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SUMMARY

We performed the first proteogenomic study on
a prospectively collected colon cancer cohort.
Comparative proteomic and phosphoproteomic
analysis of paired tumor and normal adjacent tis-
sues produced a catalog of colon cancer-associ-
ated proteins and phosphosites, including known
and putative new biomarkers, drug targets, and
cancer/testis antigens. Proteogenomic integration
not only prioritized genomically inferred targets,
such as copy-number drivers and mutation-derived
neoantigens, but also yielded novel findings. Phos-
phoproteomics data associated Rb phosphoryla-
tion with increased proliferation and decreased
apoptosis in colon cancer, which explains why
this classical tumor suppressor is amplified in
colon tumors and suggests a rationale for targeting
Rb phosphorylation in colon cancer. Proteomics
identified an association between decreased CD8
T cell infiltration and increased glycolysis in micro-
satellite instability-high (MSI-H) tumors, suggesting
glycolysis as a potential target to overcome the
resistance of MSI-H tumors to immune check-
point blockade. Proteogenomics presents new
This is an open access article under the CC BY-N
avenues for biological discoveries and therapeutic
development.
INTRODUCTION

Colorectal cancer (CRC) is the thirdmost common cancer world-

wide and the fourth leading cause of cancer-related deaths

(Arnold et al., 2017). Recent studies of the genomic, transcrip-

tomic, and proteomic landscapes of human CRC have identified

many genomic alterations and have revealed extensive molecu-

lar heterogeneity of the disease (Cancer Genome Atlas Network,

2012; Guinney et al., 2015; Zhang et al., 2014). However, the

rapidly accumulating omics data have yet to bring novel bio-

markers and drug targets to the clinic.

Global proteomic differences between tumor and normal tis-

sues, which are critical for cancer biomarker discovery, have

not been systematically characterized in large tumor cohorts.

Signaling proteins and pathways are often attractive therapeutic

targets for cancer treatment, yet global phosphoproteomic ana-

lyses on human CRC are lacking. Recent advances in cancer

immunotherapy underscore the critical need for biomarkers to

predict response to immune checkpoint inhibition and to select

neoantigens for personalized vaccine development (Sharma

et al., 2017). Proteogenomics can provide fresh approaches to

these needs. Here, we describe a proteogenomic study from

the Clinical Proteomic Tumor Analysis Consortium (CPTAC) on
Cell 177, 1035–1049, May 2, 2019 ª 2019 Elsevier Inc. 1035
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Figure 1. Schematic Overview of the Study

(A) Samples and omics platforms for data generation.

(B) Therapeutic hypothesis generation through proteogenomic integration. The colors represent data generated from different omics platforms as indicated by

the same colors in (A).

See also Figure S1 and Table S1.
a prospectively collected colon cancer cohort to systematically

identify new therapeutic opportunities.

RESULTS

Proteogenomic Profiling
We prospectively collected tumor specimens, matched normal

adjacent tissues (NATs), and blood samples from 110 colon can-

cer patients. We performed whole-exome sequencing (WXS),

copy-number array, RNA sequencing (RNA-seq), microRNA

sequencing (miRNA-seq), and label-free shotgun proteomic

analyses on the tumor samples, similar to our previous study

(Zhang et al., 2014). To characterize the proteomes in cancer

and normal states, we further performed isobaric tandem mass

tag (TMT) labeling-based global and phosphoproteomic analysis

on both tumors and NATs (Figure 1A). Table S1 summarizes the

clinical and pathological characteristics of the tumors.

Although this study includes only colon tumors, rather thanboth

colon and rectal tumors in The Cancer Genome Atlas (TCGA)

cohort (Zhang et al., 2014), the averagemRNAprofileswere highly

correlated between the two cohorts (Pearson’s r = 0.92) as were

the average label-free protein profiles (Pearson’s r = 0.96), and

these correlations were higher than those between different can-

cer types or between colon tumors and cell lines (Figures S1A–
1036 Cell 177, 1035–1049, May 2, 2019
S1G). Principal component analysis clearly separated the tumors

and NATs based on the TMT global or phosphoproteomics data,

and no batch effect was observed between the TMT plexes (Fig-

ures S1H and S1I). Correlation of proteomics data between the

label-free and TMT platforms was higher than for either with

RNA-seq data (Figures S1J–S1L). Label-free proteomics data

from colon tumors outperformed RNA-seq data for gene function

prediction, and TMT data further outperformed both (Figures

S1M–S1O). These results affirm the consistency of the two prote-

omic platforms and the added value of proteomics for assessing

gene functions. Based on the comprehensive molecular profiling

datasets, we performed integrative proteogenomic data ana-

lyses, focusing on using global and phosphoproteomics data to

improve the interpretation of genomics data and to reveal new

therapeutic opportunities (Figure 1B).

Somatic Mutations and Their Proteomic Consequences
WXS analysis of 106 tumor specimens and matched blood sam-

ples identified 64,010 somatic single nucleotide variants (SNVs)

and 7,691 somatic insertions/deletions (INDELs) (Figures S2A

and S2B). A focused analysis of microsatellites further identified

6,186 somatic microsatellite INDELs (MS INDELs) (Figure S2C;

Table S2). In total, we identified 56,592 unique somatic protein

altering events (Table S3).
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The number of MS INDELs showed a clear bimodal distribu-

tion, which allowed us to separate the samples into a microsat-

ellite instability-high (MSI-H) group (n = 24) and a microsatellite

stable (MSS) group (n = 82, Figure S2D). For the 85 samples

with PCR-based MSI testing results, WXS-based assignment

agreed completely with PCR assignment (Table S2). MSI-H

tumors showed a distinct mutational spectrumwith an increased

proportion of A > G/T > C transitions and decreased G > C/C > G

transversions compared toMSS tumors (Figure S2E). TheMSI-H

group was enriched with mutations in the mismatch repair

pathway and in the POLE and BRAF genes (Figure S2F).

To identify significantly mutated genes, we grouped the MSI-

H and the one hypermutated MSS sample with a POLE muta-

tion into a hypermutated group; the remaining samples formed

a non-hypermutated group (Figure S2D). In the non-hypermu-

tated group, we identified eight significantly mutated genes

(Figure 2A), which all were reported in the TCGA study (Cancer

Genome Atlas Network, 2012). In the hypermutated group, we

identified nine significantly mutated genes (Figure 2B), six of

which were not reported in the TCGA study. Four genes newly

identified in this study, namely CASP5, RNF43, LTN1, and

BMPR2, were mutated in more than 50% of the hypermutated

samples.

The TMT data on matched tumors and NATs allowed us to

investigate the proteomic consequences of somatic mutations.

Some protein changes could be predicted from the mutations,

such as the stop-gain and frameshift mutations in APC, which

result in nonsense-mediated mRNA decay or truncated proteins.

As expected, tumors with these mutations had reduced abun-

dance of phosphosite APC-T2451, which is located downstream

of the mutations (Figure 2C). Similarly, tumor samples bearing

frameshift mutations in TGFBR2 showed reduced abundance

of phosphosite TGFBR2-S553 (Figure 2D).

Some protein changes were difficult to predict based on the

mutations. For example, phosphorylation of TP53-S315 was

increased in tumors over matched NATs (p = 0.001, paired

t test). Three tumors with more than 10-fold increase of TP53-

S315 phosphorylation all had an R273 mutation (Figure 2E).

We reviewed TP53-S315 phosphorylation data from the CPTAC

breast (Mertins et al., 2016) and ovarian cancer (Zhang et al.,

2016) studies and found TP53-S315 phosphorylation in tumors

with R273 mutations was 3.4- to 83-fold above the medians of

those cohorts, strengthening the association between these

hotspot mutations and increased TP53-S315 phosphorylation.

The high mobility group (HMG) transcription factor SOX9 was

recurrently mutated in this cohort, including six stop-gain muta-
Figure 2. Somatic Mutations and Their Proteomic Consequences

(A and B) Significantly mutated genes in non-hypermutated (A) and hypermutated

reported in the TCGA study are shown in bold font.

(C–F) Somatic mutations versus protein/phosphosite abundance change for APC

plot visualizes all protein altering somatic mutations detected in this cohort. The si

and the color represents a specific type of mutation as indicated in the figure le

indicated by a triangle. The bottom panel co-visualizes the mutation and protein

colored box denotes the existence of a specific type of mutation as indicated in the

more than one type of mutation, only one type is shown in the following order of

ymous SNV. In the waterfall plot, each bar represents the protein or phosphosite

patient. Red and green bars represent over- and under-expression in tumor, res

See also Figure S2 and Tables S2 and S3.
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tions, eight frameshift mutations, and five nonsynonymous

SNVs. According to the ‘‘20/20 rule’’ that classifies genes with

more than 20% truncatingmutations as tumor suppressor genes

(Vogelstein et al., 2013), SOX9 should be classified as a tumor

suppressor. However, SOX9 protein was significantly overex-

pressed in tumor samples compared to matched NATs (p =

1.02 3 10�10, paired t test, Figure 2F), which argues against a

tumor suppressor assignment. Even in tumors with the trun-

cating mutations, despite the small number of samples, we still

observed statistically significant overexpression of SOX9 (p =

0.04, paired t test, Figure 2F). Interestingly, most of the trun-

cating mutations occurred downstream of the HMG-box domain

and upstream of the evolutionally conserved ubiquitin-target site

K398 (Figure 2F), which is responsible for 26S proteasome

dependent degradation of SOX9 (Akiyama et al., 2005). Thus,

removal of the K398 ubiquitination site through the truncating

mutations may stabilize SOX9 protein and increase protein

abundance. Consistent with these data, functional assays sup-

port an oncogenic rather than tumor suppressor role of SOX9

in primary CRC cells (Matheu et al., 2012).

Taken together, our somatic mutation analyses identified

new significantly mutated genes among MSI-H tumors,

and the proteomics data revealed unexpected functional

complexity that could not have been predicted from mutation

data alone.

Proteomics Data Prioritize Somatic Copy-Number
Alterations
We performed somatic copy-number alteration (SCNA) analyses

with WXS data and Illumina SNP array data, but the SNP array

data showed low dynamic range. Hence, we only report SCNAs

identified fromWXS analysis. We identified very similar arm level

SCNAs to the TCGA cohort, including amplifications of 1q, 7p

and q, 8p and q, 13q, and 20p and q, and deletions of 1p, 14q,

15q, 17p and q, 18p and q, and 22q (Figure 3A). Focal level

SCNAs (Figure 3B) did not completely agree with those reported

in the TCGA study, which may reflect cohort and/or platform dif-

ferences. Nonetheless, most focal SCNAs previously reported

were found in our cohort. Cytobands in chromosome 20

(20p12.1, 20q13.12, 20q13.13) and chromosome 18 (18q21.2)

contained the most frequently amplified and deleted focal re-

gions, respectively (Figure 3B).

Next, we examined the correlations of SCNA with mRNA and

protein abundance. While cis-effects of SCNAs on mRNA

abundance were similar to our previous study (Zhang et al.,

2014), cis-effects on protein abundance were stronger
(B) samples. Mutation frequency is shown at the top for each gene. Genes not

(C), TGFBR2 (D), TP53 (E), and SOX9 (F). For each gene, the top panel lollipop

ze of a lollipop represents the number of samples with correspondingmutation,

gend. The location of the post-translational modification (PTM) of interest is

or phosphosite abundance data for individual samples. For mutation data, a

figure legend. Gray boxes indicate data are not available. If a given sample has

priority: stop-gain, frameshift-INDEL, non-frameshift INDEL, and non-synon-

abundance change between tumor and matched normal adjacent tissue for a

pectively. White space in the waterfall plots indicates missing values.
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(A) Arm-level somatic copy-number alteration (SCNA) events. Red denotes amplification and blue denotes deletion.

(B) Focal-level SCNA events. Focal peaks with significant copy-number gains (red) and losses (blue) (GISTIC2 Q-values <0.25) are shown. The top ten amplified

and deleted cytobands are labeled, with the proportions of amplified or deleted samples shown in the parentheses. Representative genes encoded from these

focal peaks are highlighted in approximate positions across the genome.

(C) Effects of copy-number alternations onmRNA and protein abundance. The upper heatmap shows the abundance of significant copy-number correlation with

mRNA (left) and protein (right). Significant positive and negative correlations (adj. p < 0.01, Spearman’s correlation coefficient) are indicated by red and blue,

respectively. Genes are ordered by chromosome locations on both x- and y-axes. The bottom shows the frequency of significant correlations. Gray bars

represent copy-number correlation to mRNA (left) and protein (right), and black bars represent copy-number correlation to both mRNA and protein.

