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Abstract The gastrointestinal tract is abundantly colonized by microbes, yet the translocation of

oral species to the intestine is considered a rare aberrant event, and a hallmark of disease. By

studying salivary and fecal microbial strain populations of 310 species in 470 individuals from five

countries, we found that transmission to, and subsequent colonization of, the large intestine by oral

microbes is common and extensive among healthy individuals. We found evidence for a vast

majority of oral species to be transferable, with increased levels of transmission in colorectal cancer

and rheumatoid arthritis patients and, more generally, for species described as opportunistic

pathogens. This establishes the oral cavity as an endogenous reservoir for gut microbial strains,

and oral-fecal transmission as an important process that shapes the gastrointestinal microbiome in

health and disease.

DOI: https://doi.org/10.7554/eLife.42693.001

Introduction
Both the oral cavity and large intestine accommodate unique microbiomes that are relevant to

human health and disease (Lynch and Pedersen, 2016; Wade, 2013). Mouth and gut are linked by

a constant flow of ingested food and saliva along the gastrointestinal tract (GIT), yet they host dis-

tinct microbial communities (Ding and Schloss, 2014; Segata et al., 2012) in distinct microenviron-

ments (Savage, 1977), and have been reported to harbor locally adapted strains (Lloyd-Price et al.,

2017).

The segregation of oral and intestinal communities is thought to be maintained by various mecha-

nisms, such as gastric acidity (Howden and Hunt, 1987; Martinsen et al., 2005) and antimicrobial

bile acids in the duodenum (Ridlon et al., 2014). Failure of this oral-gut barrier has been proposed

to lead to intestinal infection (Martinsen et al., 2005), and the prolonged usage of proton pump

inhibitors can result in an enrichment of particular oral microbes in the gut (Imhann et al., 2016).
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Increased presence of specific oral taxa in the intestine has in turn been linked to several diseases,

including rheumatoid arthritis (Zhang et al., 2015), colorectal cancer (Flynn et al., 2016;

Zeller et al., 2014) and inflammatory bowel disease (IBD, (Gevers et al., 2014)). While it remains

unclear whether disease-associated strains are indeed acquired endogenously (from the oral cavity)

or from the environment, it was recently shown that Klebsiella strains originating from salivary sam-

ples of two IBD patients triggered intestinal inflammation in gnotobiotic mice (Atarashi et al.,

2017).

This suggests that the presence of oral commensals in the gut is a rare, aberrant event as a conse-

quence of ectopic colonization (i.e., ‘in the wrong place’), and hence a hallmark of disease. Outside

a disease context, however, possible links between the oral and gut microbiome remain poorly char-

acterized. Several genera were shown to be prevalent at both sites (Segata et al., 2012), with com-

munity types in one being weakly predictive of the other (Ding and Schloss, 2014), and with similar

gene content in particular species (Franzosa et al., 2014), but with distinct, locally adapted strains

(Lloyd-Price et al., 2017). We hypothesized that this picture is incomplete, and that microbial trans-

mission along the GIT is more common than previously appreciated: that despite oral-gut barrier

effects, some microbes freely and frequently traverse the GIT and colonize different niches, forming

continuous populations that shape the human microbiome.

Results and discussion
To test this hypothesis, we assembled and analyzed a dataset of 753 public and 182 newly

sequenced saliva and stool metagenomes from 470 healthy and diseased individuals (diagnosed

with rheumatoid arthritis, colorectal cancer or type-1 diabetes) from Fiji (Brito et al., 2016), China

(Zhang et al., 2015), Luxembourg (Heintz-Buschart et al., 2016), France (Zeller et al., 2014), and

Germany (Voigt et al., 2015) (see Materials and methods, Figure 1, and Supplementary file 1). For

these samples we profiled 310 prevalent species, accounting for 99% of classifiable microbial

eLife digest Trillions of bacteria and other microbes live in the human body. The mouth and the

gut in particular, are microbial hot spots at either end of the digestive tract. Every day, humans

swallow around 1.5 liters of saliva, along with millions of oral microbes. Scientists believe that more

than 99% of these microbes die as they pass through the acidic environment of the stomach and

later the small intestine, which act as a barrier between the bacteria of the mouth and gut.

Failure of this barrier can lead to overgrowth of oral microbes in the gut. This may contribute to

diseases like bowel cancer, rheumatoid arthritis and inflammatory bowel diseases. But even in

healthy people, low levels of microbes usually found in the mouth are often found in stool. It is

unclear if these microbes cross the barrier or if they are similar microbes that originate in the gut.

Now, Schmidt, Hayward et al. show that in healthy people at least one in three oral microbial

cells pass through the digestive tract to settle the gut. This challenges the notion of a mouth-gut

barrier. In the experiments, the genetic material of all the microbes in the saliva and stool of several

hundred people from three continents was analyzed. This allowed Schmidt, Hayward et al. to

determine whether strains found in the gut originate from the mouth, or are closely related but

specialized gut types of the same species. The results also showed that patients with bowel cancer

and rheumatoid arthritis had more mouth-to-gut microbial transmission than their healthy

counterparts.

