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SUMMARY

Amyotrophic lateral sclerosis (ALS) has been geneti-
cally linked to mutations in RNA-binding proteins
(RBPs), including FUS. Here, we report the RNA inter-
actome of wild-type and mutant FUS in human motor
neurons (MNs). This analysis identified a number of
RNA targets. Whereas the wild-type protein preferen-
tially binds introns, the ALS mutation causes a shift
toward 30 UTRs. Neural ELAV-like RBPs are among
mutant FUS targets. As a result, ELAVL4protein levels
are increased inmutantMNs.ELAVL4andmutantFUS
interact and co-localize in cytoplasmic speckles with
altered biomechanical properties. Upon oxidative
stress, ELAVL4 andmutant FUSare engaged in stress
granules. In the spinal cord of FUS ALS patients,
ELAVL4 represents a neural-specific component of
FUS-positive cytoplasmic aggregates, whereas in
sporadic patients it co-localizes with phosphorylated
TDP-43-positive inclusions. We propose that patho-
logical mutations in FUS trigger an aberrant crosstalk
with ELAVL4 with implications for ALS.

INTRODUCTION

RNA-binding proteins (RBPs) play multiple roles in the process-

ing, localization, and function of RNA molecules, in both nuclear

and cytoplasmic compartments (Gerstberger et al., 2014). Dys-
3818 Cell Reports 27, 3818–3831, June 25, 2019 ª 2019 The Author(
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regulation of RNA metabolism has been proposed as a key un-

derlying element in neurodegenerative disorders (Gao and Taylor

2014). Amyotrophic lateral sclerosis (ALS) is a disease primarily

caused by the degeneration of motor neurons (MNs) and is

genetically linked to mutations in several RBPs, including FUS

(also known as TLS) and TDP-43 (Lagier-Tourenne et al.,

2010). Cytoplasmic inclusions of mutated proteins have been re-

ported in the brain and spinal cord of FUS and TDP-43 patients

(Kwiatkowski et al., 2009; Vance et al., 2009; Yokoseki et al.,

2008; Van Deerlin et al., 2008). FUS is a shuttling protein en-

dowed with a nuclear export signal and a nuclear localization

signal. It is mainly localized in the nucleus, but notably, several

pathogenic mutations associated to ALS cluster in the C-termi-

nal nuclear localization signal (PY domain), resulting in defects

in nuclear import (Deng et al., 2014). Thus, nuclear exclusion

and aberrant cytoplasmic localization of the mutated protein

have been proposed as the initial step in ALS pathogenesis

(Bentmann et al., 2013). Both the loss of a nuclear function and

the gain of a possibly toxic function in the cytoplasm have

been proposed as pathological mechanisms contributing to

ALS (Ling et al., 2013). RBPs are often found in membrane-

less organelles, variously referred to as bodies, granules, or

speckles, assembled by a process of liquid-liquid phase separa-

tion mediated by low-complexity domains (Courchaine et al.,

2016). Interestingly, FUS-positive cytoplasmic inclusions found

in ALS patients contain proteins normally present in stress

granules (SGs), such as PABP and eIF4G (Dormann et al.,

2010). SGs aremembraneless transitory structures containing ri-

bonucleoproteins (RNPs) and serving as temporary storage

compartments for mRNAs during stress conditions (Anderson
s).
creativecommons.org/licenses/by-nc-nd/4.0/).
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and Kedersha, 2009). Conversely, cytoplasmic inclusions are

stable and highly insoluble. It is currently unknown how patho-

logical FUS-positive aggregates form in patients’ cells. It has

been proposed that chronic stress and/or other genetic risk

factors might promote the conversion of transient SGs into sta-

ble inclusion bodies (Dormann and Haass, 2011; Wolozin

2012), possibly by a liquid-to-solid phase transition of mutant

FUS (Patel et al., 2015).

FUS plays multiple roles both in the nucleus and in the cyto-

plasm. In the nucleus, FUS participates in the regulation of alter-

native splicing by interacting with nascent transcripts (Ishigaki

et al., 2012; Rogelj et al., 2012; Lagier-Tourenne et al., 2012; Na-

kaya et al., 2013; Zhou et al., 2013). Accordingly, preferential

binding of endogenous wild-type FUS to intronic regions was re-

ported in mouse and human brain (Ishigaki et al., 2012; Rogelj

et al., 2012; Lagier-Tourenne et al., 2012; Nakaya et al., 2013).

Interestingly, genes with long introns and encoding for proteins

involved in neuronal integrity were found among common tar-

gets of FUS and TDP-43 (Lagier-Tourenne et al., 2012). FUS

also regulates splicing of its own mRNA by binding to exon 7

and its flanking introns as a feedback mechanism to control

FUS protein levels in the cell (Zhou et al., 2013; Dini-Modigliani

et al., 2014). Moreover, FUS regulates splicing of other RBPs

by binding to their conserved introns (Nakaya et al., 2013;

Masuda et al., 2015). In addition to alternative splicing, nuclear

FUS regulates mRNA length by binding alternative polyadenyla-

tion sites of nascent RNA (Masuda et al., 2015). Selective anal-

ysis of the cytoplasmic targets of endogenous FUS in mouse

NSC-34 motoneuronal-like cells provided evidence for 30 UTR
binding in this compartment (Colombrita et al., 2012). This is

consistent with the physiological role of FUS in transporting

mRNAs for local translation in neuronal cells and promoting

mRNA stability (Fujii et al., 2005; Udagawa et al., 2015; Yokoi

et al., 2017). The toxic gain-of-function effects of ALS-associ-

ated mutations may be partly due to increased interaction with

cytoplasmic RNA targets. Mutant FLAG-hemagglutinin (HA)-

tagged transgenic FUS expressed in HEK293 cells showed an

altered binding profile: wild-type FUS mostly associated with in-

trons, whereas mutant FUS proteins bound predominantly to

30 UTRs (Hoell et al., 2011). This shift in the bound region on

the target transcripts is consistent with the altered subcellular

localization of the mutated protein because the proportion of in-

trons is much lower in the cytoplasmic compared to the nuclear

transcriptome.

The reasons of selective MN vulnerability downstream of

FUS mutations remain currently unknown. FUS is ubiquitously

expressed and ALS-linked mutations cause its mislocalization

in any cell type, including regions of the nervous system spared

by the disease. Human induced pluripotent stem cells (iPSCs)

provide the opportunity of addressing the cellular and molecu-

lar bases of selective MN death in ALS (Sances et al., 2016).

We have recently generated and characterized FUS mutant

iPSCs, which can be converted into MNs along with isogenic

wild-type controls (Lenzi et al., 2015; De Santis et al., 2017).

In mutant iPSC-derived MNs, FUS is de-localized in the cyto-

plasm, as expected, and we described alterations in the tran-

scriptome and microRNA pathways. However, mutant FUS

may alter cellular functions without affecting RNA levels, for
instance by mislocalizing bound transcripts and/or dysregulat-

ing their translation. Which transcripts are targeted by mutant

FUS in human MNs and what are the effects of aberrant FUS

binding on these RNAs in the cytoplasm remain currently

unknown. So far, studies aimed at characterizing FUS target

transcripts have been performed on the wild-type protein (Co-

lombrita et al., 2012; Ishigaki et al., 2012; Rogelj et al., 2012;

Lagier-Tourenne et al., 2012; Nakaya et al., 2013; Zhou et al.,

2013; Masuda et al., 2015). The only exception is represented

by the work of Hoell et al. (2011) in which mutant FUS proteins

were ectopically expressed in HEK293 cells. Notably, a number

of target genes perturbed by FUS depletion in neuronal cells

are not expressed in non-neuronal cell lines (Lagier-Tourenne

et al., 2012).

Here, we filled this gap of information about the RNA interac-

tome ofmutant FUS inMNs by performing photoactivatable ribo-

nucleoside-enhanced crosslinking and immunoprecipitation

(PAR-CLIP) analysis in human iPSC-derived motor neurons. A

systematic comparison of the binding patterns of wild-type

and mutant (P525L) FUS showed that the ALS mutation causes

a major shift in FUS partners. Interestingly, genes encoding for

RBPs were identified among transcripts bound in the 30 UTR
by mutant FUS. We focused on the neural-specific RBP ELAVL4

(HuD), which we previously showed to be indirectly regulated by

FUS via the microRNAmiR-375 (De Santis et al., 2017). Here, we

found that mutant FUS binds ELAVL4 30 UTR, resulting in

increased production of the ELAVL4 protein. The ELAVL4 protein

localizes in stiff cytoplasmic granules and interacts with mutant

FUS proteins. Speckles containing both proteins are formed

upon mutant FUS and ELAVL4 expression at non-physiological

levels. Such speckles are distinct from SGs; however, ELAVL4

and mutant FUS co-localize in SGs upon oxidative stress, point-

ing to ELAVL4 as a SG component in human MNs. Finally,

ELAVL4 was found in cytoplasmic aggregates in the spinal

cord of ALS patients. We propose a model in which mutant

FUS/ELAVL4 speckles might represent pathological ALS aggre-

gates precursors, partly explaining the neuro-specific toxicity

FUS mutations.

