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Abstract Acid-sensing ion channels have important functions in physiology and pathology, but

the molecular composition of acid-activated chloride channels had remained unclear. We now used

a genome-wide siRNA screen to molecularly identify the widely expressed acid-sensitive outwardly-

rectifying anion channel PAORAC/ASOR. ASOR is formed by TMEM206 proteins which display two

transmembrane domains (TMs) and are expressed at the plasma membrane. Ion permeation-

changing mutations along the length of TM2 and at the end of TM1 suggest that these segments

line ASOR’s pore. While not belonging to a gene family, TMEM206 has orthologs in probably all

vertebrates. Currents from evolutionarily distant orthologs share activation by protons, a feature

essential for ASOR’s role in acid-induced cell death. TMEM206 defines a novel class of ion channels.

Its identification will help to understand its physiological roles and the diverse ways by which anion-

selective pores can be formed.

DOI: https://doi.org/10.7554/eLife.49187.001

Introduction
Chloride is by far the most abundant anion in animals. Its concentration can vary substantially

between the extracellular space, the cytoplasm and various intracellular organelles, resulting in con-

centration gradients across membranes separating these compartments. Negatively charged chlo-

ride can cross biological membranes only with the help of membrane-spanning proteins such as Cl-

channels, which allow passive diffusion of Cl- along its electrochemical gradient, or transporter pro-

teins that couple the movement of Cl- to that of other ions and can thereby establish electrochemical

gradients.

Chloride channels fulfill a broad range of biological functions, including the homeostasis of cell

volume, vesicular acidification, transepithelial transport and cellular signaling (Jentsch and Pusch,

2018; Jentsch et al., 2002). Elucidation of these roles has been greatly facilitated by the molecular

identification of the underlying channel proteins, a discovery process that began in the late 1980’s

and is still ongoing. Chloride channels are molecularly and structurally very diverse and lack a defin-

ing ‘signature’ pattern. More than six unrelated Cl- channel families are known, prominently includ-

ing voltage-regulated CLC channels (Jentsch and Pusch, 2018; Jentsch et al., 1990), bestrophin

(Hartzell et al., 2008; Sun et al., 2002) and TMEM16 (Caputo et al., 2008; Schroeder et al., 2008;

Yang et al., 2008) Ca2+-activated Cl- channels, as well as LRRC8/VRAC volume-regulated anion

channels (Qiu et al., 2014; Voss et al., 2014). However, several Cl- currents biophysically character-

ized in mammalian cells still lack molecular correlates, severely hindering the elucidation of their cel-

lular and organismal functions.
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We set out to identify the protein(s) mediating a widely expressed, strongly outwardly-rectifying

plasma membrane Cl- current ICl,H that is detectable only upon marked extracellular acidification and

which may play a role in acid-induced cell death (Auzanneau et al., 2003; Capurro et al., 2015;

Lambert and Oberwinkler, 2005; Sato-Numata et al., 2013; Wang et al., 2007). The underlying

channel is most frequently called ASOR (for Acid-Sensitive Outwardly Rectifying anion channel;

Wang et al., 2007), although the earlier name PAORAC (Proton-Activated Outwardly Rectifying

Anion Channel; Lambert and Oberwinkler, 2005; Ma et al., 2008) provides a better description. At

room temperature, ASOR currents are only observable when external pH (pHo) drops below 5.5, but

the threshold of activation shifts to ~6.0 at 37˚C (Sato-Numata et al., 2013). Analysis of the steep

pH-dependence suggests that 3–4 protons are required to open the channel (Capurro et al., 2015;

Lambert and Oberwinkler, 2005). ASOR currents are strongly outwardly rectifying with almost no

currents being observable at negative-inside voltages. This rectification results both from voltage-

dependent gating that operates on a 100 ms time scale and from an outwardly-rectifying single

channel conductance (Lambert and Oberwinkler, 2005) (although others described that single

ASOR channels are not rectifying, for example Wang et al., 2007). ASOR currents (ICl,H) display an

SCN->I->NO3
->Br->Cl- permeability sequence. The channel can be blocked by various Cl- transport

inhibitors such as DIDS (4,4’-diisothiocyano-2,2’-stilbenedisulfonic acid) and niflumic acid

(Capurro et al., 2015; Lambert and Oberwinkler, 2005) and by other compounds such as phloretin

(Wang et al., 2007) and pregnenolone sulfate (PS) (Drews et al., 2014). However, none of these

inhibitors is specific for ASOR.

The observation of ICl,H currents in every investigated mammalian cell type (Auzanneau et al.,

2003; Capurro et al., 2015; Fu et al., 2013; Lambert and Oberwinkler, 2005; Ma et al., 2008;

Nobles et al., 2004; Sato-Numata et al., 2013; Valinsky et al., 2017; Wang et al., 2007;

Yamamoto and Ehara, 2006) suggests that ASOR may be expressed in all tissues. Such a wide

expression pattern indicates that this channel has important physiological functions. However, only

few mammalian cells are physiologically exposed to an extracellular pH that is acidic enough to

open ASOR. It was therefore proposed (Wang et al., 2007) that the channel rather plays a role in

pathologies such as cancer or ischemic stroke in which pHo can drop to pH 6.5 or below

(Gillies et al., 2018; Kato et al., 2013; Nedergaard et al., 1991; Thews and Riemann, 2019;

Xiong et al., 2004). Indeed, ASOR inhibitors blunted cell swelling and cell death provoked by pro-

longed exposure to acidic pHo (Sato-Numata et al., 2014; Wang et al., 2007), suggesting that

ASOR-mediated chloride influx may worsen the outcome of ischemic stroke. It seems, however,

counterintuitive that a channel that enhances cell death under pathological conditions confers an

evolutionary advantage. Alternatively, ASOR might not only be present at the plasma membrane,

but also in intracellular compartments such as lysosomes where it would be exposed to an appropri-

ate acidic pH (Lambert and Oberwinkler, 2005).

The molecular identity of ASOR had remained unknown, with several candidates such as LRRC8/

VRAC anion channels or ClC-3 Cl-/H+ exchangers having been excluded previously (Lambert and

Oberwinkler, 2005; Sato-Numata et al., 2016; Sato-Numata et al., 2013). Using a genome-wide

siRNA screen we now identified TMEM206 as essential ASOR component. TMEM206, which has two

transmembrane domains, was necessary and sufficient for the formation of functional ASOR chan-

nels. All tested TMEM206 orthologs from other vertebrates form acid-activated channels which,

however, differ moderately in their biophysical properties. Ion-selectivity changing mutations sug-

gest that TMEM206’s transmembrane domains, in particular TM2, form ASOR’s pore. Finally, partial

protection of TMEM206�/� cells from acid-induced cell death indicates that ASOR/TMEM206 chan-

nels play a detrimental role in pathological conditions that are associated with tissue acidosis.

Results

Identification of TMEM206 as crucial ASOR component
To identify the protein(s) constituting ASOR, we performed a genome-wide siRNA screen using an

optical assay for acute ASOR-mediated iodide influx into HeLa cells (Figure 1A). Intracellular iodide

was detected by fluorescence quenching of inducibly expressed, halide-sensitive and relatively pH-

insensitive E2GFP (Arosio et al., 2007). We activated ASOR by exposing cells to acidic extracellular

pH (5.0) and simultaneously depolarized their plasma membrane to maximize ASOR currents. To this
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end, we used an approach which we had used previously (Scheel et al., 2005) to activate ClC-5, a

Cl-/H+-exchanger that displays a similarly strong outward rectification. In HeLa cells we stably co-

expressed E2GFP with FaNaC (Lingueglia et al., 1995), a ligand-gated Na+ channel from the snail

Cornu aspersum that is closed until it is activated by the cognate neurotransmitter peptide Phe-Met-
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Figure 1. Identification of TMEM206 as ASOR component. (A) Screening assay. Engineered HeLa cells inducibly expressing iodide-sensitive E2GFP and

FRMFamide-gated Na+ channel FaNaC were acutely exposed to an acidic solution (pH 5) containing 20 mM FMRFamide and 100 mM I-. Iodide influx

through ASOR is stimulated both by acidic pH and the depolarization caused by FaNaC-mediated Na+-influx and induces quenching of E2GFP

fluorescence. Fluorescence quenching is reduced by ASOR knock-down. (B) Assay verification under the conditions used for screening. Addition of I-

and FRMFamide at pH 5 (arrow) induces rapid quenching of fluorescence. Less rapid quenching upon omission of either I-, FMRFamide or acidic pH

suggests that it is caused by I- influx through ASOR, as further supported by inhibition by PS (pregnenolone sulfate) and DIDS (4,4’-diisothiocyano-2,2’-

stilbenedisulfonic acid) (Figure 1—figure supplement 1). (C) Fluorescence curves from a 384-well plate treated with siRNA against 280 genes,

including TMEM206. Fluorescence quenching is specifically slowed by siRNA against TMEM206. (D) Distribution of median Z-scores (mean of 3

replicates) from filtered hits (see Materials and methods). TMEM206 was the top hit. (E) Tissue expression of TMEM206 extracted from the GTEx

database (https://gtexportal.org/home/; TPM, transcripts per million). (F) Dendrogram depicting similarity between TMEM206 orthologs from human

(Homo sapiens), African naked mole-rat (Heterocephalus glaber), chicken (Gallus gallus), green anole lizard (Anolis carolinensis), zebrafish (Danio rerio)

and from the hemichordate acorn worm (Saccoglossus kowalewski). Amino-acid sequence identity to human TMEM206 given in brackets. Dendrogram

based on a Clustal Omega protein alignment fed into the Simple Phylogeny tool at EMBL-EBI (https://www.ebi.ac.uk/services).

