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Mtrack: Automated Detection, 
tracking, and Analysis of Dynamic 
Microtubules
Varun Kapoor1,2,5, William G. Hirst2,3, Christoph Hentschel2, stephan preibisch  1 & 
simone Reber2,4

Microtubules are polar, dynamic filaments fundamental to many cellular processes. In vitro 
reconstitution approaches with purified tubulin are essential to elucidate different aspects of 
microtubule behavior. To date, deriving data from fluorescence microscopy images by manually 
creating and analyzing kymographs is still commonplace. Here, we present Mtrack, implemented 
as a plug-in for the open-source platform Fiji, which automatically identifies and tracks dynamic 
microtubules with sub-pixel resolution using advanced objection recognition. Mtrack provides 
automatic data interpretation yielding relevant parameters of microtubule dynamic instability 
together with population statistics. the application of our software produces unbiased and comparable 
quantitative datasets in a fully automated fashion. this helps the experimentalist to achieve higher 
reproducibility at higher throughput on a user-friendly platform. We use simulated data and real data to 
benchmark our algorithm and show that it reliably detects, tracks, and analyzes dynamic microtubules 
and achieves sub-pixel precision even at low signal-to-noise ratios.

Microtubules are dynamic filaments essential for many cellular processes such as intracellular transport, cell 
motility and chromosome segregation. They assemble from dimeric αβ-tubulin subunits that polymerize in a 
head-to-tail fashion into polar filaments1 (Fig. 1). Microtubules show a behavior termed dynamic instability, 
which can be empirically described by four parameters: (1) the polymerization velocity at which microtubules 
grow (vg), (2) the depolymerization velocity at which microtubules shrink (vs), (3) the catastrophe frequency at 
which microtubules switch from growth to shrinkage (fc), and (4) the rescue frequency at which microtubules 
switch from shrinkage to growth (fs)2. This dynamic behavior is intrinsic to microtubules. In a cellular context, 
however, the dynamic properties of microtubules are modulated by motors and accessory proteins known as 
microtubule associated proteins (MAPs)3–7. In most cases, the cellular context is too complex to study a single 
protein’s contribution to microtubule dynamics. Therefore, biochemical activities of individual proteins have pri-
marily been characterized in vitro using purified components and total-internal reflection fluorescence (TIRF) 
microscopy8–17. Furthermore, microtubule dynamics are strongly affected by a set of drugs routinely used to treat 
diseases such as cancer18 and malaria19. Owing to their clinical relevance, it is a viable need to understand the 
exact regulation of microtubule dynamics by a given drug and thereby elucidate the underlying molecular mech-
anisms. Given the growing interest in biochemical reconstitution systems3,4,20, automation of data analysis will 
unveil the full potential of the experimental approaches as described above.

Quantitatively deriving dynamic microtubule parameters from fluorescence microscopy images by manu-
ally creating and analyzing kymographs (spatial position over time) is still common practice21. This limits the 
collection of statistically significant amounts of data. Moreover, manual analysis can bias data collection and 
introduce variability. Thus, methods have been developed that allow microtubule detection and/or tracking22–27. 
However, to date, there is no fully automated workflow that provides detection and tracking of microtubules fol-
lowed by automated data analysis and statistics collection. Here, we present the software MTrack, which detects, 
tracks, measures, and analyses the behavior of fluorescently labeled microtubules imaged by TIRF microscopy 
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(Supplementary Fig. 1). MTrack is capable of automatically identifying and tracking dynamically growing micro-
tubules that potentially bend and cross with subpixel resolution, even at high growth rates and low signal-to-noise 
ratios (SNR) using advanced objection recognition and robust outlier removal. The software is easily accessible 
for users and developers since it can be automated and is provided as an open-source Fiji28 plug-in.

Results
The MTrack software is organized in two consecutive modules that can be run independently. The first module 
robustly detects microtubule seeds and tracks dynamic microtubules over time. The second module interprets the 
length over time plots to extract relevant parameters of dynamic instability and population statistics.