RESULTS

Wild-Type and Mutant FUS RNA Interactors in Human
MNs
Human iPSCs carrying the P525L mutation in both FUS alleles

(hereafter FUSP525L) and their isogenic FUS wild-type control

(hereafter FUSWT) (Lenzi et al., 2015) were differentiated into spi-

nal MNs by using a previously established protocol (De Santis

et al., 2017) (Figure S1A). The P525L mutation, linked to a severe

and juvenile form of ALS, impairs the transportin-mediated nu-

clear import of FUS by disrupting the interaction with the trans-

port pathway (Dormann et al., 2010). As a consequence, FUS

partially de-localized into the cytoplasm in FUSP525L MNs (Fig-

ure 1A; Figures S1B–S1D). We performed PAR-CLIP (Hafner

et al., 2010) on both FUSWT and FUSP525L MN populations.

Immunoprecipitation of crosslinked RNA-protein complexes by

using a FUS antibody resulted in a prominent radioactive band

at the expected molecular weight, for both FUSWT and FUSP525L

(Figure 1B). We additionally generated PAR-CLIP libraries in MN
Cell Reports 27, 3818–3831, June 25, 2019 3819



Figure 1. Identification of RNA Targets of FUSWT and FUSP525L in Human iPSC-Derived Motor Neurons by PAR-CLIP

(A) Immunostaining showing FUS localization (red) in fluorescence-activated cell sorting (FACS)-purified MNs (day 12+7, see Figure S1A). ISL1/2 (green) marks

MNs and 40,6-diamidino-2-phenylindole (DAPI; blue) the nuclei. Scale bars, 10 mm. Single channels are shown in Figure S1B.

(B) Autoradiograph image of crosslinked RNA immunoprecipitated with an anti-FUS antibody, 50 end radiolabeled, and separated by SDS-PAGE. Numbers

indicate the molecular weight (kDa).

(C) Snapshot of the Integrative Genomics Viewer (IGV) window showing the mapping of PAR-CLIP reads and transitions on the NEAT1 locus.

(D) Venn diagram of overlapping targets with at least one T-C transition in the mature transcript in the indicated PAR-CLIP datasets.

(E) The histogram shows the percentage of T-C transitions occurring in the PAR-CLIP datasets across different regions of the MN transcriptome (introns, 50 UTR,
coding sequence [CDS], and 30 UTR).
(F and G) Word cloud generated by FIDEA representing GOMolecular Functions (F) and InterPro (G) terms enriched in the set of FUSP525L 30 UTR-bound targets.

The categories are represented with a character size proportional to the statistical significance of their enrichment.

See also Figures S1 and S2.

3820 Cell Reports 27, 3818–3831, June 25, 2019



populations that ectopically express a FLAG-tagged version of

either wild-type or P525L mutant FUS (Figures S1E–S1G). These

independent PAR-CLIP libraries were used to avoid possible

biases due to antibody aspecificity. Detection of binding sites

in previously described FUS interactors, such as the long non-

coding RNA NEAT1, FUS intron 7, and EWSR (Lagier-Tourenne

et al., 2012; Nishimoto et al., 2013), technically validated our re-

sults (Figure 1C; Figure S1H).

We interrogated our PAR-CLIP dataset to assess whether FUS

mutant protein binds different mRNAs compared to FUSWT. We

identified 3270 FUSWT, 8309 FUSP525L, 4035 FLAG-FUSWT, and

7995 FLAG-FUSP525L protein-coding targets with at least one

thymidine to cytidine transition (T-C; revealing the crosslinked

site in the PAR-CLIP analysis) in the mature transcript (Table

S1). A subset of transcripts is bound by mutant FUS only (Fig-

ure 1D). We then analyzed the percentage of T-C occurring in

the different pre-mRNA andmature mRNA regions (introns, cod-

ing sequences and 50 and 30 UTRs). Wild-type FUS is mostly

bound to intronic regions, confirming previous reports (Hoell

et al., 2011; Rogelj et al., 2012; Lagier-Tourenne et al., 2012;

Nakaya et al., 2013; Masuda et al., 2015). Conversely, FUS

mutant protein preferentially binds the 30 UTR (Figure 1E).

Because the FUSP525L protein was partially de-localized in the

cytoplasm, reduced binding to intronic regions was expected.

Moreover, our findings are in agreement with a previously re-

ported PAR-CLIP dataset from HEK293 cells expressing

FUSR521G, showing preferential binding of the mutant protein

to 30 UTR (Hoell et al., 2011). Seeking for pathways possibly

affected by mutant FUS 30 UTR binding, we performed Gene

Ontology (GO) term enrichment analysis using the Functional

Interpretation of Differential Expression Analysis (FIDEA) tool

(D’Andrea et al., 2013). Several GO terms cooperating in distinct

pathways and molecular functions were found to be significantly

enriched (Figures 1F and 1G; Figure S2A). Among them, we

noticed categories related to ‘‘protein binding-mRNA binding-

RNA binding’’ in the molecular functions. Moreover, focusing

on the INTERPRO categories, we found an enrichment of the

‘‘RNA recognition motif domain’’ protein domain category (Fig-

ure 1G). Notably, GO analysis performed on targets with more

than 10% of T-C transitions in the 30 UTR showed enrichment

of categories related to RNA metabolism (Figures S2B and

S2C). We next crossed the PAR-CLIP data with the RNA

sequencing (RNA-seq) results previously obtained from FUSWT

and FUSP525L MNs (De Santis et al., 2017). We assessed the

fraction of differentially expressed genes in MNs carrying the

FUSP525L mutation that are bound by FUSwt and/or FUSP525L in

our PAR-CLIP dataset. This analysis resulted in significant

enrichment for FUS-bound mRNAs among those that are not

differentially expressed in MNs (Figure S2D), suggesting that,

globally, the ALS mutation does not induce a change in RNA

levels of FUS direct targets. Compared to a dataset of wild-

type FUS targets previously obtained by CLIP-seq in human

brain cortex (Lagier-Tourenne et al., 2012), our analysis revealed

a number of targets, among motor-neuron-expressed genes,

bound by wild-type or mutant FUS only, or both (Figure S2E).

Collectively, these data show that FUSwt and FUSP525L have a

different profile of mRNAs targets, with a drift of the mutant pro-

tein toward 30 UTR binding.
FUSRegulates ELAVL4Expression byBinding the 30 UTR
of Its mRNA
Because functional enrichment analysis of mutant FUS-bound

genes highlighted categories related to RNA metabolism, such

as ‘‘RNA binding’’ and ‘‘RNA recognition domain,’’ we focused

our attention on RBPs encoded by those genes. Among them,

we noticed three RBPs belonging to the Hu-embryonic lethal

abnormal vision-like (ELAVL) family: ELAVL2, ELAVL3, and

ELAVL4 (also known as HuB, HuC, and HuD, respectively). In

the PAR-CLIP datasets, their 30 UTR displayed a strong enrich-

ment of binding sites of mutant FUS compared to the wild-type

(Figure 2A; Figure S3A). In our previous work, we showed that

ELAVL4 transcript levels were increased in FUS mutant MNs

compared to their isogenic WT controls and that such aberrant

upregulation could be partially ascribed to decreased levels of

miR-375 (De Santis et al., 2017). We assessed the functional

consequences of the interaction between mutant FUS and

selected 30 UTRs by taking advantage of a reconstituted system,

consisting of HeLa cells ectopically expressing a FUS transgene

fused to the red fluorescent protein (RFP) by inducible piggyBac-

based vectors (Figure 2B). As expected, RFP-FUSWT was local-

ized in the nucleus, whereas RFP-FUSP525L showed a strong

cytoplasmic de-localization. This experimental set up allowed

systematic evaluation of the effect of FUS binding in the absence

of miR-375, which is not expressed in HeLa (Figures S3B and

S3C). Reporter constructs containing genes of interest 30 UTR
fused with the luciferase coding sequence were transfected in

HeLa cells expressing RFP-FUSWT, RFP-FUSP525L, or RFP as a

control. We observed increased activity of the reporter contain-

ing the ELAVL4 30 UTR in the presence of RFP-FUSP525L, as

compared to both RFP alone and RFP-FUSWT (Figure 2C).