The experiments suggest that the mouth is a microbial reservoir that constantly replenishes the

gut flora. Some of the gut-traveling oral bacteria trigger inflammation when they grow in other parts

of the body like the lining of the heart. This, along with the discovery that patients with certain

diseases have more oral bacteria in the gut, may suggest that the transmission of these microbes

contributes to disease. The experiments also indicate that finding ways to influence oral bacteria

might affect the ones in the gut. More studies are needed to understand how mouth microbes

survive the trip to the gut and are able to thrive in this competitive environment, and what role they

play in health and disease.

DOI: https://doi.org/10.7554/eLife.42693.002
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abundance in both saliva and stool (see Materials and methods and Supplementary file 2). We rea-

soned that if transmission between the oral and gut microenvironments is frequent, we would expect

salivary and fecal microbial populations to be more similar within an individual than between individ-

uals. Conversely, under a strong barrier model with restricted transmission, intra- and inter-individual

similarities would be equivalent.

We found that at species level, community composition was consistent with distinct populations

occupying the oral and intestinal microenvironments. By prevalence across subjects, the 310 profiled

species fell into three categories (Figure 2A): 44% were predominantly fecal (observed in �10% of

fecal, but <10% of saliva samples), including core members of the gut microbiome, such as Clostrid-

ium sp., Ruminococcus sp. and Bacteroides sp.; 16% of species were predominantly oral. Although

the remaining 125 (40%) species were prevalent in �10% of saliva and stool samples, their relative

abundances differed greatly between the two habitats. The overall oral and fecal microbiome com-

positions appeared independent of each other (between-subject Bray-Curtis dissimilarities per site,

rPearson=-0.03), and the compositional overlap between mouth and gut of the same subject was not

found to be significantly different when compared to a between-subject background (Wilcoxon test,

Bray-Curtis dissimilarities, p=0.46).

However, to accurately establish and quantify microbial transmission, it is necessary to track pop-

ulations at the resolution of strains rather than species, as demonstrated previously in fecal micro-

biota transplantation (Li et al., 2016) or seeding of the infant microbiome (Asnicar et al., 2017);

Figure 1. Data and workflow overview. (A) Oral-fecal transmission scores were calculated from salivary and fecal microbial SNV profiles. (B) Cohort and

dataset overview. For longitudinal cohorts (DE-CTR, CN-RA and LU-T1D), both the total number of samples and the number of individuals are shown,

as well as the number of individuals considered in time-series analyses. (C) Salivary and fecal microbial loads allow the calculation of physiologically

expected levels of ‘passive’ microbial transmission (i.e., by ingestion, without growth). (D) The longitudinal coupling of microbial SNVs between salivary

and fecal samples was used to infer transmission directionality and oral-fecal transmission rates (see Materials and methods).

DOI: https://doi.org/10.7554/eLife.42693.003

The following figure supplement is available for figure 1:

Figure supplement 1. Enrichment of oral species in the gut.

DOI: https://doi.org/10.7554/eLife.42693.004
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Korpela et al., 2018). We therefore profiled microbial single nucleotide variants (SNVs) across meta-

genomes, as a proxy for strain populations (Li et al., 2016). We formulated a transmission score for

each species per subject, based on the likelihood that the observed intra-individual SNV overlap was

generated by an inter-individual background model (see Materials and methods). Of the 125 species

Figure 2. Oral-fecal transmission is common across a wide range of phylogenetically diverse species. (A) Among

310 tested species, 125 were prevalent in both the mouth and gut across subjects. (B) 77% of these formed

coherent strain populations between both habitats, when viewed across all tested subjects (‘frequent’ transmitters)

or at least in some (‘occasional’ transmitters), as evidenced by oral-fecal transmission scores based on intra-

individual SNV overlap against an inter-individual background (see Materials and methods). (C) Oral-to-fecal

transmission rates, as inferred from longitudinal coupling of oral and gut SNVs (see Materials and methods),

exceeded background levels for transmitted taxa, even at conservative lower estimates. (D) On average,

transmissible taxa accounted for a large fraction of classifiable microbial abundance in both the oral cavity and

gut. (E) Oral-fecal transmissibility was largely a clade-wise trait at genus or family ranks, but common across

bacterial phyla.

DOI: https://doi.org/10.7554/eLife.42693.005

The following figure supplements are available for figure 2:

Figure supplement 1. Phylogenetic distribution of oral-fecal transmission.

DOI: https://doi.org/10.7554/eLife.42693.006

Figure supplement 2. Oral-fecal transmission scores are independent of technical covariates.

DOI: https://doi.org/10.7554/eLife.42693.007

Figure supplement 3. Longitudinal stability of SNV profiles per species in saliva and stool.

DOI: https://doi.org/10.7554/eLife.42693.008

Figure supplement 4. Directionality of transmission, as inferred from longitudinal data.

DOI: https://doi.org/10.7554/eLife.42693.009

Figure supplement 5. Horizontal (breadth) and vertical (depth) coverage cutoffs.

