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Abstract 16 

Background: Single cell omics technologies present unique opportunities for biomedical and 17 

life sciences from lab to clinic, but the high dimensional nature of such data poses challenges for 18 

computational analysis and interpretation. Furthermore, FAIR data management as well as data 19 

privacy and security become crucial when working with clinical data, especially in cross-20 

institutional and translational settings. Existing solutions are either bound to the desktop of one 21 

researcher or come with dependencies on vendor-specific technology for cloud storage or user 22 

authentication. 23 

Results: To facilitate analysis and interpretation of single-cell data by users without 24 

bioinformatics expertise, we present SCelVis, a flexible, interactive and user-friendly app for 25 

web-based visualization of pre-processed single-cell data. Users can survey multiple interactive 26 

visualizations of their single cell expression data and cell annotation, and download raw or 27 

processed data for further offline analysis. SCelVis can be run both on the desktop and cloud 28 

systems, accepts input from local and various remote sources using standard and open protocols, 29 

and allows for hosting data in the cloud and locally. 30 

Methods: SCelVis is implemented in Python using Dash by Plotly. It is available as a standalone 31 

application as a Python package, via Conda/Bioconda and as a Docker image. All components 32 

are available as open source under the permissive MIT license and are based on open standards 33 

and interfaces, enabling further development and integration with third party pipelines and 34 

analysis components. The GitHub repository is https://github.com/bihealth/scelvis.  35 
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Introduction 36 

Single-cell omics technologies, in particular single-cell RNA sequencing (scRNA-seq), allow for 37 

the high-throughput profiling of gene expression in thousands to millions of cells with 38 

unprecedented resolution. Recent large-scale efforts to catalogue and describe all human cell 39 

types (Regev et al., 2017) dovetail with ongoing investigations to study cells and tissues in health 40 

and disease, e.g., as proposed by the LifeTime consortium (https://lifetime-fetflagship.eu). 41 

Single-cell sequencing could therefore become a routine tool in the clinic for comprehensive 42 

assessments of molecular and physiological alterations in diseased organs as well as systemic 43 

responses, e.g., of the immune system. The enormous scale and high-dimensional nature of the 44 

resulting data presents an ongoing challenge for computational analysis (Stegle, Teichmann, & 45 

Marioni, 2015). Ever more sophisticated methods combining more conventional genomics 46 

approaches with deep learning frameworks (Eraslan, Avsec, Gagneur, & Theis, 2019) allow to 47 

overcome technical limitations and biases and extract multiple layers of information, e.g. from 48 

cell types to lineages and differentiation programs. Many of these methods, their mathematical 49 

background, and the underlying assumptions will remain opaque to users without specific 50 

bioinformatics expertise. At the same time, an in-depth understanding of cell types, their 51 

functional specialization and modification by diseases, and underlying molecular correlates is 52 

often beyond the biological know-how of typical bioinformatics researchers. More than ever, 53 

single-cell omics requires close communication and close collaboration from wet and dry lab 54 

experts. Due to the large amount of data, communication need to be based on interactive 55 

channels (e.g., web-based apps) rather than static tables. Further, as single-cell omics moves 56 

towards the clinic, FAIR (Wilkinson et al., 2016) data management, data privacy, and data 57 

security issues need to be handled appropriately. All employed methods should be able to scale 58 

towards handling a large number of users and even larger numbers of samples. 59 

State of the Art. Web apps have been used extensively in the single-cell literature and are most 60 

commonly built on Shiny (RStudio Inc., 2014). However, standalone and general-purpose tools 61 

are to our knowledge quite rare. Pagoda (Fan et al., 2016) comes with a simple intuitive web app, 62 

which is limited to Pagoda output and requires manual preprocessing. Cerebro (Hillje, Pelicci, & 63 

Luzi, 2019) is a Shiny web app combined with a Docker container and an Electron 64 

(https://github.com/electron/electron) standalone app and provides relatively rich functionality 65 

such as gene set enrichments and quality control statistics, but relies on extensive manual 66 

preprocessing and is not (yet) ready for larger frameworks. On the other hand, the Broad Single 67 

