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Reprogramming has the potential to provide specific cell types

for regenerative medicine applications aiming at replacing

tissues that have been lost or damaged due to degenerative

diseases and injury. In this review we discuss the latest

strategies and advances of in vivo reprogramming to convert

cell identities in living organisms, including reprogramming

induced by transcription factors (TFs) and CRISPR/dCas9

synthetic TFs, as well as by cell fusion and small molecules. We

also provide a brief recap of reprogramming barriers, the effect

of senescence on reprogramming efficiency, and strategies to

deliver reprogramming factors in vivo. Because of the limited

space, we omit dwelling on naturally occurring reprogramming

phenomena such as developmentally programmed

transdifferentiation found in the nematode Caenorhabditis

elegans.
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Introduction
The dogma that differentiated cells have restricted cel-

lular plasticity was already challenged in 1958 by John

Gurdon, who cloned the frog Xenopus laevis using nuclear

transfer [1]. This pioneering work inspired Campbell et al.
to clone the sheep Dolly 40 years later [2]. In the

meantime, in 1987, Davis et al. directly reprogrammed

mouse fibroblasts into muscle cells, in a process also

known as transdifferentiation, by ectopic overexpression

of the transcription factor (TF) MyoD, while Gehring’s

team transdifferentiated Drosophila antenna into legs

using ectopic overexpression of the TF Antennapedia
[3,4�]. The emergence of a broader reprogramming

research field started 2006, when Takahashi and
www.sciencedirect.com 
Yamanaka published that the TF cocktail Oct3/4,

Sox2, Klf4 and c-Myc (aka OSKM) reprograms somatic

cells to a state of pluripotency, thereby generating

‘induced pluripotent stem cells’ (iPSCs) [5]. Commonly,

most reprogramming procedures are performed in vitro,
but the much-anticipated scenario of utilizing reprogram-

ming for regenerative medicine applications raises the

need for in vivo reprogramming.

From in vitro to in vivo reprogramming
Decades of developmental biology research in various

model organisms identified cell fate-inducing TFs that

can be used for cellular reprogramming. Forced expres-

sion of one single TF such as MyoD (induces muscle fate)

[3], or C/EBPa (induces B-cell conversion to macro-

phages [6], and in Caenorhabditis elegans the Zn-finger

TF CHE-1 (germ cell reprogramming to neurons)

[7,8], or the GATA TF ELT-7 (induces intestinal fate)

[9], can be sufficient to induce cell fate conversion. Other

types of reprogramming require combination of different

TFs: OSKM reprogram differentiated cells to iPSCs [5],

Ascl1 +Brn2 +Myt1L transdifferentiate fibroblasts to

neurons [10], and Ngn3 +Pdx1 +Mafa directly convert

pancreatic cells to insulin-producing b-cells [11]. Initially,

TF-induced cellular conversion in vivo could be demon-

strated mainly in Drosophila [4�] and C. elegans [8]. In

contrast, most mammalian reprogramming procedures

were performed in vitro, except the in vivo transdiffer-

entiation of pancreatic cells to b-cells in insulin-deficient

mice by viral delivery of TFs to the pancreas [11].

Subsequently, iPSC reprogramming was achieved in vivo
by two independent groups using transgenic mice with

doxycycline-inducible OSKM [12,13], and differentiated

cells of murine retinas could be reprogrammed to a

progenitor-like state via cell fusion [14]. While such

reprogramming experiments raised the hope for generat-

ing tissues by in vivo reprogramming, safety concerns and

the issue of limited conversion efficiency remain. In vivo
cell fate conversion requires high efficiency in order to

generate sufficient target cells, while preventing the

generation of cell populations, which could give rise to

tumours.

Current in vivo reprogramming strategies are summarized

in Figure 1.

