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ABSTRACT
BACKGROUND: Heterozygous deletion of the TSHZ3 gene, encoding for the teashirt zinc-finger homeobox family
member 3 (TSHZ3) transcription factor that is highly expressed in cortical projection neurons (CPNs), has been
linked to an autism spectrum disorder (ASD) syndrome. Similarly, mice with Tshz3 haploinsufficiency show ASD-
like behavior, paralleled by molecular changes in CPNs and corticostriatal synaptic dysfunctions. Here, we aimed
at gaining more insight into “when” and “where” TSHZ3 is required for the proper development of the brain, and
its deficiency crucial for developing this ASD syndrome.
METHODS: We generated and characterized a novel mouse model of conditional Tshz3 deletion, obtained by
crossing Tshz3flox/flox with CaMKIIalpha-Cre mice, in which Tshz3 is deleted in CPNs from postnatal day 2 to 3 on-
ward. We characterized these mice by a multilevel approach combining genetics, cell biology, electrophysiology,
behavioral testing, and bioinformatics.
RESULTS: These conditional Tshz3 knockout mice exhibit altered cortical expression of more than 1000 genes,
w50% of which have their human orthologue involved in ASD, in particular genes encoding for glutamatergic syn-
apse components. Consistently, we detected electrophysiological and synaptic changes in CPNs and impaired
corticostriatal transmission and plasticity. Furthermore, these mice showed strong ASD-like behavioral deficits.
CONCLUSIONS: Our study reveals a crucial postnatal role of TSHZ3 in the development and functioning of the
corticostriatal circuitry and provides evidence that dysfunction in these circuits might be determinant for ASD
pathogenesis. Our conditional Tshz3 knockout mouse constitutes a novel ASD model, opening the possibility for an
early postnatal therapeutic window for the syndrome linked to TSHZ3 haploinsufficiency.
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The basal ganglia constitute a functional network of subcor-
tical structures playing a crucial role in extrapyramidal motor
control and motor learning, as well as in associative learning,
planning, working memory, and emotion. The striatum is the
main input station of the basal ganglia, receiving major pro-
jections coming from layer 5 (L5) cortical projection neurons
(CPNs). These corticostriatal glutamatergic afferences contact
mainly striatal spiny projection neurons (SPNs), the major
neuronal population of this nucleus (1–3). There is accumu-
lating evidence showing altered development and function of
corticostriatal circuitry and striatal dysmorphic features in
autistic patients (4–10). Autism spectrum disorder (ASD) is a
heterogeneous group of neurodevelopmental pathologies
characterized by impairments in social communication and
interaction, restricted interests, and repetitive behaviors (11).
ASD etiology has a strong genetic component, with a high
number of genes and factors involved (12–15). Accordingly,
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abnormal corticostriatal function has also been found in ASD
mouse models, such as Shank32/2 (16,17), neuroligin-12/2

(18), and 16p111/2 mice (19). In this context, we have recently
identified TSHZ3 (teashirt zinc-finger homeobox family mem-
ber 3, also known as ZNF537) as a susceptibility gene for ASD:
patients with heterozygous TSHZ3 deletion show ASD neuro-
developmental phenotypes including autistic behavior and in-
tellectual disability, and in particular, speech disturbance; renal
tract abnormalities are also frequently observed in these pa-
tients (20). TSHZ3 gene codes for the highly conserved, zinc-
finger homeodomain transcription factor TSHZ3, whose
expression starts during prenatal development in both human
and mouse (21). Moreover, TSHZ3 has been identified in hu-
man neocortical gene networks with the highest expression
during late fetal development, which have been linked to not
only ASD but also other neuropsychiatric disorders and IQ
(20,22). Tshz3-null mutation in mouse (Tshz32/2) leads to
ticle under the
-nd/4.0/).
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altered expression of cortical layer markers (20) and is lethal at
birth (23), suggesting that TSHZ3 plays a critical role during
prenatal brain development. Interestingly, heterozygous Tshz3
deletion in mice (Tshz31/2) faithfully mimics the human disor-
der, as these animals show reduced sociability, narrowed field
of interest, stereotypies, and anxiety, associated with renal
tract defects. These ASD-like symptoms are paralleled by
altered expression of neocortical gene markers at both em-
bryonic (embryonic day 18.5 [E18.5]) and postnatal (postnatal
day 5 [P5] and P20) stages, and by altered function of the
corticostriatal pathway (20). However, L5 CPNs, which project
to the ipsi- and/or contralateral striatum, express TSHZ3 not
only during fetal development, but also postnatally and in
adulthood, an expression pattern that is comparable in human
and mouse (20,21,24,25). The postnatal development of the
corticostriatal circuitry has been little characterized, but
studies in animals have shown that its maturation progresses
after birth (26–30). Therefore, the postnatal role of TSHZ3 in the
maturation and function of the corticostriatal system needs to
be elucidated.

For this, we generated a novel conditional mutant mouse
with Tshz3 deletion in CPNs at an early postnatal stage. We
show here that this time- and region-specific loss of Tshz3
results in ASD-relevant behavioral deficits similar to those we
previously described in Tshz31/2 mice, which are paralleled by
cortical and striatal changes in terms of gene expression,
synaptic transmission, and synaptic plasticity. These data
suggest that postnatal events might contribute to the TSHZ3-
linked ASD syndrome, opening perspectives for a possible
early therapeutic window.

METHODS AND MATERIALS

Additional methods and materials are provided in
Supplement 1.

