.490
circEGLN3 0.33 (0.13–0.79) 0.014 0.69 (0.22–2.19) 0.532 0.51 (0.24–1.09) 0.084
circRHOBTB3 0.25 (0.08–0.80) 0.019 0.21 (0.05–0.94) 0.041 0.16 (0.05–0.53) 0.003
linRHOBTB3 3.84 (1.35–10.9) 0.012 7.71 (1.55–38.3) 0.013 5.26 (1.74–15.9) 0.003

Clinical model + RNA signature after backward elimination

Tumor stage grouping
(III+IV/I+II) 3.98 (1.32–12.0) 0.014 – – 2.89 (1.39–5.99) 0.005

Fuhrman grading (3+4/1+2) – – 8.53 (3.08–23.6) <0.0001 2.52 (1.15–5.53) 0.021
Surgical margin (R1 vs. R0) 5.68 (2.09–15.4) 0.0007 3.54 (1.02–12.3) 0.047 – –
Tumor size (≥7 cm<) – – – – – –
circEGLN3 0.28 (0.12–0.68) 0.005 – – 0.50 (0.24–1.05) 0.067
circRHOBTB3 0.21 (0.07–0.65) 0.007 0.18 (0.04–0.75) 0.018 0.17 (0.05–0.56) 0.004
linRHOBTB3 3.59 (1.28–10.0) 0.015 8.19 (1.81–37.1) 0.006 5.37 (1.80–16.1) 0.003

Abbreviations: ccRCC, clear cell renal cell carcinoma; CI, confidence interval; G, histopathological grading according
to Fuhrman; HR, hazard ratio; R, surgical margin classification. a The multivariate analysis included the RNA
signature combination of circEGLN3, circRHOBTB3, and linRHOBTB3 after univariate analysis with a backward
elimination approach of the six RNA and all clinicopathological factors of univariate analysis with p values < 0.05
(Supplementary Information 5, Supplemental Tables S7 and S8). b RNAs were dichotomized using the X-tile program
[33] at the best threshold to discriminate between dead and alive in cancer-specific and overall survival, respectively
as well as between recurrence and recurrence-free situation. These outcome-specific thresholds are indicated in the
footnotes c, d, and e and correspond to those in the Kaplan-Meier curves. Clinicopathological variables are given
with their categorized criteria in brackets. c Cutoffs for cancers-specific survival: circEGLN3 (2.65), circRHOBTB3
(0.20), and linRHOBTB3 (1.52). d Cutoffs for recurrence-free survival: circEGLN3 (2.10), circRHOBTB3 (0.50), and
linRHOBTB3 (0.72). e Cutoffs for overall survival: circEGLN3 (2.73), circRHOBTB3 (0.27), and linRHOBTB3 (0.60).

2.4.3. A circRNA-Based Predictive Clinico-Genomic Model to Improve Prognostic Accuracy

Until now, clinicopathological variables are the basis to estimate the prediction of CSS, RFS, and
OS after surgery and serve for benchmarking analysis of newly established tools. TNM-stage grouping
including metastatic status, Fuhrman grading, tumor size, and surgical margin comprised significant
clinicopathological predictors for all three outcome endpoints in Kaplan-Meier curves and univariate
Cox regression analyses (Figure S4A–C, Table S8). These four variables were used combined in all
outcome analyses and were called the “clinical model” (Table 5).