Efficiency of in vivo reprogramming
Differences between in vitro and in vivo reprogramming

efficiencies could arise from local microenvironmental

conditions. Notably, the gene expression profile of

in vivo generated iPSCs is more similar to that of embry-

onic stem cells (ESCs), as in vitro generated ones [12].
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Overview of current reprogramming strategies. Somatic cells can be directly reprogrammed in vivo by using one or several of the following

methods: Removing reprogramming barriers, cell fusion, natural lineage-promoting TFs, synthetic CRISPR/dCas9 TFs, small molecules (‘chemical

reprogramming’) and modulating the microenvironment.
Furthermore, in vivo-generated iPSCs harbour character-

istics of totipotency as they can differentiate to trophec-

toderm – a feature that ESCs generally do not possess

[12]. Interestingly, reprogramming efficiency could also

be linked to senescence – a protective cellular mecha-

nism, which increases with aging and upon tissue damage.

In fact, OSKM overexpression in vivo induces tissue

damage and many cells respond to this insult by becom-

ing senescent [15]. While senescence has been described

as a reprogramming barrier in vitro [16], it appears that

senescent cells promote in vivo reprogramming in their

direct vicinity through the secretion of various soluble

factors, also known as senescence-associated secretory

phenotype (SASP) [15,17]. Generally, SASP reinforces

senescence, recruits immune cells, promotes tissue remo-

delling, and also stimulates regeneration and cellular

plasticity: oncogenic-induced senescence in the liver

reactivates stem cell markers in non-senescent cells

[17] and injury-induced senescence enables reprogram-

ming of Pax7+ muscle stem cells [18]. Likewise, Nanog-

positive stem cells in murine lungs could only be gener-

ated by in vivo reprogramming upon treatment with the

DNA damaging agent Bleomycin to trigger senescence

[15]. Analogously to injury-triggered senescence, age-

related senescence also promotes reprogramming, how-

ever, with increased teratoma formation as a by-product.

It is conceivable that, besides increased senescence, also

cell-autonomous fate protection mechanisms might
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decrease during aging [11,14]. Among SASP, interleukin

6 (IL6) seems to play a crucial role for the increased

efficiency of in vivo reprogramming [15,18]. Many senes-

cence-related signalling pathways are regulated by the

INK4a/ARF locus, which acts as a reprogramming barrier

in vitro [16,19], but promotes reprogramming in vivo [15].

In the absence of INKa/ARF, tissues fail to efficiently

secrete cytokines, including IL6, resulting in reduced in
vivo reprogramming [15]. In this context, a recent study

showed that INK4a is required for OSKM-mediated

senescence, while ARF is dispensable [20]. Such striking

differences of in vivo versus in vitro reprogramming with

respect to signalling pathways emphasize the importance

of using in vivo models to study reprogramming. Since

many degenerative diseases such as Alzheimer’s or Mus-

cular Dystrophy are age-related, the fact that cells in an

aged organism might be easier to reprogram, is encourag-

ing. However, the accompanying formation of teratomas

prompts for measures to prevent detrimental side-effects

during in vivo reprogramming.

Recent in vivo reprogramming examples
Reprogramming to liver cells

The liver is one of the few mammalian organs that has a

natural regenerative capacity and is endogenously

repaired after injury. The regenerative capacity of the

liver seems to be dependent on bone marrow cell (BMC)

migration and their fusion with hepatocytes [21]. This
www.sciencedirect.com
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fusion forms hybrid cells that proliferate and produce

cells for liver regeneration [21]. Furthermore, ectopic

expression of the TFs FOXA3, GATA4, HNF1A, and

HNF4A from a lentiviral vector can convert murine

myofibroblasts into hepatocyte-like cells in vivo (repro-

grammed hepatocytes, rHeps) [22]. Recently Cheng et al.
demonstrated that injection of FOXA3, HNF1A, and

HNF4A into patient-derived tumour xenografts repro-

grammed carcinoma cells into rHeps in living mice, which

lost malignant phenotypes and retrieved hepatocyte-spe-

cific characteristics [23]. This intriguing example demon-

strates that in vivo reprogramming could also serve as a

therapeutic strategy for cancer treatment.