(D) Strategy for prioritizing genes in focal alteration peaks.

(E) Most enriched KEGG pathways and Gene Ontology (GO) biological processes (BP) for genomic drivers inferred in this study.

(F) Six deleted genes involved in endocytosis. Violin plots compare protein expression in tumor and normal adjacent tissue for each gene.

See also Table S4.
(Figure 3C), reflecting the greater quantitative precision of the

TMT platform compared to the previous label-free analysis. We

also confirmed previously reported trans-acting SCNA hotspots

on chromosomes 20q, 18, 16, 13, and 7 and identified a new

hotspot on chromosome 14 (Figure 3C).

Previously, we showed that correlated copy number, mRNA,

and protein levels can prioritize copy-number drivers in focal

alteration regions. Here, we found that only 59% of such priori-

tized amplification or deletion drivers showed expected pro-

tein-level effects in tumor versus NAT comparisons (Figure 3D).

Thus, data from NATs can substantially refine candidate driver

lists (Table S4). The final prioritized list included the previously re-

ported 20q amplification drivers HNF4A and TOMM34. We also
identified the well-known tumor suppressor SMAD4 in the 18p

focal deletion region.

To better understand the genomic drivers inferred in this

study, including the 17 significantly mutated genes and the

90 prioritized SCNA genes, we performed enrichment analysis.

Not surprisingly, significantly enriched terms included colorectal

cancer, cell proliferation, cell death, and Hippo signaling

pathway (Figure 3E). Enrichment for endosome organization

and endocytosis, including six genes located in different focal

deletion regions across the genome (Figure 3F), indicated that

multiple deletion events converge to repress the endocytosis

pathway, which may allow tumors to gain self-sufficiency in

growth signals (Mosesson et al., 2008).
Cell 177, 1035–1049, May 2, 2019 1039
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Figure 4. Rb Phosphorylation as a Driver and Therapeutic Target in Colon Cancer

(A–C) RB1 Copy-number alteration (CNA) (A), protein log2 fold change (FC) from normal (B), and phosphorylation log2 fold change from normal (C). Samples are

ordered by increasing average phosphorylation abundance.

(D and E) Correlations of Rb protein abundance change (D) and average Rb phosphorylation change (E) with estimated E2F1 activity change.

(F–H) Correlation of average Rb phosphorylation change with estimated CDK2 activity change (F), H3.1 phosphorylation change (G), and protein level changes of

apoptotic proteins (H).

(I) A model depicting the multi-level regulation of RB1 in colon cancer, highlighting Rb phosphorylation as a driver and therapeutic target in colon cancer.

The p values in (D)–(H) were calculated by Pearson’s correlation test. See also Figure S3.
Rb Phosphorylation as a Driver and Therapeutic Target
in Colon Cancer
One of the recurrently amplified genes in this cohort was the

retinoblastoma (RB1) gene (Figure 4A). Consistently, the RB1

protein (Rb) was overexpressed in tumors compared to NATs

(p = 2.10 3 10�15, paired t test, Figure 4B). RB1 was the first

tumor suppressor gene identified, and its amplification and over-

expression in colon cancer contradict its frequent mutation and

deletion in other cancers (Figure S3).

As a tumor-suppressor, Rb prevents cell proliferation by inhib-

iting E2F transcription factors, but this inhibition is abolished by

Rb phosphorylation (Rubin, 2013). Phosphoproteomics quanti-

fied six Rb phosphorylation sites in at least 50% of all samples,

including four sites (i.e., T373, S807, S811, and T826) that regu-

late E2F binding (Knudsen and Wang, 1997; Rubin, 2013). The

average abundance of the four sites was higher in colon tumors

than in NATs (p < 2.2 3 10�16, paired t test) (Figure 4C). More-

over, the average tumor versus NAT change for phospho-Rb

was 1.84-fold, which was significantly higher (p = 0.01, Wilcoxon

signed-rank test) than the 1.58-fold average change for total Rb
1040 Cell 177, 1035–1049, May 2, 2019
measured from global proteomics. Thus, tumor samples had not

only higher total Rb, but also a higher proportion of phospho-Rb

within the total Rb pool.

Predicted E2F1 activity changes between tumors and NATs

(STAR Methods) were positively correlated with both total Rb

change (Pearson’s r = 0.40, p = 5.13 10�5, Figure 4D) and phos-

pho-Rb change (Pearson’s r = 0.30, p = 3.5 3 10�3, Figure 4E).

Because un-phosphorylated Rb inhibits E2F1 activity, the signif-

icant positive correlation between total Rb and E2F1 activity sug-

gests that the increase of total Rb in tumors is attributable to

phospho-Rb, rather than un-phosphorylated Rb. The positive

correlation between E2F1 activity and phospho-Rb may reflect

a positive feedback loop (Sherr and McCormick, 2002), in which

E2F1 transcriptionally upregulates cyclin E, which activates

CDK2, thereby phosphorylating Rb and relieving E2F1 inhibition

of cell proliferation. Indeed, phospho-Rb change showed the

highest correlation with the predicted activity change of CDK2

(r = 0.47, p = 1.83 10�6, Figure 4F) compared to all other kinases

(STAR Methods). Further, phospho-Rb change was significantly

correlated with the phosphorylation change of histone H3.1, a
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marker for cell proliferation (Pearson’s r = 0.49, p = 2.6 3 10�4,

Figure 4G). Therefore, our data showed that increased Rb phos-

phorylation, instead of RB1 mutation or deletion, drives colon

cancer proliferation. However, it remains puzzling why RB1 is

recurrently amplified in colon tumors, because post-translational

downregulation of the inhibitory activity of this overexpressed

protein seems mechanistically inefficient. Further analysis

showed that Rb phosphorylation change in colon tumors was

negatively correlated with the apoptosis hallmark gene set

(STARMethods, Pearson’s r =�0.28, p = 5.33 10�3, Figure 4H),

which primarily comprises pro-apoptotic genes (Liberzon et al.,

2015). Thus, phospho-Rb appears to have an antiapoptotic role.

Together, proteogenomic data integration suggests that Rb

phosphorylation regulates both proliferation and apoptosis to

drive colon cancer development (Figure 4I). This insight reveals

a previously unexploited opportunity to target Rb phosphoryla-

tion in colon cancer through CDK2 inhibition, which is not

possible for cancers driven by RB1 mutation or deletion.

Colon Cancer-Associated Proteomic Events and
Potential Clinical Utilities
TMT global proteomic analysis of the 96 tumor and NAT pairs

identified a total of 8,067 proteins. Among the 6,422 proteins

that were quantified in at least 50% of the samples (i.e., quantifi-

able proteins), 2,217 (35%) were significantly increased and

2,527 (39%) were significantly decreased in tumors compared

to paired NATs (adjusted [adj.] p < 0.01, Wilcoxon signed-rank

test, Figure 5A). Of these, 31 increased and 417 decreased pro-

teins had amore than 2-fold abundance change. The 417proteins

elevated in NATs were significantly enriched in muscle-related

functions (Figure 5B), as expected from normal colon histology,

which includes defined muscular structures that are typically

absent in tumors. We focused our analysis on the 31 proteins

elevated by more than 2-fold in tumors, which we defined as

colon cancer-associated proteins (Table S5).

Figure 5C depicts the distributions of pairwise tumor-NAT

differences for the 31 cancer-associated proteins. Most showed

highly homogeneous differential expression across the 96
Figure 5. Colon Cancer-Associated Proteomic Events

(A) Volcano plot indicating proteins overexpressed in tumors or normal adjacent t

and blue further require more than 2-fold change); other genes are colored in gra

(B) Gene Ontology biological processes enriched for the 417 proteins downreg

process related genes and the 417 proteins.

(C) Log2-fold change between tumor and matched NATs is shown for the 31 can

(D) Tumor-cell specific immunohistochemistry (IHC) staining scores defined by th

(E) Overlap with plasma proteins, secreted proteins, transmembrane proteins, an

(F) Volcano plot indicating phosphosites overexpressed in tumors or NATs. Colo

(G) Correlation between tumor-normal protein and phosphorylation site abunda

indicates the diagonal line. Red points indicate the phosphorylation sites with >2-

lower protein abundance in tumors than in NATs.

(H) Overlap of proteins containing cancer-associated phosphorylation sites (phosp

Cancer Gene Census (CGC).

(I) Cancer-associated kinases identified by increased phosphorylation of a kno

phosphosite set enrichment analysis based on known kinase-target site relationsh

the existence of an FDA-approved drug or a drug undergoing clinical trials targe

(J) The number of proteomics-supported neoantigens identified for each sample

(K) Three cancer/testis (CT) antigens overexpressed by at least 2-fold in tumors co

in brackets. Sample order is the same as in (J). Gray boxes indicate data are not

See also Figures S4 and S5 and Tables S5 and S6.
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tumor-NAT pairs. Eight proteins were increased in tumor in

more than 95% of the pairs, including DDX21 (100%),

S100A11 (100%), RSL1D1 (99%), S100P (97%), RPL36A

(97%), PLOD2 (96%), SERPINH1 (95%), and GPRC5A (95%).

Among the 30 proteins with immunohistochemistry (IHC) stain-

ing data in The Human Protein Atlas (HPA), around half showed

medium to strong tumor-specific staining in CRC samples (Fig-

ures 5D and S4).

We associated the 31 proteins with the human secretome,

membrane proteome, and enzymes because these sub-

proteomes are enriched with clinically approved biomarkers

and drug targets. Nineteen have been found in plasma, 18 are

secreted, nine are trans-membrane, and eight are enzymes (Fig-

ure 5E). Fifteen of these proteins have known clinical utilities as

diagnostic markers, outcome markers, or therapeutic targets

(Table S5), including CEACAM5, which is the most widely used

CRC marker in clinical practice (Duffy, 2001). Other proteins

may merit further investigation.

We also assessed the differences in phosphorylation site

abundance between 96 tumor and NAT pairs. Among the

7,295 phosphorylation sites quantified in at least 50% of the

paired samples, 2,119 (29%) were significantly increased and

3,053 (42%) were significantly decreased in tumors compared

to paired NATs (adj. p < 0.01, Wilcoxon signed-rank test).

Of these, 63 were increased and 793 were decreased

with a >2-fold abundance change (Figure 5F). We defined

the 63 phosphosites mapping to 50 proteins as cancer-

associated phosphosites (Table S5), of which all but one

had greater changes in phosphosite abundance than in corre-

sponding protein abundance (Figure 5G, red dots). Despite

the overall concordance between phosphosite abundance

changes and corresponding protein abundance changes

(Pearson’s r = 0.81, p < 2.2 3 10�16), some cancer-associated

phosphosites mapped to proteins that were decreased in

tumor samples (Figure 5G, highlighted by black arrows). Only

four of the 50 proteins with a cancer-associated phosphosite

also met our criteria as cancer-associated proteins. Moreover,

only seven proteins in our combined protein set were
issues (NATs, light red and blue colors indicate adj. p < 0.01 (sig) whereas red

y.

ulated in tumors. Venn diagram depicts the overlap between muscle system

cer-associated proteins (mean in red).

e Human Protein Atlas (HPA).

d enzymes annotated by HPA, as well as known clinical utilities.

rs are the same as in (A).

nce differences (Pearson’s r = 0.81, p < 2.2 3 10�16). The purple dashed line

fold increase. The black arrows highlight 5 of these phosphorylation sites with

hoproteome), cancer-associated proteins (proteome), and cancer genes in the

wn kinase activating site in tumor compared to NAT (phosphorylation) or by

ips (inferred). Gray boxes indicate data are not available. Black boxes indicate

ting that kinase.

, with MSI-H and MSS annotation shown at the top.

mpared to NATs in more than 5% of all samples, with the percentage indicated

available.



documented in the Cancer Gene Census, a comprehensive

catalog of genes containing mutations implicated in cancer

(Figure 5H). Proteomics and phosphoproteomics data thus

are complementary and both reveal additional colon cancer

genes that were missed in genomic studies.