DOI: https://doi.org/10.7554/eLife.49187.002

The following source data and figure supplement are available for figure 1:

Source data 1. Raw data for Figure 1B-E.

DOI: https://doi.org/10.7554/eLife.49187.004

Figure supplement 1. Verification of the assay for the genome-wide siRNA screen.

DOI: https://doi.org/10.7554/eLife.49187.003
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Arg-Phe-NH2 (FMRFamide). FMRFamide application leads to Na+ influx that acutely depolarizes the

membrane to inside-positive voltages. Concomitant application of 100 mM iodide, pH 5.0 and 20

mM FMRFamide to our engineered HeLa cells induced fast quenching of E2GFP fluorescence

(Figure 1B). Control experiments omitting either iodide, acidic pHo, or FMRFamide indicated that a

major component of quenching is owed to iodide influx through an acidic pH- and depolarization-

dependent process such as ASOR (Figure 1B, Figure 1—figure supplement 1A–D). This notion was

further supported by applying the inhibitors pregnenolone sulfate and DIDS (Drews et al., 2014)

(Figure 1—figure supplement 1E,F).

Having established a sensitive assay for ASOR function, we performed a genome-wide siRNA

screen using a commercial library containing pools of four siRNAs per gene (Figure 1C). The screen

was carried out in triplicate and results were ranked according to the maximal slope of quenching.

The top hit was TMEM206, a so far uncharacterized membrane protein (Figure 1D). The wide tissue

expression pattern of TMEM206 indicated by public databases (Figure 1E) agreed with the finding

that ICl,H has been found in every cell studied so far (Auzanneau et al., 2003; Capurro et al., 2015;

Fu et al., 2013; Lambert and Oberwinkler, 2005; Ma et al., 2008; Nobles et al., 2004; Sato-

Numata et al., 2013; Valinsky et al., 2017; Wang et al., 2007). TMEM206 has orthologs in verte-

brates and in the hemichordate Saccoglossus kowalevskii (acorn worm) (Figure 1F), but there are no

homologs in simpler animals or other kingdoms of life. In contrast to many other ion channels,

TMEM206 does not form a gene family because it lacks paralogs within the same species (i.e. it is a

‘single gene’).

After transfection of GFP-tagged human TMEM206 (hTMEM206) into HeLa cells a significant frac-

tion of the protein was found at the plasma membrane (Figure 2A). Additionally, TMEM206

appeared to be expressed in intracellular membranes, which, however, might result from heterolo-

gous overexpression. Hydropathy analysis suggested the presence of two transmembrane spans

(Figure 2B). To determine the transmembrane topology of TMEM206, we tested the accessibility of

added epitopes by immunofluorescence. Detection of both N- or C-terminally added GFP required

permeabilization of the plasma membrane (Figure 2C,D), suggesting that both the amino- and the

carboxy-terminus of TMEM206 face the cytosol.

A cytosolic localization of the N-terminus is further supported by public databases showing that

the amino-terminus of human and rodent TMEM206 can be phosphorylated (Figure 2G). An extra-

cellular localization of the TM1-TM2 stretch was suggested by the immunofluorescent detection in

non-permeabilized cells of an HA-epitope inserted at position 271 (Figure 2E,G). The observation

that this stretch is glycosylated further supports its extracellular localization (Figure 2F). Only this

segment displays consensus sites (N148, N155, N162, N190) for N-linked glycosylation (Figure 2G,

Figure 6—figure supplement 2). Deglycosylation of WT and mutant TMEM206(Dglyc), in which all

four consensus sites were eliminated, demonstrated that at least one of these sites are used

(Figure 2F) and hence face the lumen of the ER during biogenesis. We conclude that both N- and

C-termini of TMEM206 reside in the cytosol, whereas the TM1-TM2 loop faces the extracellular

space (Figure 2G).

Human TMEM206 mediates typical ASOR currents
Overexpression of human TMEM206 in HEK cells increased acid-activated Cl- currents about 10-fold

(Figure 3A,B). Addition of GFP to either the amino- or carboxy-terminus of TMEM206 only moder-

ately decreased current amplitudes compared to the untagged construct (Figure 3B). Currents from

overexpressed hTMEM206, irrespective of whether fused to GFP, resembled native ICl,H. To confirm

that TMEM206 is essential for the generation of ICl,H, we disrupted the TMEM206 gene in both HEK

and HeLa cells using CRISPR-Cas9 genomic editing. To exclude off-target effects, we used three dif-

ferent gRNAs to generate independent KO clones. None of the clonal HEK or HeLa KO cell lines dis-

played measurable ICl,H currents (Figure 3C–E, Figure 3—figure supplement 1). Hence, TMEM206

is an indispensable component of ASOR.

Transfection of hTMEM206 rescued ICl,H currents of TMEM206�/� (KO) HEK and HeLa cells

(Figure 3F–H, Figure 3—figure supplement 1E). Current characteristics did not differ between

transfected WT or KO cells (Figure 3A,F). TMEM206�/� HEK cells were used to further characterize

hTMEM206 in transient overexpression.

Currents of overexpressed hTMEM206 (measured at acidic pHo) showed the typical outward-rec-

tification and activation kinetics of ASOR (Capurro et al., 2015; Lambert and Oberwinkler, 2005;

Ullrich et al. eLife 2019;8:e49187. DOI: https://doi.org/10.7554/eLife.49187 4 of 25

Research article Cell Biology Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.49187


A

C GFP-TMEM206

GFP anti-GFP merge

n
o

n
 p

e
rm

e
a

b
ili

z
e

d
p

e
rm

e
a

b
ili

z
e

d

TMEM206-GFP

GFP anti-GFP merge

F G

TMEM206-GFP B

D

PNGase F - +

70 WB : GFP

TMEM206-GFP

B

TMEM206(Δglyc)-GFP

- +

TMEM206-exHA

anti-HA

N

C

TM1 TM2

N
N

N

N

P

P
P

P

N

P

N-linked 

glycosylation

Phosphorylation

HA

GFP

GFP

55

100
WB : 

Na/K ATPase

E

100

Figure 2. Subcellular localization and transmembrane topology of TMEM206. (A) Subcellular localization of TMEM206 (fused to GFP at the C-terminus)

in transfected HeLa cells. A similar localization was observed when the tag was attached to the N-terminus. Scale bar: 10 mm (B) Hydropathy analysis of

TMEM206 using the TMpred server (https://embnet.vital-it.ch/software/TMPRED_form.html) suggests the presence of two transmembrane domains. (C,

D) Detection of GFP by its fluorescence (green) or immunocytochemistry (red) in cells transfected with GFP-TMEM206 (C) or TMEM206-GFP (D), without

(top panels) or with (lower panels) plasma membrane permeabilization. Scale bars: 10 mm. (E) A HA-epitope inserted after residue 271 between TM1

and TM2 (G) in the TMEM206-exHA mutant was detected in non-permeabilized cells. (F) Western blot of membranes from HEK cells transfected with

TMEM206-GFP or TMEM206(Dglyc)-GFP in which all four predicted N-linked glycosylation sites between TM1 and TM2 were disrupted by mutagenesis.

Note the lower molecular weight of TMEM206(Dglyc)-GFP. Deglycosylation of membrane proteins by PNGaseF reduced the molecular weight of the

Figure 2 continued on next page
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Wang et al., 2007) after depolarizing voltage steps (Figure 3C,F). However, I/V curves for these

measurements must be interpreted with some care since the very large currents (>15 nA) and the

absence of series resistance compensation may have resulted in confounding voltage clamp errors.

The pHo-dependence of native ICl,H was indistinguishable from that of TMEM206-transfected KO

HEK cells (Figure 3I,H). The extent of acidification needed for half-activation of ICl,H (pHo ~5.3)

agrees with previous studies (Capurro et al., 2015; Lambert and Oberwinkler, 2005; Sato-

Numata et al., 2013; Wang et al., 2007).

Measurements of reversal potentials of hTMEM206-transfected cells (Figure 4A,B) revealed a

SCN->I->NO3
->Br->Cl- permeability sequence that is typical for ASOR (Capurro et al., 2015;

Lambert and Oberwinkler, 2005). Replacement of extracellular Cl- by either gluconate- (Figure 4C)

or SO4
2- (Figure 4D) not only abolished outward, but also inward currents which are carried by anion

efflux. Since we had replaced extracellular, but not intracellular Cl-, these observations suggest that

gluconate- and SO4
2- (or HSO4

-, a minor species with which SO4
2- is at equilibrium and whose abun-

dance will be increased by the acidic pH) block the outward movement of Cl- through ASOR/

TMEM206 channels. Alternatively, ASOR may require activation by extracellular chloride. Native ICl,H
is inhibited by several compounds (Capurro et al., 2015; Drews et al., 2014; Lambert and Ober-

winkler, 2005), but none of these is specific for ASOR. Acid-activated currents from overexpressed

TMEM206 were efficiently blocked by DIDS, niflumic acid, and pregnenolone sulfate (PS, Figure 4E–

H). As described for native ICl,H (Drews et al., 2014), the block by PS was fast and reversible

(Figure 4F) and affected both outward and inward currents (Figure 4G). We conclude that overex-

pressed TMEM206 shares all essential properties with native ASOR currents (ICl,H).