Direct conversion to neuronal cells

Another recent study showed that BMCs can fuse with

neuronal cells in murine adult brains, which might be a

mechanism to protect and regenerate brain tissues. As cell

fusion can induce cellular reprogramming by altering

cellular plasticity [24], BMCs are in the focus of many

studies aiming to achieve reprogramming of different

tissues in vivo. For instance, it was shown that trans-

planted BMCs into a humanized mouse model of

Friedreich’s ataxia could stimulate neuronal repair in

the brain [25]. Furthermore, it was found that following

retinal damage, endogenous BMCs migrated to the injury

site and fused with Müller glia cells (MGCs), which then

converted into retinal neurons [26�]. This endogenous

repair process could be enhanced by perturbations of the

SDF1/CXCR4 pathway, which led to higher in vivo
reprogramming efficiencies of MGCs to neurons [26�].

Importantly, MGCs of new-born mice can also be con-

verted to neurons by ectopic expression of the TF Ascl1

[27]. However, MGCs derived after postnatal day

16 required the addition of the histone deacetylase inhib-

itor trichostatin-A, indicating a more repressive chromatin

state of older MGCs. Indeed, the overall chromatin state

of younger MGCs appeared to be in a more permissive

state as measured by an assay for transposase-accessible

chromatin (ATAC-seq), thus highlighting the importance

of removing epigenetic reprogramming barriers in order

to increase reprogramming efficiency in vivo [27]. Strik-

ingly, based on these findings, Yao et al. succeeded in

partially restoring vision in congenitally blind mice [28��].
They first stimulated proliferation of MGCs with b-cate-
nin and subsequently induced reprogramming by over-

expressing the rod cell fate-specifying TFs Otx2, Crx,

and Nrl. Four weeks later, the primary visual cortex of

treated mice showed activity after light exposure, indi-

cating that generated rod cells were functional and inte-

grated into already existing retinal circuits [28��].

Further, a recent study demonstrates neuronal in vivo
conversion of neuroblasts into mature myelinating oligo-

dendrocytes by forced expression of the TFs OLIG2 and

SOX10 in a demyelination mouse model. Interestingly,
www.sciencedirect.com 
this reprogramming occurred also spontaneously with

very low frequency in the absence of ectopic TF expres-

sion, revealing an unexpected plasticity of committed

neuroblasts [29]. More recently, Matsuda et al. reported

that the TF NeuroD1, which had previously been shown

to directly reprogram astrocytes in the cortex of stab-

injured mice into neurons [30], is able to transdifferenti-

ate microglia to neurons in vitro and in vivo [31]. This

potential of NeuroD1 relies on its ability to occupy

bivalent chromatin domains to initiate neuronal gene

expression, before suppressing microglial genes by alter-

ing the epigenome [31]. Generally, the recent success in

neuronal in vivo reprogramming could be a future strategy

to treat lesions in the adult brain.

Generation of muscle and other cell types by

reprogramming

The earlier mentioned senescence-dependent in vivo
reprogramming of Pax7+ muscle stem cells [18] is only

one of several recent in vivo muscle reprogramming

examples. For instance, cardiomyocytes could be gener-

ated from cardiac fibroblasts by ectopically overexpres-

sing the TFs Gata4, Mef2c, and Tbx5 [32,33�], or by

small-molecule compounds [34]. Furthermore, transient

reprogramming by OKSM factors in skeletal muscle

enhances regeneration without tumorigenic side effects

[35], which also improves multiple aging symptoms by

inducing rejuvenation as seen in a mouse model of

progeria [36].

Another recent study by Kurita et al. reports the in vivo
reprogramming of wound-resident mesenchymal cells to

epithelial cells. Viral delivery of the factors DNP63A,

GRHL2, TFAP2A, and MYC leads to epithelialization

from the surface of cutaneous ulcers in mice [37]. Such in
vivo reprogramming could be used to cure non-healing

wounds, further highlighting the potential of cellular

reprogramming for regenerative medicine.

