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SUMMARY

Proteotypes, like genotypes, have been found to vary
between individuals in several studies, but consistent
molecular functional traits across studies remain tobe
quantified. In a meta-analysis of 11 proteomics data-
sets from humans and mice, we use co-variation of
proteins in known functionalmodules across datasets
and individuals to obtain a consensus landscape of
proteotype variation. We find that individuals differ
considerably in both protein complex abundances
and stoichiometry. We disentangle genetic and envi-
ronmental factors impacting these metrics, with ge-
netic sex and specific diets together explaining
13.5%and11.6%of theobservedvariationofcomplex
abundance and stoichiometry, respectively. Sex-spe-
cific differences, for example, include various proteins
and complexes, where the respective genes are not
located on sex-specific chromosomes. Diet-specific
differences, added to the individual genetic back-
grounds, might become a starting point for personal-
ized proteotype modulation toward desired features.
INTRODUCTION

Recent advances in the experimental throughput of mass spec-

trometry (MS)-based proteomics have enabled large-scale

studies of proteotypes, defined as the proteome complement

of a genotype (Picotti et al., 2013), which can be obtained for

cell lines or tissues. Although genotype and proteotype are

poorly correlated (Liu et al., 2016), genetic variation has been

shown to have a considerable impact on the abundance of pro-

teins across yeast strains (Picotti et al., 2013), mouse strains (Wu

et al., 2014; Williams et al., 2016; Chick et al., 2016), fly strains

(Okada et al., 2016), and human individuals (Battle et al., 2015;

Wu et al., 2013; Liu et al., 2015). While some rare diseases are

100% genetically determined, for most common ones, the ge-

netic contribution is minor and environmental factors play an

important role. In obesity, for example, only �6% of the pheno-
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typic variance can be explained by the associated genetic vari-

ance (Speliotes et al., 2010). The identification of functional traits

in proteotypes therefore holds great promise to provide disease-

associated fingerprints in individuals because such traits should

be a molecular reflection of not only genetic but also environ-

mental factors (e.g., life style). If environmental factors can be

disentangled from genetic ones, such fingerprints might even

provide a basis for personalized treatments.

Establishing such connections from genetic or environmental

factors to the individual proteotype remains challenging, how-

ever. This is due to technical limitations, in particular the variable

experimental noise across studies, but also biological buffering

mechanisms (Stefely et al., 2016). However, the modular archi-

tecture of the proteome (i.e., its organization into complexes,

pathways, and subcellular structures) provides powerful means

to overcome these issues by interpreting observed variations

in the context of well-established biological functions (Stefely

et al., 2016; Ori et al., 2016; Parca et al., 2018).

Several seminal studies have shown the variability of protein

abundances across individuals in human and mice (Wu et al.,

2013, 2014; Chick et al., 2016; Battle et al., 2015; Liu et al.,

2015; Gonçalves et al., 2017). Although each study highlighted

individual proteins or functional modules that were found to be

variable, a systematic and unbiased analysis of functional mod-

ules across multiple studies is lacking. It remains unknown if al-

terations of specific cellular functions are prevalent and at which

organizational level such alterations manifest (e.g., complexes,

pathways, organelles). Furthermore, the extent to which the pro-

teome of individuals is variable, and how this variability is linked

to environmental or genetic factors remains difficult to estimate.

A case in point is the lack of stratification of male and female

organisms at the proteotype level. Various studies have

reported protein abundance variation due to the genetic sex of

an organism, but focus only on chromosome X/Y-specific pro-

tein expression rather than on the systemic differences in the

overall proteotypic patterns (Wu et al., 2013; Kukurba et al.,

2016). Exploring gender differences of the proteome is pivotal

for our understanding of clinical phenotypes that are often sexu-

ally dimorphic (Naugler et al., 2007).

Here, we analyze 11 public datasets to investigate proteo-

types of healthy and diseased individuals from human and
r Biology Laboratory. Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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mice. The proteotype of an individual describes, more generally,

the state of a proteome (i.e., protein abundances, connectivity,

turnover, and localization) in conjunction with the presence and

state of posttranslational modifications. It differs from cell type

to cell type (Geiger et al., 2012; Uhlén et al., 2015; Ori et al.,

2016) and changes over time (Ori et al., 2015; Cellerino and

Ori, 2017). The 11 datasets, however, only describe protein

abundances and source information (a given cell line or tissue).

Therefore, we use an operational definition of the proteotype

that is restricted to protein abundances. For each dataset, we

test to what extent it recovers known functional modules and

assess the contribution of these modules to proteotype variation

and their association with genetic and environmental factors.

Our unbiased analysis reveals that protein complex abundance

and stoichiometry are the major determinants of an individual’s

proteome, while proteins in other functional modules, such as

molecular pathways, co-vary less often across individuals.

Within protein complexes, the consistently co-varying dynamic

components can be associated with both genetic and environ-

mental factors. We demonstrate that sex as a genetic factor ex-

plains the largest fraction of the observed variability in protein

complexes but also find functional modules that are impacted

by diet, an environmental factor. As both examples alone already

have considerable effect sizes, our study implies that protein

functional module variation might serve as a molecular finger-

print of a wide range of environmental and genetic factors, which

might be tunable toward desired proteotypes (e.g., by individual-

ized diets) (Zeevi et al., 2015).

RESULTS

Interacting Proteins Co-vary across Healthy Individuals
Proteins are not functioning alone, but are organized into func-

tional modules and networks, spanning from complexes to path-

ways and entire organelles. In order to understand which fea-

tures or levels of organization define the proteome state of

individuals, we tested to what extent known functional modules

or protein associations can be recovered in different proteomics

datasets. Implicitly, we thereby tested the power of each dataset

and ensured consistent results. We examined datasets resulting

from profiling proteins across cancer patients (The Cancer

Genome Atlas [TCGA] panels: Ovarian Cancer, Zhang et al.,

2016; Breast Cancer, Mertins et al., 2016; and Colorectal Can-

cer, Zhang et al., 2014), healthy human individuals (Battle

et al., 2015; Wu et al., 2013; Khan et al., 2013), and healthy

mouse strains that were exposed to different diets (Wu et al.,

2014; Chick et al., 2016) and compared them to other proteomic

datasets derived from cell types (Geiger et al., 2012) (Figure 1;

Table S1). The respective studies differed with respect to the

MS-technique employed for protein measurement, as well as

the source organism, resolution (tissues or specific cells), and or-

gan or cell type (Table S1). While Wu et al. (2014), Williams et al.

(2016); BXD80 mouse strains, and Chick et al. (2016) (diversity

outbred [DO] mouse strains and Founder mouse strains) recov-

ered proteins from mouse livers from different mouse popula-

tions, Battle et al. (2015) extracted proteins from lymphoblastoid

cell lines (LCLs) of human individuals (HapMap Yoruba individ-

uals). If available, we included transcriptional data as well as
data derived from ribosome profiling to reveal the impact of tran-

scriptional and translational regulation.

We assessed the power of each dataset for discovering func-

tional modules by calculating the level of observed co-abun-

dance for known protein-protein interactions utilizing the

STRING v10.5 resource (Szklarczyk et al., 2017) and comparing

the results to random associations (Figure S1). As expected,

throughout all datasets, we recovered pairs of proteins con-

nected by high-confidence interactions (STRING combined

score >700) to be more co-abundant across conditions or indi-

viduals than protein pairs with no known interactions (see

STAR Methods). To further dissect the functional relevance of

co-abundant protein sets, we added contextual information

about chromosomal location, housekeeping roles (Eisenberg

and Levanon, 2013), cellular compartment (Human Protein Atlas)

(Uhlén et al., 2015), essentiality (Wang et al., 2015), pathways

(Reactome), and protein complexes (Figure 2A; Table S2). The

latter were derived from a manually curated list of 279 largely

non-overlapping protein complexes as defined by Ori et al.