TMEM206 proteins from other species mediate moderately different
ICl,H currents
We asked whether TMEM206 proteins from other clades also function as ASORs and transfected

orthologs from the green anole lizard (Anolis carolinensis), chicken (Gallus gallus), zebrafish (Danio

rerio) and from the hemichordate acorn worm (Saccoglossus kowalewski) into TMEM206�/� HEK

cells. We also tested TMEM206 from naked mole-rats (Heterocephalus glaber), mammals displaying

various unusual properties including insensitivity to acidic pain (Browe et al., 2018; Edrey et al.,

2011; Park et al., 2008) and decreased acid-induced neuronal cell death (Husson and Smith,

2018).

Except for the evolutionarily distant hemichordate protein, which was retained in the endoplasmic

reticulum (ER), all orthologs were expressed at the plasma membrane (Figure 5—figure supplement

1). All plasma-membrane expressed orthologs mediated robust acid-activated outwardly rectifying

ICl,H currents (Figure 5A,C). These currents, however, differed in detail. Strikingly, TMEM206 from

the reptile Anolis carolinensis mediated outwardly-rectifying currents already at pHo 7.4. These cur-

rents were further steeply activated when pHo dropped below 6 (Figure 5A–D). Whereas currents

from all orthologs activated at a threshold of ~pHo 6, their currents decreased differently at pHo <5

(Figure 5D). The current decrease at more acidic pH questions the reliability of determining Hill

coefficients for the activation of ASOR by H+ ions (Capurro et al., 2015; Lambert and Oberwinkler,

2005; Yang et al., 2019). Differences between orthologs were also observed in depolarization-acti-

vated gating and current rectification (Figure 5A,D), and most importantly in anion permeability

(Figure 5E–I). Whereas all orthologs displayed the same Cl- permeability (Figure 5E,I), the mamma-

lian ASORs (human and naked mole-rat) showed a higher iodide/chloride permeability ratio than

their chicken, anole and zebrafish orthologs (Figure 5F,I). ASORs from green anole and zebrafish

displayed a significant SO4
2- (or HSO4

-) permeability which was undetectable with the other tested

orthologs (Figure 5G–I). These results suggest that all vertebrate TMEM206 proteins mediate ASOR

currents and participate in forming its ion-selective pore.

Figure 2 continued

WT, but not the TMEM206(Dglyc)-GFP protein. (G) Schematic topology of TMEM206. Predicted glycosylation sites (N), and phosphorylated sites (P)

identified in mass spectrometry (https://www.phosphosite.org/) are indicated, as well as the location of added epitopes.

DOI: https://doi.org/10.7554/eLife.49187.005
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Figure 3. TMEM206 mediates ICl,H ASOR currents. (A) Voltage-clamp traces of non-transfected (n.t.) and TMEM206-GFP transfected HEK cells at

pHo = 4.8, using the protocol shown at the top. (B) Current densities (I/C, at indicated pHo) at +80 and �80 mV for non-transfected (n.t.) HEK cells and

cells transfected with human TMEM206 (T6) fused N- or C-terminally to GFP, or co-expressing untagged TMEM206 with GFP from a separate pEGFP-

N1 vector. Transfection increased current levels by 5- to 15-fold (bars, mean). (C) CRISPR-Cas9 mediated genomic disruption of TMEM206 in HEK cells

(by guide RNA g1) abolished native acid-activated ASOR currents (ICl,H) as determined at pHo 4.8. Clamp protocol as in (A). (D) Outward and (smaller)

inward ICl,H currents rapidly activate in WT, but not TMEM206�/� HEK cells when pHo is lowered from 7.4 to 4.8. (E) Native ICl,H of HEK cells is abolished

in three independent TMEM206�/� cell lines generated with different guide RNAs (g1 – g3). (bars, mean; ***, p<0.001, one-way ANOVA with

Bonferroni correction) (F) Voltage-clamp traces of TMEM206�/� HEK cells transfected with human TMEM206 reveal large ICl,H. Clamp protocol as in (A).

(G) Rapid activation and deactivation of ICl,H in TMEM206-transfected TMEM206�/� HEK cells when pHo is changed between 7.4 and 4.8. Currents

monitored using a ramp protocol. (H) ICl,H densities at indicated voltages and pHo of non-transfected (n.t.) or TMEM206-transfected TMEM206�/� HEK

cells (bars, mean; ***, p<0.001, one-way ANOVA with Bonferroni correction). (I) pHo-dependence of ICl,H (at +80 mV) from native HEK cells and

TMEM206-transfected TMEM206�/� HEK cells. pH50, pHo at which current is half maximal.

DOI: https://doi.org/10.7554/eLife.49187.006

The following source data and figure supplement are available for figure 3:

Source data 1. Raw data for Figure 3.

DOI: https://doi.org/10.7554/eLife.49187.008

Figure 3 continued on next page
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Cysteine-scanning mutagenesis reveals pore-lining residues of
TMEM206
To identify pore-lining residues of ASOR we used a systematic substituted-cysteine accessibility

approach (Holmgren et al., 1996). After having ascertained that the cysteine reagent MTSES lacks

significant effects on human WT channels (Figure 6A,B), we generated point mutants in which all

residues of both hTMEM206 transmembrane spans were singly replaced by cysteines (Figure 6B).

Except for two mutants in TM2 (L309C and K319C), all constructs elicited acid-activated ICl,H currents

when transfected into TMEM206�/� HEK cells (Figure 6B,C, Figure 6—figure supplement 1). How-

ever, current amplitudes and properties were often changed (Figure 6—figure supplement 1). Only

one mutant in TM1 (L84C) showed a marked response to cysteine modification (Figure 6B,C). Appli-

cation of MTSES to this mutant, which changes a residue close to the predicted external end of

TM1, increased currents selectively at negative voltages (Figure 6B,C). TM2, which is less hydropho-

bic than TM1 (Figure 2B) and may form an amphipathic a-helix (Figure 6—figure supplement 2),

contained a larger number of responsive cysteine-substituted residues (Figure 6B,C). These residues

were not only found close to the external end of TM2 (W304), but also close to the center (G312)

and more towards the cytoplasmic end of TM2 (L315, A316) (Figure 6B,C). These residues failed to

clearly cluster on one side of the postulated a-helix (Figure 6—figure supplement 2A). Depending

Figure 3 continued

Figure supplement 1. TMEM206 mediates ICl,H ASOR currents in HeLa cells.

DOI: https://doi.org/10.7554/eLife.49187.007

Figure 4. Ion selectivity and inhibitor sensitivity of TMEM206/ASOR channels. (A) Example traces of ICl,H (elicited by voltage ramps) from TMEM206-

transfected TMEM206�/� HEK cells upon equimolar replacement of extracellular NaCl (150 mM) by the sodium salts of the indicated anions. The

intracellular solution contained 150 mM CsCl. The voltage at which I = 0 defines the reversal potential. (B) Reversal potentials Erev. (C) Upon

replacement of extracellular Cl- by gluconate, or (D) by HSO4
-/SO4

2-, no currents discernible from background were detected (at pHo 4.8). (E) Mean

inhibition (%) of ICl,H from TMEM206-transfected TMEM206�/� HEK cells (measured at +80 mV, pHo 4.8) by various inhibitors of ASOR. PS,

pregnenolone sulfate; DIDS, 4,4’-diisothiocyano-2,2’-stilbenedisulfonic acid; NFA, niflumic acid. (F) Fast and reversible block of ICl,H by PS. (G) Example

I/V curves of ICl,H from TMEM206-transfected TMEM206�/� HEK cells exposed to different PS concentrations. (H) Same for block by DIDS.

DOI: https://doi.org/10.7554/eLife.49187.010

The following source data is available for figure 4:

Source data 1. Raw data for Figure 4.

DOI: https://doi.org/10.7554/eLife.49187.011
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Figure 5. Properties of TMEM206 orthologs. (A) Typical voltage clamp-traces of indicated TMEM206 orthologs transiently expressed in TMEM206�/�

HEK cells at pHo 7.4 (top traces) or pHo 5.0 (bottom traces). Clamp protocol as in Figure 3A. (B) Mean current amplitudes of tested orthologs at pHo7.4

and (C) pHo 5.0. The ortholog from acorn worm failed to give currents because of its retention in the endoplasmic reticulum (Figure 5—figure

supplement 1F). (D) pHo-dependence of currents from various orthologs at +80 mV (top) and –80 mV (bottom) as determined from voltage ramps. (E–

Figure 5 continued on next page
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on the mutant, MTSES exposure increased or decreased ICl,H amplitudes (Figure 6A–C) or changed

current rectification (Figure 6B–C). Consistent with a covalent modification of cysteine residues, the

effects of MTSES appeared irreversible (Figure 6A). Strikingly, several cysteine mutants showed

robust outwardly-rectifying currents already at pHo 7.4 (Figure 6D,E). These could be further stimu-

lated by exposure to acidic pHo (Figure 6F).