Delivery of reprogramming factors in vivo
The use of genome integrating viruses for the delivery of

reprogramming factors bears risks such as insertional

mutagenesis, which prompt for alternative methods bet-

ter suited for future clinical applications: non-integrative

Sendai virus vectors were applied to deliver cardiac

reprogramming factors in vivo to reduce fibrosis in a

mouse model of myocardial infarction [32]. Also, nano-

particle-based gene carriers were used to convert fibro-

blasts into cardiomyocytes in vivo [33�], or a tissue nano-

transfection device generating a focused electric field for

direct cytosolic delivery of DNA in vivo to transdiffer-

entiate fibroblasts into endothelial cells [38].

An alternative approach to using reprogramming TFs is

the application of small molecules, which has recently

been reviewed [39�]. For instance, a chemical cocktail

could directly reprogram adult cardiac fibroblasts into
Current Opinion in Cell Biology 2019, 61:9–15
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Table 1

Recent studies reporting in vivo reprogramming

Starting cell fate Target cell fate Reprogramming factors/

reagent

Delivery/induction Species+context Reference

Undefined Teratoma OCT4, SOX2, KLF4, cMYC Inducible transgenic DNA Mouse+ senescence ind. Mosteiro et al. [15]

Epithelial/liver cell Stem cell-like H-RasV12-induced

senescence

Transposable DNA injection Mouse+ senescence ind. Ritschka et al. [17]

Skin cell Induced neuron/endothelial

cell

ASCL1, BRN2, MYT1l/ETV,

FOXC2, FLI1

DNA via nano-transfection Mouse+ injury-induced

ischaemia

Gallego-Perez et al. [38]

Muscle stem cell Stem cell OCT4, SOX2, KLF4, cMYC Inducible transgenic DNA Mouse+ injury induced

senescence

Chiche et al. [18]

Hepatic fibroblast Hepatocyte HNF1A, HNF4A, FOXA3,

GATA4

DNA via AAV delivery Mouse+ liver fibrosis Song et al. [22]

Hepatoma cell Hepatocyte-like cell HNF1A, HNF4A, FOXA3 DNA via AAV delivery Mouse+hepatocellular

carcinoma

Cheng et al. [23]

Neuroblast Myelinating oligodendrocyte OLIG2, SOX10 DNA electro-poration Mouse+ induced

demyelination

Waly et al. [29]

Microglia Induced neuron NeuroD1 DNA via LV delivery Mouse Matsuda et al. [31]

Neuron Binucleate neuronal

heterokaryon

Fusion with bone-marrow

cells (BMCs)

BMC trans-plantation Mouse+Friedreich’s Ataxia Kemp et al. [25]

Rod photo-receptor Cone-like cell Split dCas9-activator/

repressor

DNA via AAV delivery Mouse+ retinitis pigmentos Moreno et al. [44�]

Müller glial cell Retinal neuron ASCL1, TSA Inducible transgenic DNA Mouse+NMDA-induced

neuronal injury

Jorstad et al. [27]

Müller glial cell Rod photoreceptor neuron b-Catenin; OTX2, CRX, NRL DNA via AAV delivery Mouse+congenital blindness Yao et al. [28��]
Müller glial cell Amacrine neuron via

reprogrammed hybrid

Fusion with bone-marrow

cells (BMCs)

Intravitreal injection of NMDA Mouse+NMDA-induced

neuronal injury

Pesaresi et al. [26�]

Undefined skeletal muscle

cell

Stem cell-like cell Transient OCT4, SOX2, KLF4,

cMYC

Inducible transgenic DNA Mouse+ surgical skeletal

muscle injury

de Lázaro et al. [35]

Undefined cardiac cell Cardiomyocyte-like cell GATA4, MEF2c, TBX5 DNA on gold nanoparticles Mouse+myocardial infarction Chang et al. [33�]
Cardiac fibroblast Cardiomyocyte-like cell CRFVPTM drug cocktail Orally and intra-peritoneal inj. Mouse Huang et al. [34]