Kinases are among the most attractive therapeutic targets for

cancer treatment. We predicted cancer-associated kinase activ-

ity based on (1) significantly increased phosphorylation of a

known kinase activating site in tumor compared to NAT, and

on (2) enrichment analysis of the known target sites for each

kinase. We identified four kinases by each method, with

one kinase, CDK7, identified by both (Figure 5I). Among these

kinases, CDK4 is targeted by Food and Drug Administration

(FDA)-approved drugs, and the other CDKs (CDK1, CDK2, and

CDK7), MELK, and PFKFB3 are targeted by drugs in clinical

trials (Table S5). The last kinase, PI4KB, may merit further inves-

tigation as a novel candidate therapeutic target.

Tumor Antigens
To facilitate the development of personalized vaccines for can-

cer immunotherapy, we further analyzed our data to identify

candidate tumor antigens, including neoantigens derived from

somatic mutations and non-mutated cancer/testis (CT) antigens.

To identity candidate neoantigens, we searched the label-free

and TMT global proteomics and TMT phosphoproteomics data

against customized protein databases incorporating all coding

variations identified from matched exome sequencing and

RNA-seq data and found 173 proteomics-supported somatic

mutations. All peptides of 9–11 amino acids in length that con-

tained one of these somatic mutations were evaluated for

human leukocyte antigen (HLA)-I binding affinity. The 88 mutant

peptides with high predicted binding affinity to HLA molecules

were considered as putative neoantigens (Table S6). In total,

one or more putative neoantigens were identified for 38% of

the tumors (Figure 5J).

The TMT global proteomics data identified a total of 16

CT-antigens, and three were increased by at least 2-fold in

tumors compared to paired NATs in more than 5% of all

tumor-NAT pairs, including IGF2BP3 (51%), SPAG1 (14%), and

ATAD2 (8%) (Figure 5K). According to data in HPA, IGF2BP3

protein expression in normal human tissues is restricted to

reproductive organs and fetal brain (Figure S5A). While normal

colon tissue stains negatively for IGF2BP3, colon cancer stains

positively (Figure S5B). Notably, peptides derived from IGF2BP3

significantly induce a tumor-specific cytotoxic T lymphocyte

response in vitro (Suda et al., 2007) and in vivo in human esoph-

ageal tumors in a phase I clinical trial (Kono et al., 2009).

In contrast to neoantigens that were enriched in MSI-H tumors

and were patient-specific, CT antigens were independent of MSI

status and were shared among many patients. Together, we

found proteomics-supported neoantigens or CT antigens for

78% of the tumors in this cohort, demonstrating the potential

of proteogenomics in identifying tumor antigens for cancer vac-

cine development.

A Unified View of Colon Cancer Molecular Subtypes
Applying the consensus molecular subtypes (CMS) classifier

(Guinney et al., 2015) to 106 tumors with RNA-seq data, we as-
signed 85 (80%) of these tumors to the four transcriptomic sub-

types (CMS1–CMS4, Figure S6A). Applying the CRC proteomic

subtype classifier (Zhang et al., 2014) to 100 tumors with label-

free proteomics data, we assigned 88 (88%) of these tumors to

the five proteomic subtypes (ProS-A–ProS-E, Figure S6B), and

this protein expression pattern was largely preserved in the

TMT proteomics data (Figure S6C). These results provided inde-

pendent validation of the previously published molecular classi-

fication systems.

To test for underlying consistency among the mRNA, protein

and MSI-based classifications, we constructed a network in

which nodes represent the subtypes from individual classification

systems, and weighted edges represent statistically significant

association between two subtypes and the level of significance

(Figure 6A). All these associations were confirmed in the TCGA

CRC cohort. The connected subtypes in the association network

fell naturally into three groups, as indicated by the dashed circles

in Figure 6A. The grouping aligned well with previous transcrip-

tomic and proteomic studies that independently associated

CMS1 and ProS-B with MSI-H and hypermutation, CMS2 and

ProS-E with chromosome instability (CIN), and CMS4 and ProS-

C with epithelial-mesenchymal transition (EMT) (Guinney et al.,

2015; Zhang et al., 2014). Accordingly, we named the three unified

multi-omics subtypes (UMS) as ‘‘MSI,’’ ‘‘CIN,’’ and ‘‘Mesen-

chymal,’’ respectively. Using a network centrality-basedweighted

voting algorithm, we assigned 87 out of the 110 tumor samples to

the three UMS subtypes (Figure 6B). The UMS classification elim-

inated the CMS3 subtype and assigned CMS3 tumors to other

UMS subtypes. This was explained by the vague molecular

boundary of the CMS3 subtype (Figures S6D–S6F). In addition,

three MSI-H tumors with relatively fewer MS INDELs were as-

signed to the Mesenchymal subtype.

Next, we performed subtype-based supervised analysis on

omics data not used in defining the UMS classification. Tumors

in the CIN subtype showed higher chromosome instability

compared to those in the other two subtypes (p < 0.01, t test, Fig-

ures 6C and S6G), providing orthogonal confirmation of the UMS

classification. Similarly, many of the miRNA and phosphosite

markers identified in the supervised analysis (Table S7) have

known relationships with the subtype-specific features. Exam-

ples include decreased expression of miR-552, miR-592, and

miR-181d in the MSI subtype (Liu and Zhang, 2016), decreased

expression of the miR-200 family in the Mesenchymal subtype

(Korpal et al., 2008), and increased phosphorylation of STAT1

and STAT3 in the MSI and Mesenchymal subtypes, respectively

(Pensa et al., 2009). Notably, we found higher copy-number gain

of RB1 in the CIN subtype compared to the other subtypes (Fig-

ure S6H). Moreover, Rb-S811 and S807 were significantly

increased in the CIN subtype compared to the other subtypes

(1.61- and 1.51-fold, respectively), and the increase was much

stronger than that of total Rb (1.13-fold, Table S7). These results

complement our interpretation of the role of Rb phosphorylation

in colon cancer and further suggest that CDK2 inhibition may be

the most effective in the CIN subtype.

To understand the UMS classification in the context of tumor

microenvironment, we performed in silico deconvolution to

quantify stromal infiltration level, immune infiltration level, and

tumor-infiltrating lymphocyte (TIL) subpopulations based on
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Figure 6. A Unified, Multi-omics View of Colon Cancer Subtypes

(A) The network representing the association between subtypes defined by genomic (black), transcriptomic (white), and proteomic (gray) classification systems.

Edge width denotes the significance of the connections computed by the Fisher’s exact test. The dashed circles indicate the three unified multi-omics sub-

types (UMSs).

(B) UMS assignment for samples in the cohort. The genomic, transcriptomic, and proteomic subtypes are also shown for comparison.

(C) Copy-number alteration data grouped by the three UMSs.

(D) Stroma and immune infiltration profiles grouped by the three UMSs. The cytotoxic immune cell cluster is highlighted by blue in the dendrogram.

See also Figure S6 and Table S7.
RNA-seq data. Total stromal infiltration was significantly higher

in the Mesenchymal subtype compared to the other two sub-

types (Figure 6D). Although both the MSI and the Mesenchymal

subtypes had higher immune infiltration than the CIN subtype,

the MSI subtype was specifically enriched with cytotoxic

immune cells, such as NK cells and activated CD8 T cells,

whereas the Mesenchymal subtype was enriched with suppres-

sor immune cells, such as myeloid-derived suppressor cells

(MDSCs), macrophages, and Treg cells (Figure 6F). The UMS

classification thus provided a unified view of three major sub-

types of colon cancers with distinct genomic, transcriptomic,

proteomic, and microenvironment profiles.

Increased Glycolysis in the MSI Subtype Is Associated
with Immune Suppression
Despite the enrichment of cytotoxic immune cells in themicroen-

vironment, MSI tumors develop and progress, which has been

explained by the selective upregulation of immune checkpoint

proteins in the tumor microenvironment (Llosa et al., 2015).

However, only a subset of MSI-H CRCs respond to immune

checkpoint inhibitors (Le et al., 2015), suggesting a role for other

immune evasion mechanisms.

Comparison of protein and mRNA profiles between the MSI

subtype and the other UMS subtypes revealed a broad increase

of the glycolytic enzymes in theMSI subtype (Figure 7A). We also

found an almost universal decrease in tricarboxylic acid (TCA)
1044 Cell 177, 1035–1049, May 2, 2019
cycle enzymes at the protein level, but not at the mRNA level.

Thus, our data revealed protein-level adaptations driving a

strong Warburg effect in the MSI subtype.

Lactate, a key product of Warburg effect, is a potent inhibitor

of CD8 T cells (Brand et al., 2016). Indeed, almost all glycolytic

enzymes were negatively correlated with CD8 infiltration in MSI

tumors (Figure 7B). Using the median protein abundance of all

glycolytic enzymes as a measure of glycolytic activity, we found

a statistically significant negative correlation between glycolytic

activity and CD8 infiltration (Spearman’s r = �0.61, p = 0.02,

Figure 7C). Interestingly, this relationship was not observed in

other colon cancer subtypes or when all colon tumors were

analyzed together (Figure S7). The interplay between metabolic

reprogramming and immune function may apply specifically to

immune evasion and checkpoint inhibition resistance in the MSI

subtype.

To validate these findings, we performed targeted analysis of

selected proteins in representative tumor samples using

selected reaction monitoring (SRM). The SRM measurements

were highly correlated with TMT measurements for the CD8

T cell marker CD8A (Figure 7D) and the glucose transporter

SLC2A3 (Figure 7E). Pyruvate kinase PKM, the rate-limiting

glycolytic enzyme that catalyzes the last step of glycolysis,

has two isoforms. The targeted SRM analysis also was able to

measure isoform-specific peptides that were not detected in

the TMT analysis, thereby clarifying that PKM2 was the major
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Figure 7. Increased Glycolysis in the MSI Subtype and Its Association with CD8 T Cell Infiltration

(A) MSI subtype-specific alteration of key enzymes involved in the glycolysis and TCA cycle. The MSI subtype-specific RNA and protein changes are shown

side-by-side. p values were calculated based on the Wilcoxon rank sum test.

(B) The heatmap showing the protein expression levels of glycolytic enzymes within the MSI subtype. Samples are ordered by increased infiltration of activated

CD8 T cells.

(C) The negative correlation between glycolytic activity (inferred by the protein expression of enzymes involved in the pathway) and the activated CD8 T cell level

for the MSI subtype.

(D–G) Strong positive correlations were observed between SRM and TMT measurements for CD8A(D), SLC2A3 (E), and PKM2 (F), but not for PKM1 (G).

(H) SRM data showed higher CD8A abundance in MSI/CD8-H tumors (n = 5) than MSI/CD8-L tumors (n = 5).

(I–K) SRMdata showed higher protein abundance of SLC2A3 (I) and PKM2 (J) inMSI tumors (n = 10) compared to CIN (n = 5) andMesenchymal (n = 5) tumors, and

in MSI/CD8-L tumors (n = 5) compared to MSI/CD8-H tumors (n = 5). This pattern was not observed for PKM1 (K).

(L) Schematic diagram summarizing the interplay between glycolysis and CD8 T cell activation in MSI tumors, highlighting glycolysis as a potential target to

overcome the resistance of MSI-H tumors to immune checkpoint blockade.

The p value in (C) was calculated by Spearman’s correlation test; the p values in (D)–(G) were calculated by Pearson’s correlation test; the p values in (H)–(K) were

calculated by t test. See also Figure S7.
isoform measured in the TMT analysis (Figures 7F and 7G). It is

known that PKM2, rather than PKM1, drives aerobic glycolysis

and lactate production in human cancer (Christofk et al.,

2008). MSI tumors with relatively higher amounts of estimated

activated CD8 cells (MSI/CD8-H) had 2.23-fold higher CD8A

abundance than those with lower amounts (MSI/CD8-L, Fig-

ure 7H), although the difference was not statistically significant,

likely due to the expression of CD8A in both activated and inac-

tivated CD8 cells. In the subtype-based comparisons (Figures

7I–7K), the abundance of SLC2A3 and PKM2 was 1.85- and

1.4-fold higher (p = 0.007 and 0.003, respectively, t test) in the

MSI subtype compared to the other two subtypes. Within the
MSI subtype, SLC2A3 and PKM2were 1.19- and 1.7-fold higher

in the MSI/CD8-L tumors compared to the MSI/CD8-H tumors.

These data were consistent with the global proteomics data.

Taken together, our data support the model depicted in Fig-

ure 7L and suggest that combined therapy of checkpoint and

glycolysis inhibition may provide a potent strategy to treat MSI

tumors resistant to checkpoint blockade.

DISCUSSION

We performed an unprecedented molecular characterization of

human colon cancer and paired NATs with comprehensive
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integration of data from multiple proteogenomic platforms.