Cell Portal (https://portals.broadinstitute.org/single_cell) provides a large-scale web service for a 68 

large number of users and studies. It includes a 10X Genomics data processing pipeline and user 69 

authentication/account management. However, the underlying Docker image strongly depend on 70 

vendor-specific cloud systems such as Google cloud and Broad Firecloud services. Its 71 

implementation thus poses practical hurdles, in particular if it is to be integrated into existing 72 

clinical infrastructure.  73 
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Materials & Methods 74 

SCelVis is based on Dash by Plotly (Plotly Technologies Inc., 2015) and accepts data in HDF5 75 

format as AnnData objects, which can be created using Scanpy (Wolf, Angerer, & Theis, 2018). 76 

It also provides conversion functionality from raw text or 10X Genomics CellRanger output. The 77 

built-in converter is accessible from the command line and a web-based user interface (Figure 1). 78 

It allows for converting pipeline output with an optional description file into a single AnnData 79 

HDF5 file. One HDF5 file or a folder containing multiple such files can then be provided to 80 

SCelVis for visualization, and data sets can be selected for exploration on the graphic web 81 

interface. To enable both local and cloud access, data can be read from the file system or remote 82 

data sources via the standard internet protocols FTP, SFTP, and HTTP(S). SCelVis also provides 83 

data access through the open source iRODS protocol (Rajasekar et al., 2010) or the widely-used 84 

Amazon S3 object storage protocol. The data sources can be given on the command line and as 85 

environment variables as is best practice for cloud deployments (Adam Wiggins, 2011). The 86 

latter allows for easy “serverless” and cloud deployments. 87 

SCelVis is built around two perspectives on single-cell data (Figure 1). On the one hand, it 88 

provides a cell-based view, where users can browse and investigate cell annotations (such as cell 89 

type) and cell-specific statistics (such as sequencing depth or cell type proportions) in multiple 90 

visualizations, e.g., on a t-SNE or UMAP embedding, as violin plots or bar charts. On the other 91 

hand, it provides a gene-based view that lets users explore gene expression in multiple 92 

visualizations on embeddings or as violin or dot plots.  Relevant genes can be specified by hand 93 

or selected directly from lists of marker genes. 94 

The source code is available under the permissive MIT license on the GitHub repository at 95 

https://github.com/bihealth/scelvis. The software can be run both in the cloud and on workstation 96 

desktops via Docker. 97 

Usage Example 98 

We provide two example datasets within our Github repository (see above, it also contains a link 99 

to a public demonstration instance). First, a small synthetic simulated dataset created for 100 

illustration purposes, and secondly a publicly available processed scRNA-seq dataset from 10X 101 

Genomics containing ~1000 cells of a mix of human HEK293T and murine NIH3T3 cells 102 

(Figure 2). 103 

Discussion 104 

In this manuscript, we have presented SCelVis, a method for the interactive visualization of 105 

single-cell RNA-seq data. It provides easy-to-use yet flexible means of scRNA-seq data 106 

exploration for researchers without computational background. SCelVis takes processed data, 107 

e.g., provided by CellRanger or a bioinformatics collaboration partner, as input, and focuses 108 

solely on visualization and explorative analysis. Great care has been taken to make the method 109 

flexible in usage and deployment. It can be used both on a researcher’s desktop with minimal 110 

training yet its usage scales up to a cloud deployment. Data can be read from local file systems 111 

but also from a variety of remote data sources, e.g., via the widely deployed (S)FTP, S3, and 112 
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HTTP(S) protocols. This allows for deploying it in a Docker container on “serverless” cloud 113 

systems. As both the application and data can be hosted on the network or cloud systems, the 114 

application facilitates cross-institutional research. For example, a sequencing or bioinformatics 115 

core unit can use it for giving access to non-computational collaboration partners over the 116 

internet. This is particularly interesting as it comes with no dependency on any vendor-specific 117 

technology such as the Google or Facebook authentication that appears to become pervasive in 118 

today’s life science. 119 

Conclusions 120 

SCelVis is a flexible and powerful method for the visualization of single-cell RNA-seq 121 

experiments and the explorative data analysis thereof. It comes with a number of unique features, 122 

in particular complete independence of vendor-specific software or services. At the same time, it 123 

remains simple enough to be integrated as a component in more complex framework. 124 
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・ A: scatterplots for cell annotation 
(e.g., clustering) or quality control 
statistics

B: plot gene expression 
as scatter, violin or dot plots
(select genes from table)
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