(2016). For each category of contextual information, we as-

sessed using receiver operating characteristic (ROC) curves

whether the respective dataset reliably recovered known func-

tional entities, based solely on the co-abundance or co-expres-

sion metric. This approach implicitly allows a dual assessment

of (1) the overall power of each dataset based on the amount

of co-abundance, and (2) an unbiased assessment of the type

of functional module yielding the highest level of co-abundance

across datasets. With regard to (1), we observed datasets

derived from tissue samples to be noisier when compared to

cell lines, probably due to themixture of different cell typeswithin

a tissue. Proteomics datasets tended to more clearly recover

functional modules as compared to RNA sequencing (RNA-

seq) or ribosome profiling datasets (average p = 3.73 3 10�5,

one-sided Mann-Whitney U test), in line with previous work sug-

gesting an important role of post-translational mechanisms in

shaping protein complex abundance and stoichiometry across

cell types (Ori et al., 2016).

We observed a consistently high level of co-abundance of

members of the same protein complex in proteomics datasets

(average p = 8.54 3 10�4, one-sided Mann-Whitney U test, Fig-

ure 2A). Proteins in other modules, such as pathways, organ-

elles, the housekeeping proteome, etc. showed less coherence

on average (average area under curve [AUC] <0.55) (Figure 2A).

The shifts toward higher co-abundance were especially

apparent in the TCGA proteomics panels, the healthy human in-

dividuals (Battle et al., 2015) and the DO and Founder mouse

strains (Chick et al., 2016) (Figure 2B). Recent reports (Gonçalves

et al., 2017; Roumeliotis et al., 2017) have demonstrated protein

complex attenuation due to copy number variations common to

cancer and aneuploidy (Liu et al., 2017). Strikingly, the abun-

dance shift for healthy individuals was in some cases even

more pronounced than for the cancer-derived datasets, confirm-

ing that co-regulation of protein complex members beyond tran-

scription is indeed an inherent cellular mechanism that is pre-

served across individuals independently of genetic alterations

(Figure 2B). Thus, our analysis points toward consistent recovery

of protein complexes as the most co-abundant entities within

proteomics datasets. To validate the concept externally, but
Cell 177, 1308–1318, May 16, 2019 1309
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Figure 1. Schematic Illustration of Workflow

(1) Published proteomics datasets on human individuals, mouse strains, and cell types are considered for the study (Table S1). If available, RNA-seq datasets for

the respective specimens are also taken into account. (2) Co-variation of protein (or transcript) abundances is calculated for each dataset. (3) We integrate

resources on proteinmodules (STRING protein interactions, protein complexes, Reactome pathways, Human Protein Atlas cellular localization, etc.) to reveal co-

varying modules across individuals. The schematic below illustrates the definition of true positive (TP), false positive (FP), false negative (FN), and true negative

(TN) interactions based on whether the interaction occurs within a module (dashed circle) or outside at a given correlation (corr) threshold. Iterating through

correlation thresholds gives the receiver operating characteristics (ROC). (4) Different modules are then compared by the ROC metrics in each dataset (recovery

of known modules). (5) Datasets can be compared by the degree of recoverable known co-variation (STRING interactions).

See also Figure S1 and Table S1.
also test for its generality, we applied an analogous work flow to

various published datasets on different yeast strains subjected

to several environmental conditions. In these datasets, we

observed strong and significant co-abundance of complex

members across strains (Figure S6A).

Protein Complexes Vary in Their Stoichiometry across
Individuals
Given the strong signal of variation in complex abundance

across individuals in comparison to other functional entities,

we focused on a detailed analysis of protein complexes and their

stoichiometry in order to identify genetic and environmental fac-

tors associated with it. For this purpose, we examined only the

proteomics datasets that were yielding the highest recovery of

known functional entities due to co-abundance, namely all

TCGA cancer datasets, and the datasets on human individuals

(Battle et al., 2015) as well as Founder and DO mouse strains
1310 Cell 177, 1308–1318, May 16, 2019
(Chick et al., 2016) (p = 2.71 3 10�6, one-sided Mann-Whitney

U test) (Figure 2B). Using median co-abundance of members in

a complex as a proxy for stoichiometric variability across individ-

uals and controlling for a number of technical biases and

possible artifacts (Figures S2A and S2B), we recovered a

protein complex variability landscape (Figure 3) that is highly

consistent across the different proteomics datasets (average

Spearman’s rho = 0.585; p = 2.88 3 10�23, two-sided t test

compared to random permutations). We ranked protein com-

plexes according to their level of co-abundance across individ-

uals and identified a subset that is rigorously maintained in

stoichiometry (Figure 3). Of 96 well-defined protein complexes

with at least 5 protein members, 21 exhibited a tight co-regula-

tion of all its subunits across diseased, as well as healthy individ-

uals (median Pearson’s r per complex > 0.46 [75th percentile]).

They included the mini-chromosome maintenance (MCM) com-

plex, complexes associated with the translational apparatus
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(ribosome, chaperonin complex, elongation factor eIF2F) and

mitochondrial complexes within the electron transport chain,

such as the F0/F1 ATP synthase, cytochrome bc1 complex,

and the cytochrome c-oxidase. Variable complexes (median

Pearson’s r < 0.17 [25th percentile]), on the other hand, were en-

riched in chromatin-associated processes (Figure S3, false dis-

covery rate [FDR] = 4.68 3 10�34, Fisher’s exact test) such as

the RNA polymerase, the mediator complex, the BAF complex,

etc. The range of complexes in between the two extremes repre-

sented instances where both co-regulated parts of complex, as

well as more variable members are present, such as in the COPI/

COPII, the nuclear pore complex, and the 26S proteasome.

We observed a high consistency between datasets after the

dissection of modules into stable and variable sub-parts

(average Pearson’s r = 0.21, p = 9.75 3 10�15, two-sided t test

compared to random permutations). Variable components, if

identified at p value <0.1, made up 2%–20% of the overall struc-

ture of the complexes (STAR Methods; Table S3). We found

multiple instances of variable complex components consistent

with known biology (Table S3). For example, the F1/F0 ATP-syn-

thase inhibitor ATPIF1 was consistently recovered as variable

relative to the rest of the ATP synthase complex (Figure 4A,

FDR-corrected p = 2.10 3 10�7, one-sided t test). ATPIF1 is
known to be the master regulator of the F0/F1 ATP-synthase

(Garcı́a-Bermúdez andCuezva, 2016). Its binding to the complex

impedes the hydrolase activity of the ATP-synthase, effectively

shutting down its activity to prevent excess wasting of ATP.

The observed high variability of ATPIF1 across individuals could

thus be explained by the variable energy requirements of the cell

(Sánchez-Aragó et al., 2013). Variable members of the nuclear

pore complex (NPC) are peripherally associated to the core

scaffold, such as e.g., all three transmembrane nucleoporins;

varying expression levels of the latter have been implied in

differentiation and malignant transformation (NUP210, NDC1,

and POM121; FDR-corrected p values p = 8.01 3 10�11,

p = 0.0643, and p = 0.0644, one-sided t test) (Raices and

D’Angelo, 2012). Further variable members of the NPC were

found to be ALADIN (AAAS) (p = 0.12, one-sided t test), which

potentially binds to transmembrane nucleoporins and has been

linked to genetic disease, as well as NUP50 (FDR-corrected

p = 0.022, one-sided t test), a subunit involved in active nuclear

import (Beck and Hurt, 2017). We also found that paralogous

subunits are often variable, such as the ARFGAP-subunits of

the COPI complex (average p = 0.043, one-sided t test),

the MBD2/3-paralogs involved in the NuRD complex (average

p = 0.083, one-sided t test), as well as COPS7A/COPS7B in
Cell 177, 1308–1318, May 16, 2019 1311
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the COP9 signalosome (average p = 0.010, one-sided t test). This

observation is in line with the report from Ori et al. (2016), where

paralog switching between different cell types has been

described as a major driver for complex re-arrangements.