C-statistics data of the prognostic indices calculated in Cox regression analyses for the three
endpoints using the “clinical model” and “RNA signature” were then compared and the results
were not significantly different (Figure 6, legend: p values between 0.268 and 0.837). However, the
results of the decision curve analysis show that the curves of the RNA-signature are always located
above the curves of the “clinical model” and indicate a better accuracy. This is consistent with the
recommendation that the decision curve analysis is the most informative metrics to demonstrate an
incremental prognostic benefit [34]. Furthermore, the predictive outcome accuracy of the clinical
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models was improved upon combination with corresponding RNA signatures as shown by C-statistics
and decision curve analysis (Figure 6).
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Figure 6. Improved predictive accuracy of cancer-specific (CSS), recurrence-free (RFS), and overall
survival (OS) in a model with clinicopathological variables by including a circular RNA (circRNA)
based signature. (A, C, and E) C-statistics curves of the prognostic indices of Cox regression analysis
for the three endpoints using the models indicated in Table 5 (“clinical model”, “RNA signature”, and
the combination of both (“clinical model + RNA signature”) as well as (B, D, and F) the corresponding
curves of decision curve analysis are shown here. The AUC values were not significantly different
between the clinical model and the RNA signature for CSS (p = 0.452), RFS (p = 0.837), and OS (p = 0.268).
The improved predictive accuracy of combining the “RNA signature” with the pure “clinical model”
is shown by the increased AUC values indicated in parentheses next to the models in the subfigures.
Curves in the decision curve analysis confirmed the benefit of combining the RNA signatures with the
“clinical model.”.
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Furthermore, hazard ratios of the multivariate Cox regression analysis of the clinical model
variables and those of the RNA signature confirmed that the RNA signature variables remained
independent factors for the prediction of the corresponding outcomes in the full combined models,
but also in the reduced models after backward elimination (Table 5). The robustness of this combined
classifier was supported by the fact that backward elimination of the full model “clinical model + RNA
signature” did not result in a loss of predictive accuracy (full vs. reduced model; CSS: 0.832 ± 0.054
vs. 0.821 ± 0.052 p = 0.449; RFS: 0.818 ± 0.053 vs. 0.816 ± 0.053, p = 0.740; OS: 0.776 ± 0.046 vs.
0.768 ± 0.047, p = 0.529; values given as AUC ± SE of the prognostic indices calculated in Cox regression
analyses). Furthermore, internal bootstrapping validation confirmed the statistical significance and
robustness of the combined models (Table S9). The improvement of the clinical model by including the
corresponding RNA signatures was further demonstrated using the weight approach of the Akaike
and Bayesian information criteria [35]. The final model including the four clinicopathological factors
and the RNAs performed better than the “clinical model” with normalized probabilities of the Akaike
and Bayesian criterion for CSS with 0.886 and 0.901, for RFS with 0.759 and 0.853, and for OS with
0.991 and 0.971, respectively.

2.5. In-silico Analysis of circRNA-miRNA-Gene Interaction

We identified potential miRNAs binding to the three circRNA candidates circEGLN3, circNOX4,
and circRHOBTB3 with an algorithm provided by the CircInteractome tool [36], which is based on the
database TargetScan [37]. MiRNAs were ranked according to the TargetScan context+ score. The five
top-ranked miRNAs for each circRNA (all context + scores <−0.19) were chosen. Furthermore, potential
gene interactions were identified for the miRNAs using the databases miRDB and TargetScan [37,38].
As cut-off values we chose a target score >90 (miRDB) and a total context++ score < −0.5. In Figure 7,
only miRNA-gene interactions listed by both miRDB and TargetScan are shown.
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Figure 7. Results of in-silico analysis of circRNA-miRNA-gene interaction. MiRNAs with potential
binding sites to (A) circEGLN3, (B) circNOX4, and (C) circRHOBTB3 were identified using
CircInteractome [36] and subsequent miRNA-gene interactions were analyzed with the databases
miRDB [38] and TargetScan [37].

3. Discussion

The current study represents hypothesis-generating research using a discovery-driven global
approach [39]. We performed a genome-wide search for differentially expressed circRNAs in
ccRCC tissue samples by microarray technology, the analytical and clinical validation of the
three selected circRNAs circEGLN3, circNOX4, and circRHOBTB3 by RT-qPCR measurements,
and successfully validated them as prognostic biomarkers in combination with conventional
clinicopathological variables.

Numerous prognostic tools for ccRCC patients based exclusively on clinicopathological factors
exist that have limited predictive accuracy of clinical outcome endpoints [40]. This supports the
intention to include molecular markers to improve existing models [1,4]. Reports of various tools
based on “omics”-markers alone or combined with clinicopathological variables have been published
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with promising results [1,3,4]. However, to the best of our knowledge, this study is the first to evaluate
the prognostic potential of circRNAs in ccRCC tissue samples for the three clinically relevant survival
endpoints of CSS, RFS, and OS.