Robust Detection of Microtubule Seeds using MSER and Sum of 2D Gaussians. A common 
way to reconstitute and analyze microtubule dynamics is by the use of TIRF microscopy and fluorescently labe-
led tubulin14,16. Stabilized (non-dynamic) fluorescent microtubule seeds are immobilized onto glass surfaces. 
These microtubule seeds serve as nucleation points from which dynamic fluorescent microtubules will grow 
(Fig. 1). Previous microtubule tracking software relies on manually clicking each individual microtubule to be 
analyzed23,27. Therefore, our aim was to develop an approach that robustly detects microtubule seeds in the image 
in a fully automated fashion. It is essential to precisely determine the exact end point of each seed, as these are the 
sites from which microtubules will subsequently grow and shrink. MTrack does so by using the Maximally Stable 
Extremal Regions (MSER) algorithm29,30 to identify image areas belonging to each seed, a sum of 2D Gaussians 
(SoG) model to accurately localize individual seeds, and finally a Gaussian Mask fit31 to determine the precise end 
point of each seed with subpixel resolution (Fig. 2a).

The principle underlying MSER is a component tree, which computes every possible threshold of the image 
thereby increasing the dimensionality of the input image by one (e.g. 2d > 3d, Supplementary Movie 1). Stable 
regions within the component tree are those that do not significantly change over multiple thresholds. Since 
microtubules can vary in size, are randomly oriented, potentially bent, and are the main bright objects in the flu-
orescent image, the MSER detector performs accurately without the need to make assumptions about shape, ori-
entation, and size of regions. Successfully detected microtubule seeds show a one-to-one assignment to ellipsoidal 
regions (Fig. 2a). Even for low SNRs, the overall detection accuracy mostly depends on the density of microtubule 
seeds (Fig. 2b). MTrack detects seeds with a close to 100% accuracy when the distance between seeds is larger 
than 5 pixels, which is experimentally feasible. Using the region identified by MSER, we fit a SoG model (see 
Supplementary Material) using the major axis of the ellipsoid as a starting point to detect the accurate end posi-
tion of the seeds (Fig. 2a). Final end points are computed using a modified Gaussian Mask fit31 to maximize loca-
tion precision (see Supplementary Material). It uses combined Gaussian distributions to model the appearance 
of the end points in the image as defined by their location and the point-spread function of the system (Fig. 2a).

The signal-to-noise ratio (SNR) is directly related to the maximally achievable localization precision23,31. 
Therefore, we simulated microtubule seeds with different SNRs and show that at reasonable experimental SNRs 
(Material and Methods, Supplementary Fig. 2) endpoints can be accurately localized with subpixel resolution 
(Fig. 2c). Despite the fact that microtubule ends show no symmetric intensity distribution, the detection error is 
normally distributed showing no bias towards microtubules pointing in either direction (Supplementary Fig. 2). 
Therefore, detection precision is robust and does not depend on filament orientation.

Tracking Microtubules by 2D Gaussian Polynomial Models. The goal of microtubule tracking is to 
identify the end points of growing and shrinking microtubules within each frame of a fluorescent time-lapse 
movie with the highest possible accuracy and reliability. Typically such data is displayed as a length versus time 
graph (kymograph). Microtubules stochastically switch between growth and shrinkage. Growth velocities 
observed in vitro range from 0.6 μm/min32 to 40 μm/min33. Moreover, depolymerization velocity is typically an 

Figure 1. Microtubule Dynamics by TIRF Microscopy. (a) Schematic experimental design: Stabilized 
microtubule seeds (red) are bound to the coverglass by antibodies and serve as nucleation points for dynamic 
microtubules (green). One microtubule end usually shows higher growth rates (+) than the other end (−). 
Total internal reflection fluorescence (TIRF) microscopy selectively excites fluorophores in a restricted volume 
adjacent to the glass-water interface allowing the visualization of individual microtubules. (b) TIRF microscopy 
image of dynamic microtubules (green) grown from stabilized seeds (red). Scale bar: 10 µm.
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order of magnitude greater than the corresponding growth velocity21. Thus, the frame-to-frame difference in 
microtubule length can be significant. In addition, brightness changes, growth heterogeneity, microtubules bend-
ing, crossing, and moving out of focus present further challenges to accurate tracking. We will show that fitting 
polynomial functions enables us to robustly track microtubules, even when bending or crossing.