Cardiac fibroblast Cardiomyocyte-like cell GATA4, MEF2c, TBX5 Sendai virus vectors Mouse+myocardial infarction Miyamoto et al. [32]

Germ cell Neuron CHE-1; FACT depletion Inducible transgene C. elegans Kolundzic et al. [7]

Abbreviations. NMDA:N-methyl-D-aspartate; CRFVPTM: C – CHIR99021, R – RepSox, F– Forskolin, V – VPA, P – Parnate, T – TTNPB, M – Rolipram; TSA: histone deacetylase inhibitor Trichostatin-A;

AAV: adeno-associated viral; LV: lentiviral; ind.: induced.
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cardiomyocytes in vivo, which, in contrast to TF-based

reprogramming, depends on injury-induced fibroblast

activation [34].

For transient OKSM induction in skeletal muscle, Wang

et al. used plasmids instead of viral vectors, as this

approach might be safer than using genome integrating

lentiviruses or retroviruses for future clinical applications

[40]. Taken together, these alternative delivery strategies

hold great promise for future clinical applications that rely

on in vivo reprogramming of patients’ endogenous cells to

repair and regenerate tissue.

CRISPR/dCas9-based synthetic TFs for in vivo
reprogramming
The genome-editing tool CRISPR/Cas9 is becoming

increasingly popular to support or induce reprogramming.

Wang et al. used CRISPR/Cas9 to knockout the MyoD

gene in mouse myoblasts, resulting in their transdiffer-

entiation to brown adipocytes [40]. Furthermore, a modi-

fied Cas9 that is deficient for its DNA cutting activity, but

still binds DNA (deactivated Cas9 or dCas9), can be fused

to transcription activators or repressors [41]. These

CRISPR/dCas9-TFs can simultaneously target several

genes, using different guide RNAs, to reprogram somatic

cells in vitro into neurons [42] or iPSCs [43] and rod cells

into cone cells in vivo [44�]. Importantly, the application

of this technology for in vivo reprogramming requires the

large size of the dCas9 gene, which further increases upon

fusion to transcriptional modulators, to be taken into

account. Also, the need for guide RNAs, as well as

potential immunogenicity of the Cas9 protein, must be

considered [45�]. Nevertheless, CRISPR/dCas9-TFs

might prove to be powerful tools to induce or enhance

in vivo reprogramming approaches.

Reprogramming inhibitory mechanisms
The efficiency of reprogramming is generally limited due

to cell fate safeguarding mechanisms, which act as barriers

for reprogramming [7,8]. We already mentioned the

necessity of a histone deacetylase inhibitor to reprogram

MGCs into neurons upon ectopic expression of Ascl1 in

mice which were older than 16 days [27]. Our current

knowledge of reprogramming barriers is continuing to

grow (reviewed in Refs. [46,47]), in part also due to

studying in vivo reprogramming in model organisms such

as the nematode C. elegans. It allows investigating repro-

gramming barriers in vivo due to genetic tractability, ease

of transgenesis and the feasibility of performing large-

scale genetic screens [7,8]. For instance, the histone

chaperones LIN-53 (RBBP4/CAF-1p48) and FACT

(facilitates chromatin transcription) were initially identi-

fied in C. elegans as cell fate reprogramming barriers. Their

mammalian counterparts were shown to block reprogram-

ming to iPSCs and transdifferentiation to neurons in mice

and human cells [7,47]. These examples demonstrate that

understanding cell fate protection in model organisms can
www.sciencedirect.com 
help to increase reprogramming efficiency of human cells

for future regenerative medicine applications (Table 1).

Concluding remarks and perspectives
Our current knowledge of fate-specifying TFs is derived

mainly from decades of classic developmental biology

research. In vitro studies taught us how to translate this

knowledge to reprogram cell fates, either back to a more

pluripotent state or to another differentiated fate – even

across germline layers. Importantly, recent studies

revealed that some findings cannot directly be translated

to an in vivo setting, largely due to specialized micro-

environments or required processes such as senescence.