In the discovery phase, we used microarray technology—considered to be more efficient in
detecting circRNA molecules in comparison to RNA-sequencing methods [41]. The microarray
contained 13 617 distinct probes, out of which 97.5% were detected in renal tissue and the principal
component analysis of circRNAs clearly clustered between normal and tumor tissue. Differential
expression analysis revealed 0.59% (n = 78) at least twofold up-regulated and 0.69% (n = 91)
down-regulated circRNAs. These changes correspond to results observed in other solid tumors [20].

As briefly outlined in the Introduction, there have so far been few studies on circRNAs in
ccRCC [15–18], which mostly focused on single circRNAs [15,16,18]. One working group investigated,
based on database and literature searches, the effects of the androgen receptor and estrogen receptor
beta via circHIAT1 and circATP2B1, respectively on the progression of ccRCC [15,16]. Another study
examined the possible role of circABCB10 in ccRCC etiology [18]. These three circRNAs are not part of
the up-/down-regulated circRNA list in our study obtained by microarray analysis. Although these
studies provided interesting insights into functional aspects of circRNAs in ccRCC, their prognostic
information was limited. A fourth study by Zhou al. [17] provided a list of the top 10 up- and
down-regulated circRNAs based on a microarray search of three paired ccRCC tissue samples. Four of
these 20 circRNAs are identical with four of the 17 top differentially expressed circRNAs, including the
circEGLN3, listed in Table 2 (circBase ID: circ_0025135, circ_00331594, circ_0029340, and circ_0101692).
However, circPCNXL2, which the authors reported as the circRNA with the highest up-regulation
in the examined tissue samples, was not identified in our microarray analysis. This might be due to
the different amount of tissue samples used for the microarray analysis or to a differing probe set on
the microarray.

Despite the interesting details regarding differential expression and the ensuing discriminative
potential between adjacent normal and malignant tissue (Table 4), our focus was directed at
the prognostic potential of the three selected circRNAs from the circRNA profiles we obtained.
In this context, the following expression particularities of the circRNAs and their linear transcripts
are noteworthy: (I) we found no statistically different expression levels of circRNAs between the
primary non-metastatic and metastatic tumors (Figure 4); (II) only Fuhrman grade as one relevant
clinicopathological variable was associated with RNA expression (e.g., circEGLN3 and linEGLN3);
and (III) we found differing and partly inverse correlations as well as changes in the abundance
between circRNAs and their linear transcripts. Although the expression of most circRNAs is obviously
in-line with the expression of their host genes [42], the host gene-independent expression of circRNAs,
reflected in our study exemplarily in the inverse Kaplan-Meier curves of circRHOBTB3 and linRHOBTB3
(Figure 5) is of special interest. Similar findings have recently been reported also in prostate cancer
and heart diseases [43,44]. We have considered these findings in the clinical assessment process by
including the expression data of the linear transcripts from RNase R untreated total RNA samples in
the analysis and clinical evaluation. This fact is also considered by the recently published MiOncoCirc
database that includes circRNAs identified by a special capture exome RNA-sequencing protocol [45].
Using this sequencing protocol without RNase R pretreatment [46], the ratio between circular and the
linear transcripts is preserved—comparable with the tissue sample—and allows a definite downstream
analysis as mRNAs are not removed [45].

Thus, all these expression particularities and further the characteristics of uncorrelated
differential expression in relation to conventional clinicopathological factors are specific for orthogonal
biomarkers [47]. Consequently, new information can arise from the application of such biomarkers in
clinical practice [48]. Indeed, multivariate Cox regression analysis showed that the RNA signatures
developed with circEGLN3, circRHOBTB3, and linRHOBTB3 proved their hypothesized prognostic
value for all three clinical endpoints (Table 5). Furthermore, in combination with the conventional
risk factors of the clinical model, all three RNAs generally remained independent factors, also in the
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backward models (Table 5). Moreover, C-statistics and decision curve analysis data (Figure 6) as
well as the Akaike and Bayesian information criteria and the internal bootstrap validation support
the improved predictive accuracy of the combined model. We used bootstrapping for the internal
validation as it is recommended as efficient method for internal validation of predictive models in
favor of split-sample validation and cross-validation [49]. As already mentioned in the Results, we
laid particular emphasis on the evaluation of the models using decision curve analysis as recently
recommended standard to validate diagnostic/prognostic benefit [34]. Thus, the data allow us to
consider circRNAs as potential prognostic biomarkers in the future to improve risk stratification of
ccRCC patients after nephrectomy.