Notably, similar outcomes were observed for the other two

ELAVL family members. Conversely, no effect of either mutant

or wild-type FUS was observed on the vector devoid of any

30 UTR (empty vector) or in the presence of the 30 UTR of an

unrelated gene, PPP1R15A, which was also among the genes

bound by mutant FUS in their 30 UTR (Table S1). We focused

our attention on ELAVL4 3 0UTR to investigate whether the in-

crease of reporter activity could be due to mRNA stabilization.

We quantified by real-time qRT-PCR the relative levels of

reporter mRNA in all conditions, showing a slight upregulation

in RFP-FUSP525L HeLa cells compared to RFP control and amin-

imal difference with RFP-FUSWT (Figure 2D), suggesting that

mutant FUS might increase ELAVL4 expression at the level of

translation and, in minor part, mRNA stability.

We thenmeasured ELAVL4 protein andmRNA levels in human

iPSC-derived MNs, at different time points of differentiation (Fig-

ure S1A). Expression of ELAVL4 was significantly upregulated in

FUSP525L MNs compared to isogenic controls (Figures 2E and

2F). Together with our previous work (De Santis et al., 2017),

these results suggest that increased ELAVL4 levels in mutant

MNs might result from both indirect (miR-375-mediated) and

direct (30UTR-binding-mediated) activities of mutant FUS.

ELAVL4 and Mutant FUS Co-localize in Cytoplasmic
Granules
We next aimed at characterizing the consequences of ELAVL4

protein expression beyond physiological levels and its interaction
Cell Reports 27, 3818–3831, June 25, 2019 3821



Figure 2. FUSP525L Binds and Regulates the

ELAVL4 30 UTR
(A) Snapshot of the IGV window showing the

mapping of PAR-CLIP reads and transitions on the

ELAVL4 30UTR.
(B) Upper panel, schematic representation of the

enhanced piggyBac transposable vector for

doxycycline conditional expression of RFP-FUSWT

(epB-Puro-TT-RFP-FUSWT), RFP-FUSP525L (epB-

Puro-TT-RFP-FUSP525L), and RFP control (epB-

Puro-TT-RFP). F, FLAG tag; pA, polyadenylation

signal; PuroR, puromycin resistance gene; T2A,

self-cleavage peptide; rtTA, TET transactivator

protein gene; Pubc, human ubiquitin C constitutive

promoter; TRE, TET responsive element; Dox,

doxycycline. Triangles represent terminal repeats

of the transposon. Lower panels, HeLa cells ex-

pressing RFP, RFP-FUSWT, RFP-FUSP525L (red)

and stained with Hoechst (blue) for nuclei. Scale

bars, 20 mm.

(C) Luciferase assay on selected target 30 UTRs in

HeLa cells expressing RFP, RFP-FUSWT, and

RFP-FUSP525L.

(D) Measurement of the RNA levels of the Lucif-

erase-ELAVL4-30UTR by real time qRT-PCR

(relative expression compared to RFP-transfected

cells). Histogram bars represent the average of 3

independent experiments and error bars indicate

the SD (Student’s t test; paired; two tails; *p < 0.05;

n.s., p > 0.05).

(E) ELAVL4 protein quantification by western blot

in FUSWT and FUSP525L FACS-purified MNs at two

different time points of differentiation (see Fig-

ure S1A).

(F) ELAVL4 RNA levels were measured by real time

qRT-PCR. Expression levels in FUSP525L MNs are

shown as relative to the isogenic FUSWT control,

set to a value of 1 (dashed bar). Histogram bars

represent the average of 3 independent experi-

ments and error bars indicate the SD (Student’s

t test; paired; two tails; *p < 0.05; **p < 0.01).

See also Figure S3.
with mutant FUS. The coding sequence of ELAVL4was cloned in

frame with a GFP reporter in the inducible piggyBac vector (Fig-

ure 3A), and GFP-ELAVL4 was ectopically expressed in HeLa

cells. In the cytoplasmic compartment, we observed a diffuse

localization punctuated by bright speckles (Figure 3B, left and

middle panels) or more concentrated perinuclearly (Figure 3B,

right panel). Co-staining with the SG marker PABP suggested

that ELAVL4-positive speckles were not SGs (Figure S4A).

Direct protein-protein interaction between ELAVL4 and wild-

type FUS has been recently reported (Blokhuis et al., 2016; Yokoi

et al., 2017). As wild-type FUS is almost exclusively localized in

the nucleus, such interaction presumably occurs in this compart-

ment. The primary consequence of ALS mutations in the PY

domain is the de-localization of FUS in the cytoplasm. We

wondered whether mutant FUS de-localization, coupled with

increased ELAVL4 levels, might alter FUS/ELAVL4 behavior. To

assess the consequences of ELAVL4 increased expression in

the presence of FUSP525L, we took advantage of double reporter
3822 Cell Reports 27, 3818–3831, June 25, 2019
HeLa cell lines ectopically expressing GFP-ELAVL4 and RFP-

FUS (either wild-type or P525L mutant) upon doxycycline induc-

tion (Figures 2B and 3A). Although RFP-FUSWT maintained

nuclear localization, confocal microscopy images show a high

degree of co-localization of GFP-ELAVL4 and RFP-FUSP525L in

cytoplasmic speckles (Figure 3C). Interestingly, the co-expres-

sion of mutant FUS caused a marked increase of ELAVL4 levels

in the speckles, which appeared bigger in size. Also in this case,

double-positive mutant FUSP525L/ELAVL4 speckles do not

represent SGs (Figures S4B and S4C).

We have recently developed a non-contact and label-free

imaging method, named background-deflection Brillouin (BDB)

microscopy, to investigate the three-dimensional intracellular

biomechanical properties of whole cells at a sub-micron resolu-

tion (Antonacci et al., 2018). Combined with confocal fluorescent

microscopy, this technique provides a measure of the stiffness

and viscoelastic properties of subcellular compartments (Scar-

celli et. al., 2015; Antonacci and Braakman, 2016). HeLa cells



Figure 3. ELAVL4 Forms Cytoplasmic Speckles and Interacts with FUSP525L in the Cytoplasm

(A) Schematic representation of the enhanced piggyBac transposable vector for doxycycline conditional expression of GFP-ELAVL4 (epB-Bsd-TT-GFP-

ELAVL4). F, FLAG tag; H, HA tag; pA, polyadenylation signal; BsdR, blasticidin resistance gene; T2A, self-cleavage peptide; rtTA, TET transactivator protein gene;

Pubc, human ubiquitin C constitutive promoter; TRE, TET responsive element; Dox, doxycycline. Triangles represent terminal repeats of the transposon.

(B) Confocal images of HeLa cells stably transduced with the epB-Bsd-TT-GFP-ELAVL4 vector and induced with doxycycline for 24 h. Hoechst (blue) marks

nuclei. Scale bar, 10 mm.

(C) Confocal images of HeLa cells stably transduced with the epB-Bsd-TT-GFP-ELAVL4 and epB-Puro-TT-RFP-FUSWT (top panels) or epB-Puro-TT-RFP-

FUSP525L (bottom panels) vectors and induced with doxycycline for 24 h. In the MERGE panels DAPI (blue) marks nuclei. Scale bar, 20 mm.

(D) Representative images acquired with the confocal microscope (left) and with the BDB microscope (right) of a HeLa cell expressing GFP-ELAVL4 and RFP-

FUSP525L. Scale bar, 10 mm.

(E) Bar plot of the Brillouin frequency shift in cytoplasmic compartments of HeLa cells expressing GFP-ELAVL4, RFP-FUSP525L, or both. Grey bars are relative to

regions of the cytoplasm with high RFP and/or GFP signal. White bars refer to the rest of the cytoplasm. Histogram bars represent the average (6, 5, and 12 cells,

respectively; two independent experiments) and error bars indicate the SD (p values from Student’s t test; paired; two tails).

(F) Co-immunoprecipitation of RFP-FUSP525L and GFP-ELAVL4 from cytoplasmic extracts of HeLa cells treated as in (C). Immunoprecipitation was performed

using an anti-FUS antibody. Samples were untreated or treated with RNaseA before immunoprecipitation. RFP-FUSP525L and GFP-ELAVL4 bands were revealed

with an anti-FLAG antibody.

(G) Co-immunoprecipitation of endogenous FUSP525L and ELAVL4 in cytoplasmic extract of motor neuron by using a FUS antibody and revealed by western blot

with anti-FUS and anti-ELAVL4 antibodies.