Another example is the 26S proteasome, in which specific

subunits are highly variable across healthy individuals, mouse

strains, and cancer patients (Figure 4B). The 20S components

PSMB8/PSMB9/PSMB10 of the immunoproteasome, a specific

sub-complex of the proteasome involved in immune-regulatory

response (McCarthy and Weinberg , 2015), fluctuate the most

in their relative abundance within the complex (Figure 4B,

average p = 2.82 3 10�4, one-sided t test). This sub-complex

is known to be replaced by PSMB5, PSMB6, and PSMB7 de-

pending on the cellular context, and these components also

vary strongly across individuals (Figure 4B, average p = 0.13,

one-sided t test), in multiple different datasets, implying that

context-dependent fine-tuning of proteasome activity across in-

dividuals is surprisingly prevalent.

We conclude that proteotype data could be used to predict

multi-functionality of sub-complexes or complex components.

As individuals vary both in complex abundance and in their

stoichiometry, we tried to identify potential genetic and environ-

mental determinants that can at least partially explain this pro-

teotype feature. We primarily leveraged the well-defined meta-

data available for DO (diversity outbred) mice strains, namely

their sex and their diet, with half of the animals fed with rodent
1312 Cell 177, 1308–1318, May 16, 2019
chow and the other with high-fat diet (Chick et al., 2016).

We captured two different readouts, namely the variability in (1)

complex abundances, and (2) complex stoichiometries (inset in

Figure 5A, upper right).

Sex- and Diet-Specific Protein Complex Abundances
For complex abundances, differences between male and female

mice were evaluated using a standard t test and Cohen dis-

tances to yield effect size estimates for each complex (Figure 5A,

top). From all 96 considered complexes, 21 complexes showed

an overall higher abundance in male mice, while 36 were more

abundant in females (FDR-corrected p < 0.01, two-sided t

test). Those complexes were enriched in complementary func-

tional processes: Whereas complexes that were more abundant

in males were part of the translational process (ribosome, eu-

karyotic translational factor 2B complex) and specifically protein

transport processes involving COPI and COPII, complexes

that were more abundant in females, were enriched in mRNA

transport and splicing processes (FDR < 0.01, Fisher’s exact

test, Figure S4A). This functional complement is indicative of a

genetic influence on the abundance of entire complex entities,

although we cannot rule out implicit hormonal, life style, or

behavioral differences that come along with the different sexes.

The effect of diet on protein complex abundance, on the other

hand, was less pronounced; out of 96 considered complexes, 7

complexes had a higher abundance in high-fat diet fed mice and



-2.0 -1.2 0.4 0.0 -0.4 1.2 2.0

variance z-score per dataset per complex

Colorectal Cancer
Ovarian Cancer

Breast Cancer

Human cell types
Human Individuals

Founder mouse strains
DO mouse strains

F0/F1 ATP synthase

AT
P5

H
AT

P5
B

AT
P5

O
AT

P5
F1

AT
P5

C1
AT

P5
L

AT
P5

A1
AT

P5
D

AT
P5

E
AT

P8
AT

P6
AT

PI
F1

COPI complex

CO
PB

1
CO

PA
CO

PB
2

CO
PG

1
AR

CN
1

CO
PE

CO
PZ

1
CO

PG
2

AR
FG

AP
2

AR
FG

AP
1

AR
FG

AP
3

CO
PZ

2

COP9 signalosome

CO
PS

5
CO

PS
6

CO
PS

4
CO

PS
3

CO
PS

2
G

PS
1

CO
PS

8
CO

PS
7A

CO
PS

7B

NuRD Complex

RB
BP

4
HD

AC
1

M
TA

2
CH

D4
M

TA
1

G
AT

AD
2A

G
AT

AD
2B

RB
BP

7
HD

AC
2

CH
D3

M
BD

3
M

TA
3

M
BD

2

Nuclear Pore Complex

N
U

P
13

3
TP

R
N

U
P

10
7

N
U

P
15

5
N

U
P

20
5

N
U

P
93

N
U

P
88

N
U

P
98

N
U

P
85

N
U

P
18

8
N

U
P

16
0

R
A

N
B

P
2

N
U

P
35

N
U

P
21

4
A

H
C

TF
1

N
U

P
37

N
U

P
54

N
U

P
62

N
U

P
15

3
R

A
E

1
S

E
C

13
P

O
M

12
1

N
U

P
43

S
E

H
1L

A
A

A
S

N
U

P
50

N
D

C
1

G
LE

1
N

U
P

21
0

26S Proteasome

PS
M

A7
PS

M
B1

PS
M

C5
PS

M
C3

PS
M

C6
PS

M
A6

PS
M

A3
PS

M
B4

PS
M

A4
PS

M
C4

PS
M

A5
PS

M
D1

2
PS

M
C2

PS
M

B2
PS

M
A2

PS
M

B3
PS

M
D7

PS
M

D1
PS

M
A1

PS
M

D1
1

PS
M

D6
PS

M
C1

PS
M

D8
PS

M
D1

4
PS

M
D3

PS
M

D1
3

PS
M

D5
PS

M
D2

PS
M

D4
PS

M
B7

PS
M

D1
0

PS
M

B5
PS

M
B6

PS
M

D9
PA

AF
1

PS
M

B9
PS

M
B8

PS
M

B1
0

COPII complex

SE
C2

4C
SE

C2
4A

SE
C1

3
TM

ED
10

SE
C2

3B
TM

ED
2

TM
ED

7
SE

C1
6A

SE
C2

3A
SA

R1
B

SE
C2

4D
TM

ED
9

SE
C3

1A
TM

ED
4

SA
R1

A
TM

ED
5

ER
G

IC
3

SE
C2

4B
TM

ED
1

TM
ED

3

eIF4F

EI
F4

A3
EI

F4
G

1
EI

F4
G

2
EI

F4
E

EI
F4

G
3

EI
F4

A1
EI

F4
A2

M
IF

4G
D

NA
T1

Colorectal Cancer
Ovarian Cancer

Breast Cancer

Human cell types
Human Individuals

Founder mouse strains
DO mouse strains

RU
VB

L1
AC

TL
6A

IN
G

3
RU

VB
L2

TR
RA

P
EP

40
0

M
RG

BP
DM

AP
1

AT
AD

3A
M

EA
F6

M
O

RF
4L

1
IN

G
2

NuA4/HAT complex

0.0

0.5

1.0

-1.5

-1.0

-0.5

PSMB7

PSMD10

PSMB5

PSMB6

PSMD9

PSMB9

PSMB8

PSMB10

PSMB6

PSMB7

PSMB5
β -subunits

α-subunits

α-subunits

stable variable

NuRD Complex... Nucleosome Remodeling Deacetylase Complex
eIF4F... eukaryotic initiation factor 4F
COPI/COPII complex...coat protein complex I/II
COP9 signalosome...constitutive photomorphogenesis 9 signalosome
NuA4/HAT complex...nucleosome acetyltransferase of histone H4/histone acetyltransferase

20S sub-complex 19S sub-complex immunoproteasome

A

B

da
ta

se
ts

da
ta

se
ts

protein complex subunits

protein complex subunits

26S Proteasome subunits

re
la

tiv
e 

ab
un

da
nc

e
in

 D
O

 m
ou

se
 s

tra
in

s

constitutive proteasome immunoproteasome

20
S

 P
ro

te
as

om
e

PSMB9

PSMB10

PSMB8

Figure 4. Dissection of Protein Complexes in Stable and Variable Components Reveals Consistent Architecture across Datasets

(A) Illustration of stable and variable components in a number of exemplary complexes (x axis: protein complex subunits, y axis: datasets). The heatmaps display

Z scores, which were calculated based on protein variances following complex normalization (variable component [red]: Z score >1.5; stable component [blue]: Z

score < �1.5). If a given protein was not detected in a dataset, the field is left out gray in the heatmap. Abbreviations of complex names are explained in the

respective legend.