In addition to their role as promising new biomarkers in cancer and other diseases, circRNAs
are also currently evaluated regarding their functional role in cancer initiation and progression
(reviewed in [50]). In this context, miRNA sponging and consequential impact on the expression
of cancer key genes is one of the most relevant features of circRNAs [14,51]. For example, elevated
expression of circTP63 in lung squamous cell carcinoma was shown to be associated with accelerated
tumor progression by sponging miR-873-3p and thus increased levels of FOXM1 [52]. In contrast,
over-expression of circRNAs can also be protective against tumor progression as shown by the
example of circSLCA1, which promotes the tumor suppressor PTEN via miR-130b/miR-494 sponging in
bladder cancer [53]. With an in-silico analysis of the circRNA-miRNA-gene interactions of circEGLN3,
circNOX4 and circRHOBTB3, we identified potential target genes of the circRNAs that might influence
ccRCC development and progression (Figure 7). Interestingly, the in-silico analysis for circEGLN3
predicted a potential binding of miR-31-5p and miR-1205 to circEGLN3 and the corresponding linear
RNA of EGLN3. EGLN3 is known to contribute to ccRCC initiation [25,26,54] by targeting HIF. The
up-regulation of both circEGLN3 and linRNA of EGLN3 in ccRCC and the predicted interaction
via miR-31-5p and miR-1205 could reflect a self-sustaining mechanism of the oncogene EGLN3.
This hypothesis is supported by new reports that miRNA-31-5p acts as tumor suppressor and is
down-regulated in renal cell carcinoma [55].

Furthermore, an interesting interaction was revealed for the down-regulated circRHOBTB3,
which could be able to down-regulate the tumor-suppressor PTEN via absence of miR-494 sponging.
The oncogenic effect of miR-494 up-regulation and subsequent PTEN inactivation is reported for
many different cancers [53,56,57]. In our study, down-regulation of circRHOBTB3 is associated with
poor survival outcome (Figure 6). This is especially interesting since the inverse survival outcome of
circRHOBTB3 and linRHOBTB3 expression suggests a functional independency.

Nevertheless, the functional relevance of the interactions we identified based on in-silico
data (Figure 7) remains to be experimentally confirmed, but this was beyond the scope of this
hypothesis-generating study.

Despite the abovementioned statistical measures for bias-free analyses including the internal
bootstrap-based validation and the confirmation by the Akaike and Bayesian information criteria, there
are inherent limitations of this study. These include the retrospective nature of the study involving
a limited number of patients selected solely based on available tissue samples, the focus on the
application of biomarkers without exploring their possible molecular mechanisms, and the lack of
external validation.

4. Materials and Methods

4.1. Patients and Tissue Samples

The study was approved by the local Ethics committee of the University Hospital Charité (Charité
- Universitätsmedizin Berlin: EA1/134/12; approval date: 22nd June 2012) and an informed consent
was obtained from patients. The study was carried out in accordance with the Declaration of Helsinki
and considered the MIQE, REMARK, and STARD guidelines [58–60].
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The study included ccRCC tumor samples from 99 patients and adjacent normal renal tissue
samples from 85 patients undergoing radical or partial nephrectomy between 2003 and 2016 (Table 1).
The patients were selected according to the availability of cryo-preserved tissue samples and the
completeness of follow-up databased on the sample size calculation with α = 5% and a power of 80%
(Supplementary Information). Tumors were classified by two experienced uro-pathologists (A.E., E.K.)
according to the 2010 TNM classification system and the Fuhrman grading system. In total, 17 patients
exhibited metastases at the time of diagnosis and 22 developed metastases within the follow-up period
until November 2018 (Table 1). None of the patients received systemic therapy prior to nephrectomy.
Tissue specimens were sampled immediately after nephrectomy, either snap frozen in liquid nitrogen
or immersed in RNAlater solution (Qiagen, Hilden, Germany), and stored at −80 ◦C until analysis as
described in our previous publications [61–63].