See also Figure S4.
expressing GFP-ELAVL4 and RFP-FUSP525L, each alone or in

combination, were imaged first with the confocal microscope to

localize the fluorescence signals and then with the BDB micro-

scope. Representative images are shown in Figure 3D and Fig-
ures S4D andS4E. TheBrillouin frequency shift values associated

to the real part of the longitudinal bulk modulus M’ (Prevedel et.

al., 2019) were comparatively measured in cytoplasmic regions

where GFP and/or RFP signal was more concentrated (i.e., bright
Cell Reports 27, 3818–3831, June 25, 2019 3823



Figure 4. ELAVL4 and FUS Localization in Human iPSC-Derived Motor Neurons in Normal or Stress Conditions

(A) Immunostaining for FUS (red) and ELAVL4 (green) in FUSWT and FUSP525LMNs at 7 days after FACS purification in untreated control conditions. In theMERGE

panels, DAPI (blue) stains nuclei.

(A’) Immunostaining for ELAVL4 (green), TIAR (red), and with DAPI (blue) in cells treated as in (A). Single channels are shown in Figure S6.

(B) Immunostaining for FUS (red) and ELAVL4 (green) in FUSWT and FUSP525L MNs at 7 days after FACS purification, cultured in presence of 0.5 mM sodium

arsenite for 90 min. In the MERGE panels, DAPI (blue) stains nuclei.

(B’) Immunostaining for ELAVL4 (green), TIAR (red), and with DAPI (blue) in cells treated as in (B). Single channels are shown in Figure S6. Scale bar, 10 mm.

(legend continued on next page)
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granules or perinuclear regions in the case of single protein

expression and double-positive speckles for double transgenic

cells; gray bars in Figure 3E) and in the rest of the cytoplasm

(white bars in Figure 3E). In HeLa cells expressing single proteins,

the difference in the Brillouin frequency shift was not significant

for RFP-FUSP525L and was significant for GFP-ELAVL4. Notably,

this difference was more consistent and highly significant in cells

expressing both GFP-ELAVL4 and RFP-FUSP525L. This result

suggests that double-positive speckles represent stiff cyto-

plasmic structures showing different viscoelastic characteristics

from the rest of the cytoplasm.

Co-localization of mutant FUS and ELAVL4 in the cytoplasm

suggested the possibility of a direct interaction between the

two proteins. To verify this hypothesis, we performed co-immu-

noprecipitation (coIP) in cytoplasmic extracts of double reporter

HeLa cells. ELAVL4 was co-immunoprecipitated with mutant

FUS, and this interaction was RNA-dependent, as the ELAVL4

signal was absent in extracts treated with RNase A (Figure 3F;

Figure S4F). Furthermore, interaction between endogenous

FUSP525L and ELAVL4 proteins, untagged and expressed at

physiological levels, was detected in human iPSC-derived MNs

(Figure 3G).

Collectively, these data show that ectopic expression of

ELAVL4 and mutant FUS results in their co-localization in cyto-

plasmic speckles, which do not represent SGs and display

different biomechanical properties from the rest of the cyto-

plasm. Moreover, mutant FUS interacts with ELAVL4 in the cyto-

plasm of human iPSC-derived MNs.

FUSP525L and ELAVL4 Localization in iPSC-Derived MNs
The ELAVL4 gene is a member of the neural ELAVL (nELAVL)

family, whose expression pattern has been extensively charac-

terized, temporally and spatially, in mouse and rat (reviewed in

Bronicki and Jasmin, 2013). Rodent Elavl4 mRNA expression

was detected early during embryonic brain development and

attenuated postnatally. In the adult nervous system its expres-

sion is mostly restricted to specific neuronal populations. In the

rat spinal cord, Elavl4 mRNA levels were found to be highest

within the ventral MNs as compared to the dorsal sensory neu-

rons (Clayton et al., 1998). We took advantage of the Geno-

type-Tissue Expression (GTEx) portal to identify the ELAVL4

expression pattern in human. This survey suggested that hu-

man ELAVL4 transcripts are mainly restricted to the central

nervous system and mostly absent in other tissues (Figure S5A).

In our previous work, we have analyzed the transcriptome of

differentiated FUSWT iPSCs sorted according to the expression

of a MN reporter construct, consisting of the GFP coding

sequence under the control of the Hb9 promoter (De Santis

et al., 2017). We used this dataset to assess the expression

of nELAVL factors in iPSC-derived cell populations representa-

tive of the ventral spinal cord. ELAVL4 and ELAVL2 were en-
(C) Scatter dot plot representing the quantitative analysis, in one representativ

normalized for the volume) of ELAVL4 signal (right) of the ELAVL4-positive speck

(D) Scatter dot plot representing the quantitative analysis of the volumes (left)

representative experiment, of ELAVL4 signal (right) of the ELAVL4-positive SGs in

indicate the median with interquartile range. p values from Student’s t test (unpa

See also Figures S5, S6, and S7.
riched in the Hb9::GFP-positive MN population, whereas

ELAVL3, ELAVL1 (HuR), and FUS did not show significant

differences in the two samples (Figure S5B). Differential

expression of ELAVL4 was confirmed in the Hb9::GFP-positive

MN populations at the transcript (Figure S5C) and protein

(Figure S5D) levels. Moreover, immunostaining analysis per-

formed on the unsorted mixed population of iPSC-derived

cells showed ELAVL4 expression in the TUJ1-positive fraction

(Figure S5E), mostly represented by ISL1/2-positive MNs (Fig-

ure S5F; De Santis et al., 2017). Taken together, the GTEx

interrogation and the expression analysis in iPSC-derived cells

suggest that human ELAVL4 is a neural gene expressed in

spinal MNs.

We next characterized ELAVL4 intracellular localization in

MNs, in the presence of wild-type or mutant FUS. Pure popula-

tions of FUSWT and FUSP525L iPSC-derived MNs were stained

with antibodies for FUSandELAVL4 and analyzed at the confocal

microscope. In normal culture conditions, ELAVL4 localized in

both nuclear and cytoplasmic compartments and mutant FUS

did not change this pattern (Figure 4A). Cytoplasmic ELAVL4-

positive speckles, reminiscent of those formed upon ectopic

expression in HeLa, could be observed in MNs as well. However,

cytoplasmic FUS was not confined in these ELAVL4 speckles in

mutant MNs. In normal conditions, ELAVL4 speckles do not

co-localize with the SG marker TIAR (Figure 4A’; Figure S6A).

We then evaluated FUS and ELAVL4 localization upon sodium

arsenite (ARS) treatment, which induces oxidative stress and

SG formation. In ARS-treated FUSWT MNs, ELAVL4 re-localized

into cytoplasmic SGs, displaying a bigger size than ELAVL4-

positive speckles observed in unstressed cells (Figure 4B; Fig-

ure S6B). Wild-type FUS maintained its nuclear localization, as

expected. In stressed FUSP525L MNs we observed the formation

of SGs that were both FUS- andELAVL4-positive (Figures 4B and

4B’). Quantitative analysis of the volumes and ELAVL4 mean

signal intensity within the speckles revealed that although their

size is not altered by the FUS mutation, ELAVL4 levels are signif-

icantly increased in the speckles formed in FUSP525L MNs (Fig-

ure 4C). The same analysis on cells stressed with ARS showed

that in mutant MNs the SGs contain a higher amount of ELAVL4

protein (Figure 4D). These findings were confirmed inMNs gener-

ated from an independent pair of isogenic FUSWT and FUSP525L

iPSCs (Figures S6C and S6D). We next explored the possibility

that mutant FUS and ELAVL4 share some mRNA target in the

MN. The interactome of nELAVLs in human brain has been

recently reported (Scheckel et al., 2016). In this dataset, 95.5%

of the reads were mapped in introns and 30 UTRs. To identify

candidates that might mediate the interaction of ELAVL4 and

FUSP525L in the cytoplasm, we crossed the 30 UTR nELAVLs tar-

gets with our PAR-CLIP datasets. As shown in Figure S7A,

several mRNA are bound by both nELAVLs and FUS. Interest-

ingly, nELAVLs share a higher number of common targets with
e experiment, of the volumes (left) and mean intensity (total signal intensity

les in FUSWT (n = 23) and FUSP525L (n = 38) MNs as shown in (A).

and mean intensity (total signal intensity normalized for the volume), in one

FUSWT (n = 23) and FUSP525L (n = 30) MNs as shown in (B). In all graphs the bars

ired; two tails) are indicated.
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Figure 5. ELAVL4 Immunostaining Analysis

in FUS Patients’ Specimens

Immunofluorescence showing spinal cord motor

neurons of ALS patients harboring the indicated

FUSmutations and control. Sections were stained

with anti-FUS (red) and anti-ELAVL4 (green) anti-

bodies and counterstained with Hoechst. Scale

bar, 20 mm. Characteristics of patients and con-

trols are reported in Table S2.
FUSP525L compared to FUSWT. This result was further confirmed

by overlapping our PAR-CLIP results with the interactome of

ELAVL4 in murine NSC-34 MN-like cells (Tebaldi et al., 2018).