Generating Tshz3-Conditional Knockout Mice

Animal experimental procedures were approved by the Comité
National de Réflexion Ethique sur l’Expérimentation Animale
14’ (57-07112012) and in agreement with the European
Communities Council Directive (2010/63/EU). Conditional
in Thy1-GFP-M;Tshz3-pnCxKO mice); mushroom (Mush.) w21% (from 6.77
Thy1-GFP-M;Tshz3-pnCxKO mice); thin w34%. *p , .05 and **p , .01, contr
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mouse mutants with postnatal loss of Tshz3 in the cortex
(hereby referred to as Tshz3-pnCxKO) were generated by
crossing Tshz3flox/flox mice with CaMKIIalpha-Cre that express
the CRE-recombinase in glutamatergic CPNs, as described in
Supplement 1. Control mice were Tshz3flox/flox.
Morphometric and Dendritic Spine Analysis of L5
CPNs

We used transgenic mouse lines (age P28) expressing
Thy1-green fluorescent protein (GFP) in L5 CPNs (31). Thy 1-
GFP-M;Tshz3-pnCxKO mice were obtained by crossing
CaMKIIalpha-Cre;Tshz3flox/flox male mice with Tshz3flox/flox fe-
male mice heterozygous for Thy1-GFP. Stacks from 100-mm
vibratome sections (1-mm z-step) were acquired using a Zeiss
LSM780 (Carl Zeiss Meditec, Oberkochen, Germany) laser
scanning confocal microscope (403 objective, zoom 0.6).
Isolated Thy1-GFP-positive L5 CPNs of the primary motor and
somatosensory cortex were imaged and reconstructed using
the NeuronJ plugin of ImageJ 1.45s (National Institutes of
Health, Bethesda, MD) in 2-dimensional projections. All den-
drites were semimanually traced and labeled as primary
(dendrite originating from the soma), secondary (extending
from the primary dendrite), or higher-order dendrites. Fifteen
cells were reconstructed for each genotype from 4 littermate
pairs of P28 control (Thy1-GFP-M;Tshz3flox/flox) and mutant
(Thy1-GFP-M;Tshz3-pnCxKO) mice. Sholl cross-analysis was
performed by counting the number of dendrites intersecting
concentric spherical radii at 10-mm intervals. Differences at
specific radii were analyzed using unpaired Student’s t test.

Analysis of spine density and morphology was performed
on 4 littermate pairs (see above). Images were acquired as
described above (633 objective, numerical aperture 1.4, 0.03
mm/pixel, voxel size 0.033 mm2 3 0.37 mm). Spine counts were
obtained from second- or third-order basal dendritic branches
of randomly selected L5 CPNs. Dendrites from five to seven
cells were analyzed per animal, providing a cumulated dendrite
length .750 mm for each genotype. Spine identification and
density were evaluated using NeuronStudio (32). Statistical
analysis was performed using an unpaired Student’s t test
(BiostaTGV statistical software; http://www.u707.jussieu.fr/
Figure 1. Reduced spine density in conditional
mutant mice with postnatal loss of Tshz3 in the
cortex (Tshz3-pnCxKO). (A, B) Three-dimensional
reconstruction of representative confocal images
showing dendritic spines of green fluorescent
protein–positive layer 5 cortical projection neurons
of the primary motor and somatosensory cortex
from control and Tshz3-pnCxKO mice at postnatal
day 28. Scale bar = 5 mm. (C) Density of spines in
control (gray) and Tshz3-pnCxKO (black) mice
(mean 6 SEM). Data are from 1421 spines over
760-mm dendritic segment length and 1092 spines
over 788-mm dendritic segment length, respec-
tively. Decrease: total w26% (from 19.26 6 1.38
spines/10 mm in control mice to 14.24 6 1.42
spines/10 mm in Thy1-GFP-M;Tshz3-pnCxKO
mice); stubby w24%, (from 6.86 6 0.36 spines/
10 mm in control mice to 5.23 6 0.46 spines/10 mm

6 0.42 spines/10 mm in control mice to 5.35 6 0.66 spines/10 mm in
ol vs. Tshz3-pnCxKO mice, Mann-Whitney test.
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Figure 2. Electrophysiological properties of layer
5 cortical projection neurons (CPNs). (A) Scheme of
a corticostriatal slice with a layer 2/3 neuron (light
gray), a gamma-aminobutyric acidergic interneuron
(dark gray), and a layer 5 CPN (black), as well as the
stimulating and recording electrodes. (B) Sample
traces showing the responses to 6200-pA pulses of
a pyramidal tract (PT) and an intratelencephalic (IT)
CPN recorded from the primary motor and somato-
sensory cortex [as in panel (A)]: note the prominent
sag, rebound, and afterhyperpolarization (AHP) of the
PT neuron compared with the IT neuron. (C) Arbitrary
classification of CPNs as PT or IT based on the sum
of the sag and rebound in response to a 250-pA
current pulse, and the AHP following a 150-pA
pulse (both for 800 ms). CPNs are considered as
PT if sag 1 rebound 1 AHP .4.2 mV (dotted line)
and as IT if ,4.2 mV. The distribution of sag 1
rebound 1 AHP values is similar in control mice and
conditional mutant mice with postnatal loss of Tshz3
in the cortex (Tshz3-pnCxKO) (n = 14 for each ge-
notype, p = .765, Mann-Whitney test). (D) The
number of action potentials (APs) triggered by
depolarizing current pulses (800 ms) is similar be-
tween control and mutant mice (F1,66 = 0.6076, p =
.444, matched 2-way analysis of variance). (E) The
graph shows the delay between the beginning of a
depolarizing current pulse (1300 pA, 800 ms) and
the first 20 APs triggered (see inset) in CPNs:
average values are similar in the two groups (n = 14
for each genotype [F1,436 = 0.102, p = .75, two-way
analysis of variance]). (F) Same as panel (E), but
using a smaller current pulse (1150 pA, 800 ms; see
inset) just above the average rheobase: Tshz3-
pnCxKO CPNs show significantly longer inter-AP
intervals (n = 14 for each genotype [F1,150 = 7.135,
p = .008, two-way analysis of variance]). **p = .008.
(D–F) Data are expressed as mean 6 SEM.
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biostatgv/) and results considered significant at p , .05. Data
are expressed as mean 6 SEM.
Electrophysiology