DOI: https://doi.org/10.7554/eLife.42693.010
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prevalent in both mouth and gut, 77% showed evidence of oral-fecal transmission. Out of these, 74

species (59%) showed significantly higher intra-individual SNV similarity across all subjects compared

to cohort-wide background SNV frequencies (Benjamini-Hochberg-corrected Wilcoxon tests on

transmission scores, p<0.05, see Materials and methods; Figure 2B, Figure 2—figure supplement

1, Supplementary file 2). This suggests that they form coherent strain populations along the GIT in

most subjects, subject to frequent oral-fecal microbial transmission. Strains of Streptococcus, Veillo-

nella, Actinomyces and Haemophilus, among other core oral taxa, fell into this category. An addi-

tional 22 species (18%) showed evidence of at least occasional transmission, with individually

significant oral-fecal SNV overlap in some, but not across all subjects, as did 18 species that were

generally prevalent in either the mouth or the gut (but not both). All 21 members of the Prevotella

genus, an important clade of the gut microbiome, were among these occasionally transmitted spe-

cies. The remaining 29 (23%) species, which were prevalent in both sites, did not show signs of trans-

mission under the strict thresholds we applied.

The fecal abundance of all species with paired observations exceeded lower-bound physiologi-

cally predicted levels (i.e., the detection of salivary bacteria in stool purely as the result of ingestion)

by several orders of magnitude, even with conservative estimates (Figure 1C, Figure 1—figure sup-

plement 1). An average person swallows an estimated 1.5 * 1012 oral bacteria per day

(Humphrey and Williamson, 2001; Sender et al., 2016). Passage through the stomach reduces the

viable bacterial load by 5–6 orders of magnitude (Giannella et al., 1972; Sender et al., 2016), a

reduction that is expected to be mirrored at the DNA level, given that free DNA, released from

dead bacterial cells, is degraded within seconds to minutes in saliva, the stomach and the intestine

(see for example Mercer et al., 1999 and Liu et al., 2015). Relative to the ~3.8*1013 bacterial cells

in the large intestine, ‘passive’ transmission without subsequent colonization in the gut would there-

fore account for a reduction in relative abundance by ~4*10�7 from saliva to feces (Figure 1C). Thus,

the observed overlap of microbial SNVs could not be explained by passive translocation, but was

indeed caused by active colonization in the gut. Moreover, transmission scores across species and

subjects were independent of technical covariates, such as the horizontal or vertical coverage of

genome mappings (Figure 2—figure supplement 2). Average transmission scores across subjects

did not correlate with prevalence in stool across all taxa (rSpearman =0.05), whereas an association

was evident when considering only transmitters (r=0.67). In saliva, prevalence was globally indicative

of transmission scores (r=0.6), reinforcing the notion that core oral taxa tended to be transmitted.

Given the limited microbial read depth of salivary metagenomes (due to high fractions of human

DNA), this result also indicates that our estimates of oral-fecal transmissibility were quite conserva-

tive, with potentially high rates of false negatives.

It was recently shown that during early life, infants are colonized by maternal strains from both

the oral cavity and gut (Ferretti et al., 2018), and that strains from the latter can persist in the infant

gut at least into childhood (Korpela et al., 2018). Therefore, to determine whether the observed

intra-individual overlap of selected strain populations was due to continuous oral-gut transmission or

rare colonization events with subsequent independent expansion in each site, we focused on a sub-

set of 46 individuals for whom longitudinal data was available (with sampling intervals ranging from

1 week to >1 year; mean 79 days). We found that both oral and fecal strain populations were usually

stable, even over extended periods of time (Figure 2—figure supplement 3), in line with earlier

observations for each individual body site (Lloyd-Price et al., 2017; Schloissnig et al., 2013). Oral

and fecal longitudinal SNV patterns were coupled for transmitted species (see

Materials and methods): oral SNVs observed at an initial time point were significantly enriched

among fecal SNVs that were newly gained over time, but generally not vice versa (Figure 2—figure

supplement 4). Moreover, oral-fecal transmission rates (i.e., the fraction of fecal strain turnover

attributable to oral strains; see Materials and methods) significantly exceeded background expecta-

tion for frequently transmitted taxa (Figure 2C). These findings orthogonally support the oral-gut

transmission hypothesis as they strongly suggest that transmission is in the direction of mouth to

gut, and not vice versa; and they imply that oral-intestinal transmission is indeed a frequent and con-

tinuous process in which oral strain populations constantly re-colonize the gut.

Oral-fecal transmissibility, as a trait, generally aligned with phylogenetic clade boundaries (phylo-

genetic signal, lPagel=0.76), although transmitting groups were found across bacterial phyla

(Figure 2DE, Figure 2—figure supplement 1, Supplementary file 2). Transmission scores were

negatively correlated with genome size (rSpearman=-0.6), indicating that transmitted species generally
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had smaller genomes than non-transmitted ones. Moreover, oxygen tolerant species (aerobes and

facultative anaerobes) showed 7-fold higher scores than anaerobes on average (ANOVA, p=10�16).

In contrast, no association was observed for sporulation and motility. To account for possible bias in

the species reference and the phylogenetic signal of oral-fecal transmissibility, we confirmed that

these signals were robust to phylogenetic regression (Supplementary file 2).

Viewed across individuals, we found that seeding of the gut microbiome from the oral cavity was

extensive, with high levels of variation (Figure 3A). On average, potentially transmissible species (i.

e., frequent and occasional transmitters) accounted for 75% of classifiable microbes in saliva, ranging

up to 99% in some subjects. However, not all of these were detectable in the matched fecal samples,

and oral-fecal strain overlap was generally incomplete. We therefore quantified the fraction of real-

ized transmission based on paired observations of species and intra-individual SNV overlap (see

Materials and methods). With these criteria, on average 35% of classifiable salivary microbes were

transmitted strains that could be traced from mouth to gut within subjects. Similarly, on average

45% (range 2–95%) of classifiable fecal microbes were potential transmitters. These included com-

mon fecal species (e.g., Prevotella copri) that were detectable in a subset of salivary samples and

showed only occasional transmission. Nevertheless, on average only 2% of classifiable fecal microbes

could be confidently ascribed to transmitted strains, ranging to >30% in some subjects.