Our study confirmed the value of proteogenomic integration

in uncovering novel cancer biology and further demon-

strated the utility of proteogenomics in therapeutic hypothesis

generation.

We combined the customized proteomics database

approach with HLA binding prediction and identified personal-

ized neoantigens for 38% of the patients. mRNA expression

has been used to prioritize somatic mutations for personalized

neoantigen vaccine development, but proteomics-based

filtering prioritizes more effectively because neoepitopes them-

selves are peptides.

Colon cancer-associated proteins and phosphosites identi-

fied from our tumor versus NAT comparisons had very little

overlap with known cancer genes in the Cancer Gene Census

(Figure 5H), providing a novel information layer to our under-

standing of colon cancer. Notably, several CT antigens were

recurrently overexpressed in tumors. In addition to serving as

putative tumor-specific biomarkers, the inherent immunoge-

nicity of CT antigens, as demonstrated by IGF2BP3 in esopha-

geal cancer (Kono et al., 2009; Suda et al., 2007), makes them

potentially ideal targets for immunotherapy, especially for

MSS colon tumors that are poor candidates for checkpoint inhi-

bition or neoantigen vaccine treatment because of their low

neoantigen load.

Our multi-omics-based subtype analysis provided a unified

view of colon cancer molecular heterogeneity based on three

UMS subtypes (i.e., MSI, CIN, and Mesenchymal). Proteomics

data associated decreased CD8 infiltration with increased

glycolysis in MSI tumors, which supports the emerging view

that increased tumor glycolysis suppresses anti-tumor immunity

by impairing T cell function and trafficking to the tumor microen-

vironment (Tang and Fu, 2018). Therefore, glycolysis inhibition

may be considered to overcome the resistance of MSI tumors

to immune checkpoint blockade.

In addition to reinforcing or complementing genomics data,

proteogenomic integration also may correct inaccurate geno-

mics data-based inferences and lead to unexpected discov-

eries and therapeutic opportunities. One example is the

proteomic identification of SOX9 as an oncogene, whereas it

was predicted to be a tumor suppressor based on somatic

mutation data. Another example is the phosphoproteomics

data-enabled discovery of Rb phosphorylation as an onco-

genic driver of colon cancer, suggesting a unique opportunity

to target Rb phosphorylation in colon cancer through CDK2

inhibition.

In summary, our integrative proteogenomic characterization

revealed new therapeutic opportunities for targeting signaling

proteins, metabolic enzymes, and tumor antigens in colon

cancer treatment. Although validation of these therapeutic

hypotheses is beyond the scope of our current study, these

new hypotheses may eventually enable substantial advances

in molecularly guided precision therapy of colon cancer.

Further interrogation of this deeply characterized colon cancer

cohort by other investigators will likely yield additional in-

sights. The primary and processed datasets are available in

publicly accessible data repositories and portals (Figure 1A;

STAR Methods), and we anticipate broad usage of these data-
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sets for new biological discoveries and therapeutic hypothesis

generation.
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Biological Samples

Primary tumor samples See Experimental Model

and Subject Details

N/A

Critical Commercial Assays

Illumina Barcoded Paired-End Library Preparation Kit Illumina Catalog: PE-410-1001

Illumina’s Infinium LCG Quad Assay Illumina Catalog: 15025908

TruSeq Stranded RNA Sample Preparation Kit Illumina Catalog: RS-122-2103

TruSeq Small Total RNA Sample Prep Kit Illumina Catalog: RS-200-0048

MSI Analysis System (v1.2) Promega Catalog: MD1641

BCA Protein Assay Kit Thermo Scientific Pierce Catalog: A53225

Aprotinin Sigma Catalog: A6103

Leupeptin Roche Catalog: 11017101001

Phenylmethylsulfonyl fluoride Sigma Catalog: 93482

Sodium fluoride Sigma Catalog: S7920

Phosphatase Inhibitor Cocktail 2 Sigma Catalog: P5726

Phosphatase Inhibitor Cocktail 3 Sigma Catalog: P0044

Urea Sigma Catalog: U0631

Ammonium bicarbonate Sigma Catalog: 9830

Sodium chloride Sigma Catalog: S7653

Ethylenediaminetetraacetic acid Sigma Catalog: E7889

Calcium chloride Sigma Catalog: C1016

Dithiothreitol Thermo Scientific Catalog: 20291

Iodoacetamide Thermo Scientific Catalog: A3221

Sequencing grade modified trypsin Promega Catalog: V517

Formic acid Sigma Catalog: 33015

Reversed-phase tC18 SepPak Waters Catalog: WAT054925

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid Sigma Catalog: H3375

Tandem mass tags - 10plex Thermo Scientific Catalog: 90110

Ammonium formate Sigma Catalog: 9735

Deposited Data

dbSNP150 Sherry et al., 2001 http://annovar.openbioinformatics.org/en/latest/

COSMIC83 Forbes et al., 2017 https://cancer.sanger.ac.uk/cosmic

Clinvar (version 20170905) Landrum et al., 2014 http://annovar.openbioinformatics.org/en/latest/

dbNSFP33a Liu et al., 2011 http://annovar.openbioinformatics.org/en/latest/

PhosphoSitePlus Hornbeck et al., 2015 https://www.phosphosite.org/

Signor Lo Surdo et al., 2017 https://signor.uniroma2.it/

The Human Protein Atlas Uhlen et al., 2017 https://www.proteinatlas.org/

CTdatabase Almeida et al., 2009 http://www.cta.lncc.br/

Software and Algorithms

BWA (version 0.7.15-r1140) Li and Durbin, 2010 http://bio-bwa.sourceforge.net/

Bowtie (version 1.1.1) Langmead et al., 2009 http://bowtie-bio.sourceforge.net/index.shtml

GATK (version 3.8.0) Van der Auwera et al., 2013 https://software.broadinstitute.org/gatk/

Picard (2.9.0) Broad Institute https://broadinstitute.github.io/picard/
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Continued
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Samtools (1.3.1) Li et al., 2009 http://www.htslib.org/

STAR (version 2.5.3a) Dobin et al., 2013 https://github.com/alexdobin/STAR

RSEM (version 1.2.31) Li and Dewey, 2011 https://deweylab.github.io/RSEM/

HTseq (version 0.7.2) Anders et al., 2015 https://htseq.readthedocs.io/en/release_0.10.0/

history.html#version-0-7-2

ncPRO-seq (version 1.6.1) Chen et al., 2012 https://sourceforge.net/projects/ncproseq/

customProDB (version 1.14.1) Wang and Zhang, 2013 http://bioconductor.riken.jp/packages/3.4/bioc/html/

customProDB.html

MutsigCV (version 1.3) Cancer Genome Atlas

Research Network, 2012

http://software.broadinstitute.org/cancer/software/

genepattern/modules/docs/MutSigCV/1

Oncotator Ramos et al., 2015 http://portals.broadinstitute.org/oncotator/

CMSclassifier Guinney et al., 2015 http://rdrr.io/github/Sage-Bionetworks/CMSclassifier

DTARefinery Petyuk et al., 2010 Integrative Omics Group, Pacific Northwest

National Laboratory

MASIC Monroe et al., 2008 Integrative Omics Group, Pacific Northwest

National Laboratory

IPeak Wen et al., 2015 https://github.com/PGB-LIV/mzidlib

MS-GF+ Kim and Pevzner, 2014 https://omics.pnl.gov/software/ms-gf

X!Tandem Craig and Beavis, 2004 https://www.thegpm.org/tandem/

MyriMatch Tabb et al., 2007 http://proteowizard.sourceforge.net

PepQuery Wen et al., 2019 http://pepquery.org/

Customprodbj In-house https://github.com/bzhanglab/customprodbj

ProteoWizard Kessner et al., 2008 http://proteowizard.sourceforge.net

ANNOVAR Wang et al., 2010 http://annovar.openbioinformatics.org/en/latest/

OptiType (version 1.3.1) Szolek et al., 2014 https://github.com/FRED-2/OptiType

netMHCpan (version 4.0) Jurtz et al., 2017 http://www.cbs.dtu.dk/services/NetMHCpan/

metaX Wen et al., 2017 https://github.com/wenbostar/metaX

GISTIC2 (version 2.0.23) Mermel et al., 2011 ftp://ftp.broadinstitute.org/pub/GISTIC2.0/GISTIC_2_

0_23.tar.gz

MSMuTect (version 1.0) Maruvka et al., 2017 https://www.nature.com/articles/nbt.3966#

supplementary-information

WebGestaltR Wang et al., 2017c https://cran.r-project.org/web/packages/

WebGestaltR/index.html

GSVA Hänzelmann et al., 2013 https://bioconductor.org/packages/release/

bioc/html/GSVA.html

Agilent Bioanalyzer (version 2.0) Agilent Technologies https://www.agilent.com/en/product/bioanalyzer-

automated-electrophoresis/bioanalyzer-instrument/

2100-bioanalyzer-instrument-228250

Skyline MacLean et al., 2010 https://skyline.ms/project/home/software/Skyline/

begin.view

Genome Studio (version 2.0) Illumina https://www.illumina.com/techniques/microarrays/

array-data-analysis-experimental-design/

genomestudio.html
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Bing

Zhang (bing.zhang@bcm.edu).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Specimens and Clinical Data
Tumor, adjacent normal, and blood samples were collected by several tissue source sites in strict accordance to the CPTAC-2 colon

procurement protocol (https://brd.nci.nih.gov/brd/sop/download-pdf/321) with an informed consent from the patients. The

WashingtonUniversity inSt. Louis Institutional ReviewBoard (IRB) reviewed the individual informedconsent documents at each tissue

source site and determined that the materials sent to the CPTAC biospecimen core resource met the requirements for Exemption 4.

The cohort had an inclusion criterion of newly diagnosed, untreated patients undergoing primary surgery for colon adenocarcinoma.

Because untreated rectal tumors are difficult to obtain, we only included colon cancers, which represent approximately 70% of all

CRCs. Patientswith prior history of othermalignancieswithin 12months, any systemic chemotherapy, endocrine or biological therapy

as well as prior radiation therapy to the abdomen or pelvis for any cancer type were excluded from the study. Required clinical infor-

mation regarding patient history and status of surgery along with relevant diagnostic information were collected using case reports

forms.Oneyear followup informationwith updatedhistory after completionof the initial treatment regimenwerealsocollected through

followup forms.Deidentifiedpathology reports and representative diagnostic slide imageswereutilized to reviewandqualify cases for

this study. The peripheral venous blood from the same patient were collected prior to administration of anesthesia. Segments from

qualified tumor specimenswere greater than 300mg inmasswith at least 60% tumor cell nuclei and less than 20%necrosis. To ensure

tissue suitability for phosphoprotein analysis, the tissue and the adjacent normal specimens were collected in less than

30 minutes total ischemic time and embedded in optimal cutting temperature (OCT) compound for processing at a common

CPTAC-2 specimen core resource center. Pathologically qualified cases underwent further molecular qualification for extraction

and co-isolation of nucleic acids. Tissue segments that were pathology and molecular qualified were shipped to the proteomic

characterization centers. DNAandRNA from the same tumor segment andDNA fromgermline bloodwere further aliquoted andquan-

tified per protocol. DNA quality was confirmed using gel electrophoresis and Nano drop methods. RNA quality was confirmed using

Nano drop andAgilent bioanalyzer. Sufficient yield, a good gel score and passing value of 7 or greater RIN qualified theDNAandRNA,

respectively, for sequencing. The analytes were then shipped to the sequencing center. The corresponding clinical data were

formatted and distributed through the CPTAC data coordinating center (https://cptac-data-portal.georgetown.edu/cptac/s/S037).

Table S1 summarizes the clinical and pathological characteristics of the tumors and the specific numbers of samples analyzed by

each omics platform. Among the 110 patients in the cohort, there were 65 females (60%) and 45 males (40%), with an average age

of 65 (range 40 to 93 years). We did not perform analyses on the two sexes separately because the sample size is too small after

sex stratification. Moreover, we were interested in results common to both sexes, and the sex distribution is reasonably balanced.

METHODS DETAILS

PCR-based MSI Analysis
The MSI Analysis System (version 1.2, Promega), a fluorescent PCR-based assay, was used to detect microsatellite instability (MSI)

in the colon tumors. The analysis compares allelic profiles of microsatellite markers generated by amplification of DNA frommatching

tumor and normal samples, and alleles that are present in the tumor sample but not in corresponding normal samples indicate MSI.