Procedures were similar to those described previously (20,33).
See also Supplement 1. Acute coronal corticostriatal slices
(250-mm thick) from Tshz3-pnCxKO and control mice (P21–28)
were obtained as previously described (20,33). Whole-cell
patch-clamp recordings were performed in oxygenated artifi-
cial cerebrospinal fluid at 34�C to 35�C, flowing at w2.5 mL/
min. L5 CPNs of the primary motor and somatosensory cortex
and SPNs of the dorsolateral striatum were identified by
infrared video microscopy and by their electrophysiological
properties (34,35), and were recorded in whole-cell patch-
clamp by borosilicate micropipettes (5–6 MU) filled with an
internal solution containing 125-mM K-gluconate, 10-mM
276 Biological Psychiatry August 15, 2019; 86:274–285 www.sobp.org
NaCl, 1-mM CaCl2, 2-mM MgCl2, 0.5-mM BAPTA, 19-mM
HEPES, 0.3-mM Na-guanosine triphosphate, and 1-mM Mg-
adenosine triphosphate, pH 7.3. For N-methyl-D-aspartate
(NMDA)/alpha-amino-3-hydroxy-5-methyl-4-isoxazole propi-
onic acid (AMPA) ratio experiments, the internal solution con-
tained 140-mM CsCl, 10-mM NaCl, 0.1-mM CaCl2, 10-mM
HEPES, 1-mM EGTA, 2-mM Mg-adenosine triphosphate, and
0.5-mM Na-guanosine triphosphate, pH 7.3. For measuring
gamma-aminobutyric acidergic (GABAergic) synaptic trans-
mission, the internal solution contained 126-mM mM
CsCH3SO3, 10-mM mM HEPES, 1-mM EGTA, 2-mM QX-314
chloride, 0.1-mM CaCl2, 4-mM Mg-adenosine triphosphate,
and 0.3-mM Na-guanosine triphosphate, pH 7.3. A stimulating
bipolar electrode was placed either in the cortex at the level of
L4 to activate local fibers and evoke glutamatergic excitatory
postsynaptic currents (EPSCs) and GABAergic inhibitory
postsynaptic currents in L5 CPNs, or in the corpus callosum to
/journal
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Figure 3. Cortical synaptic transmission. (A) The
paired-pulse ratio (PPR) of glutamatergic excitatory
postsynaptic currents (EPSCs) is significantly higher
in cortical projection neurons (CPNs) of conditional
mutant mice with postnatal loss of Tshz3 in the
cortex (Tshz3-pnCxKO) (n = 29) compared with
control mice (n = 22) (F1,241 = 10.72, p = .0012, two-
way analysis of variance). Traces (inset) depict
superimposed EPSCs (amplitude is normalized to
control EPSC1) triggered by paired-pulse stimulation
recorded from CPNs of control and mutant mice.
***p = .0012. (B) The average PPR of gamma-
aminobutyric acidergic inhibitory postsynaptic cur-
rents (IPSCs) is similar in CPNs of Tshz3-pnCxKO
(n = 14) and control (n = 10) mice (F1,109 = 3.38,
p = .069). (C) Cumulative distributions of miniature
EPSC (mEPSC) interevent interval and amplitude
(graphs), as well as frequency and amplitude (insets),
are similar in CPNs of control and Tshz3-pnCxKO
mice. Traces depict sample mEPSCs. Cumulative
distribution data were analyzed by 2-sample
Kolmogorov-Smirnov test, average data by Mann-
Whitney test; n = 10 per group, p . .05 for all
tests. (A–C) Data are expressed as mean 6 SEM.
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activate corticostriatal fibers and evoke EPSCs in striatal
SPNs. Glutamatergic synaptic transmission was recorded in
the presence of 50-mM picrotoxin at a holding potential of 260
mV (L5 CPNs) or 280 mV (SPNs). Miniature EPSCs were
recorded the presence of 1-mM tetrodotoxin. GABAergic syn-
aptic transmission was recorded at a holding potential of 235
mV and in the presence of 10-mM cyanquixaline and 10-mM
AP-5. Electrophysiological data were acquired by an AxoPatch
200B amplifier and pClamp 10.2 software (Molecular Devices,
Wokingham, United Kingdom). Series and input resistance
were continuously monitored by sending 5-mV pulses, and
neurons showing $20% change in these parameters were
discarded from the analysis.