Of note, some cysteine mutants displayed changed ion selectivity (Figure 7A,B,F–H). Whereas

changes in I- permeability were relatively small (most evident for L84C and R87C, Figure 7B,F), the

same two mutants in TM1 displayed a small sulfate permeability that was undetectable in WT

hTMEM206, allowing us to determine reversal potentials (Figure 7A,B,G–H). Residues giving an

interesting effect upon cysteine modification were further mutated to other, mostly charged, resi-

dues. This yielded detectable ICl,H in many cases (Figure 7—figure supplement 1), with a number of

mutants displaying slightly changed iodide permeability (Figure 7C,D,F) or marked increases in

SO4
2-/HSO4

- conductance (Figure 7C,G–H). Strikingly, replacement of L315 by negatively charged

aspartate introduced a large ~22 mV shift of the reversal potential in NaCl medium (Figure 7D,E),

indicative of a loss of anion selectivity. Together with the strong MTSES effects on the L315C mutant

(Figure 6A–C) these data suggest that this TM2 residue importantly determines pore properties of

ASOR. Of note, with the exception of R87, all functionally important residues identified here in TM1

and TM2 are highly conserved (Figure 6—figure supplement 2B). In conclusion, residues along the

length of TM2 and towards the external end of TM1 may be close to, or line, the pore of ASOR

channels.

Role of TMEM206/ASOR channels in acidotoxicity
ASOR was suggested (Sato-Numata et al., 2014; Wang et al., 2007) to play a role in acidotoxicity

because DIDS and phloretin, compounds inhibiting ASOR but also several other channels or trans-

porters, reduced acid-induced necrotic cell death of HeLa cells (Wang et al., 2007) and cultured cor-

tical neurons (Sato-Numata et al., 2014). We exposed both WT HEK cells, and two separately

derived TMEM206�/� clones, for 2 hr to acidic medium (pHo 4.5) in the absence and presence of PS.

Cell death was assessed by propidium iodide staining and normalized to the total number of cells as

determined by Hoechst 33342 labeling. Indeed, disruption of TMEM206 partially protected against

acid-induced cell death (Figure 8A,B). A roughly similar protection was seen with PS in WT but not

in TMEM206�/� cells (Figure 8A,B), suggesting that the effect of PS on cell viability results from its

ability to block ASOR (Drews et al., 2014). In conclusion, ASOR/TMEM206 channels enhance

acidotoxicity.

This form of cell death had been attributed to cell swelling caused by osmotic gradients gener-

ated by ASOR-mediated Cl- influx (Sato-Numata et al., 2014; Wang et al., 2007). When exposed

to pHo 4.2, both WT and TMEM206�/� HEK cells increased their volume within the first three

minutes as indicated by increased calcein fluorescence (Figure 8C). Agreeing with the hypothesis

(Sato-Numata et al., 2014; Wang et al., 2007) that the parallel opening of ASOR and ASICs (acid-

sensitive Na+-channels; Gründer and Pusch, 2015; Waldmann et al., 1997) leads to an electrically

coupled influx of osmotically active Na+ and Cl-, WT cells swelled faster than TMEM206�/� cells.

Whereas WT cells subsequently decreased their volume, TMEM206�/� cells failed to shrink

(Figure 8C). Likewise, the ASOR inhibitor pregnenolone sulfate (100 mM) (Drews et al., 2014)

Figure 5 continued

G) Reversal potentials Erev of indicated orthologs with external NaCl (E), Nal (F) and Na2SO4 (G). Significant currents with Na2SO4 could be measured

only for green anole and zebrafish. DErev, difference to Erev for NaCl. All currents measured at pHo 5.25. (H) Current densities (at +80 mV, pHo 5.25) with

external Na2SO4 (I) Example traces showing determination of Erev (indicated by arrows) for human, chicken and zebrafish orthologs. bg, background

current at pHo 7.4 (n = 8–13 cells; *, p<0.033; ***, p<0.001; Kruskal-Wallis test, Dunn’s multiple comparison correction; error bars, SD (B,C) or SEM (D–

H)).

DOI: https://doi.org/10.7554/eLife.49187.012

The following source data and figure supplement are available for figure 5:

Source data 1. Raw data for Figure 5.

DOI: https://doi.org/10.7554/eLife.49187.014

Figure supplement 1. Subcellular localization of different GFP-tagged TMEM206 orthologs after transfection into HeLa TMEM206�/� cells.

DOI: https://doi.org/10.7554/eLife.49187.013
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Figure 6. Substituted cysteine accessibility scan of TMEM206 transmembrane domains. (A) Effect of MTSES on currents from WT and mutant

TMEM206-transfected TMEM206�/� cells. MTSES had no effect on WT TMEM206, but acutely and irreversibly decreased or increased ICl,H of I307C and

L315C mutants, respectively. Note that acidic pHo does not interfere with MTSES reactivity. The protocol was designed to be able to detect potential

effects of MTSES at pH 7.4. (B) Ratio of current before (Ictrl) and after (IMTSES) exposure to MTSES, at +80 and �80 mV. Mutants are grouped by location

within the two TMDs of TMEM206. For current amplitudes of non-modified cysteine mutants, see Figure 6—figure supplement 1. (C) Current traces of

selected mutants elicited by voltage ramps (top) before and after MTSES-application. (D–F) Cysteine mutants showing currents at pHo 7.4. (D) Voltage-

clamp traces of WT TMEM206 and indicated mutants at pH 7.4. Clamp protocol as in Figure 3A. (E) Mean current densities at pH 7.4. (F) All mutants

still responded to low pHo.

Figure 6 continued on next page
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slowed the initial swelling and inhibited the subsequent shrinkage (Figure 8D). Similar effects of

ASOR disruption or block were observed with HeLa cells (Figure 8—figure supplement 1). Hence,

contrasting with the conclusion of Wang et al. (2007), our data suggest that the role of ASOR/

TMEM206 in acidotoxicity cannot be explained by a sustained volume increase of acid-exposed

cells.

Discussion
We have identified TMEM206 as essential, pore-forming subunit of ASOR, a widely expressed acid-

sensitive outwardly rectifying anion channel. TMEM206 lacks homologous proteins within any given

species. Both transmembrane domains of TMEM206, most importantly TM2, likely participate in

forming its anion-selective pore. TMEM206/ASOR channels are apparently present in all vertebrates

and share activation by markedly acidic pH as prominent feature. TMEM206/ASOR channels play a

role in pathologies associated with a marked decrease in extracellular pH. Although their wide

expression pattern across tissues and vertebrates suggests important physiological functions for all

cells, these roles remain to be determined. The identification of TMEM206 as ASOR channel-forming

protein in this work and in a recently published independent study by Qiu and coworkers

(Yang et al., 2019) is an essential step forward towards the elucidation of these roles.

TMEM206 fully constitutes ASOR
The dissimilar biophysical characteristics of currents elicited by TMEM206 orthologs and the changes

observed with mutants demonstrate that TMEM206 proteins constitute the pore of ASOR channels.

With only two exceptions, all cysteine-substituted channels gave currents. However, their amplitudes

were reduced by several mutations which were distributed along the length of either TM1 or TM2

(Figure 6—figure supplement 2). Whereas this result only shows that TMEM206 is (somehow)

important for ASOR currents, the observed functional effects of MTSES on various cysteine mutants

additionally indicate that the respective cysteines are accessible from the aqueous phase. If such res-

idues are located in a membrane-embedded region, they are probably close to, or line, the pore.

More convincing evidence that TMEM206 proteins form the channel comes from mutations that

change intrinsic channel properties such as rectification or ion selectivity (a property of the pore).

Several mutations, both at the extracellular end of TM1 and at various positions along TM2, moder-

ately changed ASOR’s I- permeability. Moreover, whereas WT hTMEM206 lacked measurable cur-

rents with extracellular Na2SO4, TMEM206 from anole and zebrafish, and a surprisingly large

number of mutants, displayed robust currents with extracellular sulfate. These mutations may

markedly increase the channel’s SO4
2- (or HSO4

-) permeability, or relieve a channel block that was

indicated by the absence of inward currents (efflux of Cl-) in the presence of extracellular sulfate.

The most striking evidence for TMEM206 forming ASOR’s pore comes from the loss of anion selec-

tivity with the L315D mutant. The ~22 mV positive shift of the reversal potential indicates a marked

increase in cation conductance (Erev for Na+ or H+ are >+120 mV and +113 mV, respectively) that

might be due to electrostatic interactions of the newly introduced negatively charged aspartate with

the permeant ion. Our data suggest that the whole length of TM2, with a participation of the outer

end of TM1, lines the pore of ASOR. This is reminiscent of crystallographically resolved pore struc-

tures of ASIC channels with which ASOR shares the transmembrane topology, but no obvious

sequence homology. Intriguingly, ASICs and other ENaC/Deg channels display a glycine residue (in

the ‘GxS’ motif) in TM2 that plays an important role in determining pore properties and gating

Figure 6 continued

DOI: https://doi.org/10.7554/eLife.49187.015

The following source data and figure supplements are available for figure 6:

Source data 1. Raw data for Figure 6.

DOI: https://doi.org/10.7554/eLife.49187.018

Figure supplement 1. Acid-induced current densities of cysteine mutants.

DOI: https://doi.org/10.7554/eLife.49187.016

Figure supplement 2. Localization of studied TMEM206 residues.

DOI: https://doi.org/10.7554/eLife.49187.017
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Figure 7. Ion selectivity changes of mutants in transmembrane domains. (A–D) Current traces of WT (A), L84C (B),

I307W (C) and L315D (D) TMEM206 expressed in TMEM206�/� HEK cells measured with indicated extracellular

solutions at pH 5.25. Reversal potentials Erev indicated by arrows. With WT and L315D TMEM206 currents in

Na2SO4 were too small for Erev determination. Currents were elicited by voltage ramps as in Figure 6C. (E)

Reversal potential Erev with extracellular NaCl (***, p<0.001 vs. WT; one-way ANOVA, Bonferroni correction). (F, G)

Shift of reversal potentials (DErev) with extracellular NaI (F) or Na2SO4 (G) relative to that measured with NaCl (NA,

not applicable (currents not significantly above background or Erev not stable over time (I307C)). (H) Current

densities at +80 mV with extracellular Na2SO4 at pH 5.25. *, p<0.033 and ***, p<0.001 vs. WT; one-way ANOVA,

Bonferroni correction. No statistical analysis was performed on the data in (G).