(B) Members of the immuno-proteasome make up the most variable part of the proteasome complex across individuals, in the displayed example across the

diversity outbred (DO) mouse strains. The boxplots (left) display the complex-normalized protein abundances, with the color code highlighting the respective

structural entities of the 26S proteasome as indicated in the right-hand cartoon (blue, 20S; gray, 19S; orange, immunoproteasome). Boxplots represent the data

median, the interquartile range (IQR, box), and 1.5 times the IQR (whiskers).

See also Table S3.
16 were more abundant in mice exposed to chow (FDR-cor-

rected p < 0.01, two-sided t test). These complexes were mainly

enriched in mitochondrial functions and RNA-processing, pri-

marily spliceosome-related sub-complexes.

Sex- and Diet-Specific Protein Complex Stoichiometries
We next tested if diet and sex influence complex stoichiometry.

To this end, a LIMMA-analysis (Ritchie et al., 2015) was performed

on complex-normalized abundances for each complex sepa-
rately (STAR Methods; Table S4) (Ori et al., 2016). Generally,

changes in complex abundance did not significantly correlate

with the variability in complex stoichiometry (specified as the frac-

tion of subunits affected, FDR < 0.01, Pearson’s r = �0.03). For

example, the retromer complex only yielded a minimal signal

with regard to complex abundance (Figure 5A) but displays a

different complex stoichiometry between male and female mice

(Figure 5B). In more general terms, a diverse range of functions

was variable in complex stoichiometry, including ubiquitin protein
Cell 177, 1308–1318, May 16, 2019 1313



Figure 5. Sex-Specific Regulation of Com-

plex Abundance and Stoichiometry

(A) Delineation of differential abundance of protein

complexes between male (purple) and female

(green) DOmice. The effect sizes (Cohen distance)

is shown across all 96 complexes with colors

corresponding to significant effects (FDR-cor-

rected p value <0.01 [denoted as p.adj], two-tailed

t test). Complex median abundances for selected

examples are highlighted in the boxplots above the

Cohen-distance barplots. These boxplots repre-

sent the data median, the IQR (box), and 1.5 times

the IQR (whiskers). The inset (upper right) illus-

trates the concepts of abundance variation and

stoichiometry of protein modules.

(B) For each complex, the fraction of stable com-

ponents (blue, not changing in stoichiometry be-

tween male and female mice) and differential

stoichiometric hits (red) are shown. The volcano

plots beneath illustrate the underlying data with

log2-fold changes (denoted as FC, male/female, x

axis) and the adjusted p value on the y axis.

Complex-normalized abundances are shown

below, highlighting male and female stoichiometry

within complexes for variable complex members

(red). The stable components (blue) are summa-

rized as complex ref.

See also Figure S4 and Table S4.
ligase activity, mRNA splicing, catabolic processes, and protein

transport functions. Within protein transport, in particular, the

COPI and COPII complex were largely affected in their relative

stoichiometry between male and female mice (FDR-corrected

p value of 8.693 10�44, LIMMA-based t test; Figure 5B). Paralo-

gous components, for example SEC24A/SEC24B/SEC24C/

SEC24D—while unaffected between the different diet conditions

(Figures S4B and S4C)—contributed to very distinct sex-specific

stoichiometry, with SEC24D being consistently more abundant

than SEC24B in males and vice versa in females (average FDR-

corrected p = 1.40 3 10�17, LIMMA-based t test; Figure 5B).

SEC24A and SEC24C, on the other hand, had similar complex-

relative abundance between male and female mice (average

FDR-correctedp = 0.058, LIMMA-based t test). Such sex-specific

stoichiometric differences between individuals could indeed have

severe functional implications, such as the efficiency or specificity

of receptor transport, which has been shown to be affected by the

absence and concentration of the specified paralogs (Scharaw

et al., 2016). More specifically, the transport of newly synthesized
1314 Cell 177, 1308–1318, May 16, 2019
epidermal growth factor receptors (EGFR)

from the endoplasmic reticulum (ER) to

the plasma membrane coincides with

the upregulation of the isoforms SEC24B

and SEC24D (Scharaw et al., 2016). We

incidentally recovered a significantly high

correlation of EGFR with one of those

isoforms, SEC24D (Pearson’s r = 0.687,

p = 1.03 3 10�30, two-sided t test

compared to random permutations). The

functional consequences of the observed

changes in complex stoichiometry and
their propagation to other cellular processes within an individual

remain to be explored. Similar effects were also observed within

pathways where the stoichiometry of their members is function-

ally relevant, such as kinase signaling (FDR-corrected p value of

2.18 3 10�31, LIMMA-based t test) (Table S4).

Effect-Size Estimates of Sex and Diet on Protein
Complexes and Functional Modules
To quantify the impact of both sex and diet on the overall proteo-

type, we estimated the effect sizes of those two factors given the

observed variation (Figure 6A). On average, less than 5% of the

variation of individual protein abundances—regardless of their

functional and structural context—was explained by sex differ-

ences and even less so by diet differences (�2%). Some pro-

teins, however, were strongly influenced by the sex of the animal,

i.e., SULT2A1 (63.65%, p = 5.88 3 10�8, permutation test) and

PAPSS2 (64.82%, p = 3.20 3 10�8, permutation test), which

are crucial for sulfation of the androgen precursor (Oostdijk

et al., 2015).



To see whether the effect of the animal’s sex on protein abun-

dances is reflective of the underlying genetic factors, we

compared the obtained effect sizes directly with the results

from Liu et al. (2015), a study on identical twins that addressed

to what extent the variation of 342 human plasma proteins can

be explained by genetic factors, environment, and age. We

found that 37%of the environmental effect on the human plasma

proteome could be recovered in the DOmice as diet-dependent

(Spearman’s rho = 0.37, p = 4.85 3 10�3, two-sided t test) (Fig-

ure S5A). The genetic effect on the human plasma proteome and

the impact of the animal’s sex on protein variation correlated

positively as well (Spearman’s rho = 0.27, p = 3.06 3 10�2,

two-sided t test).

We hypothesized that effect sizes might be higher for func-

tional modules and estimated to what extent the variation of

such co-abundant modules, including both protein complexes

and highly co-abundant pathways, is influenced by each of the

two or both. For this, we considered the two above-described

metrics, abundance and stoichiometry. On average, sex and

diet cumulatively explained 13.51% of the abundance variation

in functional modules (Figure 6A), with sex explaining on

average 8.7% and diet only 3.54%. Some pathways, such as

the complement pathway, were strongly affected by these co-

variates: for example, around 38.8% of the variation in the abun-

dance of the complement pathway was due to the animal’s

sex (p = 4.95 3 10�7, permutation test). Other pathways,

including androgen and glucocorticoid biosynthesis, had an

expectedly large fraction of their abundance variation explained

by sex differences (38.36% [p = 6.80 3 10�7] and 32%

[p = 6.66 3 10�5]; permutation test) (Table S5). The effects of

diet on pathway abundances, on the other hand, were primarily

apparent for metabolic pathways, such as the urea cycle

(28.69%, p = 6.95 3 10�4, permutation test) and cholesterol

biosynthesis (19.04%, p = 0.068, permutation test). For protein

complexes, we could recover a similar span of effect sizes: on

average, 10.50% of the abundance variation of complexes could

be ascribed to the cumulative effect of the sex and diet of the an-

imals. Some complexes, however, were affected by neither

(<1%), whereas other complexes had more than 30% of their

abundance variation explained by these co-variates (Figure 6C).

For example, the sex of the mice explains up to 35% of the vari-

ance in the abundance of the eIF2B multi-subunit complex

(36.62%, p = 1.75 3 10�10, permutation test) and the nucleo-

some protein complex (36%, p = 2.43 3 10�10, permutation

test), as deduced from co-variate analysis controlling for diet.