Statistical analysis was performed by Prism 7 (GraphPad
Software, San Diego, CA). Two-tailed Mann-Whitney test was
used for comparing two datasets, two-tailed Kruskal-Wallis
and Dunn’s post-test was used for comparing $3 datasets, 2-
sample Kolmogorov-Smirnov test was used for comparing
cumulative distributions, and one- and two-way analysis of
variance was used for multiple comparisons. Sample size (n)
Biological Ps
refers to the number of recorded neurons. The significance
threshold was fixed at p , .05. Tests used, p values, and n
are indicated in the figures. Data are expressed as mean 6
SEM.
Behavioral Testing

Male mice 101 to 127 days old were maintained in a social
enriched environment and tested blind to the genotype for
ASD-like criteria (11). Stereotypy scores were 1) the burying
score obtained with marbles (36) and 2) the number of
repeated dips in a hole board (37). A small number of crossed
zones in an open field indicated a narrow field of interest (20).
Sociability and interest in social novelty were measured in a
two-chamber task (20,38) adapted from the three-chamber
task (39). Although not included in DSM-5 criteria, anxiety,
intellectual disability, and motor disorders are observed in 42%
to 56%, w45%, and #79%, respectively, of ASD patients (40).
The presence of these symptoms was assessed by the
elevated plus maze (20), Morris water maze, and notched bar
ychiatry August 15, 2019; 86:274–285 www.sobp.org/journal 277
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Figure 4. Corticostriatal synaptic transmission.
(A) Scheme of a corticostriatal slice with a layer 5
cortical projection neuron (black) and a striatal spiny
projection neuron (SPN) (gray), as well as the stim-
ulating and recording electrodes. Traces depict the
typical response of an SPN to the injection of
hyperpolarizing (2200 pA) and depolarizing
(1200, 1400 pA) currents. (B) The paired-pulse ratio
of corticostriatal glutamatergic excitatory post-
synaptic currents (EPSCs) is significantly higher in
SPNs of conditional mutant mice with postnatal loss
of Tshz3 in the cortex (Tshz3-pnCxKO) (n = 15)
compared with control mice (n = 21) (F1,87 = 5.7, p =
.0182, two-way analysis of variance). Traces depict
superimposed EPSCs (amplitude is normalized to
control EPSC1) recorded from SPNs of control and
mutant mice. *p = .0182. (C) Cumulative distributions
of miniature EPSC (mEPSC) interevent interval and
amplitude (graphs), as well as frequency and
amplitude (insets), are similar in SPNs of control
and Tshz3-pnCxKO mice (n = 8 for both; 2-sample
Kolmogorov-Smirnov and Mann-Whitney test, p .

.05 for all). Traces show sample mEPSCs. (D) The
N-methyl-D-aspartate (NMDA)/alpha-amino-3-
hydroxy-5-methyl-4-isoxazole propionic acid
(AMPA) ratio is significantly higher in SPNs from
Tshz3-pnCxKO compared with control mice (n = 8
for both; p , .05, Mann-Whitney test). Traces de-
pict sample EPSCs recorded at 260 and 140 mV
to reveal the AMPA and NMDA receptor–mediated
component, respectively (gray dots show where
currents were measured). *p , .05. (B–D) Data are
expressed as mean 6 SEM.
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test (41), respectively. For further details and behavioral
testing, see Supplement 1.

The assumption of statistical normality was checked. Ana-
lyses of covariance were conducted with genotype as inde-
pendent variable and activity as covariate, for each score
where the activity level must be controlled for. Repeated-
measures analysis of covariance was used for testing socia-
bility and social novelty. A two-tailed independent t test was
used for the other comparisons. The results are expressed as
effect size because the validation of an organism model for a
disorder or a disease requires a significant difference and also
a large (pathological) difference. Similar to previous articles,
effect sizes are expressed as h2 or partial h2 as specified case
by case, where values of .30 and .50 correspond to “mild
impairment” and “impairment,” respectively, by analogy with
the intellectual disability field (40,41). Data are expressed as
mean 6 SEM.
278 Biological Psychiatry August 15, 2019; 86:274–285 www.sobp.org
Gene Set Enrichment Analysis

Preranked gene lists were calculated based on the 2log10 of
the p value from DESeq2 (https://bioconductor.org/) analysis
multiplied by the sign of differential expression (Table S3T in
Supplement 3). Gene matrix transposed (.gmt) files for Gene
Ontology terms, as well as pathways, were downloaded from
the Bader website (http://baderlab.org/GeneSets) (42). Data
from the SynaptomeDB were received by the authors (43) and
transformed into a .gmt file. Data from the Genes to Cognition
(G2C) Synapse Proteomics Database were downloaded from
the website (http://www.genes2cognition.org/proteomics/) (44)
and transformed into a .gmt file. We performed Gene Set
Enrichment Analysis (GSEA) using the software provided by
the Broad Institute (45,46) with default parameters. For Syn-
aptomeDB, as well as G2C Synapse Proteomics data, we also
used the WebGestalt webserver (http://www.webgestalt.org/
/journal
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Figure 5. Corticostriatal synaptic plasticity. (A)
Long-term potentiation (LTP) is similar in spiny pro-
jection neurons from conditional mutant mice with
postnatal loss of Tshz3 in the cortex (Tshz3-pnCxKO)
and control mice (n = 10 and 7, respectively). The left
graph shows the time course of excitatory post-
synaptic current (EPSC) amplitude normalized to
baseline (black arrow represents LTP induction pro-
tocol). The right histogram shows normalized EPSC
amplitude after the LTP induction protocol (p , .001
compared with baseline, Mann-Whitney test). Traces
depict sample EPSCs at baseline and 15 minutes
after the LTP induction protocol (as indicated). ***p ,