DOI: https://doi.org/10.7554/eLife.49187.019

The following source data and figure supplement are available for figure 7:

Source data 1. Raw data for Figure 7.

DOI: https://doi.org/10.7554/eLife.49187.021

Figure supplement 1. Acid-induced current densities of TMEM206 mutants.

DOI: https://doi.org/10.7554/eLife.49187.020
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(Baconguis et al., 2014; Li et al., 2011). Whether G212, which is located at a similar distances from

the ends of TM2, plays a comparable role must await determination of TMEM206/ASOR channel

structures.

Heterologous expression of all tested vertebrate orthologs led to large acid-induced currents. As

shown with human TMEM206, biophysical properties of these currents did not differ significantly

from native ICl,H. Hence completely functional ASOR channels may only require TMEM206. However,

our results cannot strictly exclude that TMEM206 lines the pore together with other, unknown pro-

teins. This scenario would require that such proteins are produced in excess endogenously since

overexpression of hTMEM206 or its orthologs elicited currents > 10 fold larger than native ICl,H. It

Time (s)

R
e
la

ti
v
e

v
o
lu

m
e

(F
/F

0
)

0 200 400 600

1.00

1.05

1.10

TMEM206-/- pH 7.4

WT pH 7.4

TMEM206-/- pH 4.2

WT pH 4.2

Time (s)

R
e
la

ti
v
e

v
o
lu

m
e

(F
/F

0
)

0 200 400 600

1.00

1.05

1.10

100 µM PS pH 7.4

pH 7.4

100 µM PS pH 4.2

pH 4.2

B

C D

A
pH 7.4 pH 4.5 pH 4.5 + PS

W
T

T
M

E
M

2
0
6

-/
-

W
T

K
O

g2

K
O

g3
W

T

K
O

g2

K
O

g3 W
T

K
O

g2

K
O

g3
W

T

K
O

g2

K
O

g3

0

10

20

30

P
I

+
/

H
o

e
c
h

s
t
+

(%
)

pH 7.4 pH 7.4
+ PS

pH 4.5
+ PS

pH 4.5

***
***

***
***

Figure 8. Role of TMEM206/ASOR channels in acid-induced cell death and volume regulation. (A) Representative pictures of WT and TMEM206�/�

HEK293 cells (clone 2E5) double stained with propidium iodide (PI, red) and Hoechst 33342 (blue) after incubation for 2 hr with control (pH 7.4) or acidic

(pH 4.5) solution, also containing the potent inhibitor of TMEM206 pregnenolone sulfate (PS) at 100 mM or not. In this assay, dead cells are stained with

PI, membrane impermeant, whereas Hoechst 33342, which is permeant, stains nuclei of all cells. Scale bars: 100 mm (B) Quantification of PI positive cells

over the total number of cells, determined by Hoechst staining, in WT and two independent TMEM206�/� HEK clones generated with different guide

RNAs (g2, g3). For quantification, 10x objective microscopic fields were randomly chosen. Bars represent mean ± SEM. Data were acquired in three

independent experiments and analyzed by using one-way ANOVA with post hoc multiple comparisons using the Tukey’s test: ***p<0.001 (C,D)

Influence of TMEM206 ablation (C) or block by 100 mM pregnenolone sulfate (PS) (D) on acid-induced cell volume changes of HEK293 cells as

monitored by calcein fluorescence. Mean of eight measurements; error range, SEM. Similar results were obtained in three experiments, and similar

effects were observed with HeLa cells (Figure 8—figure supplement 1).

DOI: https://doi.org/10.7554/eLife.49187.022

The following source data and figure supplement are available for figure 8:

Source data 1. Raw data for Figure 8.

DOI: https://doi.org/10.7554/eLife.49187.024

Figure supplement 1. Role of TMEM206/ASOR ablation or block on acid-induced cell volume changes in HeLa cells.

DOI: https://doi.org/10.7554/eLife.49187.023

Ullrich et al. eLife 2019;8:e49187. DOI: https://doi.org/10.7554/eLife.49187 14 of 25

Research article Cell Biology Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.49187.022
https://doi.org/10.7554/eLife.49187.024
https://doi.org/10.7554/eLife.49187.023
https://doi.org/10.7554/eLife.49187


further requires that such a putative additional pore-forming protein from HEK cells is able to associ-

ate with all the vertebrate orthologs tested. If ASOR’s pore is exclusively constituted by TMEM206

proteins that cross the membrane only twice, TMEM206 must form at least a dimer to build a pro-

tein-enclosed pore. ASICs and other members of the DEG/ENaC channel family, which display a

transmembrane topology similar to TMEM206, form trimeric homo- or heteromeric channels

(Jasti et al., 2007). Likewise ASOR channels might be formed by TMEM206 trimers.

Role of acid-activated chloride current
With the exception of the hemichordate TMEM206, which shows marked sequence divergence and

was retained in the ER, all tested TMEM206 proteins gave strongly outwardly rectifying Cl- currents

that were activated by extracellular acidification in excess of ~pHo 6. The strong rectification might

be physiologically irrelevant since all orthologs gave currents also at negative voltages and because

inside-positive voltages are rarely reached in vivo, in particular in non-excitable cells. By contrast, the

conserved activation by acidic pHo appears crucial and poses the question where and when such pH

values might be reached. Mammalian ASORs require slightly less acidic pH for activation at physio-

logical temperatures (37˚C) (Sato-Numata et al., 2013; Sato-Numata et al., 2014), but this consid-

eration seems irrelevant for the reptile and fish orthologs.

Only a few cell types in the mammalian organism are physiologically exposed to an extracellular

pH that is more acidic than pH 6.0. These include cells in the stomach and duodenum, renal medul-

lary collecting duct (Bengele et al., 1983) and acid-secreting osteoclasts and macrophages

(Silver et al., 1988), but it is unclear whether ASOR is expressed in the relevant membranes of these

polarized cells. Moreover, it is unlikely that an important function in a small subset of cells has

resulted in an almost ubiquitous expression of ASOR during evolution. On the other hand, intracellu-

lar compartments such as endosomes and lysosomes, which can be acidified down to pH 4.5, would

provide an ideal environment for ASOR activity. Here ASOR might facilitate luminal acidification by

shunting currents of the proton-ATPase as described for endosomal CLC Cl- transporters

(Günther et al., 1998; Jentsch, 2007; Piwon et al., 2000). Interestingly, vesicular CLCs also show

strong outward-rectification, but unlike ASOR are 2Cl-/H+-exchangers that are inhibited by luminal

(or extracellular) acidification (Jentsch, 2007; Jentsch and Pusch, 2018; Scheel et al., 2005). Hence

presence of both ASOR and CLCs on endolysosomes might allow for a differential regulation of

vesicular membrane voltage and ion concentrations. However, ClC-7 is believed to be the main Cl-

transporter of lysosomes (Graves et al., 2008; Kornak et al., 2001) and immunocytochemistry

showed prominent plasma membrane expression of all examined vertebrate ASOR orthologs.

Although the variable cytoplasmic labeling observed upon TMEM206 overexpression may have

resulted from overexpression and showed no obvious co-localization with the lysosomal marker

lamp-1 in preliminary experiments, we feel that a more thorough investigation of an additional locali-

zation of ASOR in intracellular compartments may be warranted.

When speculating about biological roles of ASOR it is instructive to compare it to acid-sensitive

ASIC channels (Waldmann et al., 1997; Wemmie et al., 2013). Besides being cation channels,

ASICs differ from ASOR by their larger molecular diversity (four different subunits can assemble to

various homo- and hetero-trimers), rapid inactivation and the degree of pH-sensitivity. Depending

on the isoform, their pH50 for activation ranges between ~4.8 and ~6.6 (Gründer and Pusch, 2015;

Wemmie et al., 2013), values that are up to more than 1 pH unit more alkaline than that of ASOR

(pH50 ~5.3). Hence several physiological functions of ASICs are unlikely to have equivalents with

ASOR. For instance, postsynaptic ASICs may enhance excitatory synaptic transmission by opening in

response to a drop in pH in the synaptic cleft that is caused by exocytosis of the acidic contents of

synaptic vesicles (Chu and Xiong, 2012; Gründer and Pusch, 2015; Huang et al., 2015). Even if

ASOR would be expressed postsynaptically, the estimated drop in pHo (Gründer and Pusch, 2015)

seems to be too small for its activation. ASICs also have roles in peripheral pain sensation

(Waldmann et al., 1997; Wemmie et al., 2013). If expressed on appropriate sensory neurons, such

a function is imaginable also for ASOR because the high intracellular Cl- concentration of peripheral

neurons would allow for a depolarizing Cl--efflux (Funk et al., 2008). Strikingly, naked mole-rats are

insensitive to acid-induced pain, but their ASIC channels show normal pH-sensitivity (Smith et al.,

2011). We likewise found here that TMEM206/ASOR channels of that species display normal pH-

sensitivity. The pH-insensitivity of mole-rats may rather be due to a changed pH-sensitivity of the

Na+-channel Nav1.7 (Eigenbrod et al., 2019; Smith et al., 2011).
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Of note, ASIC channels are involved in various neurological pathologies that are associated with

acidic pHo (Huang et al., 2015; Wemmie et al., 2013), including stroke (Xiong et al., 2004) and

multiple sclerosis (Friese et al., 2007). Likewise, based on protective effects of non-specific ASOR

inhibitors, Okada and colleagues proposed that ASOR plays a role in acid-induced cell death of epi-

thelial cells (Wang et al., 2007) and neurons (Sato-Numata et al., 2014). Using TMEM206�/� cells,

we now ascertained that genetic ablation of TMEM206/ASOR channels partially protects cells from

cell death provoked by strongly acidic pHo (4.5). Interestingly, when compared to mice, cortical neu-

rons of naked mole rats are resistant to acid-induced cell death (at pH 5.0) (Husson and Smith,

2018). Since neither the pH-response of ASICs (Smith et al., 2011) nor of ASOR (this work) is

changed in that species, the explanation for this resistance may be due to channel expression levels

or other factors.