Between-subject variation in the relative abundance of transmitted oral and fecal microbes was

found to be independent of subject sex, age and body mass index, although moderate differences

were observed between study cohorts (ANOVA, p=0.002; Figure 3B; Supplementary file 3). Levels

of transmitted microbial abundance in mouth and gut were found to correlate with each other

(rSpearman=0.48) and with fecal species richness, but salivary transmitted abundance negatively corre-

lated with oral species richness. This is in line with the observation that core oral species are trans-

missible, with higher richness implying the increased presence of non-transmitted taxa. Conversely,

transmission would add species to a mostly non-transmissible core community in the gut.

Figure 3. Oral-fecal transmission is extensive, with high levels of variation across individuals. (A) Potentially

transmissible species on average accounted for 75% and 45% of known microbes in salivary and fecal samples,

respectively. Among these, realised transmitters were defined as strains that could be traced within subjects with

confidence (given detection limits, see Materials and methods). (B) Tests for the association of transmission levels

in mouth and gut to subject-level covariates (ANOVA, relative sum of squares), to each other (rSpearman), with oral

and fecal community richness (rSpearman), and with oral and fecal community composition (distance-based

redundancy analysis on Bray-Curtis dissimilarities, blocked by cohort, relative sum of squares).

DOI: https://doi.org/10.7554/eLife.42693.011

The following figure supplement is available for figure 3:

Figure supplement 1. Multivariable statistical models reveal links between both oral and gut microbiome features

with transmission levels.

DOI: https://doi.org/10.7554/eLife.42693.012
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Although there was no overall association to community composition, levels of transmission corre-

lated with oral or fecal abundances of individual genera (Supplementary file 3). To test whether

specific oral and gut microbiome features were predictive of transmission, we categorized individu-

als based on total transmitted abundance in saliva and stool as ‘high’ or ‘low’ transmission individu-

als (Materials and methods). We found that models based on salivary species abundances were

mildly predictive of both oral (AUC = 0.738) and fecal (AUC = 0.642) transmission levels

(Supplementary file 4, Figure 3—figure supplement 1). Gut species models, in contrast, were very

strong predictors of transmission in both mouth (AUC = 0.951) and gut (AUC = 0.971). This signal

was largely driven by the enrichment of transmitting species in stool (Supplementary file 4), but sur-

prisingly robust to an elimination of all detected transmitters from the model (AUC = 0.835 for the

stool transmission group), again implying that the true extent of oral-intestinal transmission may

indeed exceed our conservative estimates. Fusobacterium nucleatum subsp. animalis and nucleatum

stood out among non-trivial gut markers enriched in high-transmission individuals, in line with exist-

ing hypotheses that Fusobacterium nucleatum subspecies may enable synergistic colonization of oral

bacteria in the gut, in association with certain diseases (see for example Flynn et al., 2016).

In general, the fecal enrichment of specific oral microbes has repeatedly been associated with var-

ious diseases (Zeller et al., 2014; Zhang et al., 2015). However, due to insufficient taxonomic reso-

lution, oral provenance has so far remained impossible to distinguish from an influx of closely related

but distinct strains from the environment. We therefore defined a list of disease states with putative

links to oral-fecal transmission and annotated known associations in the literature to all species in

our dataset (Figure 4A; Supplementary file 2). Transmission scores were significantly increased for

known opportunistic pathogens (ANOVA, p=0.016), causative agents of dental caries (p=10�9), and

plaque-dwelling bacteria (p=0.002). Likewise, species associated with periodontitis showed

increased evidence for transmission (p=0.002), though this signal was mostly due to mildly periodon-

tic species, while core drivers, such as Tannerella forsythia, Treponema denticola and Porphyromo-

nas gingivalis (Socransky et al., 1998), showed little or no indication of oral-fecal transmission.

Figure 4. Oral-fecal transmission is associated with disease state. (A) Species known to be associated with various

diseases showed increased oral-fecal transmission scores (pANOVA, sequential ANOVA including additional

phenotypes), even upon phylogenetic generalized least squares regression (pPGLS, see Materials and methods and

Supplementary file 2). (B) Oral-fecal transmission scores tested in colorectal cancer and rheumatoid arthritis cases

against controls for specific sets of species (sequential ANOVA, blocked by taxon and subject covariates).

Individual data points represent Cohen’s d effect sizes (difference in means, normalised by pooled standard

deviation) for individual taxa across subjects.

DOI: https://doi.org/10.7554/eLife.42693.013

The following figure supplement is available for figure 4:

Figure supplement 1. Species enriched in colorectal cancer show higher oral-fecal transmission scores in patients

than controls.