.001. (B) Long-term depression (LTD) is present in
control spiny projection neurons (n = 10), while it is
absent in Tshz3-pnCxKO mice (n = 11), where a
transient potentiation is observed. The application of
40-mM AP-5 abolishes the transient potentiation and
partially restores LTD (n = 7). Sample traces depict
EPSCs at baseline and 15 minutes after LTD induc-
tion protocol in the different experimental conditions
(as indicated). Note the absence of LTD in Tshz3-
pnCxKO mice and its recovery by AP-5. *p , .05,
***p , .001 compared with baseline, Mann-Whitney
test; �p , .05, ���p , .001 between groups,
Kruskal-Wallis and Dunn’s post-test. (A, B) Data are
expressed as mean 6 SEM.
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option.php) (47). Network of GSEA enrichments was produced
using Cytoscape (48).

Accession Codes

Raw data (FastQ files) from the sequencing experiment (tripli-
cates from wild-type and Tshz3-mutant cortices) and raw
abundance measurements for genes (read counts) for each
sample are available from Gene Expression Omnibus under
accession GSE119791, which should be quoted in any
manuscript discussing the data.

RESULTS

Morphological Characterization of Conditional
Tshz3 Knockout Mice

Analysis of TSHZ3 expression in Tshz3-pnCxKOmice at P28 (a
time allowing strong Cre expression and recombination, as
well as brain maturation) showed almost complete loss of this
protein in the neocortex (Figure S1A, B in Supplement 1). Using
the corticostriatal circuit as a model system, we evidenced it
by cholera toxin subunit B retrograde tracing: the ipsi- and
contralateral components of the corticostriatal projections
were present in Tshz3-pnCxKO mice as in control mice
(Figure S1C–F in Supplement 1). Labeling of NeuN (49) and
BCL11B/CTIP2 (50), a neuron-specific and an L5/6-selective
marker, respectively, was similar in both groups, further sug-
gesting that the postnatal loss of Tshz3 affects neither the
number of cortical neurons nor their layering (Figure S1G–L in
Supplement 1). In Thy1-GFP-M;Tshz3-pnCxKO mice, we did
not observe major changes in the overall CPN morphology and
projections (Figure S2 in Supplement 1), confirming the lack of
Biological Ps
major morphological defects after postnatal Tshz3 loss. Thy1-
GFP-M;Tshz3-pnCxKO mice were also used for Sholl analysis
of L5 CPN dendrite morphology, revealing no major changes
between control and mutant mice (Figure S3 in Supplement 1).
However, we found a significantly reduced spine density in L5
CPNs (Figure 1), in agreement with other ASD-related mouse
models (51). Finally, the density of vesicular glutamate trans-
porter 1 staining was similar in control and Thy1-GFP-
M;Tshz3-pnCxKO mice (Figure S4 in Supplement 1),
suggesting unchanged density of corticostriatal terminals.

Electrophysiological Properties of L5 CPNs

The two main subtypes of L5 CPNs, pyramidal tract (PT) and
intratelencephalic (IT) CPNs, were distinguished according to
their electrophysiological properties (see Supplement 1), in
particular the sum of the “sag & rebound” 1 the after-
hyperpolarization responses (Figure 2B), whose value is larger
in PT neurons (52). This “sag & rebound” 1 after-
hyperpolarization sum was similar in control and Tshz3-
pnCxKO mice (Figure 2C), indicating no major changes in
membrane properties of CPNs and in the proportion of PT
versus IT neurons. Other membrane and action potential (AP)
properties were similar comparing IT versus PT neurons of the
same genotype, as well as between PT and IT neurons of
control versus Tshz3-pnCxKO mice (Table S1 in Supplement
1). Moreover, also comparing AP discharge patterns of PT
versus IT neurons of the same genotype revealed no significant
differences (Figure S6 in Supplement 1). We thus pooled PT
and IT neurons of each genotype for further analyses. CPNs
from Tshz3-pnCxKO mice showed a lower number of APs in
response to depolarizing current pulses compared with control
ychiatry August 15, 2019; 86:274–285 www.sobp.org/journal 279
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Figure 6. Stereotyped behavior, field of interest,
sociability, interest in social novelty, anxiety-like
behavior, and spatial learning. Conditional mutant
mice with postnatal loss of Tshz3 in the cortex
(Tshz3-pnCxKO) displayed more stereotyped be-
haviors than control mice: (A) they dipped more
repeatedly in the hole board (F1,17 = 45.98, p = 6 3