The system uses sevenmarkers including fivemononucleotide repeat markers (BAT-25, BAT-26, NR-21, NR-24, andMONO-27) and

two pentanucleotide repeat markers (Penta C and Penta D). The output data were analyzed with GeneMapper� software (Applied

Biosystems) to determine MSI status of the colon tumor samples.

Genotyping Array Analysis
Genomic DNA samples were prepared according to Illumina’s Infinium LCG Quad Assay manual protocol. Processed samples were

loaded on the HumanOmni5-Quad BeadChips and run on the HiScan platform. SNP and CNP genotyping were performed with the

Genome Studio Genotyping Module (Version 2.0, Illumina).

Whole Exome Sequencing
Genomic DNA samples were used to prepare indexed libraries using the Nextera Rapid Capture Exome kit from Illumina. Library

preparation was performed using a semi-automated 96-well plate method, with washing and clean-up/concentration steps per-

formed on the Beckman Coulter Biomek NXP platform and with ZR-96 DNA Clean & Concentrator-5 plates, respectively. Libraries

were quantified using the Agilent 2100 Bioanalyzer. Pooled libraries were run on HiSeq4000 (2x150 paired end runs) to achieve a

minimum of 150x on target coverage per each sample library. The raw Illumina sequence data were demultiplexed and converted

to fastq files, adaptor and low-quality sequences were trimmed. Whole exome sequencing (WXS) data were used for somatic

mutation detection, microsatellite instability prediction, and somatic copy number alteration (SCNA) analysis as described below.

Somatic Mutation Detection
We followed the Genome Analysis Toolkit (GATK, version 3.8.0) best practice guideline for somatic short variant discovery (https://

software.broadinstitute.org/gatk/best-practices/workflow?id=11146). Briefly, we aligned paired-endWXS reads to the human refer-

ence genome (hg19) with BWA-mem (version 0.7.15-r1140). The bam files were further processed by adding read groups, marking
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duplicates, and re-ordering with Picard tools (version 2.9.0). Consequently, base quality score recalibration and INDEL realignment

were performed using GATKmodules IndelRealigner and BaseRecalibrator. The cross-individual contamination was then estimated

by the GATK module ContEst. Single nucleotide variants (SNVs) and INDELs (insertions/deletions) were called from tumor and

matched-normal pairs using MuTect2 from GATK. We filtered out variants from short tandem repeat regions, which were down-

loaded from the UCSC table browser. The sequence variants were then annotated using customProDB and Oncotator. Significance

of candidate mutations was evaluated in non-hypermutated and hypermutated tumors separately using MutSigCV (version 1) in

GenePattern, and geneswith a false discovery rate (q value) below 0.05were considered significantlymutated above the background

mutation rate.

Germline Short Variant Discovery from WXS
We followed the GATK best practice guideline for germline short variant discovery from WXS data (https://software.broadinstitute.

org/gatk/best-practices/workflow?id=11145). We started from the processed bam files generated in the previous section. Haploty-

peCaller was used to generate an intermediate file, GVCF, for each sample. Next, we consolidated all GVCFs from 106 samples into

to one GVCF file using the GATK module CombineGVCF. The merged GVCF file was passed to GenotypeGVCFs, a joint genotyping

tool for SNP and INDEL calling. We further filtered the variants by variant quality score recalibration, in which machine learning was

used to identify annotation profiles of variants likely to be real.

Microsatellite Instability Prediction
MSMuTect (version 1.0) (Maruvka et al., 2017) was applied to the processed bam files for somatic microsatellite INDEL (MS INDEL)

calling. MSMuTect uses the Kolmogorov–Smirnov (KS) test to identify microsatellite sites with different alleles between tumor and

normal samples. Using tumors with PCR test results, we found that the Fisher’s exact test provided higher sensitivity and specificity

compared to the KS test. Therefore, we applied Fisher’s exact test to the histograms generated by MSMuTect and then used the

Fisher’s exact test p-value as the filtering criterion, with a p-value cutoff of 0.001. We named this modified methodMSMuTect-fisher.

Significant MS INDELs with multiple alleles in normal and only one allele in tumor were removed from further analysis. Using 40 MS

INDELs as a cutoff, we separated the samples into anMSI-high (MSI-H) group and amicrosatellite stable (MSS) group. MSMutSigCV

(Maruvka et al., 2017) was used to detect significantly mutated genes based on identified MS INDELs (p < 0.05).

Annotation of Protein Altering Somatic Mutations
All somatic mutations identified by MuTect2 and MSMuTect, including SNVs, INDELs, and MS INDELs, were annotated using

ANNOVAR (Wang et al., 2010). The variants obtained by ANNOVAR were filtered for protein altering events including non-

synonymous SNVs, frameshift INDELs, non-frameshift INDELs, and stop gains. Table S3 includes all isoforms altered by the somatic

mutation events. For the analysis of proteomic consequence, the longest isoform was selected for each somatic mutation event.

Somatic Copy Number Alteration Analysis
Somatic copy number alteration (SCNA) analysis usedWXS-derived BAMfiles that were processed in the somaticmutation detection

pipeline. These BAMfiles were further processed by the RPackageCopywriteR (version 1.18.0) (Kuilman et al., 2015), which uses off-

target WXS reads to infer copy number values. 105 tumor and matched-normal pairs had sufficient (> 5 million) off-target reads for

SCNA detection as recommended by the software (Kuilman et al., 2015). The circular binary segmentation (CBS) algorithm (Olshen

et al., 2004) which is also implemented in the CopywriteR package was used for the copy number segmentation, with the default

parameters. From the segmentation result, we used a weighted-sum approach to summarize the chromosome instability for each

sample. Specifically, the absolute log2 ratios of all segments (indicating the copy number aberration of these segments) within a

chromosome were weighted by the segment length and summed up to derive the instability score for the chromosome. The

genome-wide chromosome instability index was derived by summing up the instability score of all 22 autosomes.

Next, we used GISTIC2 (version 2.0.23) (Mermel et al., 2011) to retrieve gene-level copy number values and call significant copy

number alterations in the cohort. We set up a threshold of 0.4 (-ta and -td parameters of GISTIC2) in picking the amplified or deleted

regions based on the distribution of germline copy number variants. Moreover, genome regions containing significant numbers of

germline copy number variants were excluded from the GISTIC2 population level statistics (the -cnv parameter of GISTIC2). GISTIC2

generated arm level and focal level SCNAs for the cohort with G-Score and FDR Q value indicating the significance and strength of

the identified SCNAs.

In order to prioritize SCNA drivers, we selected all the genes located in the focal region with GISTIC2 Q value less than 0.25. Also,

we included genes located in the ‘‘wide peaks’’ identified by GISTIC2. For these genes, spearman correlation was calculated

between copy number values and their RNA or protein levels across the cohort. We used FDR less than 0.05 and absolute correlation

coefficient larger than 0.3 as the cutoff to select candidate genes. As an additional filtering criterion, we further required candidate

amplification and deletion drivers to show significant upregulation and downregulation, respectively, in tumor versus matched

adjacent normal comparisons (FDR < 0.05, paired t test).
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mRNA Sequencing
Indexed cDNA sequencing libraries were prepared from the RNA samples using the TruSeq Stranded RNA Sample Preparation Kit

and bar-coded with individual tags. Library preparation was performed similarly to the WXS. Quality control was performed at every

step, and the libraries were quantified using the Agilent 2100 Bioanalyzer. Indexed libraries were prepared as equimolar pools and run

on HiSeq4000 (2x150 paired end runs) to generate a minimum of 30 million paired-end reads per sample library. The raw Illumina

sequence data were demultiplexed and converted to. fastq files, and adaptor and low-quality sequences were trimmed.

RNA Quantification
mRNA sequencing reads were mapped to the human genome hg19 by STAR (version 2.5.3a) using the 1-pass model. Hg19

sequence and RefSeq annotation were downloaded from the UCSC table browser (03/29/2017). RSEM (version 1.2.31) was used

to quantify genes and transcripts expression levels. Gene read counts were calculated using HTseq (version 0.7.2). The RSEM out-

puts the mRNA RSEM and FPKM (Fragments Per Kilobase of transcript per Million mapped reads) results in table format. The mRNA

RSEM data were filtered for genes with median FPKM > 1 for use in downstream analyses.

Short Variant Discovery from RNA-Seq
We followed theGATKBest Practice Variant Detection protocol on RNASeq (https://gatkforums.broadinstitute.org/dsde/discussion/

3892/the-gatk-best-practices-for-variant-calling-on-rnaseq-in-full-detail). We used the STAR 2-pass method to align RNA-Seq

reads to the human reference genome (hg19). Specifically, splice junctions detected in the 1-pass alignment run were used to guide

the 2-pass alignment. After alignment, the SAM file was processed through the usual Picard processing steps including adding read

group, sorting, marking duplicates, and indexing. Next, we applied the GATK pipeline including the modules ‘SplitNCigarReads’,

‘HaplotypeCaller’ and ‘VariantFiltration’. The minimum phred-scaled confidence threshold for calling variants was set to 20. The

‘VariantFiltration’ module excluded SNVs with: a quality by depth score (QD) < 2.0, a Fisher strand score (FS) > 30.0, or clusters

of at least 3 SNPs that were within a window of 35 bases between them. These filters ensured: (1) high confidence variant calls based

on unfiltered depth of non-reference samples (QD); (2) low strand bias for detection of variants (FS)—as strand bias is indicative of

false positive calls; and (3) filtering of many false variant calls introduced by RNA-Seq read mapping errors.

miRNA Sequencing
Indexed small RNA sequencing libraries were prepared from the RNA samples using the TruSeq Small Total RNA Sample Prep Kit,

and bar-coded with individual tags. Library preparation was performed similarly to the WXS sequencing. Quality control was

performed at every step, and the libraries were quantified using the Agilent 2100 Bioanalyzer. Indexed libraries were prepared as

equimolar pools and loaded on the NextSeq500 (1x75 single read) run to generate at least 5,000,000 single reads per sample library.

The raw Illumina sequence data were demultiplexed and converted to fastq files.

miRNA-Seq Data Analysis
For fastq files frommiRNA sequencing, adapters were trimmed usingCutadpt (version 1.13) with amaximumallowed error rate of 0.1.

Trimmed reads shorter than 17 or longer than 26 nucleotides in length were excluded from further analysis. Reads were thenmapped

to the human genome hg19 using Bowtie (version 1.1.1). Mapped reads were then annotated using ncPRO-seq (version 1.6.1) based

on the ncPRO-seq hg19 annotation. Mature miRNA annotation was extended 2 bp in both upstream and downstream regions to

accommodate inaccurate processing of precursor miRNAs. ncPRO-seq outputs miRNA count and RPM (reads per million mappable

reads) results in table format.

Label-free Proteomics Analysis
Label-free shotgun proteomic analyses of the colon tumor samples were done according to the methods described previously

(Zhang et al., 2014), with two changes. First, 6 concatenated basic reverse phase LC fractions were prepared from tryptic digests

using the same instrumentation described previously. Second, LC-MS/MS analyses were done with a ThermoFisher QExactive

MS instrument. LC-MS/MS shotgun proteomics of the concatenated fraction samples were carried out on a Q Exactive mass spec-

trometer (ThermoFisher Scientific) equipped with an Easy nLC-1000 (ThermoFisher Scientific) and a Nanoflex source (ThermoFisher

Scientific). A 2 mL injection volume of peptides were separated on a PicoFrit (New Objective, Woburn, MA) column (75 mm ID x

110 mm, 10 mm ID tip) packed with ReproSil-Pur C18-AQ resin (3 mm particle size and 120 Å pore size). Peptides were eluted at a

flow rate of 300 nL/min, and the mobile phase solvents consisted of water containing 0.1% formic acid (solvent A) and acetonitrile

containing 0.1% formic acid (solvent B).