It has been proposed (Wang et al., 2007) that ASOR-dependent, acid-induced cell death results

from sustained cell swelling owed to the parallel influx of Na+ and Cl- through acid-activated ASIC

and ASOR channels, respectively. Whereas in our experiments WT cells initially swelled faster than

TMEM206�/� cells, they subsequently recovered their volume and even shrank. Initial swelling may

indeed be owed to the opening of both ASIC and ASOR, with ASIC-mediated Na+-influx mediating

the depolarization required for passive Cl- influx. In contrast to ASOR, however, ASIC channels inac-

tivate (Gründer and Pusch, 2015), leading to a reversal of the Cl- electrochemical potential, passive

efflux of Cl- through ASOR, and subsequent osmotic cell shrinkage. Although there is now little

doubt that TMEM206/ASOR channels foster acid-induced cell death, the underlying signal transduc-

tion cascade likely is complex.

Recently, while the present work was being completed, Yang et al. reported on their independent

identification and characterization of TMEM206 as integral component of the ASOR channel (which

the authors renamed PAC for Proton-Activated Channel) (Yang et al., 2019). They likewise reported

protective effects of TMEM206 disruption on acid-induced cell death of HEK cells or cultured pri-

mary cortical neurons. Intriguingly, these authors showed that Tmem206�/� mice showed smaller

stroke areas in a middle cerebral artery occlusion model (Yang et al., 2019), although the previously

reported decrease of pHo in the stroke area (down to ~6.4) (Nedergaard et al., 1991) is slightly

above the value needed for ASOR activation. In a cysteine modification scan restricted to the extra-

cellular half of TM2, they also found that reaction of I307C with MTSES reduces ASOR currents, and

showed that the I307A mutant displayed moderately decreased iodide permeability. These results

agree with our conclusion that the entire TM2 and the extracellular end of TM1 line ASOR’s pore in

an oligomeric complex.

Conclusion
We have identified TMEM206 as essential subunit of the acid-sensitive outwardly rectifying anion

channel ASOR. TMEM206 proteins constitute the pore of ASOR, probably in a homo-oligomeric

complex. TMEM206, which lacks paralogs in any given species, defines a structurally novel class of

ion channels. TMEM206/ASOR channels are involved in acid-induced cell death, but this role in

pathology cannot explain its wide and possibly ubiquitous expression across tissues and vertebrate

species. Its molecular identification in this work and in the parallel study of Yang et al. (2019) is an

important step to identify its physiological roles and to mechanistically understand the diverse ways

by which anion-selective channels can be formed.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Cell line
(Homo sapiens)

HEK293 WT Deutsche Sammlung
von Mikroorganismen
und Zellkulturen, Germany

ACC No. 305;
RRID: CVCL_0045

Cell line
(Homo sapiens)

HEK293 TMEM206-/- this paper generated from WT HEK293,
different clones (Table 1)

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Cell line
(Homo sapiens)

HeLa WT Deutsche Sammlung
von Mikroorganismen
und Zellkulturen, Germany

ACC No. 57;
RRID: CVCL_0030

Cell line
(Homo sapiens)

HeLa TREx Thermo Fisher Cat. No. R71407;
RRID: CVCL_D587

Cell line
(Homo sapiens)

HeLa-E2GFP-2A-FaNaC this paper see below for
FaNaC/E2GFP

generated from HeLa
TREx, clone E2F-5

Cell line
(Homo sapiens)

HeLa TMEM206-/- this paper generated from HeLa-
E2GFP-2A-FaNaC,
different clones (Table 1)

Transfected
construct
(S. pyogenes)

pSpCas9(BB)�2A-GFP (PX458) PMID: 24157548 RRID: Addgene_48138

Gene
(Homo sapiens)

Human TMEM206 this paper RefSeq: NM_018252.2;
UniProtKB: Q9H813

Cloned from human
brain cDNA library
(Clontech)

Gene
(Heterocephalus
glaber)

Naked mole-rat
TMEM206

this paper RefSeq: XM_004853543.3;
UniProtKB: A0A0N8ETT8

human codon-optimized,
synthesized by Life
Technologies

Gene
(Gallus gallus)

Chicken TMEM206 this paper RefSeq: XM_419431.6;
UniProtKB: A0A1D5PSZ0

human codon-optimized,
synthesized by Life
Technologies

Gene
(Anolis carolinensis)

Green anole
TMEM206

this paper RefSeq: XM_003216011.3;
UniProtKB: G1KFB8

human codon-optimized,
synthesized by Life
Technologies

Gene
(Danio rerio)

Zebrafish
TMEM206

this paper RefSeq: NM_001291762.1;
UniProtKB: X1WG42

human codon-optimized,
synthesized by Life
Technologies

Gene
(Saccoglossus
kowalevskii)

Acorn worm
TMEM206-like

this paper RefSeq: XM_006811230.1 human codon-optimized,
synthesized by Life
Technologies

Gene
(Cornu aspersum)

FaNaC PMID: 7501021;
PMID: 16034422

GenBank: X92113.1;
UniProtKB: Q25011

Gene
(Aequorea victoria)

E2GFP
(GFP S65T/T203Y)

PMID: 17434942,
PMID: 20581829

subcloned from
ClopHensor
(Addgene #25938)

Antibody anti-GFP

(chicken polyclonal)

Aves Lab Cat. No. GFP-1020;
RRID: AB_10000240

(1/1,000)

Antibody anti-HA
(rabbit monoclonal)

Cell Signaling Cat. No. 3724;
RRID: AB_1549585

(1/1,000)

Antibody anti-GFP
(rabbit polyclonal)

Thermo Fisher Cat. No. A-11122;
RRID: AB_221569

(1/1,000)

Antibody anti-Na/K-ATPase
(mouse monoclonal)

Millipore Cat. No. 05–369;
RRID: AB_309699

(1/10,000)

Antibody anti-rabbit
AlexaFluor
633 (goat polyclonal)

Invitrogen Cat. No. A21071;
RRID: AB_2535732

(1/2,000)

Antibody anti-chicken
HRP (rabbit
polyclonal)

Sigma Cat. No. A-9792;
RRID: AB_258473

(1/10,000)

Antibody anti-mouse
HRP Affinipure
(goat polyclonal)

Jackson
ImmunoResearch

Cat. No. 115-035-003;
RRID: AB_10015289

(1/10,000)

Sequence-
based reagent

Dharmacon
ON-TARGETplus human siRNA library

Horizon
Discovery

Cat. No.
G-105005-E2-025

arrayed in 384-well plates

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Chemical
compound, drug

FMRFamide
(H-Phe-Met-Arg
-Phe-NH2)

Bachem Cat. No. 4001566 5 mM stock in ddH2O,
stored at �20˚C for
up to 6 months

Chemical
compound, drug

MTSES
(2-Sulfonatoethyl
methanethiosulfonate)

Biotium Cat. No. 91020 250 mM stock in ddH2O,
freshly prepared, kept
on ice for up to 4 hr

Chemical
compound, drug

Pregnenolone
sulfate (PS)

Sigma Cat. No. P162 50 mM stock in DMSO
(stored at �20˚C for up
to 6 months) for
electrophysiology
experiments
or freshly diluted in PBS for
cell death analysis

Chemical
compound, drug

4,40-
Diisothiocya
natostilbene-2,20-disulfonic
acid (DIDS)

Sigma Cat. No. D3514 100 mM stock in DMSO,
stored at �20˚C for
up to 6 months

Chemical
compound, drug

Niflumic acid (NFA) Sigma Cat. No. N0630 300 mM stock in DMSO,
stored at �20˚C for
up to 6 months

Chemical
compound, drug

Hoechst 33342 ImmunoChemistry
Technologies

Cat. No. ICT-639

Chemical
compound, drug

Propidium iodide Thermo Fisher Cat. No. P3566

Chemical
compound, drug

Calcein AM Thermo Fisher Cat. No. 65-0853-39 10 mM stock in DMSO,
stored at �20˚C for
up to 6 months

HeLa-E2GFP-2A-FaNaC Cell Line used in the siRNA Screen
The T-REx system (Life Technologies) was used to generate a stable HeLa cell line inducibly co-

expressing the halide-sensitive E2GFP variant (GFP S65T/T203Y) (Arosio et al., 2007) and the

FMRFamide-gated cation channel FaNaC (Lingueglia et al., 1995) (UniProtKB Q25011). A pcDNA5/

FRT/TO-based plasmid containing the cDNAs encoding E2GFP and FaNaC, separated by a self-

cleaving 2A peptide was generated for this purpose. Resulting clones were selected using 200 mg/

ml hygromycin B (Santa Cruz) and 4 mg/ml blasticidin (InvivoGen). Monoclonal cell lines were tested

for robust expression of E2GFP and FaNaC by fluorescence microscopy and patch clamp electro-

physiology, respectively. Clone E2F-5 was chosen for the genome-wide screen. Cells were kept in

DMEM supplemented with 10% tetracycline-free Hyclone FCS (Fisher Scientific) and the above-men-

tioned antibiotics.