DOI: https://doi.org/10.7554/eLife.42693.014

Schmidt et al. eLife 2019;8:e42693. DOI: https://doi.org/10.7554/eLife.42693 7 of 18

Research article Computational and Systems Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.42693.013
https://doi.org/10.7554/eLife.42693.014
https://doi.org/10.7554/eLife.42693


Endocarditis-associated species showed significantly increased transmission scores upon phyloge-

netic regression (p=0.007), mostly driven by Haemophilus, Aggregatibacter and viridans Strepto-

cocci. This overall elevated transmissibility of taxa known to colonize ectopically in various habitats

across the body (i.e., opportunistic pathogens), in particular via the bloodstream and associated with

inflammation (i.e., endocarditis- or periodontitis-associated species (Hajishengallis, 2015)), may pro-

vide first cues to possible mechanisms of oral-fecal transmission.

Our dataset included metagenomes from case-control studies for rheumatoid arthritis (RA,

(Zhang et al., 2015)), colorectal cancer (CRC, (Zeller et al., 2014)) and type-1 diabetes (T1D,

(Heintz-Buschart et al., 2016)), totaling 299 individuals, including 172 with salivary and fecal sam-

ples. Treatment-naı̈ve CRC patients, sampled before colonoscopy, showed increased transmission

scores across all taxa (average per-taxon Cohen’s d = 0.27; ANOVA p=10�23; Figure 4B), as well as

for transmitted taxa only (d = 0.23; p=10�10). The effect was even more pronounced for species pre-

viously described (Zeller et al., 2014) to be enriched in the feces of CRC patients (d = 0.33; p=10�4;

Figure 4—figure supplement 1), including Fusobacterium nucleatum spp., Parvimonas micra and

Peptostreptococcus stomatis. These findings are in line with a recent report that the oral and fecal

microbiome are linked in the context of CRC (Felmer et al., 2018), and support the hypothesis

(Flynn et al., 2016) that CRC-associated species are sourced intra-individually from the oral cavity.

Treatment-naı̈ve RA patients displayed mildly elevated transmissibility across all taxa (d = 0.03,

p=0.01) and transmissible taxa only (d = 0.07, p=0.08). Interestingly, species that were orally

depleted in RA patients showed markedly increased transmission scores (d = 0.61; p=10�21). In con-

trast, a trend towards decreased transmission in T1D patients was not statistically significant.

Our results demonstrate that influx of oral strains from phylogenetically diverse microbial taxa

into the gut microbiome is extensive in healthy individuals, with a high degree of variation between

subjects. We showed that the vast majority of species prevalent in both the oral cavity and gut form

connected strain populations along the gastrointestinal tract. Furthermore, by leveraging longitudi-

nal data, we established that transmission from the mouth to the gut is a constant process. Approxi-

mately one in three classifiable salivary microbial cells colonize in the gut, accounting for at least 2%

of the classifiable microbial abundance in feces. This puts oral-fecal transmission well in the range of

other factors that determine human gut microbiome composition (Schmidt et al., 2018). Moreover,

we note that by using saliva and feces as metagenomic readouts, we may underestimate coloniza-

tion by oral microbes of the mucosa, given that fecal microbiome composition is not fully representa-

tive of the gastrointestinal tract (see for example Zmora et al., 2018). Therefore, and considering

that our estimates of both the number of transmissible species and of the fraction of transmissible

microbial abundance are conservative lower bounds due to strict thresholding and current detection

limits of metagenomic sequencing, we posit that true levels of transmission are likely even higher,

and that virtually all known oral species can translocate to the intestine at least under some

circumstances.

Finally, we found increased transmission linked to some diseases, and showed for colorectal can-

cer and rheumatoid arthritis that disease-associated strains of several species enriched in the intes-

tine are indeed sourced endogenously, that is from the patient’s oral cavity, and not from the

environment. These results may extend to other diseases beyond those tested here, calling for

revised models of microbiome-disease associations that consider the gastrointestinal microbiome as

a whole rather than a sum of parts, with important implications for disease prevention, diagnosis,

and (microbiome-modulating or -modulated) therapy.

While our findings are observational and do not reveal oral-intestinal transmission routes or mech-

anistic insights, they challenge current ecological and physiological models of the gastrointestinal

tract that assume the oral cavity and large intestine to harbour mostly independent and segregated

microbial communities. Instead, most strain populations appear to be continuous along the gastroin-

testinal tract, originating from the oral cavity, an underappreciated reservoir for the gut microbiome

in health and disease.

Schmidt et al. eLife 2019;8:e42693. DOI: https://doi.org/10.7554/eLife.42693 8 of 18

Research article Computational and Systems Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.42693


Materials and methods

Metagenomic datasets
Publicly available raw sequence data was downloaded from the European Nucleotide Archive (ENA)

for the FJ-CTR (FijiCOMP, project accession PRJNA217052) (Brito et al., 2016) and CN-RA

(PRJEB6997) (Zhang et al., 2015) cohorts. Sample metadata was parsed from ENA and the respec-

tive study publications.

For the LU-T1D (PRJNA289586) (Heintz-Buschart et al., 2016) cohort, newly generated salivary

and fecal metagenomes were added under the existing project accession. For the FR-CRC

(ERP005534) (Zeller et al., 2014) and DE-CTR (ERP009422) (Voigt et al., 2015) cohorts, newly gen-

erated metagenomes were uploaded under project accession PRJEB28422 (samples ERS2692266-

ERS2692323).

Sample collection
German healthy controls (DE-CTR). Salivary samples were collected at home before dental hygiene

and breakfast in the early morning. Donors collected 2–3 ml of saliva and immediately mixed with 15

ml of RNAlater (Sigma-Aldrich). Samples were transported to the laboratory on ice or dry ice and

stored at �80C until further processing.