A 100-minute gradient was performed, consisting of the following: 0�5 min, increase to 5% B; 5-90 min, 5�35% B; 90-93 min,

90%B; 93-100min, 90%B and held at 90%B for 7min before returning to the initial conditions of 2%B.Mass spectra were acquired

over the scan range of m/z 300-1800 at a resolution of 70,000 (AGC target 3 x106 and 64 ms max injection time). Data-dependent

scans of the top 20 most abundant ions were selected for fragmentation with HCD using an isolation width of 2m/z, 27% normalized

collision energy and a resolution of 17,500 (AGC target 2 x105 and 100 ms max injection time). Dynamic exclusion was set to 60 s.
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Label-free Proteomics Data Analysis
The rawMSdata were converted toMGF andmzML files using ProteoWizard (version 3.0.10462). TheMS/MSdata were searched by

three search engines (MyriMatch version 2.2.10165, X!Tandem version Alanine 2017.02.01, and MS-GF+ version 2017.01.13)

through IPeak (Wen et al., 2014, 2015) against the RefSeq protein database (03/29/2017, 45929 sequences + 245 contaminant se-

quences) with decoy sequences. The following parameters were set for database searching: Carbamidomethyl (C) was specified as a

fixed modification. Oxidation (M) and Deamidated (NQ) were specified as variable modifications. The precursor mass tolerance for

protein identification on MS was 10 ppm, and the product ion tolerance for MS/MS was 0.05 Da. Full cleavage by trypsin was used,

with up to two missed cleavages permitted. The results from the three search engines were then integrated by IPeak, which is a tool

that combines multiple search engine results. To optimize the number of proteins identified we applied a very stringent filter at 0.1%

PSMFDR. Then the protein inference was performed and 1%FDRwas controlled using the ‘‘picked’’ protein FDR approach (Savitski

et al., 2015). To rescue high quality PSMs that were excluded by the stringent PSMFDR threshold, we relaxed the PSMFDR threshold

to 1% for the confidently identified proteins.

Spectral count data were filtered by removing proteins with zero counts in all samples and quantile-normalized using the R pack-

age preprocessCore (version 1.42.0, https://github.com/bmbolstad/preprocessCore). We further filtered low abundant proteins with

average raw count < 1.4 as we did previously (Zhang et al., 2014). The normalized and filtered counts were then log2 transformed for

downstream analysis.

Protein Extraction and Tryptic Digestion for TMT Analysis
For TMT analysis, the tumor and normal colon tissue samples were obtained as OCT-embedded tissue curls through the CPTAC

Biospecimen Core Resource. Approximately 100 mg of each of the samples were first subjected to OCT removal procedure by

sequential rinsing in 70% ethanol, nanopure water, and 100% ethanol. The tissue samples were then homogenized separately in

600 mL of lysis buffer (8 M urea, 100 mM NH4HCO3, pH 7.8, 75 mM NaCl, 1 mM EDTA, 10 mM NaF, Sigma phosphatase inhibitor

cocktail 2, Sigma phosphatase inhibitor cocktail 3, and 20 mM PUGNAc). Lysates were precleared by centrifugation at 16,500 g

for 5 min at 4�C and protein concentrations were determined by BCA assay (Pierce). Proteins were reduced with 5 mM dithiothreitol

for 1 h at 37�C, and subsequently alkylated with 10 mM iodoacetamide for 45 min at 25�C in the dark. Samples were diluted 1:2 with

100 mM NH4HCO3, 1 mM CaCl2 and digested with sequencing grade modified trypsin (Promega) at 1:50 enzyme-to-substrate ratio.

After 3 h of digestion at 37�C, samples were diluted 1:4 with the same buffers and another aliquot of the same amount of trypsin was

added to the samples and further incubated at 25�C overnight (�16 h). The digested samples were then acidified with 100% formic

acid to 1% formic acid in the final sample solution. Tryptic peptides were desalted on reversed phase C18 SPE columns (Waters tC18

SepPak, 200mg) and dried using Speed-Vac.

TMT-10 Labeling of Peptides
Desalted peptides from each sample were labeled with 10-plex Tandem Mass Tag (TMT) reagents according to the manufacturer’s

instructions (ThermoScientific). Peptides (300 mg) from each of the samples were dissolved in 300 mL of 50 mM HEPES, pH 8.5, and

mixed with 3 units of TMT reagent that was dissolved freshly in 123 mL of anhydrous acetonitrile. Channel 131 was used for labeling

the internal reference sample (pooled from all tumor and normal samples with equal contribution) throughout the sample analysis.

After 1 h incubation at RT, 24 mL of 5% hydroxylamine was added and incubated for 15 min at RT to quench the reaction. Peptides

labeled by different TMT reagents were thenmixed, dried using Speed-Vac, reconstituted with 3% acetonitrile, 0.1% formic acid and

were desalted on C18 SPE columns (Waters tC18 SepPak, 200mg).

Peptide Fractionation by Basic Reversed-phase Liquid Chromatography
Approximately 2.5 mg of 10-plex TMT labeled sample was separated on a Waters reversed phase XBridge C18 column (250 mm 3

4.6 mm column containing 5-mm particles, and a 4.6 mm 3 20 mm guard column) using an Agilent 1200 HPLC System. After the

sample loading, the C18 column was washed for 35 min with solvent A (5 mM ammonium formate, pH 10.0), before applying a

100-min LC gradient with solvent B (5 mM ammonium formate, pH 10, 90% acetonitrile). The LC gradient started with a linear in-

crease of solvent A to 10% B in 6 min, then linearly increased to 30% B in 86 min, 10 min to 43% B, 5 min to 55% B and another

8 min back to 100% B. The flow rate was 0.5 mL/min. A total of 96 fractions were collected into a 96 well plate throughout the LC

gradient. These fractions were concatenated into 12 fractions by combining 8 fractions that are 12 fractions apart (i.e., combining

fractions #1, #13, #25, #37, #49, #61, #73, and #85; #2, #14, #26, #38, #50, #62, #74, and #86; and so on). For proteome analysis,

5% of each concatenated fraction was dried down and re-suspended in 2% acetonitrile, 0.1% formic acid to a peptide concentration

of 0.1 mg/mL for LC-MS/MS analysis. The rest of the concatenated fractions (95%) were further concatenated into 6 fractions by

combining two concatenated fractions (i.e., combining concatenated fractions #1 and #7; #2 and #8; and so on), dried down, and

subjected to immobilized metal affinity chromatography (IMAC) for phosphopeptide enrichment.

Phosphopeptide Enrichment Using IMAC
Fe3+-NTA-agarose beads were freshly prepared using the Ni-NTA Superflow agarose beads (QIAGEN) for phosphopeptide enrich-

ment. For each of the 6 fractions, peptides were reconstituted to 0.5 mg/mL in IMAC binding/wash buffer (80% acetonitrile, 0.1% for-

mic acid) and incubatedwith 20 mL of the 50%Fe3+-conditionedNiNTA bead suspension for 30min at RT. After incubation, the beads
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were washed 2 times each with 100 mL of wash buffer on the stage tip packed with 2 discs of Empore C18material. Phosphopeptides

were eluted from the beads on C18 using 60 mL of Elution Buffer (500 mM K2HPO4, pH 7.0). 50% acetonitrile, 0.1% formic acid was

used for elution of phosphopeptides from the C18 stage tips. Samples were dried using Speed-Vac, and later reconstituted with

10 mL of 3% acetonitrile, 0.1% formic acid for LC-MS/MS analysis.

LC-MS/MS for TMT Global Proteome Analysis
The global proteome fractions were separated using a nanoAquity UPLC system (Waters Corporation) by reversed-phase HPLC. The

analytical columnwasmanufactured in-house using ReproSil-Pur 120C18-AQ 1.9 mmstationary phase (Dr.MaischGmbH) and slurry

packed into a 30-cm length of 360 mm o.d. x 75 mm i.d. fused silica containing a 3-mm sol-gel frit. The trapping column was

manufactured in-house using Jupiter 300 C18 5-mm stationary phase (Phenomenex) and slurry packed into a 4-cm length of

360 mm o.d. x 150 mm i.d. fused silica with the final column being sol-gel fritted on both ends. The analytical column was heated

to 50�C using an AgileSLEEVE column heater (Analytical Sales and Services, Inc.). The analytical column was equilibrated to 95%

Mobile Phase A (MP A, 0.1% formic acid in water) and 5% Mobile Phase B (MP B, 0.1% formic acid in acetonitrile) and maintained

at a constant column flow of 200 nL/min. The sample injected (5-mL) was trapped using 100%MPA for 10min at flow rate of 3 mL/min

before being placed in-line with the analytical column and subjected to the gradient profile (min: %MP B): 0:5, 1:8, 44:15, 85:30,

94:55, 102:70, 105:95, 108:95, 115:5, 150:5.

MS analysis was performed using a Q-Exactive Plus mass spectrometer (Thermo Scientific, San Jose, CA). Electrospray voltage

(2.2 kV) was applied at a carbon composite union (Valco Instruments Co. Inc.) between the analytical column and electrospray emitter

(chemically etched 360-mmo.d. x 20-mm i.d.). The ion transfer tubewas set at 250�C. Following a 15-min delay from the end of sample

trapping, Orbitrap precursor spectra (AGC 1x106) were collected from 300-1800m/z for 120minutes at a resolution of 70K along with

the top 12 data dependent Orbitrap HCDMS/MS spectra at a resolution of 35K (AGC 1x105) and max ion time of 100 msec. Masses

selected for MS/MS were isolated at a width of 0.7 m/z and fragmented using a normalized collision energy of 32%. Peptide match

was set to ‘Preferred’, exclude isotopes was set to ‘on’, and charge state screening was enabled to reject unassigned 1+, 7+, 8+, and

> 8+ ions with a dynamic exclusion time of 20 s to discriminate against previously analyzed ions.

LC-MS/MS for TMT Phosphoproteome Analysis
The phosphoproteome fractions were separated using a nanoAquity UPLC system (Waters Corporation) by reversed-phase HPLC.

The analytical column was manufactured in-house using ReproSil-Pur 120 C18-AQ 1.9 mm stationary phase (Dr. Maisch GmbH) and

slurry packed into a 35-cm length of 360 mm o.d. x 50 mm i.d. fused silica picofrit capillary tubing (New Objective, Inc.). The trapping

column was manufactured in-house using Jupiter 300 C18 5-mm stationary phase (Phenomenex) and slurry packed into a 4-cm

length of 360 mm o.d. x 150 mm i.d. fused silica with the final column being sol-gel fritted on both ends. The analytical column was

heated to 50�C using an AgileSLEEVE column heater. The analytical column was equilibrated to 98%MP A and 2%MP B and main-

tained at a constant column flow of 120 nL/min. The sample injected (5 mL) was trapped using 100%MP A for 5 min at a flow rate of

3 mL/min before being placed in-line with the analytical column and subjected to the gradient profile (min:%MP B): 0:2, 8:4, 50:15,

85:35, 94:60, 95:95, 105:95, 115:2, 170:2.

MS analysis was performed using an Orbitrap Fusion Lumos mass spectrometer (Thermo Scientific). Electrospray voltage (1.8 kV)

was applied at a Valco carbon composite union coupling a 360 mm o.d. x 20 mm i.d. fused silica extension from the LC gradient

pump to the analytical column and the ion transfer tube was set at 250�C. Following a 40-min delay from the end of sample

trapping, Orbitrap precursor spectra (AGC 4x105) were collected from 350-1800 m/z for 120 min at a resolution of 60K along with

data dependent Orbitrap HCD MS/MS spectra (centroided) at a resolution of 50K (AGC 1x105) and max ion time of 105 msec for

a total duty cycle of 2 s. Masses selected forMS/MSwere isolated (quadrupole) at a width of 0.7m/z and fragmented using a collision

energy of 30%. Peptide mode was selected for monoisotopic precursor scan and charge state screening was enabled to reject

unassigned 1+, 7+, 8+, and > 8+ ions with a dynamic exclusion time of 45 s to discriminate against previously analyzed ions between

± 10 ppm.

Quantification of TMT Global Proteomics Data
LC-MS/MS analysis of the TMT10-labeled, bRPLC fractionated samples generated a total of 264 global proteomics data files. The

Thermo RAW files were processed with DTARefinery (Petyuk et al., 2010) (v1.2) to characterize and correct for any instrument cali-

bration errors, and then with MS-GF+ (Kim et al., 2008; Kim and Pevzner, 2014) (v9881) to match against the RefSeq human protein

database (03/29/2017, 45929 sequences), combined with 261 contaminants (e.g., trypsin, keratin). The partially tryptic search used a

± 10 ppmparent ion tolerance, allowed for isotopic error in precursor ion selection, and searched a decoy database composed of the

forward and reversed protein sequences. MS-GF+ considered static carbamidomethylation (+57.0215 Da) on Cys residues and TMT

modification (+229.1629 Da) on the peptide N terminus and Lys residues, and dynamic oxidation (+15.9949 Da) on Met residues for

searching the global proteome data.