Genome-wide siRNA screen
The genome-wide siRNA screen was performed at the FMP Screening Unit using the Dharmacon

ON-TARGETplus human siRNA library (Horizon Discovery) arrayed in 66 384-well plates, targeting

18090 genes by four pooled siRNAs each. The screen was performed three times.

For siRNA transfection, on a Freedom EVO 200 workstation (Tecan) 4 ml of a 500 nM library-

siRNA-OptiMEM solution was mixed in each well of the 384-well assay-plate with 0.125 ml Lipofect-

amine RNAiMAX transfection reagent (Life Technologies) previously diluted in 5.875 ml OptiMEM

(Life Technologies). Subsequently, 3,000 cells/well in phenol red-free DMEM (PAN Biotech) were

seeded onto the pre-dispensed transfection mixture using an EL406TM dispenser (BioTek) resulting

in a final concentration of 50 nM siRNA SMARTpool in a total volume of 40 ml per well. To induce

E2GFP-2A-FaNaC expression after 24 hr, 10 ml phenol red-free DMEM containing 5 mg/ml doxycy-

cline were added resulting in a final concentration of 1 mg/ml doxycycline.

The quenching assay was performed 72 hr post-transfection. First, using an EL406 washer dis-

penser (BioTek), cells were washed three times with 120 ml/well of a bath solution containing (in

mM): 145 NaCl, 5 KCl, 1 MgCl2, 2 CaCl2, 10 glucose, 10 HEPES, pH 7.4 with NaOH, 320 mOsm/kg.
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Subsequently, wells were aspirated to 10 ml residual volume. The plates were transferred into the

FLIPR Tetra High Throughput Cellular Screening System (Molecular Devices) for measurements. All

wells of the plate were simultaneously illuminated at l = 470–549 nm with an exposure time of 0.53

s and E2GFP-fluorescence was measured at l = 515–575 nm. Measurements were taken in intervals

of 1 s for 300 s. After recording the baseline fluorescence for 10 s, parallel pipetting added 25 ml

acidic iodide-containing solution with the following composition (in mM): 145 NaCI, 5 KCl, 1 MgCl2,

2 CaCl2, 10 glucose, 5 Na3citrate and 30 mM FMRFamide (H-Phe-Met-Arg-Phe-NH2 acetate salt,

Bachem), pH 4.83, 320 mOsm/kg. The mixture of this solution with remaining bath solution resulted

in approximately 100 mM iodide, 20 mM FMRFamide and pH 5. Control wells received the same

solution without FMRFamide.

Analysis and processing of data obtained in the genome-wide screen were performed with the

KNIME Analytics Platform (KNIME). The maximal slope of fluorescence change was determined by

linear regression of 10 points in a sliding window between 20 s and 100 s. Slope was normalized to

the averaged baseline and background fluorescence.

For plate-wise normalization a Z-score was calculated from the normalized slope value as follows:

Z ¼
xi� x

~

MADx

where xi is the normalized slope from well i, x
~
is the median and MADx the median absolute devi-

ation of all candidate wells in the plate.

The median of the three replicate Z-scores per target gene was used to rank the data. As a mea-

sure of cell viability, an additional Z-score was calculated from the baseline fluorescence. We filtered

out all candidates in which the median Baseline START Z-score was lower than �0.5, indicating a sig-

nificantly reduced cell number.

Electrophysiology
Cells were plated onto poly-L-lysine-coated coverslips and transfected using the Xfect (Clontech)

transfection reagent. Whole-cell patch-clamp recordings were performed 1 day after transfection

using an EPC-10 USB patch-clamp amplifier and PatchMaster software (HEKA Elektronik). All experi-

ments were performed at 20–22˚C. Patch pipettes had a resistance of 1–3 MW in NaCl/CsCl-based

solutions. The holding potential was �30 mV. Cells with a series resistance above 8 MW were dis-

carded, and series resistance was not compensated for. Currents were sampled at 1 kHz and low-

pass filtered at 10 kHz. In some cases, a notch filter was applied to current traces post-recording to

minimize line noise.

The standard pipette solution contained (in mM): 150 CsCl, 10 EGTA, 10 HEPES, 5 MgCl2, pH 7.2

with CsOH (320 mOsm/kg). The standard pH 7.4 bath solution in which cells were kept before acti-

vation of acid-induced currents contained (in mM): 145 NaCl, 5 KCl, 1 MgCl2, 2 CaCl2, 10 glucose,

Table 1. TMEM206 Knockout Cell Lines.

Cell line Clone sgRNA sequence Genetic modification Protein modification Figures

HEK293
TMEM206�/

�

1D4 CAGCTGTAAGCACCATTACG a1: duplication of a395
a2: Da395

1: Y132stop between TMD1 and
TMD2
2: Y132S-fs between TMD1 and
TMD2

3E

2E5 GGACCGAGAAGACGTTCTTC Homozygous D2nt (g189-a190) N64R-fs before TMD1 3 C-H; 4; 5; 6; 6-S1; 7; 7-
S1; 8;

3D9 AAGGAGACGGTCAGAGTCCA Homozygous duplication of t110 Q38P-fs before TMD1 3E; 8A-B

HeLa
TMEM206�/

�

1G1 CAGCTGTAAGCACCATTACG duplication of a395 Y132stop between TMD1 and
TMD2

3-S1

2C6 GGACCGAGAAGACGTTCTTC a1: D11nt (g178-a188) a2: duplication
of g189

1: A60E-fs
2: N64E-fs before TMD1

3-S1

3F8 AAGGAGACGGTCAGAGTCCA duplication of t110 Q38P-fs before TMD1 2A,C,D; 8C,D; 3-S1

a = allele; fs = frameshift; nt = nucleotide; TMD = transmembrane domain; D deletion.

DOI: https://doi.org/10.7554/eLife.49187.009
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10 HEPES, pH 7.4 with NaOH (320 mOsm/kg). Solutions with a pH between 4.0 and 5.25 were iden-

tical in composition, but buffered with 5 mM Na3citrate instead of HEPES. pH of these solutions was

adjusted using citrate. Likewise, solutions with a pH between 5.5 and 6.0 were buffered with 10 mM

MES and adjusted with NaOH. To determine anion selectivities (Figure 4A), NaCl in the pH 4.8 bath

solution was replaced by equimolar amounts of NaBr, NaI, NaNO3 and NaSCN. The control bath

solution for the ion selectivity experiments shown in Figure 5E–I and Figure 7 contained (in mM)

150 NaCl, 2 Ca(OH)2, 1 EGTA, five citric acid, pH 5.25 with NMDG-OH (320 mOsm/kg). To deter-

mine relative permeabilities, NaCl was replaced by an equimolar amount of NaI, or with 100 mM

Na2SO4. In these experiments the pipette solution contained (in mM): 140 NMDG-Cl, 10 EGTA, 10

HEPES, 5 MgCl2, pH 7.2 with NMDG-OH (320 mOsm/kg). Osmolarities of all solutions were assessed

with an Osmomat 030 freezing point osmometer (Gonotec) and adjusted using mannitol.

MTSES was purchased from Biotium and stored at �20˚C as powder. MTSES stock solutions (250

mM in water) were freshly prepared on each day and kept on ice until final dilution in recording solu-

tions right before experiments.

The standard protocol for measuring the time course of acid activated currents, applied every 4 s

after membrane rupture, consisted of a 100 ms step to �80 mV followed by a 500 ms ramp from

�80 to +80 mV. The read-out for current amplitudes was the current at �80 mV and +80 mV normal-

ized to cell capacitance (current density, I/C). The voltage protocol, applied after complete activa-

tion of ASOR, consisted of 1 s steps starting from �80 mV to +80 mV in 20 mV intervals preceded

and followed by a 0.5 s step to �80 mV every 4 s.

An agar bridge was used in all electrophysiological experiments. Solution was exchanged in the

entire bath chamber using a custom gravity-fed perfusion system under TTL control, achieving full

exchange in <5 s. Liquid junction potentials (LJPs) were only considered in ion selectivity experi-

ments (Figures 5 and 7). LJPs were measured experimentally for all solutions used in these experi-

ments with reference to NMDG-Cl pipette solution according to Neher (1992) and corrected for

after data acquisition. The measured values (mean ± SD) were: 4.5 ± 0.3 mV (NaCl, n = 4), 4.3 ± 0.3

mV (NaI, n = 4), and 9.5 ± 0.1 mV (Na2SO4, n = 4).