French colorectal cancer cohort (FR-CRC). Subject recruitment and cohort characteristics were

described previously (Zeller et al., 2014). Saliva samples were collected in 1.5 ml saline and stored

at �80C until further processing.

Luxembourg type-1 diabetes cohort (LU-T1D). Donors collected 2–3 ml of saliva at home before

dental hygiene and breakfast in the early morning. Samples were immediately frozen on dry ice,

transported to the laboratory and stored at �80C until further processing.

DNA extraction
DE-CTR and FR-CRC. After thawing on ice, 1–2 ml of each sample were centrifuged directly (FR-

CRC) or after dilution in RNALater (DE-CTR). Cell pellets were washed 3x in sterile Dulbecco’s PBS

(PAA Laboratories) and DNA was extracted using the using the GNOME DNA Isolation Kit (MP Bio-

medicals). Briefly, cell pellets were lysed using a multi-step process of chemical cell lysis/denatur-

ation, bead-beating and enzymatic digestion as described previously (Zeller et al., 2014). DE-CTR

samples were processed in duplicates, with one replicate being enriched for microbial DNA using

the NEBNext Microbiome DNA Enrichment Kit (NEB, Ipswich, USA) following the manufacturer’s

instructions.

LU-T1D. After thawing on ice, two 500 ml aliquots of each sample were centrifuged. Cell pellets

were frozen in liquid nitrogen and lysed by cryo-milling and chemical lysis in RLT buffer (QIAGEN).

Cell debris was passed through QiaShredder columns (QIAGEN), before DNA was isolated using the

QIAGEN AllPrep kit according to the manufacturer’s instructions, as described previously (Heintz-

Buschart et al., 2016).

Metagenomic sequencing
Libraries for salivary samples of the French and German cohorts were prepared using the NEBNext

Ultra DNA Library Prep kit (New England Biolabs, Ipswich) using a dual barcoding system, and

sequenced at 125 bp paired-end on an Illumina HiSeq 2000. For the additional LU-T1D samples,

libraries were likewise prepared using a dual barcoding system, and sequenced at 150 bp paired-

end on Illumina HiSeq 4000 and Illumina NextSeq 500 machines.

Metagenomic sequence processing
Raw reads were quality trimmed and filtered against the human genome issue 19 to exclude host

sequences using MOCAT2, as described previously (Kultima et al., 2016). For taxonomic profiling,

reads were mapped against a database of 10 universal marker genes for 1753 species-level genome

clusters (specI clusters, (Mende et al., 2013)), using NGless (Coelho et al., 2018). A maximum likeli-

hood-approximate phylogenetic tree (with the JTT model, (Jones et al., 1992)) for representative

genomes of the same 1753 clusters was inferred based on protein sequences of 40 near-universal
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marker genes (Mende et al., 2013) using the ETE3 toolkit (Huerta-Cepas et al., 2016), with default

parameters for ClustalOmega (Sievers et al., 2011) and FastTree2 (Price et al., 2010).

Metagenomic reads were mapped at 97% sequence identity (across at least 45nt) against full clus-

ter-representative genomes, using the Burrows-Wheeler Aligner (Li and Durbin, 2009), as imple-

mented in NGless. Reads mapping to multiple genomes at �97% identity were discarded from the

analysis. Average vertical coverage (sequencing depth) and horizontal coverage (breadth) per micro-

bial genome in each sample were quantified using the qaCompute utility in metaSNV (Costea et al.,

2017).

Two cohorts (CN-RA (Zhang et al., 2015) and DE-CTR (Voigt et al., 2015)) contained technical

replicates for several salivary samples; these were pooled after the read mapping step.

Taxa filtering and annotation
The dataset was filtered to include taxa satisfying the following criteria in �10% of samples (see Fig-

ure 2—figure supplement 5 for details): horizontal coverage (breadth) of �0.05; average vertical

coverage (depth) �0.25; specI cluster relative abundance of �10�6. These criteria excluded taxa rep-

resenting 0.8 ± 1.2% of gut and 1.2 ± 1.9% of oral total mapped abundance. For the remaining 310

taxa, general phenotypes (Gram stain, sporulation, motility, oxygen requirement, among others)

were annotated using the PATRIC database (accessed Dec 2015) (Wattam et al., 2017), and missing

values were amended manually. Host and disease association phenotypes (including opportunistic

pathogenicity and periodontitis association) were annotated manually, based on published literature

and the MicrobeWiki website (https://microbewiki.kenyon.edu/index.php/MicrobeWiki, accessed

June 2017).

Per taxon summary statistics and annotated metadata are available from Supplementary file 2.

Identification of microbial Single Nucleotide Variants
Microbial Single Nucleotide Variants (SNVs) were called using metaSNV (Costea et al., 2017). Each

potential SNV required support by at least two non-reference sequencing reads (relative to the specI

cluster representative genomes (Mende et al., 2013)) at a base call quality of Phred � 20. The

resulting sets of raw SNVs per taxon were filtered differentially for the various downstream analyses,

as detailed below.