Notably, the top 30 previously identified ELAVL4 targets are all

bound by FUSP525L in their 30 UTR (Figure S7B). Thus, a common

set of target transcripts might contribute, at least partially, to the

co-recruitment of FUSP525L and ELAVL4 in cytoplasmic granules

of MNs.

These findings showed that ELAVL4 is a component of SGs

formed upon oxidative stress in human MNs and that ELAVL4

and FUS co-localize in these compartments only in FUS mutant

cells. Moreover, both ELAVL4 speckles (in normal conditions)

and SGs (upon oxidative stress) contain increased levels of

ELAVL4 in FUS mutant MNs.

ELAVL4 Is a Component of Pathological Inclusions in
ALS Patients’ Specimens
We have previously shown the detection of ELAVL4 in mutant

FUS inclusions in spinal MNs from an ALS patient carrying the

R521C mutation (Blokhuis et al., 2016). To assess whether
3826 Cell Reports 27, 3818–3831, June 25, 2019
such co-localization generally occurs in

FUS ALS patients, we performed immu-

nohistochemistry for FUS and ELAVL4

on spinal cord sections from two addi-

tional patients harboring the R521C mu-

tation and one patient with the R521H

mutation. In agreement with the observa-

tion that late-onset cases, such as those

with mutations in the R521 residue,

mostly display tangle-like neuronal cyto-

plasmic inclusions (Mackenzie et al.,

2011), in patients’ specimens we de-

tected FUS-positive thick filaments within

the perikaryon, either with a globose

arrangement or with a flame-shaped

appearance extending into the proximal

axon (Figure 5). FUS depletion from the

nucleus was also evident. Notably, even

though the nuclear fraction of ELAVL4

appeared maintained, ELAVL4 showed

altered localization in the cytoplasm of

patients’ MNs, with fibrillar appearance

and co-localization with FUS-positive fil-

aments. We then extended this analysis

to sporadic ALS patients, devoid of muta-

tions in known ALS genes, and in ALS pa-

tients carrying the pathological C9ORF72
expansion. In sporadic patients’ specimens phosphorylated

TDP-43 (pTDP-43)-positive pathological cytoplasmic inclusions,

a highly consistent feature in sporadic and familial forms of TDP-

43 proteinopathies (Neumann et al., 2009), also showed localiza-

tion of ELAVL4 (Figure 6; Figure S8). In C9ORF72 patients, we

detected fewer pTDP-43-positive neurons and less evident co-

localization of pTDP-43 and ELAVL4 in pathological inclusions

(Figure S8).

These findings point to ELAVL4 as a common component of

FUS-positive and pTDP-43-positive neuronal cytoplasmic inclu-

sions, in FUS and sporadic ALS patients, respectively.

DISCUSSION

RNA metabolism alterations have been shown to play a funda-

mental role in ALS. Single ALS mutations in RBPs have been

proposed to be disease-causative, but the underlying mecha-

nisms remain poorly understood. Interestingly, individual RBPs

act often in concert with other RBPs in complex regulatory

networks, comprised of feedback loops and cross-regulation.



Figure 6. ELAVL4 Immunohistochemistry Analysis in Sporadic ALS

Patients’ Specimens

Immunohistochemistry on spinal cord samples from sporadic ALS patients.

For double immunohistochemistry, sections were labeled with anti-ELAVL4

(blue) and anti-pTDP-43 (pS409/410) (red). Scale bar: 20 mm. Arrows indicate

pTDP-43 and ELAVL4 double positive cytoplasmic inclusions. Characteristics

of patients and controls are reported in Table S3. See also Figure S8.
The significance of the crosstalk between ALS-linked RBPs

and other factors involved in RNA metabolism deserves deeper

investigation.

ALS-linked mutations in FUSmay alter other RBPs levels by at

least four mechanisms: (1) dysregulation of alternative splicing

(Nakaya et al., 2013; Zhou et al., 2013); (2) stalling RNA polymer-

ase II and prematurely terminating transcription (Masuda et al.,

2015); (3) impairment of the production of targeting miRNAs

(Morlando et al., 2012; Dini-Modigliani et al., 2014; Emde et al.,

2015; De Santis et al., 2017); and (4) increasing translation

and/or stability by aberrant binding to the 30 UTR in the cyto-

plasm (present study). The first three mechanisms are consistent

with a loss-of-function effect of the mutation, which would

reduce the nuclear fraction of FUS and indeed can be mimicked

by FUS downregulation. Aberrant 30 UTR binding would instead

represent the gain of a toxic function for mutant FUS, due to its
mis-localization in the cytoplasm. The PAR-CLIP analysis sug-

gests that mutant FUS proteins have a larger number of targets

than the wild type. As ALS mutations are not expected to alter

FUS affinity for RNA (Bentmann et al., 2012; Daigle et al.,

2013), we speculate that this could be primarily due to different

sub-cellular localization of the mutated protein. Although previ-

ous work showed that FUS knock down resulted in decreased

mRNA stability (Udagawa et al., 2015; Kapeli et al., 2016; Yokoi

et al., 2017), we propose here that ALS mutant FUS binding to

the 30 UTR of ELAVL4, and possibly other genes, has an opposite

outcome resulting in an increase of target protein production in

MNs. Together with our previous findings, our results suggest

a doublemechanism bywhich ELAVL4 levels could be increased

in mutant FUS MNs: an indirect effect of the mutation would be

mediated by the decrease of miR-375 levels (De Santis et al.,

2017) and a direct outcome would result by 30 UTR binding in

the cytoplasm. Mechanistic insights into the regulation of

ELAVL4 and other RBPs by FUS might lead to a better under-

standing of the basis of RNA metabolism dysregulation in ALS.

At the protein level, direct interaction of wild-type FUS and

ELAVL4 in neural cells has been previously reported (Groen

et al., 2013; Udagawa et al., 2015; Blokhuis et al., 2016; Yokoi

et al., 2017). In mouse hippocampal neurons, both FUS and

ELAVL4 proteins bind the 30 UTR of SynGAP, a factor involved

in spine maturation (Yokoi et al., 2017). Knock down of either

FUS or ELAVL4 resulted in the interaction of SynGAP 30 UTR
with ELAVL1, leading to destabilization of the transcript. Thus,

FUS and ELAVL4 cooperatively increase mRNA stability by

30 UTR binding. A similar mechanism may promote the produc-

tion of GluA1, an AMPA receptor subunit (Udagawa et al.,

2015; Yokoi et al., 2017). These studies proposed that the inter-

play between wild-type FUS and ELAVL4 is crucial for synaptic

morphology and cognitive functions in the context of frontotem-

poral lobar degeneration (FTLD). In the present study, we

showed that mutant FUS and ELAVL4 interact at the protein level

in the cytoplasm of MNs. This would represent an aberrant inter-

action occurring in mutant cells only, where nuclear import of the

mutated FUS protein is impaired. We show that interaction be-

tween the two proteins occurs in a RNA-dependent manner,

and this observation has two possible explanations. One possi-

bility is that ELAVL4 and FUSP525L need a RNA bridge to interact.

To this regard, crossing our dataset with previous studies on the

interactome of neural ELAV proteins suggested that the two

RBPs share a common set of targets. However, it has been

previously reported that RNA binding changes FUS conforma-

tion and activity (Wang et al., 2008), possibly affecting protein in-

teractors in coIP experiments. Thus, we cannot exclude direct

protein-protein binding. Under stress conditions, both mutant

FUS and ELAVL4 get recruited into SGs. The consequences of

their interaction and re-localization, also in light of the fact that

ELAVL4 levels would be aberrantly increased in mutant MNs,

could be relevant for ALS pathology. We propose a model,

depicted in Figure 7A. In normal MNs, FUS is mostly nuclear

and ELAVL4 levels are controlled by miR-375. In young mutant

MNs, FUS is partially de-localized in the cytoplasm, where it

binds ELAVL4 30 UTR. Nuclear FUS reduction would also

result in a decrease of miR-375. As a consequence, ELAVL4 pro-

tein levels start to increase. This situation is mimicked in our
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Figure 7. Model and Expression of FUS Pathological Inclusion Components in Human

(A) Model of the aberrant crosstalk betweenmutant FUS and ELAVL4 in ALS. (i) In normal conditions FUS (red) is mainly localized in the nucleus. ELAVL4 (green) is

localized both in the nucleus and in the cytoplasm, where it has a diffuse localization punctuated by speckles. Human iPSC-derived FUSWT MNs would be

representative of this situation. (ii) ALS mutations in the nuclear localization signal cause FUS partial de-localization in the cytoplasm. Mutant FUS binds ELAVL4

30UTR. Moreover, as a consequence of FUS nuclear depletion, miR-375 levels decrease. These events gradually cause an increase of ELAVL4 protein levels.