On the other hand, the effect sizes of diet on protein complex

median abundances reached up to only 15% and were generally

restricted to another set of complexes, such as the Dsl1p com-

plex (15.88%, p = 0.042, permutation test), the HOPS complex

(15.63%, p = 0.048, permutation test) and mitochondrial com-

plexes, e.g., the cytochrome bc1 complex (11.94%) (Figure 6C).

Variation in modular stoichiometry, comprising both com-

plexes and pathways, was on average less influenced by either

factor (3.17%–7.66%) (Figure 6B; Table S5). However, some

pathways and complexes were considerably more affected in

their stoichiometry by diet than by sex (Figure 6C; Table S5).

One striking example is the mitochondrial pyruvate dehydroge-

nase complex: the median abundance of the complex was the
same regardless of the two explaining variables (Figure S5B);

the stoichiometry was not substantially affected by the sex of

the animals (4.73%, p = 0.20, permutation test), yet diet

impacted it significantly (effect size of 8.73%, p = 1.847 3

10�3, permutation test). Specifically, the subunits DLD and

BCKDHA were found to be on average higher in abundance un-

der chow diet conditions as compared to high-fat diet conditions

(Figure S5B).

The general lack of correlation between sex and diet-specific

stoichiometry changes (Pearson’s r = 0.016), underscores the

functional complementarity of genetic and environmental factors

(Figure S4B) and implies a possibility to revert changes caused

by environmental effects.

Although not directly comparable, our analogous analysis of

yeast strains (Figure S6B) supports our findings in mammals.

The more extreme environmental conditions tested in yeast

(glucose starvation and ethanol, osmotic, and/or temperature

stress) impacted functional modulesmuchmore dramatically, ex-

plaining on average 25% of the observed module variation. The

impact of environmental factors was substantially higher than

the one of genetic diversity between yeast strains (on average

13%, see Figure S6B), which points to an even larger source of

molecular markers for environmental impact on individuals.

DISCUSSION

Here, we provide a systematic analysis of unrelated MS-

shotgun proteomic datasets, revealing widespread variation of

abundance and stoichiometry of pathways and complexes.

Leveraging the modular architecture of the proteome, we show

that some complexes have a stable composition throughout

different proteomic datasets, whereas other complexes are sub-

ject to considerable variation across cell types as well as individ-

uals.We illustrate that this observed variability is partly due to the

presence of specific variable sub-parts of complexes that are

adapted for moonlighting purposes or fine-tuned to cellular con-

ditions. The variability of the immunoproteasome, for example,

coincides with the abundance levels of components involved in

the immune-regulatory response. Consistently stable com-

plexes, on the other hand, are primarily subject to structural con-

straints and rigorous stoichiometric control. So far, both degra-

dation of unbound subunits (McShane et al., 2016; Ryan et al.,

2017), as well as regulatory mechanisms at the RNA level (Wu

et al., 2013) have been suggested as major drivers of stoichio-

metric robustness in complexes. Such mechanisms are not

restricted to protein complexes. Specific pathways, such as

the complement pathway, display a very high and consistent

co-variation of all its protein members involved. Proteins in cen-

tral cellular pathways such as the citric acid cycle are also stable

in their relative stoichiometry. In the future, such pathways might

be further interrogated to understand which parts are subject to

careful stoichiometric maintenance and what variable members

contribute to differential proteotypes.

While it has been previously shown that slight architectural

changes of complexes and pathways occur between different

cell types due to respective cellular morphologies and gene

expression programs (Ori et al., 2013), our analysis reveals that

such changes even become apparent across individuals within
Cell 177, 1308–1318, May 16, 2019 1315
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Figure 6. Effects of Sex and Diet on Protein Variation as well as Variation in Module Abundance and Stoichiometry

(A) Distribution of the overall effect of sex, diet, and the cumulative effect (sex + diet) on protein abundance variation (all proteins), as well as abundance and

stoichiometry variation of modules, including protein complexes and pathways with highly co-varying protein members (see STAR Methods). The lighter colors

correspond to effects on abundances, whereas darker colors correspond to effects on module stoichiometry. The boxplots indicate the median (central line), the

IQR (box), and 1.5 times the IQR (whiskers).

(B) Table displaying median effect sizes of respective variables on complexes only, pathways only, and modules, comprising both complexes and pathways.

(C) Distribution of sex- and diet-dependent effect sizes on all complexes (with R5 protein members), with lighter colors illustrating effects on abundances and

darker colors effects on stoichiometry (see legend from A). Selected complexes showing high degree of variability explained by either sex or diet are highlighted.

See also Figures S5 and S6 and Tables S5 and S6.
the same cell type. This raises the questions to what extent com-

plex and pathway stoichiometry is determined by cell differenti-

ation programs and which other factors contribute to or confine

structural arrangements of functional protein modules. We focus

on two factors, the genetic sex of the individual and two distinct

diets, to quantify examples of both genetic and environmental

factors as potential sources of variation of module abundance

and stoichiometry. The effect sizes on variation in module abun-

dances were usually larger, with an average of >5%, than in

module stoichiometry (average <5%), which was expected due

to the rigor in module architecture. The impact of an individual’s

sex on the proteotype are currently largely centered aroundwell-

knownmechanisms such as dosage compensation and differen-

tial expression of proteins due to their X/Y chromosome location

(Wu et al., 2013; Chick et al., 2016). Our analysis identifies a

considerable number of sex-specific variations in complexes

and pathways that go beyond the location of sex-specific chro-

mosomes. At this point, it remains unclear, however, whether the
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given stoichiometry has a truly genetic cause that can be traced

back to X- and Y-associated gene expression, or whether it

emerges via indirect environmental effects, such as the influence

of hormones or life styles. The observed effect size of diet was

overall smaller; however, a few protein complexes are predomi-

nantly affected, very often in metabolic context. Our findings

suggest that in these specific cases changes of diet might be ex-

ploited to counteract other factors in order to favorably adjust an

individual’s proteotype.

Using yeast strains exposed to various, more drastic, environ-

mental conditions, we could indeed demonstrate that the envi-

ronmental imprint on the proteome appears to be much higher,

explaining as much as 25% of the observed variation in protein

complex composition and stoichiometry, albeit in the context

of a high genetic diversity, which explained 13% of the respec-

tive variation.

Although somewhat limited in environmental condition on

mammalian individuals, our analysis provides a stepping stone



in defining the underlying determinants of variation in the prote-

ome, which could arguably be exploited in future diagnostic and

clinical contexts. The proteotype of an individual represents the

most direct readout for the functional state of cells, as protein

abundance and module stoichiometry are the result of prior inte-

grative processes at the transcriptional, translational, and post-

translational level. Establishing whether certain cellular pro-

cesses caused by disease are due to genetic or environmental

differences is key to stratifying patient cohorts andmight provide

a framework for personalized medicine. Even subtle differences

in stoichiometric set-ups of protein modules could have sys-

temic effects on the entire proteome and affect cellular logistics

and organelle composition, as illustrated by the observed

changes in the nuclear pore and vesicle trafficking systems. By

establishing the network of interdependencies between complex

and pathway stoichiometry and an individual’s phenotype, the

proteotype could indeed be fully leveraged as a functional

readout for disease risk assessment in the future.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Proteomics Datasets, RNA-seq and

Ribosome Profiling

Web Resource http://www.bork.embl.de/Docu/proteotype_genetic_

environment_impact/download.html

Software and Algorithms

R The R Project https://www.R-project.org; RRID: SCR_001905

Bioconductor Bioconductor https://www.bioconductor.org; RRID: SCR_006442

Python 2.7 Python Software Foundation. Python

Language Reference, version 2.7

https://www.python.org; RRID: SCR_008394

UNIPROT UniProt Consortium https://www.uniprot.org:443/; RRID: SCR_002380

Scikit-learn: Machine Learning in Python scikit-learn: Machine Learning in Python https://scikit-learn.org/stable/index.html; RRID:

SCR_002577

Bioconductor Package: Linear Models

for Microarray Data (LIMMA)