1026; partial h2 = .73) when controlled for non-
stereotyped dips (see Figure S7A, B in Supplement
1). (B, C) Tshz3-pnCxKO mice showed reduced
field of interest with smaller number of zone crossing
in the open field when controlled for distance walked
(F1,17 = 124.59, p = 3 3 1029, partial h2 = .88; co-
variate: distance walked, which was similar in the
two groups [t18 = 0.39, p = .70, Cohen’s d = 0.17]).
Concerning sociability, Tshz3-pnCxKO mice did not
differ in exploration from control mice (D), but they
did not show more contacts with conspecific
C57BL/6J mice than (E) with a lure or (F) with a new
SWR mouse vs. the familiar C57BL/6J mouse. Two
repeated-measures analyses of covariance were
designed. The interactions between the genotype
and the content of the pencil box were significant in
each condition (D–F) (condition B6 vs. lure [F1,17=
31.75, p = .00003, partial h2 = .65], condition B6 vs.
SWR mouse [F1,17 = 30.83, p = .00003, partial h2 =
.65; covariate: exploration level, panel (D)]). Control
mice explored more the box containing a C57BL/6J
than that containing a lure (dependent [t9 = 12.48;
p = 3 3 1027; h2 = .52]), and the box containing the
SWR mouse more than that containing the familiar
C57BL/6J animal (dependent [t9 = 8.10; p = .00002;
h2 = .58]). In contrast, Tshz3-pnCxKO mice did not
show more contacts with a conspecific C57BL/6J
mouse than with a lure (dependent [t9 = 0.39, p =
.71]), or with the new SWR vs. the familiar C57BL/6J
mouse (dependent [t9 = 0.41, p = .69]). (G) Tshz3-
pnCxKO mice showed more anxiety-like behavior:
they avoided more the central area in the open field
(F1,17 = 124.59, p = 3 3 1029; partial h2 = .88; co-
variate: distance walked) when controlled for dis-
tance walked. (H) Tshz3-pnCxKO mice avoided also

the open arms of the elevated plus maze when controlled for distance walked in the closed arms (F1,17 = 36.41, p = .00001, partial h2 = .68; covariate: activity in
closed arms). (I) Both groups learned in a spatial task (Morris water maze): neither the learning slopes nor the probe score differed (t19 = 0.53, p = .60, and t19 =
0.30, p = .77, respectively); note that “visible platform” dots partially overlap. In all cases except one (marble burying), the effect size of the differences is large
(see Results). (A) n = 11 per group. (B–H) n = 10 per group. (K) n = 9 per Tshz3-pnCxKO mouse and n = 12 per control mouse. (K) *p , .01, ***p , .0001; data
are expressed as mean 6 SEM.
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mice, although values were not significantly different
(Figure 2D). The inter-AP interval in response to a strong
depolarizing current (1300 pA) was also similar (Figure 2E).
However, when measuring this parameter in response to a
threshold current step (1150 pA, just above the rheobase), we
found that the inter-AP intervals were significantly longer in
CPNs from Tshz3-pnCxKO mice, suggesting increased ac-
commodation and, possibly, decreased excitability (Figure 2F).

Cortical Synaptic Transmission

The paired-pulse ratio of AMPA receptor-mediated EPSCs
recorded in L5 CPNs was significantly higher in Tshz3-pnCxKO
CPNs compared with control CPNs (Figure 3A), suggesting a
decreased probability of AP-dependent glutamate release from
L2/3 cortical neurons. In contrast, the paired-pulse ratio of
GABAergic inhibitory postsynaptic currents was similar in both
280 Biological Psychiatry August 15, 2019; 86:274–285 www.sobp.org
genotypes (Figure 3B). Concerning AP-independent sponta-
neous activity, the distribution of miniature EPSC interevent
interval and amplitude, as well as the average frequency and
amplitude (Figure 3C), were similar in Tshz3-pnCxKO and
control mice. Finally, the NMDA/AMPA ratio was also similar
between control and mutant (0.69 6 0.11, n = 22 vs. 0.51 6
0.08, n = 20; p = .296, Mann-Whitney test).

Corticostriatal Synaptic Transmission and
Plasticity

In the mouse, the bulk of the corticostriatal pathway is consti-
tuted by axons of L5 CPNs reaching the striatum around P3 to
P4 and forming synapses from P10 onward (53). Their main
targets are SPNs, which constitute .90% of the whole striatal
neuronal population anddo not express TSHZ3 (20). These facts
and the implication of the corticostriatal pathway in ASD (10)
/journal
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make this circuit (Figure 4A) a valuable tool for investigating the
functional consequences of Tshz3 loss in CPNs.

Striatal SPNs recorded from control (n = 16) and Tshz3-
pnCxKO (n = 22) mice presented similar resting membrane
potential and current–voltage relationship (not shown). Inter-
estingly, the paired-pulse ratio was significantly higher in
Tshz3-pnCxKO mice (Figure 4B), suggesting a decreased
probability of AP-dependent glutamate release from L5 CPNs.
Conversely, miniature EPSC parameters were not changed in
Tshz3-pnCxKO compared with control mice (Figure 4C).
Furthermore, in Tshz3-pnCxKO mice, the NMDA/AMPA ratio
was significantly increased (Figure 4D).

Concerning synaptic plasticity, long-term potentiation (LTP)
was present in both control and mutant mice (Figure 5A).
Conversely, long-term depression (LTD) was absent in Tshz3-
pnCxKO mice and was even reversed as a transient potenti-
ation (Figure 5B). Interestingly, the blockade of NMDA
receptors by AP-5 (40 mM) partially recovered LTD and abol-
ished the transient potentiation (Figure 5B), suggesting that the
lack of LTD could be due, at least in part, to increased NMDA
receptor–mediated signaling.

ASD-Relevant Behavior

Tshz3-pnCxKOmice displayedmore stereotypedbehaviors than
control mice: they buried more marbles and dipped more
repeatedly in the hole board (Figure 6A and Figure S7A, B in
Supplement 1). Tshz3-pnCxKO mice showed reduced field of
interest with smaller number of zone crossing in the open
field (Figure 6B, C) and also had lower sociability and lower in-
terest in social novelty, as revealed by the two-chamber test
(Figure 6D–F). In addition, Tshz3-pnCxKO mice showed
increased anxiety-like behavior: they avoided the central area
more in the open field (Figure 6B, G), as well as the open arms of
the elevated plus maze (Figure 6H). Mutant and control mice
learned equally in the Morris water maze (see Supplement 1):
neither the learning slopes nor the probe scores differed, and the
visible platformvalueswere identical in the twogroups (Figure 6I).
The loss of Tshz3 did not modify the hind paw coordination
(2.0 6 0.36 vs. 1.78 6 0.52 hind paw slips for control mice vs.
Tshz3-pnCxKO mice; n = 9 per group [t16 = 0.87, p = .39]).
Finally, mutant mice did not show visual, auditory, and olfactory
deficits (Figure S7C–E in Supplement 1).