In more detail, MSER first detects an image region for each dynamic microtubule within each frame of the 
fluorescent time-lapse movie (as described for seed detection). To initialize the iterative microtubule detection 
within each MSER region, we need a start point and the guess of an end point. The start point is fixed and 
defined by the detected seed end, while the end point is estimated by the intersection of the current MSER region 
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Figure 2. Microtubule Seed Detection. (a) The default algorithm to identify microtubule seeds as objects is 
Maximally Stable Extremal Regions (MSER). 1. Microtubule seeds detected by MSER are marked by fitted 
red ellipses. 2. To determine the extact end point of each microtubule seed, a sum of 2D Gaussian model is 
fit to the major axis of the ellipsoid. FWHM (full width at half maximum) of the PSF (point spread function) 
is determined experimentally. 3. Detected end points are marked by green circles. (b) Detection accuracy 
of microtubule seeds with a close to 100% accuracy when the distance between seeds is larger than 5 pixels. 
Detection error is marked in yellow. (c) Subpixel accuracy of microtubule seed end point detection depends on 
SNR. Values correspond to detection errors in pixels.
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boundary with the projected growth direction from the last successfully segmented frame, which can potentially 
be many frames away (Fig. 3a, see also discussion). These two points define a line used to initialize the fitting of a 
2D SoG model to the image region that identifies the microtubule. However, the 2D SoG path is represented by 
a 3rd order polynomial function, which enables tracking of bending (Fig. 3b) and crossing microtubules (Fig. 3c, 
Supplementary Material). The iterative fitting of the 2D SoG model is robust and will recover even after many 
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Figure 3. Microtubule Tracking. The MTrack algorithm successfully tracks straight, bending and crossing 
microtubules over time. (a) First, MSER detects an image region (red ellipse) for each dynamic microtubule 
(blue). The seed end is used as starting point (green circle) and the end point (x) is estimated by the 
intersection of the current MSER region boundary with the projected growth direction (dashed line) from the 
last successfully segmented microtubule. These two points initialize a 2D SoG fit represented by a 3rd order 
polynomial function. The actual length of the dynamic microtubule is calculated as the contour length (l–c) 
of the final fit. This approach allows tracking of bending (b) and crossing (c) microtubules. Tracking accuracy 
for (d) bending microtubules (SNR 10) and (e) straight microtubules (SNR 3, 5 and 10) was determined as the 
distance between the actual simulated position of the microtubule end (Δactual) and the position given by the 
tracking algorithm (Δtracked).
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frames have been missed since it is able to identify the correct microtubule path as long as the initialization line 
intersects with the microtubule at any point. Additionally, we reject estimates of microtubule paths in the current 
frame that differ significantly from the previous time-point (see also discussion, Supplementary Material). The 
precise endpoint of the growing or shrinking microtubule is finally computed using our modified Gaussian Mask 
fit as described for seed detection.

When imaging dynamic microtubules, background fluorescence is inevitable as fluorescent tubulin in solution 
is required to allow microtubules to grow. With high tubulin concentrations, background fluorescence increases 
and therefore the effective SNR of the microtubule signal considering the fluorescent background can be consid-
erably low (Supplementary Fig. 2). To characterize tracking performance, we simulated sequences of dynamic 
microtubules assuming different SNRs. Such an approach was previously demonstrated to be valuable for the 
study of the localization precision in single molecule localization microscopy34 and found to be a good single 
predictor of tracking precision23. Our analysis shows that irrespective of growth along a 3rd order polynomial 
(Fig. 3d) or a line (Fig. 3e), the error distribution remains similar and achieves pixel resolution.

Automatic Derivation of Microtubule Dynamic parameters using Iterative Robust outlier 
Removals. The aim of this module is to extract relevant microtubule dynamic parameters from length 
versus time data produced by the tracking (Fig. 4a). Each microtubule track has an unknown number of 
growth and shrinkage events. To automatically derive these dynamic parameters, we developed an iterative, 
model-based robust outlier removal algorithm based on RANSAC (Random Sample Consensus)35. RANSAC is 
a non-deterministic algorithm that fits a function to data points by maximizing the number of data points that 
support the function fit (inliers), given an error ε (Fig. 4b).