Detection of Intra-Individual microbial transmission
To distinguish intra-individual microbial transmission from random drift, we calculated a transmission

score (ST) per subject and microbial taxon. In short, ST quantifies how much the similarity between

oral and gut SNV profiles within an individual deviates from an inter-individual background. To calcu-

late ST, we first filtered the set of informative SNVs (all SNVs at a given genome position) by apply-

ing the following criteria: (i) observation (read coverage �1) at focal position in �10 oral and �10

gut samples; (ii) SNV observation in �1 oral and �1 gut sample. Next, we calculated the global

background incidence of each allele across oral (foral) and gut (fgut) samples. From these, we calcu-

lated the background probabilities for each of the four possible cases in paired oral and gut obser-

vations: any given allele i could either be present in both samples (p1,1), absent in both samples

(p0,0), or present in one but absent in the other sample (p1,0 and p0,1):

p1;1ðiÞ ¼ foralðiÞ
�
fgutðiÞ

p0;1ðiÞ ¼ ð1� foralðiÞÞ
�ð1� fgutðiÞÞ

p1;0ðiÞ ¼ foralðiÞ
�ð1� fgutðiÞÞ

p0;1ðiÞ ¼ ð1� foralðiÞÞ
�
fgutðiÞ

For every permuted oral-gut pair of samples, we then calculated the raw summed log-likelihood

of the observed SNV profile overlap (Lobs) across all alleles with shared coverage:
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1;0
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log p1;0 kð Þ
� �

þ
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In other words, Lobs quantifies how likely the observed average allele profile agreement between

two samples is, given the respective background allele incidence frequencies. Similarly, we com-

puted the log-likelihood of the least likely agreement case (Lmin) per allele:

Lmin ¼
X

i

min log p1;1 ið Þ
� �

; log p0;0 ið Þ
� �� �

From these values, we calculated a raw probability score (Praw) for the observed allele agreement

between a given pair of oral and gut samples:

praw ¼ Lobs=Lmin

Praw scales the likelihood of the observed agreement by the likelihood of the theoretically most

extreme cases of agreement across all observed alleles. In particular, the shared observation of very

rare alleles (very low foral and fgut) has a strong impact on Praw, whereas the shared observation of

very common variants is downweighted.

We computed Praw for all pairwise permutations of oral and gut samples in the dataset with

observations (reads) at �20 matching positions. We defined the transmission score ST(t, s) for taxon

t in subject s as a standard Z score of the intra-individual (within subject) observation against an

inter-individual (between subjects) background:

ST ¼ ðPrawðsÞ��rawÞ=sraw

We tested for potential effects of the choice of background observations by calculating ST against

(i) a global background of all pairwise inter-individual oral-gut comparisons, across all cohorts; (ii) a

cohort-specific background per subject; (iii) a global background, but taking only subject-specific

comparisons into account (the focal subject’s oral sample vs all gut samples, and vice versa); (iv) a

within-cohort subject-specific background. Oral-gut comparisons for the same individual across dif-

ferent timepoints, within families (information available for LU and CN cohorts) and within village (for

the Fijian cohort) were excluded from the background sets. Although smaller background sets (iii

and iv) provided generally noisier scores, overall trends between these backgrounds were very con-

sistent; in particular, cohort-specific vs global backgrounds did not impact trends in our findings

(data not shown). All results discussed in the main text therefore refer to scores against a cohort-spe-

cific background (ii).

Quantification of Intra-Individual microbial transmission
To quantify oral-gut transmission per individual, we defined a set of potentially transmissible species

to include both frequently and occasionally transmitting species. Frequent transmitters encompassed

a set of 74 species for which intra-individual transmission scores ST across subjects were significantly

higher than inter-individual background (Benjamini-Hochberg-adjusted one-sided Wilcoxon p<0.05).

Occasional transmitters did not satisfy this global criterion, but showed significant evidence for oral-

fecal strain overlap in at least one individual (Benjamini-Hochberg-adjusted Z test p<0.05).

To quantify the transmitted microbial abundance per individual, we adjusted the observed rela-

tive oral and fecal abundance of each given species by oral-fecal SNV overlap. In other words, the

potentially transmissible abundance in the oral cavity was defined as the total abundance of poten-

tially transmitting species, and the realized transmitted abundance was defined to include only spe-

cies for which overlapping strain populations could be confidently traced within individuals. This

included frequent transmitters that were observable (above detection limits) in matched oral-fecal

sample pairs, and occasional transmitters satisfying the additional criterion that significant transmis-

sion scores were required in the focal individual for (i.e., an occasional transmitter such as Prevotella

denticola would only be considered in individuals in which it showed significant transmission scores).

For these species, relative oral and fecal abundances were adjusted for total strain population over-

lap, estimated as the Jaccard overlap of SNVs observed in the oral cavity and gut of the focal

individual.

Schmidt et al. eLife 2019;8:e42693. DOI: https://doi.org/10.7554/eLife.42693 11 of 18

Research article Computational and Systems Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.42693


Longitudinal coupling of oral and fecal SNV profiles
Longitudinal data (2–3 timepoints, see Supplementary file 1) was available for 46 individuals from

three cohorts (Heintz-Buschart et al., 2016; Voigt et al., 2015; Zhang et al., 2015). To quantify

site-specific temporal stability of strain populations, we contrasted within-subject SNV profile similar-

ity over time to between-subject similarities.