Human iPSC-derived FUSP525L MNs would be representative of this situation. (iii) Over time, ELAVL4 protein levels are increasingly augmented, forming bigger

speckles in the cytoplasm. It is possible that protein-protein interaction with ELAVL4 results in further mutant FUS accumulation in the cytoplasm. This, in turn,

would further increase ELAVL4 levels by the above-mentioned mechanisms. (iv) Increased levels of both ELAVL4 and mutant FUS in the cytoplasm and their

interactionmight lead to the formation of speckles containing both proteins, independently from cellular stress. This situation cannot be observed in human iPSC-

derived MNs, which correspond to ‘‘young’’ MNs. However, mutant FUS/ELAVL4 speckles are formed in the cytoplasm of HeLa cells overexpressing both

proteins. (v) In presence of cellular stress, e.g., oxidative stress, cytoplasmic mutant FUS and ELAVL4 proteins co-localize in stress granules. We observe this

phenomenon in both transgenic HeLa cells and human iPSC-derived MNs. (vi) Alteration of granules/speckles biomechanical properties due to mutant FUS

and/or increased ELAVL4 would lead over time to the formation of ALS pathological inclusions, in which mutant FUS, ELAVL4, and SGmarkers can be detected.

(legend continued on next page)
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iPSC-derived MN model system, in which we observed an

increased amount of ELAVL4 in the speckles. Over time, mutant

FUSwould be increasingly accumulated in the cytoplasm, paral-

leled by an increment of ELAVL4 levels. We hypothesize that

over a given threshold, mutant FUS and ELAVL4 co-localize in

cytoplasmic speckles. Although iPSC-derived MNs, which

correspond to a fetal stage (Sances et al., 2016), could not reca-

pitulate this ‘‘aged’’ condition, we observed double-positive

speckles in HeLa cells co-expressing mutant FUS and ELAVL4

beyond physiological levels.When analyzedwith the BDBmicro-

scope, these speckles showed a significant increase of the

Brillouin frequency shift compared to the rest of the cytoplasm.

As this parameter can provide information about the condensa-

tion state of the material analyzed (Antonacci et al., 2018), the

onset of a liquid-to-solid phase transition occurring in the

speckles might be inferred from this analysis. These structures

might, therefore, represent the precursors of the pathological in-

clusions or aggregates found in patients’ MNs. This hypothesis is

supported by evidences from the current work and by our previ-

ous report (Blokhuis et al., 2016), showing FUS/ELAVL4 colocal-

ization in cytoplasmic aggregates in the spinal cord of FUS ALS

patients. Pathological inclusions have been shown to contain SG

markers (Dormann et al., 2010). We observed co-localization of

mutant FUS and ELAVL4 in SGs in iPSC-derived MNs under

oxidative stress conditions. Consistent with the increased levels

of ELAVL4 in these cells, SGs formed in FUSP525L MNs contain a

higher amount of ELAVL4. It is possible that, over time, transient

SGs coalesce with mutant FUS/ELAVL4 speckles, contributing

to pathological inclusion formation. Notably, among a number

of components of FUS-positive pathological inclusions detected

so far in ALS patients, only NFH had been identified as a neural-

enriched factor. In the GTEx dataset, all other factors and

FUS itself are reported as ubiquitously expressed in all tissues

analyzed (Figure 7B; Figure S9). This includes other RBPs and

SG components, such as PABP, eIF4G, CAPRIN1, and FMRP.

On the contrary, ELAVL4 is a neural-specific RBP associated

with the pathological inclusions of FUS patients. This evidence,

together with the BDB analysis, lead to the speculation that the

FUS/ELAVL4 interaction could alter the biomechanical proper-

ties of these structures in neural cells only. Importantly, localiza-

tion of ELAVL4 in pathological cytoplasmic inclusions occurs

also in non-FUS sporadic ALS. As the direct interaction between

ELAVL4 and TDP-43 has been previously described in mouse

MNs (Fallini et al., 2012), we might speculate that in these

patients recruitment of ELAVL4 in pTDP-43-positive inclusions

occurs by an aberrant crosstalk with TDP-43.

In conclusion, this study reports a comprehensive analysis of

wild-type and mutant FUS RNA interactome in the cell type pri-

marily affected by ALS, i.e., the human MN. Among selective

mutant FUS targets, we identified several RBPs, including

ELAVL4, which represents a neural-specific component of SGs
As previously proposed (Bentmann et al., 2013), three modes of pathologica

aggregation- and SG-dependent.

(B) Heatmap representing gene expression levels in different human tissues

known components of FUS pathological inclusions (Blokhuis et al., 2013, 20

also shown. Expression values are shown in TPM (transcripts per million),

See also Figure S9.
and ALS pathological inclusions in both FUS patients and in spo-

radic ALS with pTDP-43 proteinopathy. We, therefore, propose

ELAVL4 as a RBP with a potential role in ALS pathogenesis.
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Vance, C., Rogelj, B., Hortobágyi, T., De Vos, K.J., Nishimura, A.L., Sreed-

haran, J., Hu, X., Smith, B., Ruddy, D., Wright, P., et al. (2009). Mutations in

FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis

type 6. Science 323, 1208–1211.

Wang, X., Arai, S., Song, X., Reichart, D., Du, K., Pascual, G., Tempst, P.,

Rosenfeld, M.G., Glass, C.K., and Kurokawa, R. (2008). Induced ncRNAs

allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature

454, 126–130.

Wolozin, B. (2012). Regulated protein aggregation: stress granules and neuro-

degeneration. Mol. Neurodegener. 7, 56.

Yokoi, S., Udagawa, T., Fujioka, Y., Honda, D., Okado, H., Watanabe, H., Kat-

suno, M., Ishigaki, S., and Sobue, G. (2017). 3’UTR Length-Dependent Control

of SynGAP Isoform a2 mRNA by FUS and ELAV-like Proteins Promotes

Dendritic Spine Maturation and Cognitive Function. Cell Rep. 20, 3071–3084.

Yokoseki, A., Shiga, A., Tan, C.-F., Tagawa, A., Kaneko, H., Koyama, A., Egu-

chi, H., Tsujino, A., Ikeuchi, T., Kakita, A., et al. (2008). TDP-43 mutation in

familial amyotrophic lateral sclerosis. Ann. Neurol. 63, 538–542.

Zhou, Y., Liu, S., Liu, G., Ozt€urk, A., and Hicks, G.G. (2013). ALS-associated

FUS mutations result in compromised FUS alternative splicing and autoregu-

lation. PLoS Genet. 9, e1003895.
Cell Reports 27, 3818–3831, June 25, 2019 3831

http://refhub.elsevier.com/S2211-1247(19)30724-7/sref31
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref31
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref32
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref32
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref32
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref33
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref33
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref33
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref33
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref34
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref34
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref34
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref35
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref35
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref35
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref35
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref36
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref36
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref36
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref36
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref37
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref37
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref38
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref38
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref38
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref39
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref39
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref39
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref39
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref40
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref40
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref40
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref40
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref40
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref41
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref41
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref42
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref42
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref42
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref43
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref43
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref43
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref44
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref44
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref44
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref45
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref45
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref45
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref45
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref45
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref46
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref46
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref46
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref46
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref46
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref47
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref47
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref47
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref47
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref49
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref49
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref50
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref50
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref51
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref51
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref51
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref51
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref52
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref52
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref52
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref53
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref53
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref53
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref53
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref54
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref54
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref54
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref54
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref55
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref55
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref55
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref55
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref56
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref56
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref56
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref56
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref57
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref57
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref57
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref57
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref58
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref58
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref58
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref58
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref58
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref59
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref59
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref59
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref59
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref60
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref60
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref60
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref60
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref61
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref61
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref62
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref62
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref62
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref62
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref63
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref63
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref63
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref64
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref64
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref64
http://refhub.elsevier.com/S2211-1247(19)30724-7/sref64


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti FUS/TLS antibody Santa Cruz Biotechnology Cat#sc-47711; RRID: AB_2105208

Mouse monoclonal anti-phospho TDP-43 pS409/410 antibody Cosmo Bio Cat#TIP-PTD-M01; RRID: AB_1961900