Molecular biology
Human TMEM206 was cloned from cDNA obtained from a human brain cDNA library (Clontech)

using the following primers:

Forward: AGAAGCTTCCACCATGATCCGGCAGGAGCGCTCCAC

Reverse: GAGGATCCTCAGCTTATGTGGCTCGTTGCCTG

HindIII and BamHI restriction sites on the primers were used to clone the PCR product into

pcDNA3.1(+) (Invitrogen). Sequencing of the entire ORF confirmed the sequence was identical to

NCBI RefSeq NM_018252.2. Subsequently, the cDNA was subcloned into other vectors such as

pEGFP-N1/C1 using PCR-based strategies. Point mutations were introduced using the QuikChange

Kit (Agilent). All clones were verified by sequencing the entire ORF. TMEM206 ortholog cDNA

clones (human codon-optimized) were synthesized by Life Technologies. The cDNAs were subcloned

into pEGFP-C1 for fusion of an N-terminal GFP tag.

Cell culture
HEK293 and HeLa cells were maintained in DMEM (PAN Biotech) supplemented with 10% FBS (PAN

Biotech) and 1% penicillin/streptomycin at 37˚C and 5% CO2. Cells were regularly tested for myco-

plasma contamination.

Generation of monoclonal knockout cell lines
Cell lines with disruptions in the TMEM206 gene were generated using CRISPR-Cas9 as described

previously (Voss et al., 2014). Briefly, target sgRNAs were cloned into the pSpCas9(BB)�2A-GFP

(PX458, gift from Feng Zhang, MIT) vector and transfected into HEK293 and HeLa cells. 2–5 days

post-transfection single GFP-positive cells were FACS-sorted into 96-well plates containing pre-con-

ditioned DMEM medium. Monoclonal cell lines were raised and tested for sequence alterations

using target-site-specific PCR on genomic DNA followed by Sanger-sequencing. sgRNA sequences,

genetic modifications and resulting protein mutations are listed for each clone in Table 1.
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Immunocytochemistry
To determine the transmembrane topology of TMEM206, TMEM206�/� HeLa cells (clone 3F8) were

transfected with plasmids encoding GFP-TMEM206, TMEM206-GFP or TMEM206 containing a HA

tag (YPYDVPDYA) after residue 271 using Lipofectamine 2000. 24 hr after transfection, cells were

fixed with 2% PFA for 10 min and permeabilized with 0.1% Triton X-100 as indicated. Cells were

incubated with chicken anti-GFP (1/1000, Aves Lab) or rabbit anti-HA (1/1000, Cell Signaling) for 2

hr and subsequently with secondary antibodies coupled to AlexaFluor633 for 1 hr. For the non-per-

meabilized conditions, no Triton X-100 was added to the antibody solutions.

Images were acquired with a confocal microscope with a 63x NA1.4 oil-immersion lens (LSM880,

Zeiss).

Deglycosylation and western blot
To determine glycosylation of TMEM206, TMEM206�/� HEK cells (clone 2E5) were transfected with

plasmids coding for GFP-TMEM206 or mutants of putative glycosylation sites (GFP-TMEM206

N148A, N155A, N162A, N190A) using polyethylenimine (PEI). One day after transfection, cells were

scrapped in homogenization buffer containing (in mM): 140 NaCl, 20 Tris HCl pH 7.4, 2 EDTA, 4

Pefabloc (Roth) and Complete proteinase inhibitor cocktail (Roche). Cell debris were removed by

centrifugation at 1000 g for 10 min and the supernatant was ultracentrifuged at 269,000 g for 30

min. Pellets containing the membrane fractions were resuspended in lysis buffer containing (in mM):

140 NaCl, 50 Tris HCl pH 6.8, 0.05 EDTA, 1% SDS, 1% Triton X-100, 2 EDTA, 4 Pefabloc (Roth) and

Complete proteinase inhibitor cocktail (Roche). Protein concentration of the membrane fractions

was determined by BCA.

40 mg of membrane protein were denaturated by adding 2 ml of denaturation buffer (New Eng-

land Biolabs), for a final volume of 20 ml, and heating the reaction at 55˚C for 15 min. 4 ml of 10xG7

Buffer (NEB), 4 ml of 10% NP-40 (NEB) and 8 ml of PNGase F (NEB) were added, for a total volume

of 40 ml. After 2 hr incubation at 37˚C, the deglycosylation reaction was terminated by adding 10 ml

of La€mmli sample buffer. Samples were separated by SDS-PAGE and analyzed by Western blot using

rabbit anti-GFP antibody (1/1000, Thermo Fisher). Na/K-ATPase was used as loading control and

detected using a mouse antibody (1/10,000, Millipore).

Acid-Induced cell death assay
Acid-induced cell death of WT and TMEM206�/� HEK293 cells (clones 2E5 and 3D9) was assessed

by double staining with Hoechst 33342 and propidium iodide (PI). WT and KO cells were incubated

for 2 hr at 37˚C with solution at pH 7.4 (HEPES) or 4.5 (citrate, see Electrophysiology). Experimental

solutions were subsequently replaced with pH 7.4 solution containing Hoechst 33342 (1 mg/ml,

ImmunoChemistry Technologies) and PI (5 mg/ml, Thermo Fischer) and cells were incubated for 15

min at 37˚C. After washing, cells were fixed and analyzed using a confocal microscope (LSM880,

Zeiss). For quantification, several 10x microscopic fields were randomly chosen. Percentage of PI

positive cells over the total number of cells, identified with Hoechst 33342, was determined using

Fiji.

Cell volume measurements
Cell volume was measured semi-quantitatively using the calcein fluorescence method (Capó-

Aponte et al., 2005). HEK293 cells were plated 2 days before measurements in a 96-well-plate at a

density of 45,000 cells per well, HeLa cells were plated 1 day before measurements at a density of

35,000 cells per well. Cells were loaded with 10 mM calcein-AM (eBioscience) in DMEM for 1 hr at

37˚C. Subsequently, cells were washed 3 times with 100 ml of a pH 7.4 (HEPES, see Electrophysiol-

ogy) bath solution. After washing, each well contained 50 ml bath solution. Following a 5 min incuba-

tion period the plate was transferred into Safire2 Multimode Microplate Reader (Tecan) and

fluorescence measurements at l = 495 nm were initiated. After baseline recording for 30 s, 125 ml of

a pH 4.0 (citrate, see Electrophysiology) solution, or pH 7.4 bath solution were added to the wells

resulting in a final pH of 4.2 or 7.4 respectively. Calcein fluorescence was measured every 10 s for 10

min. Wells containing cells of the respective cell line not loaded with calcein-AM (but otherwise

treated equally) were used for background subtraction, and fluorescence values were normalized to

t = 0 s (after the pipetting procedure).
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233. DOI: https://doi.org/10.1007/s00424-006-0193-z

Wemmie JA, Taugher RJ, Kreple CJ. 2013. Acid-sensing ion channels in pain and disease. Nature Reviews
Neuroscience 14:461–471. DOI: https://doi.org/10.1038/nrn3529, PMID: 23783197

Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, MacDonald JF, Wemmie JA, Price MP, Welsh MJ, Simon
RP. 2004. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118:687–
698. DOI: https://doi.org/10.1016/j.cell.2004.08.026, PMID: 15369669

Yamamoto S, Ehara T. 2006. Acidic extracellular pH-activated outwardly rectifying chloride current in mammalian
cardiac myocytes. American Journal of Physiology-Heart and Circulatory Physiology 290:H1905–H1914.
DOI: https://doi.org/10.1152/ajpheart.00965.2005, PMID: 16339831

Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U.
2008. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215.
DOI: https://doi.org/10.1038/nature07313, PMID: 18724360

Yang J, Chen J, Del Carmen Vitery M, Osei-Owusu J, Chu J, Yu H, Sun S, Qiu Z. 2019. PAC, an evolutionarily
conserved membrane protein, is a proton-activated chloride channel. Science 364:395–399. DOI: https://doi.
org/10.1126/science.aav9739, PMID: 31023925

Ullrich et al. eLife 2019;8:e49187. DOI: https://doi.org/10.7554/eLife.49187 25 of 25

Research article Cell Biology Structural Biology and Molecular Biophysics

https://doi.org/10.1016/0014-4827(88)90191-7
https://doi.org/10.1016/0014-4827(88)90191-7
http://www.ncbi.nlm.nih.gov/pubmed/3360056
https://doi.org/10.1126/science.1213760
https://doi.org/10.1126/science.1213760
http://www.ncbi.nlm.nih.gov/pubmed/22174253
https://doi.org/10.1073/pnas.052692999
http://www.ncbi.nlm.nih.gov/pubmed/11904445
https://doi.org/10.1007/s10555-018-09777-y
http://www.ncbi.nlm.nih.gov/pubmed/30607627
https://doi.org/10.1016/j.bbagen.2017.05.004
https://doi.org/10.1126/science.1252826
http://www.ncbi.nlm.nih.gov/pubmed/24790029
https://doi.org/10.1038/386173a0
http://www.ncbi.nlm.nih.gov/pubmed/9062189
https://doi.org/10.1007/s00424-006-0193-z
https://doi.org/10.1038/nrn3529
http://www.ncbi.nlm.nih.gov/pubmed/23783197
https://doi.org/10.1016/j.cell.2004.08.026
http://www.ncbi.nlm.nih.gov/pubmed/15369669
https://doi.org/10.1152/ajpheart.00965.2005
http://www.ncbi.nlm.nih.gov/pubmed/16339831
https://doi.org/10.1038/nature07313
http://www.ncbi.nlm.nih.gov/pubmed/18724360
https://doi.org/10.1126/science.aav9739
https://doi.org/10.1126/science.aav9739
http://www.ncbi.nlm.nih.gov/pubmed/31023925
https://doi.org/10.7554/eLife.49187