Genes Differentially Expressed in the Tshz3-
pnCxKO Cerebral Cortex Are Strongly Associated
With ASD

RNA sequencing, performed at P28 in the cortex of Tshz3-
pnCxKO and control mice, identified 1025 differentially
expressed genes (DEGs), among which 767 were upregulated
and 258 downregulated (p, .05) (Table S2A in Supplement 2). A
total of 993 of these DEGs have nonambiguous human ortho-
logues (Table S2B in Supplement 2). GSEA showed consistent
negative or positive enrichment of Gene Ontology terms asso-
ciated with neurological and synaptic functions/pathways, as
well as neurological disorders, such as ASD and Alzheimer’s
disease (Figure 7A, B; Table S3A–X in Supplement 3).
GSEA from the SynaptomeDB [http://metamoodics.org/
SynaptomeDB/index.php (43)] and from the G2C postsynaptic
proteome datasets [http://www.genes2cognition.org/
Biological Ps
proteomics (44)] revealed positive enrichment of postsynaptic,
presynaptic, and presynaptic active zone and negative enrich-
ment for vesicle Gene Ontology terms (Figure 7C; Table S3L–O
in Supplement 3). Interestingly, we found a strong enrichment
for theNMDA receptor pathway, while few geneswere related to
the AMPA receptor pathway (Figure 7C). Of the 1025 DEGs, 173
(16.7%) encode for postsynaptic density (PSD) proteins from
the adult mouse cerebral cortex, among which 167 have human
orthologues (54) (Table S2B–D in Supplement 2). Interestingly,
among these 167 proteins, 28 were identified as components of
the DLG4, DLGAP1, and/or SHANK3 postsynaptic protein-
interaction networks of the adult mouse cortex (55) (Table S2E
in Supplement 2).

Last, of the 993 human orthologues, 741 (74.6%) are
involved in brain and nervous system disorders. Among these
741 genes, 489 (66%) are known or proposed to be involved in
ASD (Table S2F, G in Supplement 2). Note that the percentage
of ASD-associated genes remains high when restricting the
analysis to the 357 human orthologues of the 382 DEGs having
an absolute value of log2 fold change .0.5 and the adjusted p
value (or false discovery rate) ,.05 (Table S2H in Supplement
2). In this condition, 155 (43.4%) genes of 357 are associated
with ASD, among which 13 (GRIN2A, GRIN2B, MIF, MYH6,
MYH14, NDUFA13, NOS1, PHGDH, PRR7, PURA, RFTN1,
SYT2, VGF) encode for PSD proteins (Figure 7D; Table S2H–K
in Supplement 2).
DISCUSSION

In our previous work (20), we showed a direct link between
TSHZ3 loss and ASD and reported dramatic changes in gene
expression in the fetal neocortex (E18.5) of Tshz32/2 mice, with
243 DEGs.

Here, transcriptomic analysis of Tshz3-pnCxKO mice at P28
revealed a very different pattern and number of DEGs. Notably,
there were 1025 DEGs, among which only 38 previously
identified in Tshz32/2 (see Table S4 in Supplement 4), showing
that TSHZ3 has different regulatory functions at prenatal
versus postnatal stages. Interestingly, postnatal Tshz3 loss
also clearly leads to abnormal expression of 173 genes of the
PSD, as well as 59 “presynaptic” genes such as Nrxn2, Syt2,
and Syn2 (Table S2L in Supplement 2) implicated in synapse
adhesion and neurotransmitter release (56,57). Altogether,
these results highlight a fascinating dual role of TSHZ3 in
prenatal versus postnatal stages, confirming that it participates
in different transcriptional programs dependent on the devel-
opmental stage. All these DEGs belong to a converging
network in terms of human brain diseases: notably, in both
cases, ASD first, and schizophrenia second, are the most
represented pathologies associated to these genes. Consis-
tently, we show here that Tshz3-pnCxKO mice display the
whole set of ASD-like behavioral abnormalities, namely social
interaction deficits, restricted fields of interest, and stereo-
typies, similarly to Tshz31/2 mice, a model mimicking the hu-
man pathology (20). Therefore, the alteration of different
transcriptional programs resulting from Tshz3 deficiency at
embryonic or postnatal stages converges into a similar ASD
phenotype. These data raise the issue of the contribution of
postnatal events to the ASD phenotype of Tshz31/2 mice and
call for future rescue experiments to test the hypothesis of an
ychiatry August 15, 2019; 86:274–285 www.sobp.org/journal 281

http://metamoodics.org/SynaptomeDB/index.php
http://metamoodics.org/SynaptomeDB/index.php
http://www.genes2cognition.org/proteomics
http://www.genes2cognition.org/proteomics
http://www.sobp.org/journal


Postnatal Tshz3 Loss in Cortex Leads to ASD

282 Biological Psychiatry August 15, 2019; 86:274–285 www.sobp.org/journal

Biological
Psychiatry:
Celebrating
50 Years

http://www.sobp.org/journal


Postnatal Tshz3 Loss in Cortex Leads to ASD

Biological
Psychiatry:
Celebrating
50 Years
early postnatal therapeutic window for the ASD-like syndrome
linked to TSHZ3 haploinsufficiency.