4.2. Analytical Methods

4.2.1. Total RNA Samples and Their Characteristics

Total RNA was isolated from 30 to 98 mg tissue pieces. The isolation procedure from preserved
tissue specimens using the miRNeasy Mini Kit (Qiagen) including an on-column DNA digestion
step according to the producer's instructions, the spectrophotometric quantification (NanoDrop 1000
Spectrophotometer; NanoDrop Technologies, Wilmington, DE, USA), and the quality assessment of
the total RNA samples (ratio of the absorbance at 260 nm to that at 280 nm and RNA integrity number
on a Bioanalyzer 21000 (Agilent Technologies, Santa Clara, CA, USA) were detailed described in our
previous publications [61–63]. The median ratio of 260 nm to 280 nm of the isolated RNA samples
was 2.04 (95% CI, 2.03 to 2.04) and the median RNA integrity number was 7.70 (95% CI, 7.52 to 7.88).
The median RNA concentration in the isolates of 30 µL nuclease-free water was 1118 (95% CI, 1029 to
1209) ng/µL). Isolated RNA samples were stored at −80 ◦C.

4.2.2. Microarray Detection of circRNAs

Microarray analyses were performed as custom order by ArrayStar Inc. (Rockville, MD, USA)
using extracted total RNA from seven paired tissue samples of non-metastasized clear cell renal cell
carcinomas (ccRCC: all patients with negative lymph nodes and negative surgical margin; 1× pT1
with Fuhrman grade 2, 1× pT2 with grade 2, 3× pT3 with grade 2, 2× pT3 with grade 3). The samples
were treated with RNase R to digest linear RNAs and enrich circular RNAs. The circRNAs were
amplified, transcribed, and fluorescently labelled on the 3’-end using Cy3. The prepared samples were
hybridized on the ArrayStar Human Circular RNA Array that is designed to detect 13.617 circRNAs.
Image scanning and analysis was performed with Agilent software (Agilent scanner model G2505C,
Agilent Feature Extraction software version 11.0.1.1 and Agilent GeneSpring GX). Probe intensities
were normalized with quantile normalization. Differential expression analysis was carried out with R
Bioconductor ‘limma’ package by computing moderated t-statistics and Benjamini–Hochberg adjusted
p values. All the data are compiled in the accompanying separate Excel file with all additional
information and annotation details (Supplemental Microarray Excel File).

4.2.3. RT-qPCR Methodology and circRNA Validation Methods

RT-qPCR measurements were performed according to the recommendations of the MIQE
guidelines [58]. The corresponding comments are listed in a checklist and apply for all assays
(Supplementary Information with Supplemental Table S1). No template controls (NTC) and no reverse
transcription controls (NRTC or no enzyme controls = NEC) were always performed and showed
negative results. For cDNA synthesis, the Maxima First Strand cDNA Synthesis Kit for RT-qPCR
(Thermo Fisher Scientific, Waltham, MA, USA; Cat.No. K1642) was used. All real-time qPCR runs were
performed on the LightCycler 480 Instrument (Roche Molecular Diagnostics, Mannheim, Germany)
in white 96-well plates (Cat.No. 04729692001) using at least technical duplicates and resulting mean
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values for further calculations. Maxima SYBR Green qPCR Master Mix (2X) (Thermo Fisher Scientific;
Cat.No. K0252) was used. Primers were designed using the blasting tool provided by Primer3 [64] and
synthesized by TIB MOLBIOL GmbH (Berlin, Germany). PPIA (peptidylprolyl isomerase A) and TBP
(TATA-box binding protein) were used as normalizers [32]. Quantitative PCR data analysis was done
using qbase + software, version 3.2 (Biogazelle, Zwijnaarde, Belgium). All analytical details (list of
primers with their sequences, setups for all measurements, performance of RT-qPCR with melting
curve analyses and agarose electrophoreses of RT-qPCR products) are compiled in Supplementary
Information 2 with Supplemental Tables S2 and S3, and Supplemental Figure S1. The validation
methods according for the three circRNAs based on the on the RNase R approach, the cDNA synthesis
with random hexamer primers and oligo(dT) primers, the Sanger sequencing, and characterization
of PCR products using divergent and convergent primers [13] are summarized in Supplementary
Information 3.