Ritchie et al., 2015 https://bioconductor.org/packages/

release/bioc/html/limma.html; RRID: SCR_010943

MyGene, Gene Annotation Service mygene.info https://pypi.org/project/mygene/

DAVID Bioinformatics Resources 6.8 DAVID, NCI https://david-d.ncifcrf.gov/; RRID: SCR_001881

Other

Resource website for data analysis Web Resource http://www.bork.embl.de/Docu/

proteotype_genetic_environment_impact/

Reactome Pathway Database Reactome https://reactome.org; RRID: SCR_003485

Complex Database Ori et al., 2016 http://www.bork.embl.de/Docu/variable_complexes/

The Human Protein Atlas Uhlén et al., 2015 http://www.proteinatlas.org; RRID: SCR_006710

Saccharomyces Genome Database SGD community https://www.yeastgenome.org/; RRID: SCR_004694

STRING database (version 10.5) Szklarczyk et al., 2017 https://string-db.org/cgi/input.pl; RRID: SCR_005223
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Peer Bork (peer.bork@

embl.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The analyzed data are derived froma number of organisms and cell lines: (i) A549, GAMG, HEK293, HeLa, HepG2, K562,MCF7, RKO,

U2OS, LnCap and Jurkat cells (Geiger et al., 2012), (ii) kidney tissue samples (tumor andmatched kidney tissues) (Guo et al., 2015), (iii)

EBV-transformed lymphoblastoid cell lines (LCLs) derived from 5 human (YRI), 5 chimpanzee individuals, LCLs from 5 rhesus ma-

caque individuals (Khan et al., 2013), (iv) EBV-transformed LCLs derived from humans (YRI, Yoruban people) (Battle et al., 2015),

(v) BXDmouse strains on chow diet (CD) and high-fat diet (HFD) (Williams et al., 2016), (vi) Diversity Outbred mice (DO) from Jackson

Laboratory (JAX) with 3 weeks of age, exposed to chow diet (CD) or high-fat diet (HFD) (Chick et al., 2016), (vii) LCLs from 95 HapMap

individuals (Wu et al., 2013), (viii) tumor samples derived from the TCGA Biospecimen Core Resource (Zhang et al., 2014; Mertins

et al., 2016; Roumeliotis et al., 2017). More details on additional experimental features are given in Table S1.

METHOD DETAILS

The underlying data and code for each processing step can be found in the following web resource: http://www.bork.embl.de/Docu/

proteotype_genetic_environment_impact/.
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Information Resources and Integration of Data
Protein-protein interactions were obtained from the STRING database (version 10.5) (Szklarczyk et al., 2017); interactions were

considered to exist if the (STRING) combined score > 0, to be confident if combined score > 0.5 (Figure S1), and high-confidence

interactions if combined score > 0.7. The database of complexes wasmanually compiled and curated fromCOMPLEAT and CORUM

by Ori et al. (2016), and quantified proteins from all published datasets considered for the analysis were mapped accordingly. Path-

ways were obtained from the Reactome Pathway Database (downloaded in February, 2017, https://reactome.org/download-data/).

Cellular locations were extracted from the Human Protein Atlas (downloaded February 2017) (Uhlén et al., 2015) considering protein

mappings only if this assignment has been either validated, supported or confirmed by antibody analysis (keyword ‘approved’). Chro-

mosome locations weremapped using the Python packagemygene (https://pypi.org/pypi/mygene) using the hg19GenBank assem-

bly for human and themm10 genome assembly for mice, respectively. Finally, essentiality of genes was defined based on the genetic

screen performed in the human cell lines KBM7, K562, Jiyoye, and Raji by Wang et al. (2015) (Table S2); genes with a housekeeping

role were obtained from the supplementary files of the report by Eisenberg and Levanon (2013). [Step1 in web resource]

Large-scale proteomic datasets
For the delineation of protein abundances across individuals, we primarily considered large-scale shotgun proteomics studies on

human individuals, cancer patients and mouse strains. For control purposes, we also included the proteomic profiles of 11 human

cell lines generated byGeiger et al. (2012). Technical specificities of each dataset (such as sample number orMS-acquisition), as well

as the number of quantified proteins, as well as all required module mappings are given in Table S1. For the 60 Yoruban HapMap

individuals (Battle et al., 2015) also the respective data from RNA-seq analysis and ribosome profiling was available and therefore

included in the analyses. Data on DO (diversity outbred) mouse strains (Chick et al., 2016) were available at the proteomic as

well as transcript level. The cancer proteomics datasets were downloaded from the TCGA CPTAC project (Zhang et al., 2014,

2016; Mertins et al., 2016).

QUANTIFICATION AND STATISTICAL ANALYSIS

Pre-processing steps
For each dataset we checked whether batch effects or possible normalization issues could have arisen in the published processing

[Step2 in web resource]. To this end, each sample was tested for normality using the Shapiro-Wilk test, as this is a standard frame-

work to test for any possible deviations from normality; only in datasets from Geiger et al. (2012), and Guo et al. (2015), samples were

detected that showed possible batch effects. In this case, we log-transformed and quantile-normalized those to standardize sample

distribution. For each dataset we also checkedwhether any bias could arise for the calculation of protein correlations based on abun-

dance- and variance-distribution (Figure S2).

AUROC analysis
For the Receiver Operating Curve (ROC) analysis across different types of modules in different datasets, condition positives were

defined based on the databases as outlined above. The lowest number of condition positives occurring is 1.540 (interactions). For

pathwayswe excluded interactions within protein complexes (such as the ribosome complex). When considering chromosome loca-

tion, we defined true positive ‘‘interactions’’ to exist between genes encoded on the same chromosome. For the categories essen-

tiality and housekeeping role true positive interactions were to occur between essential genes and housekeeping genes, respectively.

The full set of condition negatives consists of all other pairs of proteins. For computational reasons, we randomly sampled from the

full set of condition negatives the same number of respective condition positives to compute ROC curves. The area under the curve

(AUC) value was calculated using the trapezoidal rule. We applied Mann-Whitney U-statistics, which is directly connected to the

AUC metric, to test whether correlation values derived from proteins that are in the same modules, are significantly different from

correlation values derived from random proteins that are not part of any module. To make a conservative estimate of the effect

size (and p-value), we applied the Mann-Whitney U-test 1000 times to a randomly sampled selection of 1000 items from the two dis-

tributions, respectively, and calculated the mean p-value. [Step6 in web resource]

Co-abundance of proteins in complexes
As mentioned above, the database of complexes was manually compiled and curated from COMPLEAT and CORUM by Ori et al.

(2016), and quantified proteins from all published datasets considered for the analysis were mapped accordingly. A subset of manu-

ally curated protein complexes were classified as ‘well-defined’ (Ori et al., 2016). For further analysis only protein complexes with at

least 5 quantified members were considered in each dataset, respectively. Co-abundances of proteins were calculated as Pearson

correlations between log-transformed protein abundances across individuals. As a control, proteins that were not part of any com-

plex assembly were randomly assigned into artificial complexes and cross-correlated as well (Figure S2B). In addition, the data was

also permuted and proteins subunits were again tested for co-abundance using Pearson correlation (Figure S2B). TheMann-Whitney

U-test was applied to assess significance. [Step4 in web resource]
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Gene ontology analysis
For all gene ontology (GO) analyses in this study, respective genes were analyzed using DAVID (version 6.8; https://david-d.ncifcrf.

gov). The GO domains ‘Biological Process’, ‘Molecular Function’ and ‘Cellular Compartment’ were considered; the background for

the GO-analysis was represented by all quantified proteins in a given dataset. Results were filtered according to FDR (Benjamini-

Hochberg) of less than 0.01; the fold-changes associated with those significantly enriched GO-terms are shown (Figures S3 and

S4A). [Step9 in web resource]

Identification of stable and variable complexes
As a general principle, we used themedian co-abundance of proteins within a complex as a proxy to differentiate between stable and

variable complexes. To compare the extent of complex stability and variability, correlations were ranked within each dataset; finally

the median rank of each complex as recovered from each considered dataset was calculated, and complexes were sorted accord-

ingly. The top quantile (25%) of these complexes were considered to be highly stable (Pearson’s r > 0.46), whereas the lowest quan-

tile were considered highly variable (Pearson’s r < 0.2). To assess the consistency of the complex variability landscape, we calculated

the Spearman correlation of the ranked median co-abundance across datasets (as illustrated in Figure 3). As a reference distribution

we permuted the dataset 1000 times, and computed Spearman correlation coefficients across datasets each time. In a two-sided t

test we then compared the real distribution of correlation values with the ones derived from the random permutations of the dataset.