Peptide identification stringency was set at a maximum false discovery rate (FDR) of 1% at peptide level using PepQValue < 0.005

and parent ion mass deviation < 7 ppm criteria. A minimum of 6 unique peptides per 1000 amino acids of protein length was required

for achieving 1%at the protein level within the full dataset. Inference of parsimonious protein set resulted in the identification of a total

of 8,067 common protein groups among the 197 samples.
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The intensities of all ten TMT reporter ions were extracted using MASIC software (Monroe et al., 2008). Next, PSMs passing the

confidence thresholds described above were linked to the extracted reporter ion intensities by scan number. The reporter ion inten-

sities from different scans and different bRPLC fractions corresponding to the same gene were grouped. Relative protein abundance

was calculated as the ratio of sample abundance to reference abundance using the summed reporter ion intensities from peptides

that could be uniquely mapped to a gene. The pooled reference sample was labeled with TMT 131 reagent, allowing comparison of

relative protein abundances across different TMT-10 plexes. The relative abundances were log2 transformed and zero-centered for

each gene to obtain final, relative abundance values.

Small differences in laboratory conditions and sample handling can result in systematic, sample-specific bias in the quantification

of protein levels. In order to mitigate these effects, we computed the median, log2 relative protein abundance for each sample and

re-centered to achieve a common median of 0.

Quantification of Phosphopeptides
Phosphopeptide identification for the 132 phosphoproteomics data files were performed as described above (e.g., peptide level

FDR < 1%), with an additional dynamic phosphorylation (+79.9663 Da) on Ser, Thr or Tyr residues. The phosphoproteome data

were further processed by the Ascore algorithm (Beausoleil et al., 2006) for phosphorylation site localization, and the top-scoring

sequences were reported. For phosphoproteomics data, the TMT-10 quantitative data were not summarized by protein, but left

at phosphopeptide level. All the peptides (phosphopeptides and global peptides) were labeled with TMT-10 reagent simultaneously.

Separation into phospho- and non-phosphopeptides using IMAC was performed after the labeling. Thus, all the biases upstream of

labeling are assumed to be identical between global and phosphoproteomics datasets. Therefore, to account for sample-specific

biases in the phosphoproteome analysis, we applied the correction factors derived frommean-centering the global proteomics data.

Gene-wise Correlation Between Different Platforms
We calculated gene-wise correlations for each pair of the three platforms, including RNA-Seq, label-free proteomics, and TMT pro-

teomics. For each pair of the platforms, the analysis included the top 10% most variably expressed genes in each platform and

quantifiable in both platforms. Spearman’s correlation between the two platforms was calculated for each gene across all the

samples.

mRNA and Protein Correlation Across Datasets
We calculated average gene-wise RNA expression and performed the Pearson’s correlation coefficient analysis between the

prospective colon tumor samples (N = 106) and TCGA CRC samples (N = 90) (Zhang et al., 2014), TCGA breast tumor samples

(N = 1102, downloaded from TCGAbiolinks FPKM-UQ (Colaprico et al., 2016), TCGA ovarian tumor samples (N = 374, downloaded

from TCGAbiolinks FPKM-UQ), and colorectal cell lines (N = 44) (Wang et al., 2017b), respectively. Similarly, we calculated average

gene-wise protein expression (label-free) and performed the Pearson’s correlation coefficient analysis between the prospective

colon tumor samples (N = 100) and TCGA colorectal samples (N = 95) (Zhang et al., 2014), colorectal cell lines (N = 44) (Wang

et al., 2017b), and NCI-60 colorectal cell lines (N = 60, quantile-normalized) (Gholami et al., 2013), respectively.

Co-expression-based Gene Function Prediction
To compare the ability of different gene expression profiling datasets to predict gene function, we constructed k-nearest neighbor

co-expression networks as previously described (Wang et al., 2017a) using RNA-Seq, label-free proteomics, and TMT proteomics

data, respectively. Network-based gene function prediction was performed using the random walk-based network propagation

algorithm (Wang et al., 2017a). Prediction performance was evaluated using 5-fold cross validation for each KEGG pathway and

quantified based on the area under the receiver operating characteristic curve (AUROC).

Tumor versus Normal Differential Proteomic Analysis
TMT-based global proteomics data were used to perform differential proteome analysis between tumor and matched normal sam-

ples. Gene-level data were further filtered for non-missing values in at least 50% of samples. A pairedWilcoxon signed-rank test was

performed on overlapping samples to determine differential abundance of proteins between tumor and normal. Proteins with fold

change > 2 and Benjamini-Hochberg adjusted p-value < 0.01 were considered to be cancer-associated proteins. GO enrichment

analysis was performed usingWebGestalt (Wang et al., 2017c). For each cancer-associated protein, we checked immunohistochem-

istry images in colorectal tumors from the Human Protein Atlas (HPA, https://www.proteinatlas.org/), in which tumor-specific staining

is reported in four levels, i.e., high, medium, low, and not detected. Theweighted average score (IHC staining) was calculated for each

protein by assigning weight to high, medium, low, and not detected respectively.

Tumor versus Normal Differential Phosphoproteomic Analysis
Identified phosphopeptides were mapped to UniProt sequences (version July 2017), and named according to the canonical UniProt

sequence. If the peptide matchedmultiple canonical UniProt sequences, the best ID was chosen based on presence of the protein in

the proteomics data. If no canonical IDs had proteomics data, or if more than one protein was present in the quantified proteomics

data, an ID was chosen at random. For peptides not matching a canonical protein sequence, a matching protein isoform ID was
Cell 177, 1035–1049.e1–e11, May 2, 2019 e8
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chosen. Peptides were filtered to those with an Ascore R 19 in at least one scan and a Q value < 0.01. Phosphorylation site levels

were determined by the median level for all peptides matching that site. Quantified sites and proteins were defined as those

containing non-missing values in at least 50% of the matched samples. Log fold change was calculated as the log2 peptide ratios

for normal samples subtracted from the log2 peptide ratios for tumor samples. Log fold change was correlated with log2 fold change

of protein abundance using Pearson correlation. Differential abundance was performed using the paired Wilcoxon signed-rank test.

Phosphorylation sites with fold change > 2 and Benjamini-Hochberg adjusted p-value < 0.01 were considered to be cancer-

associated phosphosites.

Kinase Activity Prediction
We predicted cancer-associated kinase activity based on two methods. First, sites annotated as activating kinase activity in Signor

(Lo Surdo et al., 2017) were used to predict kinase activity. Increased kinase activity was defined as significantly increased phosphor-

ylation on these sites (Benjamini-Hochberg adjusted p-value < 0.05,Wilcoxon signed-rank test) in tumor compared to matched adja-

cent normal. Sites with a protein abundance change greater than the phosphorylation abundance change were excluded. Second,

we performed phosphosite set enrichment analysis based on known kinase-target site relationships. Unique phosphorylation sites

were identified as a 13-mer sequence (±6 amino acids surrounding the phosphorylation site). Phosphorylation sites of kinases were

determined by a union of kinase-substrate interactions in PhosphoSitePlus (Hornbeck et al., 2015) and Signor. The median log2 fold

change of sites with at least 50% non-missing values was used to rank the phosphorylation sites and was submitted toWebGestaltR

for GSEA analysis. A minimum set size of 3 substrates and 1000 permutations were required.

Rb Phosphorylation Quantification and Correlation Analysis
Our phosphoproteomics data quantified six Rb phosphorylation sites with non-missing values in at least 50% of all samples,

including four sites (i.e., T373, S807, S811, and T826) that have been reported to directly or indirectly regulate E2F binding (Knudsen

and Wang, 1997; Rubin, 2013). We used the average of the four sites to quantify phospho-Rb abundance. Correlation between the

average Rb phosphorylation levels and other features was performed using Pearson’s correlation. Inferred activity was performed

using single sample GSEA implemented in the R package GSVA with a minimum gene set size of 10 (Hänzelmann et al., 2013).

Phosphorylation sites of kinases were determined by a union of kinase-substrate interactions in PhosphoSitePlus and Signor. The

transcriptional targets of E2F transcription factors were collected from ENCODE Project Consortium (2011). Hallmark pathways

were collected from MSigDB (Liberzon et al., 2015). The tumor-normal protein levels were used to infer activity for E2F1 and the

apoptosis hallmark pathway. Although transcriptomic data for E2F1 targets would more directly reflect transcription factor activity,

RNA-Seq data were not available for the normal samples. The tumor-normal phosphorylation levels were used to infer CDK2 activity.

Cancer-testis Antigen Analysis
Cancer-testis (CT) antigens were downloaded from the CTdatabase (Almeida et al., 2009), which consists of 269 CT antigens with

carefully curated and annotated literature-derived information. The CT antigens that overlapped with the proteomics dataset were

used for further analysis.

Variant Peptide Identification
To identify variant peptides, we used a customized protein sequence database approach (Wang et al., 2012).We derived customized

protein sequence databases from bothmatched RNA-Seq andWXS data and then performed database searching using the custom-

ized databases for individual samples or individual TMT experiments. For label-free data, we built a customized database for each

individual sample based on germline and somatic variants fromWXS data and variants from RNA-Seq data. For TMT data, we built a

customized database for each TMT experiment based on germline and somatic variants fromWXS data and variants from RNA-Seq

data derived from corresponding tumor samples.We usedCustomprodbj (https://github.com/bzhanglab/customprodbj) for custom-

ized database construction. We used ANNOVAR (Wang et al., 2010) for variant annotation and dbSNP150, COSMIC83, dbnsfp33a

and Clinvar (version 20170905) were used. For variant peptide identification, MS/MS data were searched by three search engines

(MyriMatch version 2.2.10165, X!Tandem version Alanine 2017.02.01, and MS-GF+ version 2017.01.13) through IPeak against the

customized protein databases with decoy sequences. The results from the three search engines were then integrated by IPeak

and 1% FDR at PSM level was used. We further validated the identified variant peptides using PepQuery (http://www.pepquery.

org) (Wen et al., 2019) and only confidently identified variant peptides with PepQuery p value % 0.01 were retained.

MHC-binding Peptide Prediction
We used Optitype (Szolek et al., 2014) to perform human leukocyte antigen (HLA) genotyping for each sample based on WXS and

RNA-Seq data, respectively, and got exactly the same results. Then we used netMHCpan (Jurtz et al., 2017) to predict HLA-peptide

binding affinity for somatic mutation-derived variant peptides with a length between 8-11 amino acids. The HLA-peptides with IC50

binding affinity < 150 nM were considered to be neoantigens.
e9 Cell 177, 1035–1049.e1–e11, May 2, 2019

https://github.com/bzhanglab/customprodbj
http://www.pepquery.org
http://www.pepquery.org


Subtype Prediction
For proteomic subtype prediction, we performed row and column z-score transformation for the CPTAC-CRC and prospective colon

tumor samples separately. To assign prospective tumors to our previously identified proteomic subtypes (ProS A-E) (Zhang et al.,

2014), the R package pamr (https://cran.r-project.org/web/packages/pamr/index.html) was used to apply predefined signature

genes (Zhang et al., 2014) to the protein expression matrix. To identify the optimal value of the shrinkage parameter for our PAM pre-

diction model, we selected the value that minimized leave-one-out cross-validated misclassification error for the 79 CPTAC-CRC

tumor samples (error rate < 2%). We assigned 88 prospective tumors to the five proteomic subtypes with probability higher than 0.9.

For transcriptomic subtype prediction, we employed the random forest predictor implemented in the R package CMSclassifier

(https://github.com/Sage-Bionetworks/CMSclassifier) (Guinney et al., 2015) to assign the consensus molecular subtypes (CMSs)

to each sample based on the RSEM gene expression profiles from RNA-Seq. Using a default posterior probability of 0.5 as a

threshold for sample classification, we assigned 85 prospective tumors to the four CMS subtypes.

Unified View of Subtypes
The associations between the three subtype classifications (MSI, CMS and ProS) were assessed by the Fisher’s exact test. Only

subtype pairs with an adjusted p-value less than 0.05 were considered to be associated. An association network was constructed

based on the results, in which nodes represent the subtypes from individual classification systems, and weighted edges represent

statistically significant association between two subtypes and the level of significance. In this network, we found three disjoint

subnetworks or modules, which were defined as three unified multi-omics subtypes (UMSs). We further assigned each sample in

the cohort to the three UMS subtypes using a network centrality-based weighted voting algorithm described below.