4.3. Statistics and Data Analysis

SPSS Version 25 (IBM Corp., Armonk, NY, USA) with the bootstrap module, GraphPad Prism 8.1
(GraphPad Software, La Jolla, CA, USA), and MedCalc 19.0.6 (MedCalc Software, Ostend, Belgium)
were used as statistical programs. p < 0.05 (two-sided) was considered statistically significant.
Non-parametric tests (Mann-Whitney U-test, Kruskal-Wallis test, and Spearman rank correlation) for
continuous data and Chi-squared or Fisher's exact tests for categorical data were applied. To obtain
optimized cutoff-points of the circRNAs and linRNAs for the outcome assessments, the software
X-tile was applied [33]. Kaplan-Meier and Cox proportional hazard regression analyses were used for
survival analysis. C-statistics as ROCs with AUCs decision curve analysis [65,66] served to identify
the discrimination/prediction capacity of the different variables and models. The Akaike and Bayesian
information criteria were used for the model evaluation [35]. GPower 3.1.9.4 [67], GraphPad StatMate
2.0 (GraphPad Software), and MedCalc were used for sample size and power determinations. For the
in-silico analysis of circRNAs, the prediction tool CircInteractome [36] was used and the subsequent
miRNA-gene interactions for the predicted miRNAs were analyzed with the databases miRDB [38]
and TargetScan [37]. TCGA-KIRC RNAseq data were downloaded and analyzed with R (version 3.6)
using the “TCGA2stat” library and the “survival” library for Kaplan-Meier analysis.

5. Conclusions

This study was the first to identify differentially expressed circRNA candidates using a
genome-wide approach that subsequently evaluated the candidates in terms of their prognostic
potential in ccRCC patients. We showed that in combination with standard clinicopathological
data, circRNA-based signatures improve prognostic accuracy when predicting CSS, RFS, and
OS. Furthermore, we revealed potential functional relevance of circRNAs in ccRCC by exploring
circRNA-miRNA-gene interactions. CircRNAs should be considered as potential prognostic biomarkers
to improve risk stratification of ccRCC patients after nephrectomy. The further exploration of circRNA
functions in ccRCC might lead to new findings regarding tumor biology and pathways.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/10/1473/s1,
Supplementary Information S1: Sample size and power calculations, Supplementary Information S2: RT-qPCR
methodology, Supplementary Information S3: CircRNA validation methods, Supplementary Information S4:
Associations between clinicopathological variables and circRNAs/linear transcripts, Supplementary Information
S5: Cox regressions and Kaplan-Meier curves, Supplemental Microarray Excel File, Figure S1: Specificity of
the circRNA RT-PCR products, Figure S2A,B: Kaplan-Meier curves of circRNAs and linRNAs, Figure S3A–C:
Kaplan-Meier analysis using TCGA data, Figure S4A–C: Kaplan-Meier curves of clinicopathological factors,
Table S1: MIQE checklist according to Bustin et al., Table S2: List of primers, Table S3: Characteristics of the
PCR standard curves, Table S4: List of backsplice junctions and primers, Table S5: Associations of circRNAs
and linear transcripts with clinicopathological variables, Table S6A: Correlation between circRNAs and linear
transcripts in adjacent normal ccRCC tissue, Table S6B: Correlation between circRNAs and linear transcripts
in malignant ccRCC samples, Table S6C: Significantly different correlation coefficients of circRNAs and linear
transcripts between malignant and adjacent normal samples, Table S7: Univariate Cox regressions of circRNAs
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and linRNAs, Table S8: Univariate Cox regressions of clinicopathological factors, Table S9: Bootstrapping p-values
of Cox regression analyses.
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