This testing set-up does not presume any directionality in the hypothesis testing (two-sided) and is justified due to the normality of the

reference distribution (as confirmed by the Shapiro-Wilk test). [Step7 in web resource]

Protein complex stoichiometry analysis
To assess compositional rearrangements of protein complexes as opposed to their overall abundance changes, a module-wise

normalization was performed, as previously described (Ori et al., 2013, 2016). Proteins belonging to the same complex were normal-

ized by the respective trimmed mean (or interquartile mean) of the complex subunits across all individuals/samples. In case of pro-

teins involved in multiple complexes, the average value from all the corresponding complexes was taken into account. Given the

complex-normalized abundances, the variance of each subunit in a given complex was calculated. To compare these variances be-

tween different proteomics datasets and approaches, those varianceswere converted to z-scores per complex (Figure 4). Similarly to

testing the consistency between datasets in the above section, we calculated the correlation coefficients (between datasets) for each

such a z-score matrix. To compile a reference distribution we permuted each matrix and calculated corresponding correlation co-

efficients 1000 times, which provides a normal distribution. In a two-sided t test we then compared the real distribution of correlation

values with the ones derived from the random permutations of the dataset. Protein subunits within a complex were considered ‘sta-

ble’ or ‘variable’ in case of the associated p-value < 0.05 based on the distribution of z-scores (Table S3). To see whether a given

protein is consistently ‘variable’ in a complex throughout all given datasets, the distribution of its z-scores within the complex and

across all the datasets were compared to the z-score distribution for all other protein components of the same complex across

all datasets (one-sided t test). A one-sided t test accounts for the unidirectionality of our hypothesis and gives conservative results.

This procedure was done for all proteins in each complex, and resulting p-values were adjusted using the Benjamini-Hochberg

method. [Step8 in web resource]

Sex- and diet-specific abundance changes
To assess the differences in abundances of entire complex structures between male/female mice, and mice exposed to high-fat and

chow diet, the median abundances of each complex was calculated in each individual/sample (protein subunits were required to be

quantified in at least 50% of samples). For each complex it was then assessed via a t test whether median complex abundances in

malemice were significantly different from the ones in female mice; the effect size wasmonitored as the Cohen distance. The applied

t test is two-sided as no directionality is implied. P-values were further adjusted using the Benjamini-Hochberg procedure (signifi-

cance a = 0.05), and complex structures were considered significantly different in case of q-value < 0.01. [Step10 in web resource]

Sex- and diet-specific stoichiometry changes
For internal rearrangements of the complex (stoichiometry), we performed a separate analysis applying the R-package LIMMA

(Linear Models for Microarray data analysis) (Ritchie et al., 2015) using the complex-normalized protein abundances as input. LIMMA

was applied to give a more conservative variance estimate to allow for robust inference on differences compared to ordinary t tests.

Analogous to differential expression analysis, proteins showing a difference in their complex-normalized abundance relative to the

other complex members were considered differentially expressed or stoichiometrically different between two given conditions. Con-

trasts were set accordingly to identify differences between male/female mice and high-fat/chow mice, respectively. For each com-

plex, protein complex members were subjected to stoichiometric analysis; log2 fold-changes as well as p-values (moderated t test)

were collected. P-values were adjusted using the Benjamini-Hochberg procedure across all complexes and proteins. In case of

q-value < 0.01 the corresponding protein was considered to be stoichiometrically changing in a given complex. The underlying

statistical test is denoted as ‘LIMMA-based t test’ throughout the main text. The corresponding fold-changes are highlighted in

volcano plots in Figures 5B, and S3C. The analysis was also performed for Reactome pathways, and can be readily applied

to any specified protein set/module. To assess which complexes are affected in their stoichiometry as a whole, q-values of their
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individual components were combined using Fisher’s method. Lastly, the resulting combined p-values from all complexes were

adjusted using the Benjamini-Hochberg method. [Step11 in web resource]

Effect size estimations on proteins and modules
To understand to what extent both protein complex abundance and stoichiometry are affected by either sex or diet, a L2-regularized

Multiple Linear Regression (Ridge regression with a regularization parameter of 1) was used, as implemented in the scikit Python

package (https://scikit-learn.org). We compared models that predict complex abundance or complex stoichiometries, using as pre-

dictors: (i) genetic sex, (ii) diet, and (iii) the combination of genetic sex and diet together. We assessed the quality of eachmodel by the

coefficient of determination (R2). This was done for every module considered (complexes and pathways), for abundance, as well as

module-normalized data. For pathways we only considered those that were showing a high co-abundance (FDR-corrected p-value <

0.1) as compared to co-abundances derived from a reshuffled dataset.

To estimate prediction performance we used a 10-fold cross-validation scheme. Briefly, we randomly separated the dataset (per

complex) into ten groups of equal size, in order to iteratively train a model with nine of them, and to assess the testing performance in

the held-out group. For each module the median global R2 is reported. While the R2-score represents a measure of effect size, an

additional target-decoy strategy was applied to estimate the significance of those scores. An identical analysis was conducted

with a reshuffled dataset per complex, and the corresponding performance metrics were used in a permutation test approach to

assign significance to the true ridge regression coefficients. Specifically, we use the latter distribution to calculate an empirical

FDR. Throughout the main text, the global R2 performance metric derived for the module or protein is reported as the effect size

with its respective FDR-corrected p-value. [Step12 in web resource]

Yeast dataset analysis based on co-variation
Additionally to the proteomic datasets derived from mammalian organisms, we also analyzed published MS-datasets of yeast pro-

teomes and their corresponding RNA-seq datasets if available. A total of eight independent publications were considered: (i) Martin-

Perez and Villén (2017), (ii) Skelly et al. (2013), (iii) Lahtvee et al. (2017), (iv) Picotti et al. (2013), (v) Pavelka et al. (2010), (vi) Varland et al.

(2018), (vii) Zelezniak et al. (2018), (viii) Janssens et al. (2015). 11 datasets derived from these publications (Table S6) were quantile-

normalized and filtered according to their potential to recover known protein-protein interactions based on co-variation (Figure S6A;

see above section ‘‘AUROC analysis’’). [Step19 in web resource]

Estimation of effect sizes on modules in yeast
This analysis was performed with three yeast proteomic datasets that showed a reliable recovery of known protein-protein interac-

tions (AUC > 0.7), namely (i) Varland et al. (2018), (ii) Lahtvee et al. (2017), and (iii) Skelly et al. (2013). In the datasets (i) and (ii), yeast

cells were exposed to different environmental conditions (i.e., osmotic/temperature/ethanol/nutritional stress); dataset (iii) compared

genetically diverse yeast strains. To estimate the extent of variation of both protein complex abundance stoichiometry due to

these environmental and genetic condition, we used a similar framework as described in the section above (‘‘Effect size estimations

of sex- and diet on proteins and modules’’). Samples for dataset (i) and (ii) were respectively grouped into the environmental condi-

tions, whereas samples for dataset (iii) were grouped into related sets of yeast strains (according to source and collection). For each

dataset these categorizations were then tested as predictors for complex abundance and stoichiometry. For each complex, the qual-

ity of each model was assessed by the coefficient of determination (R2) in a 10-fold cross-validation scheme, as described above.