Mutations linked to ASD induce structural and functional
changes in brain circuitry, including spine morphology/
density, synaptic transmission, and plasticity (58), strongly
involving the corticostriatal circuitry (7,10,59), suggesting
that this pathway constitutes a main target for studying
brain dysfunctions associated to this pathology. Accord-
ingly, we reported functional abnormalities in the cortico-
striatal pathway associated with the ASD-related phenotype
in Tshz31/2 mice (20). Consistently, here, we found that
cortical AP-dependent glutamate release is significantly
reduced in Tshz3-pnCxKO mice and that L5 CPNs have
decreased spine density, which is usually associated to
diminished synaptic activity (60), as well as slightly reduced
excitability. L2/3 and L5 neurons normally express TSHZ3,
and thus these changes could be attributed to a “direct”
effect of postnatal Tshz3 loss on their maturation and
functioning as well as on the establishment of their synaptic
network. In turn, the reduced AP-dependent glutamate
release in the striatum could be interpreted as a conse-
quence of the above-mentioned modifications at cortical
level. In parallel, the increased NMDA/AMPA ratio measured
in striatal SPNs could be interpreted as a compensatory
mechanism: NMDA receptor signaling, which is crucial for
synaptic plasticity (61), could be enhanced to compensate
for the lower corticostriatal input. In this respect, the
abnormal corticostriatal LTD reported here is particularly
striking and fitting: LTD in the striatum can be induced in
conditions limiting NMDA receptor activation; conversely,
LTP induction requires their full activation (33,62–68). In this
context, the exacerbated NMDA receptor–mediated
signaling might lead to the observed loss of LTD and the
transient LTP-like phenomenon; the partial recovery of LTD
by NMDA receptor blockade strongly supports this hy-
pothesis. Alternatively, or concomitantly, LTD loss could be
attributed to an occlusion effect: as basal corticostriatal
synaptic transmission is downregulated, it cannot be further
depressed. Interestingly, changes in corticostriatal function
have been evidenced in several mouse models of ASD
(17–20). These alterations are heterogeneous, possibly
owing to the different models, experimental protocols, and
genetic backgrounds. However, they all strongly suggest
that altered corticostriatal synaptic transmission/plasticity is
a hallmark of ASD.

Long-lasting changes of synaptic strength can reinforce
(LTP) or depress (LTD) specific neural circuits, thus gating
salient information while suppressing unwanted ones to opti-
mize behavioral responses (69). If, as in our case, one of the
=

Figure 7. Gene Set Enrichment Analysis (GSEA) enrichment. (A) Positive and
Process” using the preranked Tshz3 gene list. The normalized enriched score (NE
related terms, orange color designates kidney-related terms, and all other term
synaptome areas and postsynaptic neurotransmitter pathways. The color of the no
size of the nodes roughly indicates the total number of genes found for each te
teractions (line thickness) indicates shared genes between the terms. (D) Histog
thologies associated with the 357 human orthologs of the 382 Tshz3-regulated diff
false discovery rate) ,.05. Each gene is scored on the basis of the number of re
follows: 1, one publication; 2, two publications; 3, .2 publications. AMPAR, a
autism spectrum disorder; GF, growth factor; mGluR5, metabotropic glutamate
adenine dinucleotide phosphate; ncRNA, noncoding RNA; NMDAR, N-methyl-D-
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two forms of plasticity is altered or absent, these processes
would be unpaired, contributing to the observed behavioral
abnormalities. Whereas the molecular and anatomo-functional
defects in corticostriatal circuitry could underlie at least part of
the ASD-like features of Tshz3-pnCxKO mice, other brain cir-
cuits and structures might also be involved, such as those
involving the medial prefrontal cortex and the basolateral
amygdala (70), as TSHZ3 and CaMKIIalpha are expressed
there (20,21,71). In agreement with the very low Tshz3
expression in the hippocampus (21), Tshz3-pnCxKOmice have
no memory deficit.

Overall, the above-mentioned molecular, functional, and
morphological changes in CPNs due to Tshz3 loss further
support the current idea that ASD can be considered as a
synaptopathy (70,72). Here, we show that several DEGs in
Tshz3-pnCxKO mice are actually involved in glutamatergic
synaptic transmission at both pre- and postsynaptic level,
including genes involved in NMDA receptor signaling pathway,
PSD-95, and SH3 and multiple ankyrin repeat domains protein
complex. There is increasing evidence that NMDA receptor–
dependent signaling pathway is involved not only in ASD,
but also in Alzheimer’s disease, while AMPA receptor–
mediated signaling is relatively spared (73), leading to the
hypothesis that TSHZ3-related ASD can be considered as a
synaptopathy linked to NMDA receptor pathway
abnormalities.

Here, we demonstrate that Tshz3 plays an essential role in
the cortex and in corticostriatal circuitry during postnatal
development, which is different from that played at prenatal
stages in terms of gene expression modulation. This supports
the position of TSHZ3 as a critical neurodevelopmental regu-
lator participating at differential age-related processes of gene
transcription and confirms its role as an ASD-risk gene,
providing new ASD models in rodents and pointing to
dysfunctional corticostriatal circuitry as a substrate for this
group of neurodevelopmental disorders.
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