Mouse monoclonal anti-HuD antibody (E-1) Santa Cruz Biotechnology Cat#sc-28299; RRID: AB_627765

Mouse monoclonal anti-ELAVL4 antibody Santa Cruz Biotechnology Cat#sc-48421; RRID: AB_627766

Goat polyclonal anti-Actin antibody Santa Cruz Biotechnology Cat#sc-1616; RRID: AB_630836

Mouse monoclonal anti-FLAG M2 antibody Sigma-Aldrich Cat#F1804; RRID: AB_262044

Rabbit polyclonal anti-FUS/TLS antibody Abcam Cat#AB84078; RRID: AB_2105201

Mouse monoclonal anti-Islet-1/2 antibody DSHB Cat#39.4D5; RRID: AB_2314683

Mouse monoclonal anti-PABP antibody Santa Cruz Biotechnology Cat#SC-32318; RRID: AB_628097
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PrimeScript RT-PCR Kit Takara Scientific Cat#RR014B
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Oligonucleotides
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Plasmid epB-Puro-TT-RFP Rosa et al., 2014 N/A

pSI-Check2 vector Promega Cat#C8021; RRID: Addgene_106979

Plasmid epB-Puro-TT-RFP-FUS This paper N/A
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Plasmid epB-Bsd-TT-GFP-ELAVL4 This paper N/A

Software and Algorithms

Huygens Professional version 18.04, Deconvolution software Scientific Volume Imaging https://svi.nl/Huygens-Professional

Imaris 8.1.2, 3D quantitative analysis software Bitplane Scientific Software http://www.bitplane.com/releasenotes/

imaris812.aspx

Flexbar, Demultiplexing software Roehr et al., 2017 https://github.com/seqan/flexbar

Cutadapt, adaptor trimming software Martin, 2011 https://cutadapt.readthedocs.io/en/

stable/index.html

FASTX Trimmer, Command line tools for Short-Reads

FASTA/FASTQ files preprocessing

Hannon lab http://hannonlab.cshl.edu/fastx_toolkit/

PARA-Suite aligner, Sequence alignment software Kloetgen et al., 2016 https://github.com/akloetgen/PARA-

suite_aligner

BMix tool, PAR-CLIP analysis tool Golumbeanu et al., 2016 https://omictools.com/bmix-tool

BEDTools suite, PAR-CLIP analysis tool Quinlan and Hall, 2010 https://bedtools.readthedocs.io/en/

latest/index.html

CASAVA package, Sequencing data analysis tool Illumina https://www.illumina.com/

Portal for the analysis of gene expression in human tissues Genotype-Tissue Expression

(GTEx) Portal Version 7
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Alessan-

dro Rosa (alessandro.rosa@uniroma1.it).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human iPSC lines
Derivation and maintenance conditions of human iPSCs carrying the P525L mutation in both FUS alleles (FUSP525L, male) and their

isogenic FUSwild-type control (FUSWT, male) used in this study are described in Lenzi et al. (2015). TheMN differentiation protocol is

detailed in De Santis et al. (2017) and depicted in Figure S1A. In brief, cells were differentiated in N2B27 medium supplemented with

1 mM all-trans retinoic acid (Sigma-Aldrich) and 1 mM SAG (Merck Millipore) for 12 days in the presence of 10 mM SB431542 and

100 nM LDN-193189 (both fromMiltenyi Biotec) from day 0 to 6, and 5mMDAPT and 4mMSU-5402 (both from Sigma-Aldrich) from

day 6 to 12. Cells were sorted at day 12-13 using a FACSAria III (BD Biosciences) and re-plated on poly-L-ornithine- and laminin-

coated dishes (both from Sigma-Aldrich) in Neural Medium as described in De Santis et al. (2017).

HeLa cells
HeLa cells were purchased from ATCC and maintained in DMEM-F12 supplemented with 10% FBS, 1x Penicillin/Streptomycin (all

from Sigma-Aldrich) and 1x Glutamax (Life Technologies).

Spinal cord samples from ALS patients
Consent for autopsy was obtained in concordance with institutional regulations. Patient and control details are included in Tables S2

and S3.

METHOD DETAILS

PAR-CLIP analysis
iPSC-derived motor neurons (day 12+3 of differentiation, see Figure S1A) were cultured in presence of 400 mM 4-thiouridine (Sigma-

Aldrich) for 8 hours. UV crosslinking at 365 nmwas performed at 0.15 J/cm2with a CL-1000Ultraviolet Crosslinker (UVP), in PBS. Cell

pellets were then resuspended in NP40 lysis buffer (50 mM HEPES-KOH, 150 mM KCl, 2 mM EDTA, 1 mM NaF, 0.5% (v/v) NP40,

0.5 mM DTT and complete EDTA-free protease inhibitor cocktail) and incubated for 15 minutes on ice. Both FUS-WT and FUS-

P525L IP were performed using anti-FUS/TLS antibody (sc-47711, Santa Cruz Biotechnology) for 2 hours at 4�C in NP40 lysis buffer.

Ectopically expressed FLAG-FUS-WT and FLAG-FUS-P525L IP was performed using anti-FLAG M2 antibody (F1804, Sigma-

Aldrich) for 1 hour at 4�C in NP40 lysis buffer. The PAR-CLIP was carried out as previously described (Maatz et al., 2017) with

exception of 30 Adaptor ligation that was performed on beads after immunoprecipitation (Benhalevy et al., 2017). Briefly, beads-

Ab after IP for FUS were washed with 1X RNA ligase buffer without ATP (New England Biolabs) two times and then incubated

with a reaction mixture for the ligation of the 30 adenylated adaptor composed of 1X RNA ligase buffer without ATP, 15% aqueous

PEG-8000, 2 mM adenylated 30 adaptor oligonucleotide and 200 U of Rnl2(1–249) K227Q ligase (New England Biolabs). Sequencing

was performed on an Illumina HiSeq4000 using 51 cycles to obtain 20 to 55million raw reads. Sequencing data was converted using

the bcl2fastq tool from the Illumina CASAVA package, followed by demultiplexing and 30 adaptor trimming using Flexbar (Roehr et al.,

2017) and Cutadapt (Martin, 2011) software, respectively. To remove PCR duplicates, reads with identical sequence were collapsed,

then we used FASTX Trimmer tool (http://hannonlab.cshl.edu/fastx_toolkit/) to remove random nucleotides from both ends of

collapsed reads. Reads shorter than 14 nucleotides were discarded. BWA-based (Li and Durbin, 2010) PARA-Suite aligner (Kloetgen

et al., 2016) was used to align reads to GRCh38 genome and to a custom database of exon-exon junctions generated from Ensembl

89 transcriptome annotation (Aken et al., 2017). We handled multi-mapping reads by keeping only those that mapped once with at

least one T-Cmismatch: mapping positions indicating T-C transitions were chosen as the correct ones. Cross-link induced T-C tran-

sitions were called for each individual replicate using BMix tool (Golumbeanu et al., 2016). To evaluate the consistency of biological

replicates we calculated a distance score for each pair of samples equal to the number of T-C transitions not in common over the total

number of T-C transitions, found using the BEDTools intersect tool (Quinlan and Hall, 2010). Similarity between replicates was

confirmed by distance score-based hierarchical clustering of samples (Figure S1). This similarity prompted us to combine alignment

files from each pair of replicates and repeat T-C transition calling on the resulting files in order to increase sensitivity. Only transitions

supported by at least two reads from both replicates were kept.

Plasmid construction and transfection
The epB-Puro-TT-RFP, epB-Puro-TT-RFP-FUS, epB-Puro-TT-RFP-FUS-P525L and epB-Bsd-TT-GFP-ELAVL4 were generated by

inserting the transgene sequences in the enhanced piggyBac transposable vector (Rosa et al., 2014). ELAVL4 coding sequence was

obtained from the pFRT-TODestFLAGHA_HuD plasmid (Addgene#65757). The resulting constructs contain the enhanced piggyBac

terminal repeats flanking a constitutive cassette driving the expression of the blasticidin or puromycin resistance genes fused to the

rtTA gene and, in the opposite direction, a tetracycline-responsive promoter element (TRE) driving the conditional expression of the

transgenes. HeLa cells were co-transfected with 4.5 mg of transposable vector and 0.5 mg of the piggyBac transposase using

Lipofectamine 2000 (Life Technologies) following manufacturer’s instructions. Selection with 5 mg/ml blasticidin or 0.5 mg/mL

puromycin gave rise to stable and inducible cell lines. For transgene induction, 200 ng/ml of doxycycline (Sigma-Aldrich) were added

to the medium 24 hours before the analysis.
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Luciferase assay
Target 30UTRswere cloned in the pSI-Check2 vector. Reporter vectors were transfected in 50,000 pre-seeded HeLa cells in a 24-well

plate using Lipofectamine 2000 (Life Technologies) following manufacturer’s instructions. Cells were harvested 24 hours post-

transfection and RLuc and FLuc activities were measured by Dual Glo luciferase assay (Promega) according to the manufacturer’s

protocol. An aliquot of cell lysate was kept for RNA extraction and checked by RT-PCR with primers annealing to RLuc and FLuc

sequences (RLuc FW: TCGTCCATGCTGAGAGTGTC; RLuc REV: CTAACCTCGCCCTTCTCCTT; FLuc FW: TGCAGAAGATCCT

GAACGTG; FLuc REV: CGGTAGACCCAGAGCTGTTC).