While our overall understanding of inducing cellular

reprogramming is rapidly growing [48], we need to better

understand the global changes during these processes at

the molecular level. Besides chromatin and gene expres-

sion dynamics, also metabolic processes emerge as an

important layer of reprogramming checkpoints [49]. Nat-

ural transdifferentiation events provide an alternative

system to study how cell fate conversion is orchestrated

in a robust way. In C. elegans, the developmentally pro-

grammed transdifferentiation of a rectal epithelial cell to a

neuron has been studied in great detail and revealed key

insights into the interplay of TFs and different chromatin

regulators during transdifferentiation [50]. Another

recently discovered natural conversion event in C. elegans
is a sex-dependent glial cell to neuron conversion, which

happens only in sexually mature males [51]. Studying

naturally occurring in vivo reprogramming phenomena,

together with the application of single-cell transcriptome

analysis during different reprogramming events, will help

to dissect generalizable and specific molecular trajectories

of cell fate conversion. While such insights are critical to

enhance in vivo reprogramming, the emergence of orga-

noid technology might further help to investigate repro-

gramming in an in vivo like system, leading to enhanced

strategies for applying reprogrammed cells for tissue

replacement therapies in the future.

Conflict of interest statement
Nothing declared.

Acknowledgements
Thank you to members of the Tursun laboratory for fruitful discussions and
to Anna Reid for helping to refine the manuscript. We apologize for not
including many other published studies relating to this topic due to space
restrictions. This work was funded by the ERC grant ERC-STG-2014
‘REPROWORM’.

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

� of special interest
�� of outstanding interest

1. Gurdon JB, Elsdale TR, Fischberg M: Sexually mature individuals
of Xenopus laevis from the transplantation of single somatic
nuclei. Nature 1958, 182:64-65.
Current Opinion in Cell Biology 2019, 61:9–15

http://refhub.elsevier.com/S0955-0674(19)30045-6/sbref0005
http://refhub.elsevier.com/S0955-0674(19)30045-6/sbref0005
http://refhub.elsevier.com/S0955-0674(19)30045-6/sbref0005


14 Differentiation and disease
2. Campbell KH, McWhir J, Ritchie WA, Wilmut I: Sheep cloned
by nuclear transfer from a cultured cell line. Nature 1996,
380:64-66.

3. Davis RL, Weintraub H, Lassar AB: Expression of a single
transfected cDNA converts fibroblasts to myoblasts. Cell
1987, 51:987-1000.

4.
�

Schneuwly S, Klemenz R, Gehring WJ: Redesigning the body
plan of Drosophila by ectopic expression of the homoeotic
gene Antennapedia. Nature 1987, 325:816-818.

This paper can be considered as one of the earliest transcription factor-
induced in vivo reprogramming reporting studies.

5. Takahashi K, Yamanaka S: Induction of pluripotent stem cells
from mouse embryonic and adult fibroblast cultures by
defined factors. Cell 2006, 126:663-676.

6. Xie H, Ye M, Feng R, Graf T: Stepwise reprogramming of B cells
into macrophages. Cell 2004, 117:663-676.

7. Kolundzic E, Ofenbauer A, Bulut SI, Uyar B, Baytek G,
Sommermeier A, Seelk S, He M, Hirsekorn A, Vucicevic D et al.:
FACT sets a barrier for cell fate reprogramming in
Caenorhabditis elegans and human cells. Dev Cell 2018,
46:611-626.

8. Tursun B, Patel T, Kratsios P, Hobert O: Direct conversion of C.
elegans germ cells into specific neuron types. Science 2011,
331:304-308.

9. Riddle MR, Weintraub A, Nguyen KCQ, Hall DH, Rothman JH:
Transdifferentiation and remodeling of post-embryonic C.
elegans cells by a single transcription factor. Development
2013, 140:4844-4849.

10. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC,
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