[Step20 in web resource]

DATA AND SOFTWARE AVAILABILITY

All scripts for analyzing data and generating figures are available at http://www.bork.embl.de/Docu/proteotype_genetic_

environment_impact/. The web resource allows interrogating every step of the computational analysis, with corresponding in- and

output data.
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Figure S1. Recovery of Known STRING Interactions in Different Published Datasets, Related to Figure 1

For all datasets considered for the ROC-analysis, the distribution of Pearson correlation coefficients for protein-protein pairs with STRING interaction score > 700

(combined score, orange), known interaction (combined score > 0, yellow) and random protein-protein pairs (gray) is shown. TheMann-WhitneyU-test was used

to assess significance of the respective shifts (indicated in colored p-values). The number next to the dataset name indicates the reference for the respective

dataset, with (1) referring to the The Cancer Genome Atlas (TCGA) publications, (2) Battle et al. (2015), (3) Chick et al. (2016), (4) Geiger et al. (2012), (5) Khan et al.

(2013), (6) Wu et al. (2013), (7) Williams et al. (2016), and (8) Guo et al. (2015) (same numbering as for Figure 2). More details on the datasets are given in Table S1.
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Figure S2. Technical Bias in Abundance Assessment and Complex Correlations, Related to Figure 2

(A) For the datasets as indicated by their respective labeling, it is assessed whether the complex median correlation (Pearson’s r) is biased by the abundance of

the respective complex (first row, gray shading) or by the complex variance (second row, blue shading). For comparability, abundances and variances are rank-

sorted and further split into 25%-bins; the median correlation is then monitored in each bin as a boxplot. The boxplots indicate the median (central line), the IQR

(box), and 1.5 times the IQR (whiskers). While they were significant differences between some bins (t test, < 0.1 (*), < 0.05 (**), < 0.01(***)), no general trend could be

observed and also those significances could not be recovered consistently across datasets.

(B) For the same datasets as above, median correlation values (Pearson’s r) were monitored for randomly assembled complexes (decoy complexes) from

permuted data (reshuffled data) (gray, first boxplot), decoy complexes from original data (light-blue), and real complex sets from original data (purple). Boxplots

indicate the respective median (central line), the IQR (box), and 1.5 times the IQR (whiskers).
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Figure S3. GO-Enrichment Analysis of Stable and Variable Protein Complexes, Related to Figure 3
(A) GO-enrichment analysis in 3 categories (Biological Processes, Cellular Compartment and Molecular Function) delineating the functional differences between

stable and variable complexes as recovered from Figure 3. The x axis represents fold-enrichment for stable complexes to the left (blue), whereas to the right fold-

enrichments are shown for variable complexes (red). Color opacity correlates with the fold-changes. Only GO-terms with an FDR < 1% (Benjamini-Hochberg)

are shown.



A

-2.0 -1.0 0.0 2.01.0
-2.0

-1.0

0.0

2.0

1.0

r = 0.387

sex difference (p.adj<0.01) & diet difference (p.adj<0.01)
sex difference (p.adj<0.01), no diet difference
diet difference (p.adj<0.01), no sex difference
no sex difference, no diet difference

r = 0.016

-0.5 0.50.0 1.0-1.0

-0.5

0.5

0.0

1.0

-1.0

B COMPLEXES COMPLEX SUBUNITS

C

2.0

4.0

6.0

8.0

10.0

0.0

log2 FC (highfat/chow) log2 FC (highfat/chow) log2 FC (highfat/chow) log2 FC (highfat/chow)
0.0 0.5-0.5 1.0-1.0 0.0 0.5-0.5 1.0-1.0 0.0 0.5-0.5 1.0-1.0 0.0 0.5-0.5 1.0-1.0

ribosomal small/large subunit biogenesis
COPI coating of Golgi vesicle
Golgi transport vesicle coating
translational elongation

vesicle coating
membrane budding

mRNA transport
RNA transport

RNA localization
nucleic acid transport

negative regulation of ligase activity
nuclear mRNA splicing

0

10

20

30

40

10

GO: Biological Processes

SEC23B
ARFGAP2

SMC1A

FE...fold enrichment

FE
 (m

>f
)

FE
 (f

>m
) C
oh

en
 d

is
ta

nc
e 

(~
di

et
)

Cohen distance (~sex) log2 FC (male/female)

lo
g2

 F
C

 (h
ig

h-
fa

t/c
ho

w
)

COPII complex COPI complex retromer complex cohesin complex

p.
ad

j [
-lo

g1
0]

stable complex components
variable complex components (p.adj<0.01)

Figure S4. Module Abundance and Stoichiometry Changes Affect Distinct Functional Processes, Related to Figure 5

(A) GO-enrichment analysis (biological processes, see methods) for complexes that are either more abundant in male (purple) or female (green) mice (FDR < 1%,

Fisher’s exact test). The x axis shows the individual GO-biological processes that were found to be enriched in male or female mice; the y axis shows the fold-

enrichment (FE) for each of the processes (upper part: higher enrichment in male versus female; lower part: higher enrichment in female versus male).

(B) (left) Scatterplot displaying the Cohen distances for sex- (x axis) and diet-differences (y axis) in complex median abundance. (right) Stoichiometry changes

(LIMMA-derived log2 fold-changes) for male/female differences (x axis) and high-fat/chow differences (y axis) are compared for all complex members.

(C) Sex-specific stoichiometry of complexes is not influenced by diet differences. Volcano plots illustrate diet differences in stoichiometry instead of differences

due to genetic sex (as shown in Figure 5B).
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Figure S5. Comparison of Effect-Size Landscape and Stoichiometric Changes in the Mitochondrial Pyruvate Dehydrogenase Due to Dif-

ferential Diet, Related to Figure 6

(A) (left) Summary of Spearman’s correlation values between effect sizes on proteins derived from Liu et al. (2014), and effect sizes calculated for proteome of DO

mouse strains. (right) The heatmap displays the ranked effect sizes for 51 proteins that were quantified in both Liu et al. (2015), and DO mouse strains (red:

stronger effect; blue: lower effect). The factors affecting proteins are listed on the left side of the heatmap.

(B) Diet-specific stoichiometry of the mitochondrial pyruvate dehydrogenase: (left) the overall complex median abundance is not affected, (center) volcano plot

highlighting the complex-specific fold-changes of particular subunits of the complex, (right) complex-normalized abundances with enhanced differentially ex-

pressed proteins (high-fat = dark green, chow = light green). All presented boxplots indicate the respective median (central line), the IQR (box), and 1.5 times the

IQR (whiskers).
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Figure S6. Genetic and Environmental Effects on Functional Module Variation in Yeast, Related to Figures 2 and 6
(A) Recovery of known functional modules by means of receiver operating characteristic (ROC)-analysis. Each cell of the matrix displays the AUC (area under

curve) value for a given module (x axis) in the given dataset (y axis). Modules of protein associations are ordered according to respective average AUCs. The type

of data is indicated by the colored boxes next to the dataset. The datasets have been extracted from the following publications: (1) Varland et al. (2018), (2+3)

Lahtvee et al. (2017), (4) Skelly et al. (2013), (5+6) Martin-Perez and Villén, 2017, (7) Picotti et al. (2013), (8) Zelezniak et al. (2018), (9+10) Janssens et al. (2015), and

(11) Pavelka et al. (2010).

(B) Table displaying details for top proteomics yeast publications, sample numbers and conditions. On the left-hand side the distribution of the overall effect of

environment (green) and genetics (blue) on protein abundance variation (all proteins) is shown, as well as abundance and stoichiometry variation of modules,

including protein complexes and pathways with highly co-varying protein members. The lighter colors correspond to effects on abundances whereas darker

colors correspond to effects on module stoichiometry. The boxplots indicate the respective median (central line), the IQR (box), and 1.5 times the IQR (whiskers).
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