Moreover, we tested the longitudinal coupling of strain populations between a putative source

site (e.g., oral cavity) and sink site (e.g., gut). For this, we required shared observations (read

coverage �1) for at least 100 SNV positions across three samples (see Figure 1): (i) source site at the

initial time point (t0); (ii) sink site at t0; (iii) sink site at a later time point t1. We defined source SNVs

as present in sample (i), and newly gained sink SNVs as present in sample (iii) but not (ii), and per-

formed Fisher’s exact tests (followed by Benjamini-Hochberg correction) to test for associations

between these SNV sets. In other words, we tested for the association of strain populations present

in the source site at t0 with strains newly gained in the sink site over time, by proxy of SNV profiles.

We considered two sites to be longitudinally coupled in the source - > sink direction if the tested

odds ratio was >1 at a (corrected) p�0.05. Significant odds ratios < 1 indicated unconnected sites in

the tested directionality. Tests were performed independently for oral-to-gut (oral as source, gut as

sink) and gut-to-oral coupling, per each taxon.

Quantification of Oral-Fecal transmission rates
Longitudinal data was also leveraged to estimate oral-fecal transmission rates, here defined as the

fraction of fecal strain turnover attributable to the corresponding salivary sample. For each subject

and taxon, the absolute fecal strain turnover was quantified as described above, as the difference in

SNV profiles between fecal samples at t0 and t1 (samples ii and iii in the previous section). Though

sampling intervals ranged from 1 week to >1 year, they were relatively consistent within cohorts (see

Supplementary file 1). Transmission rates were then quantified as the fraction of fecal alleles gained

between t0 and t1 that were also observed in the paired oral sample at t0. Arguably, this provides a

conservative lower estimate: oral-fecal transmission could account for both newly gained fecal alleles

and for the enhanced stability of existing alleles in the fecal strain population due to a constantly

exerted dispersal pressure. However, since the latter effect cannot reliably be quantified from sparse

longitudinal metagenomic data, the transmission rates reported in the main text only encompass the

former (newly gained alleles).

To test whether transmission rates per taxon were statistically significant across subjects, we com-

pared observed rates to two distinct randomized backgrounds: by shuffling fecal samples at t1 within

cohorts, subject-specific longitudinal background sets on fecal strain turnover were generated; shuf-

fling oral samples at t0 provided subject-specific coupled backgrounds. For each taxon and subject,

we Z-transformed observed transmission rates against either of these subject-specific backgrounds;

the resulting standard scores (in unit standard deviations) are reported in Figure 2C.

Diversity, Community Composition and Statistical Analyses
Per-sample community richness was calculated from the average of 100 rarefactions to normalised

marker gene-based abundances of 1000. Between-sample community compositional similarities

were computed as Bray-Curtis and TINA indices, as described previously (Schmidt et al., 2017). Dis-

tance-based Redundancy Analyses to associate community composition to levels of oral-fecal trans-

mission were performed using the R package vegan (Oksanen et al., 2015).

The association of transmission scores with taxa phenotypes (oxygen requirement, sporulation,

etc.) and taxa disease annotations (opportunistic pathogenicity, etc.) were tested using ANOVA of a

combined linear model (‘naı̈ve’ ANOVA in Supplementary file 2). To correct for potentially con-

founding phylogenetic signals of the tested variables, an ANOVA of a phylogenetically regressed

model of the same formulation was performed using the R package caper (Orme et al., 2018).

Associations of total transmitted classifiable abundance in saliva and stool per subject with sub-

ject variables (sex, BMI, age) were tested using ANOVAs on linear models blocked by cohort. The

association of transmission scores per subject with disease status was tested using ANOVAs per dis-

ease cohort, on linear models accounting for taxon baselines, as well as effects of subject sex, BMI

and age.
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To test for links between microbiome composition and the amount of transmitted abundance in

saliva and stool, we trained machine learning models to classify samples into ‘high’ and ‘low’ trans-

mission groups. These groups were defined as the top and bottom quartiles of the fraction of trans-

mitted abundance, independently for stool and saliva samples. For model training, relative

abundances were log-transformed and standardized as z-scores. In a 10 times-repeated 10-fold

cross-validation setting, L1-regularized (LASSO) logistic regression models (Tibshirani, 1996) were

trained on the training set and then evaluated on the test set within each fold. In a second step, all

species defined as frequent transmitters (see Quantification of Intra-Individual Microbial Transmis-

sion above) were eliminated as features before preprocessing and training. All steps (data prepro-

cessing, model building, and model evaluation) were performed using the SIAMCAT R package

(https://bioconductor.org/packages/SIAMCAT, version 1.1.0; see also Zeller et al., 2014).

All statistical analyses were performed in R. Analysis code is available online (see below).

Data and analysis code availability
All generated raw sequence data has been uploaded to the European Nucleotide Archive under the

project accessions PRJEB28422 (French CRC, (Zeller et al., 2014) and German German healthy con-

trols, (Voigt et al., 2015)) and PRJNA289586 (Luxembourg T1D, (Heintz-Buschart et al., 2016)).

Sample metadata is available from Supplementary file 1. Processed data (taxonomic profiles, taxa

annotations, etc.) and full analysis code are available via a gitlab repository (https://git.embl.de/

tschmidt/oral-fecal-transmission-public; copy archived at https://github.com/elifesciences-publica-

tions/oral-fecal-transmission-public-).
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