Let V denote the vertices, E denote the edges and M denote the modules in the network. Ei,j represents the weight of the edge

connecting node i and j. We define

Eij = � log10Adj:Pði;jÞ
Where Adj:P represents the adjusted p-value from the Fisher’s
ði;jÞ exact test between node i and node j, ci; j˛V.

Wi/m =

P
j˛m;< i;j >˛E;i < jEijP

j;k˛m;< j;k >˛E;j < kEjk
Where Wi/m represents the weighted contribution of node i (old
 subtypes) to the module m (new subtypes), ci˛V ;cm˛M. hi; ji
denotes the connection between node i and node j, ci; j˛V.
Finally, for each sample x,

Sx;m =
X

All i assigned to x

Wi/m
Subtype=

8>>><
>>>:

m
0
; where Sx;m

0 =maxðSx;mÞif maxðSmÞP
Sm

> 0:7

}undecided}; if
maxðSmÞP

Sm

< 0:7
WhereS represents the score of the UMS subtypem for a given
x;m sample x, andm’ represents the UMS assigned to the sample x. To

have amore definitive classification, we required a new subtype assignment to have a score greater than 70%of the sum of scores of

all three new subtypes.

Subtype-specific Marker Identification and Pathway Analysis
We performed both site-level phosphorylation and microRNA abundance comparisons across the different UMS subtypes using the

Wilcoxon rank sum test to identify subtype-specific markers. For phosphosite markers, we also required their subtype-specific

changes to be greater (or in a different direction) than changes at the protein level to highlight phosphorylation-level regulation.

To study metabolism differences between CMS3 and the other CMS subtypes, we downloaded the pre-defined metabolic gene

sets (Guinney et al., 2015) from the Synapse platform (https://www.synapse.org/#!Synapse:syn2623706/wiki/) and used ssGSEA

to infer RNA-based and protein-based pathway activities.

Quantification of Immune and Stromal Cell Infiltration
Overall immune infiltration, stromal infiltration and tumor purity reported in Table S1 were quantified by the ESTIMATE algorithm

(Yoshihara et al., 2013). In addition, individual immune cell abundance for the current cohort was inferred by the GSVA method

(Hänzelmann et al., 2013) using a previously published immune cell signature gene panel (Angelova et al., 2015), which involves

33 different immune cell types.
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Metabolic Pathway Analysis
We performed both protein and mRNA abundance comparisons between the UMS MSI subtype and the other two UMS subtypes

using the Wilcoxon rank sum test. Mapping gene-level results to KEGG pathways (http://www.genome.jp/kegg) identified concor-

dant changes of enzymes involved in the glycolysis and oxidative phosphorylation pathways. To summarize sample-specific glyco-

lytic activities, we calculated the median of the gene-wise z-score-transformed protein abundance of all measured glycolytic genes.

SRM and PRISM-SRM Analysis
We performed targeted analysis of selected proteins, namely CD8A, SLC2A3, PKM1, and PKM2, in representative tumor samples

using selected reaction monitoring (SRM). For all proteins, analyses were performed on five MSI samples with relatively higher

estimated activated CD8 T cell levels (MSI/CD8-H) and five MSI samples with relatively lower estimated activated CD8 T cell levels

(MSI/CD8-L). For the analysis of SLC2A3, PKM1 and PKM2, we also included five samples from the CIN subtype and five from the

Mesenchymal subtype.

Proteotypic peptides selected for each target protein were synthesized as crude peptides with the C-terminal lysine or arginine

labeled with 13C/15N (New England Peptide, Gardner, MA) The heavy peptides were dissolved individually in 15% acetonitrile

(ACN) and 0.1% formic acid (FA) at a nominal concentration of 1.5 mM and mixed at a final concentration of 1 pmol/mL for each pep-

tide. The best transitions and optimal collision energy (CE) for each peptide were determined using a direct infusion experiment, and

3 transitions per peptide were selected after LC-SRM analysis of a colon tissue digest spikedwith the heavy peptides to confirm there

is no issue with peptide retention time, transition interference, and endogenous peptide detectability.

Reliable detection of CD8A required the use of the highly sensitive high-pressure, high-resolution separations coupled with intel-

ligent selection and multiplexing (PRISM)-SRM method (Shi et al., 2012). A nanoACQUITY UPLC� system (Waters) equipped with a

reversed-phase capillary LC column (3-mmJupiter C18 bonded particles in-house packed in a 200 mm i.d. x 50 cmcapillary) was used

for the PRISM fractionation. Separations were performed at a flow rates of 2.2 mL/min using 10 mM ammonium formate (pH 10) in

water as mobile phase A and 10 mM ammonium formate (pH 10) in 90% ACN as mobile phase B. Forty five microliters of sample

with a peptide concentration of 1 mg/mL and 2 fmol/mL of heavy peptide standards was loaded onto the C18 capillary column and

separated using a 190-min gradient (min:%B): 35:1, 37:10, 52:15, 87:25, 112:35, 125:45, 150:90, 156:1. The eluent was automatically

deposited every minute onto a 96-well plate. Prior to peptide fraction collection, 20 mL of water was added to each well of the 96-well

plate to avoid potential loss of peptides and dilute the peptide fractions (�1:10 dilution) so they can be directly analyzed using

LC-SRM (below).

Peptides from all the other target proteins in the colon tissue digests dissolved in 2% ACN/0.1% FA, as well as the CD8A PRISM

fractions, were analyzed by LC-SRM using a TSQ Vantage triple quadruple mass spectrometer (Thermo Fisher Scientific) equipped

with a nanoACQUITY UPLC system and an ACQUITY UPLC BEH 1.7-mm C18 100 mm i.d. x 10 cm column (Waters). The mobile

phases were (A) 0.1% FA in water and (B) 0.1% FA in ACN. Two microliter of 0.25 mg/mL colon digest sample with 5 fmol/mL heavy

peptides were loaded onto the column and separated at a flow rate of 400 nL/min using a 72-min gradient as follows (min:%B):

11:0.5, 13.5:10, 17:15, 38:25, 49:38, 50:95, 59:10, 60:95, 64:0.5. For PRISM fractions, 4 mL of each fraction were loaded onto the

column and separated with a 35-min gradient as follows (min:%B): 12:0.5, 13:10, 14:15, 20:25, 23:35, 25:95, 26:10, 27:95, 28:0.5.

The LC column is operated at a temperature of 44�C. The parameters of the triple quadruple instrument were set to 0.7 fwhm Q1

resolution with 1 s cycle time. Data were acquired in time-scheduled SRM mode (retention time window: 10 min). For PRISM

fractions, data were acquired with unscheduled SRM mode.

All SRM data were analyzed using the Skyline software (MacLean et al., 2010). The total peak area ratios of endogenous light pep-

tides and their heavy isotope-labeled internal standards (i.e., L/H peak area ratios) were exported for quantitation. Peak detection and

integration were carried out according to two criteria: (1) same retention time and (2) similar L/H peaks area ratios for all transitions. All

data were also manually inspected to ensure correct retention time, peak detection and accurate integration. Peptides used in this

study were: SLC2A3 (QVTVLELFR), PKM1 (CLAAALIVLTESGR), PKM2 (IYVDDGLISLQVK), CD8A (TWNLGETVELK).

DATA AND SOFTWARE AVAILABILITY

Raw genomics data from this study are available at the Sequence Read Archive (SRA), BioProject ID: PRJNA514017 (ftp://ftp-trace.

ncbi.nlm.nih.gov/sra/review/SRP178677_20190114_143443_27e795eb0f314edf0479737480ab0f2a). Raw and low-level processed

proteomics data from this study are available at the CPTAC Data Portal (https://cptac-data-portal.georgetown.edu/cptac/s/S045).

All final data matrices are available at the LinkedOmics (Vasaikar et al., 2018) (http://linkedomics.org/cptac-colon/), which also

provides computational tools for further exploration of this dataset.
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Figure S1. Data Quality Analysis, Related to Figure 1

(A–D) Average mRNA profile correlation between the prospective cohort (n = 106) and TCGA colorectal cohort (n = 90, A), TCGA breast cohort (n = 102, B), TCGA

ovarian cohort (n = 374, C), and colorectal cell lines (n = 44, D). (E-G) Average label-free protein profile correlation between the prospective cohort (n = 100) and

TCGA colorectal cohort (n = 95, E), colorectal cell lines (n = 44, F), and NCI-60 cell lines (n = 60, G). (H-I) Unsupervised principal component analysis (PCA) of the

TMT global (H) or phosphoproteomics (I) data. Samples analyzed in different TMT plex are shown with different shapes. Tumor and normal samples are shown in

different colors. Numbers in the parentheses are variance explained by PC1 and PC2. PCA was performed by metaX. (J-L) Distribution of gene-wise correlation

between label-free proteomics and RNA-Seq data (J), between TMT proteomics and RNA-Seq data (K), and between TMT and label-free data (L). For each

comparison, only genes quantifiable by both platforms and with the highest variances (top 10%) in either platforms were included in the analysis. (M-O) Scat-

terplots comparing the gene function prediction performance between co-expression networks derived from mRNA and label-free proteomics and RNA-Seq

data (M), from TMT proteomics and RNA-Seq data (N), and from TMT and label-free data (O). Network-based gene function prediction was performed using the

random walk-based network propagation algorithm for each KEGG pathway. Prediction performance was evaluated using 5-fold cross validation and quantified

on the basis of the area under the receiver operating characteristic curve (AUROC). Results for each KEGG pathway term is represented as a dot.
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Figure S2. Somatic Mutations and Microsatellite Instability, Related to Figure 2

(A) Mutation rates for individual tumor samples. Mutation rate was calculated on the basis of MuTect2 somatic single nucleotide variant (SNV) calls. (B) Numbers

of MuTect2 identified somatic INDELs for individual tumor samples. (C) Numbers of MSMuTect-Fisher identified somatic microsatellite INDELs (MS-INDELS)

for individual tumor samples. (D) Tumor samples classified based on microsatellite instability (MSI) status (MSI-H: red versus MSS: white) or mutation rate

(Hypermutated: red versus non-hypermutated: white). (E) Mutation spectrum for individual tumor samples. (F) Mutations in BRAF v600, mismatch repair genes,

POLE, and KRAS among all samples.



Figure S3. RB1 Mutation Frequency in Human Cancer, Related to Figure 4

The tumor suppressor gene RB1 is frequently mutated in retinoblastoma, bladder cancer, small cell lung cancer, and many other human cancers. However, it is

rarely mutated and is even amplified in colorectal cancer. Figure was generated using cBioPortal (http://www.cbioportal.org/).

http://www.cbioportal.org/


Figure S4. Human Protein Atlas Immunohistochemistry Staining Data for the 31 Cancer-Associated Proteins, Related to Figure 5

(A) Proportions of colorectal tumors with high, medium, or low staining, or not detected (ND) as reported by HPA. (B) Representative IHC images for individual

proteins.



Figure S5. IGF2BP3 Protein Expression Data from Human Protein Atlas, Related to Figure 5

(A) IGF2BP3 (Insulin Like Growth Factor 2 MRNA Binding Protein 3) protein expression is restricted to fetal brain and reproductive organs such as testis, ovary,

and placenta. (B) Representative IHC images for IGF2BP3 in normal testis tissue (high), normal colon tissue (not detected), and colon cancer (high).



Figure S6. Colon Cancer-Subtype Analysis, Related to Figure 6

(A) Transcriptomic subtyping based on the consensus molecular subtypes (CMSs) and the RNA-seq data. (B) Proteomic subtyping based on previously

published proteomic subtypes and the label-free proteomics data. (C) Visualization of TMT data using the same sample and gene orders as in B. (D-F)

CMS3 has a vague molecular boundary. KRAS mutation is highlighted as a key characteristic of CMS3 in the original CMS paper (Guinney et al., 2015),

(legend continued on next page)



however, it was not enriched in the CMS3 subtype in our cohort (D). Upregulation of the metabolism-related pathways, another reported characteristic of

CMS3, was recapitulated to a certain extent in our cohort at the transcriptomic level (E); however, this pattern diminished when using proteomics data to

estimate pathway activities (F). (G) Comparison of chromosome instabilities across the three UMS subtypes. (H) Comparison of RB1 copy number

between the CIN subtype to other two UMS subtypes.



Figure S7. The Correlation between Glycolytic Activity and the Activated CD8 T Cell Level for Different Groups of Tumor Samples, Related to

Figure 7

(A) The whole cohort, (B) the MSI subtype, (C) the CIN subtype, and (D) the Mesenchymal subtype.
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