Co-immunoprecipitation
Cytoplasmic fractionation was performed in HeLa cells and iPSC-derived MNs using a NP40 hypotonic buffer (HEPES-KOH 10mM,

EDTA 0.1mM, 0.5% (v/v) NP40, KCl 10mM, DTT 1mM and complete EDTA-free protease inhibitor cocktail) for 15 minutes on ice.

Supernatant was considered cytoplasmic extract, while pellet nuclei. Salt concentration was equilibrated using a 2X NP40 buffer.

Pre-cleaning of cytoplasmic extract was performed by 30 minutes incubation with Protein G magnetic beads (Life Technologies).

Immunoprecipitation was performed using 5 mg of FUS antibody (sc-47711; Santa Cruz Biotechnology) for 1h at 4�C. Samples

were washed 3 times using NP40 buffer and protein complex were released by resuspending the beads in LDS buffer 1X (Life

Technologies) for 50 at 95�C.

Immunostaining
Cells seeded on m-slide 8-well (ibidi) were washed twice with PBS, fixed in 4%paraformaldehyde for 15minutes at room temperature

and then incubated for 5 minutes in 0.1M glycine. Fixed cells were then permeabilized with PBS containing 0.05% Triton X-100 for

5 minutes and subsequently incubated for 20 minutes with antibody blocking solution (ABS: 3% BSA in PBS). Primary antibodies

were incubated overnight at 4�C. The primary antibodies used are: anti-FUS/TLS (Abcam, AB84078; 1:100), anti-Islet-1/2 (DSHB,

39.4D5; 1:50), anti-PABP (Santa Cruz Biotechnology, SC-32318; 1:100), anti ELVL4/HuD (Santa Cruz Biotechnology, SC-48421,

1:100) and anti-TIAR (Santa Cruz Biotechnology, SC-1749; 1:50), anti-TUJ1 (Sigma-Aldrich, T2200, 1:2000). The secondary anti-

bodies were diluted 1:250 in ABS and incubated for 1 hour at room temperature. The secondary antibodies are: anti-mouse Alexa

Fluor 488 (Immunological Sciences, IS-20010), anti-rabbit Alexa Fluor 594 (Immunological Sciences, IS-20152-1), anti-goat Alexa

Fluor 594 (Immunological Sciences, IS-20116-1) and anti-mouse Alexa Fluor 647 (Life Technologies, A31571). 0.4 mg/ml DAPI

(Sigma-Aldrich) was used for 5 minutes to label nuclei. Cells were then mounted using ibidi Mounting Medium (ibidi). Double fluores-

cent-labeling on spinal cord samples from FUS ALS patients were performed as previously described (Blokhuis et al., 2016); sections

were analyzed using a Zeiss LSM 880 laser scanning confocal microscope.

Image acquisition, deconvolution and analysis
Confocal images of Figures 1, 2, 3, and 4 were acquired at the Olympus iX83 FluoView1200 laser scanning confocal microscope

using a 60x NA1.35 oil objective and 405nm, 473nm and 559nm lasers. Filter setting for DAPI, Alexa Fluor 488 and Alexa Fluor

594 were used. For ELAVL4 signal quantification, the raw stack images were first deconvolved with Huygens Professional version

18.04 (Scientific Volume Imaging, the Netherlands, https://svi.nl), using the CMLE algorithm, with SNR:15 and 50 iterations. Then

3D quantitative analysis was performed using Surfaces in Imaris 8.1.2 (Bitplane Scientific Software, USA), mean intensity and volume

values of each speckle or stress granule were exported in Prism 7 for statistical analysis and graph display.

Immunohistochemistry
For immunohistochemistry on human spinal cord samples from sporadic ALS patients, formalin-fixed paraffin-embedded 6 mm thick

sections were deparaffinized in xylene and rinsed in graded ethanol (100%, 95%, 70%). Antigen retrieval was performed in citrate

buffer (10 mM sodium citrate, pH 6.0) at 120�C for 10 minutes using a pressure cooker followed by incubation with a given

primary antibody (mouse anti-phospho TDP-43 pS409/410, TIP-PTD-M01, Cosmo Bio, Tokyo, Japan; 1:2.500). Due to antibody

incompatibilities we were unable to perform double fluorescent-labeling. For double immunohistochemistry, sections were

incubated with Brightvision rabbit-anti-mouse for 15 min at RT and subsequently with poly-horseradish peroxidase-anti-rabbit

(Immunologic, Duiven, the Netherlands) for 30 min at RT, and washed with PBS. Horseradish peroxidase was visualized with filtered

5x10-4%w/v AEC in in 0.05M acetate buffer pH 4,9 and 1x10-4%H2O2. To remove the first primary antibody, sections were incubated

at 120�C in citrate buffer for 10 min. Incubation with mouse anti-HuD antibody (E-1, sc-28299, Santa Cruz Biotechnology, CA, USA;

1:50) was performed overnight at 4�C. The next day the sections were incubated with Brightvision poly-alkaline phosphatase- goat-

anti mouse (Immunologic, Duiven, the Netherlands) for 30 min at RT and washed with PBS. Sections were washed with Tris–HCl

buffer (0.1 M, pH 8.2) to adjust the pH. Alkaline phosphatase activity was visualized with the Vector Blue alkaline phosphatase

substrate kit III (SK-5300, Vector laboratories Inc., CA, USA) Sections incubated without primary antibodies or with heat-inactivated

primary antibodies were blank.

BDB microscopy
HeLa cells (50,000) were seeded in each m-Dish 35 mm high Grid-50 Glass Bottom (Ibidi) in 2 mL of culture medium. Doxycycline

(200ng/ml;Sigma-Aldrich)wasadded to themediumforectopicprotein induction. Thenextday, cellswerepreparedas follows:washed
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with PBS (Sigma-Aldrich), fixed with 4% paraformaldehyde for 15 minutes at room temperature, washed with PBS, incubated

5minuteswithPBScontaining0.1Mglycine,washed2 timeswithPBSand left inPBS for confocal andBrillouinacquisition, aspreviously

described (Antonacci et al., 2018). For the analysis shown in Figure 3E, a mask on portions of the cytoplasm showing high fluorescent

signal was first created to localize different subcellular regions across the associated Brillouin images, in turn providing a measure of

the frequency shift (a stiffness indicator).

Gene expression analysis
Total RNA, extracted with the Quick-RNA MiniPrep (Zymo Research) and retrotranscribed with PrimeScript (Takara Scientific), was

analyzed by real-time qRT-PCR with SYBR Green PowerUP (Thermo Fisher Scientific) as previously described (De Santis et al.,

2017). ATP5O was used as the internal calibrator. Primers sequences are ATP5O FW: ACTCGGGTTTGACCTACAGC; ATP5O RV:

GGTACTGAAGCATCGCACCT; ELAVL4 FW: CAACCCCAGCCAGAAGTCCA; ELAVL4 RV: AGCCTGAACCTCTGAGCCTG; ISL-1

FW: TACAAAGTTACCAGCCACC; ISL-1 RV: GGAAGTTGAGAGGACATTGA. Western blot analysis was carried out using anti-

ELAVL4 (sc-48421; Santa Cruz Biotechnology), anti-FUS (sc-47711; Santa Cruz Biotechnology), anti-Actin (sc-1616; Santa Cruz

Biotechnology), anti-FLAG-HRP (F7425; Sigma-Aldrich) primary antibodies and anti-HA-HRP (sc-7392; Santa Cruz Biotechnology)

secondary antibody, as previously described (Lenzi et al., 2015).

The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National

Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. The data used for the analyses described in this manu-

script were obtained from the GTEx Portal (https://www.gtexportal.org/home/), Version 7, on 07/31/18.

QUANTIFICATION AND STATISTICAL ANALYSIS

All the statistical details of experiments (including the statistical tests used, exact value of n, what n represents, definition of center,

dispersion and precision measures) can be found in the figure legends.

DATA AVAILABILITY

The accession number for the PAR-CLIP raw data reported in this paper is GEO: GSE118347
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