First, all growth events are detected. Microtubule polymerization velocity (vg [nm/s]) was shown to be a linear 
function of tubulin concentration and is usually approximated by a single constant growth rate13. We therefore 
assume that periods of microtubule growth follow an increasing, near-linear polynomial function, which is imple-
mented as a 2nd or 3rd order polynomial regularized with linear function. To do so, RANSAC first identifies the 
largest subset of consecutive time points that follow near-linear growth (Fig. 4b). To identify all growth events in 
one track, the software iteratively removes time points belonging to an identified growth event from the sampling 
set. It then repeats the RANSAC sampling until no further growth events can be found. In the example shown in 
Fig. 4, RANSAC identifies four growth events in order of their length. To achieve compatibility with the general 
accepted assumption of linear microtubule growth, the software finally fits only a linear function to all inlier 
points of each growth event (Fig. 4c). Next, RANSAC identifies events of microtubule shrinkage. Microtubule 
depolymerization velocity (vs [nm/s]) can be an order of magnitude higher than polymerization velocity and 
therefore, depolymerization events tend to be short. We therefore use a linear model limited to fast decline for our 

60 s
5 µm

d

Time [s]

Le
ng

th
 [µ

m
]

b

Growth eventsc

2nd 

3rd

4th

1st

b

ε

Linear growth function fit on

Inliers Outliers

f(x)

ε RANSAC error
Le

ng
th

 [µ
m

]

Time [s]

a

Figure 4. Automated Derivation of Parameters of Microtubule Dynamic Instability using Iterative Robust 
Outlier Removal. (a) Kymograph of a dynamic microtubule. (b) In the length versus time plot obtained from 
tracking, RANSAC first identifies the largest subset of consecutive time points that follow near-linear growth 
as a growth event. (c) To identify all growth events, RANSAC iteratively removes time points belonging to an 
identified growth event from the sampling set and repeats the RANSAC sampling until no further growth events 
can be identified. (d) The final graph containing detected growth and shrinkage events, as well as catastrophes 
and rescues.
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iterative RANSAC algorithm (Fig. 4d, blue lines). Subsequently, catastrophe frequency and rescue frequency are 
calculated. Catastrophe frequency (fc [s−1]) is determined by dividing the total number of identified shrinkage 
events by the total time the microtubules were growing (events/time), taking only full growth events into account. 
Analogously, rescue frequency (fr [s−1]) is determined by dividing the total number of identified growth events 
by the total time the microtubule spent shrinking (events/time). We distinguish between total catastrophes, when 
the microtubule shrinks all the way back to the seed, and rescues by comparing the start of the new growth event 
to the baseline, which is given by the end point of the seed (Material and Methods). As mentioned in the intro-
duction, microtubules have an intrinsic polarity. The microtubule plus end typically grows significantly faster 
than the microtubule minus end1. When both microtubule ends are selected and tracked, MTrack automatically 
assigns the faster growing end as the plus end. Finally, given the four parameters of dynamic instability, the micro-
tubule length distribution can be computed (based on36) at a user chosen time-point or averaged over all the time 
points to obtain a time-averaged length distribution.

Discussion
In the last decade, advances in high-resolution techniques have shed new light on how the dynamic behavior of 
microtubules is modulated (as reviewed in37). Here, we present new software, MTrack, which automatically iden-
tifies and tracks dynamic microtubules with subpixel resolution and provides automatic data interpretation and 
statistics. MTrack will be valuable to any experimentalist (1) who studies different microtubule populations38,39, 
(2) who aims to characterize the effect of a MAP or motor protein on microtubule dynamics8–13,15,17 or (3) who 
is interested in characterizing the molecular mechanism of microtubule binding drugs. We believe that MTrack 
is a powerful tool, which together with high-resolution imaging will provide unbiased, high-accuracy data with 
sufficient statistics to help elucidate new mechanisms of microtubule dynamics control.

The demand for software, which automatically detects and tracks microtubules is mirrored by the recent 
development of several software packages that allow microtubule detection and/or tracking22–27. The most recent 
approach by Bohner and colleagues is a further development of the previously published tracking software 
FIESTA27 by optimizing it for low SNRs. In other words, the former software27 is ideal to track non-dynamic 
microtubule seeds, for example in single-motor stepping assays40, while the latter23 is well-suited for tracking 
microtubules in dynamic growth assays with free fluorescent tubulin. In addition, in order to validate the tracking 
performance across a broad range of conditions, Bohner and colleagues tracked simulated dynamic microtubules 
with varying experimental conditions. While they found the fluorophore labeling density, the pixel size of the 
image as well as the exposure time to be important parameters, they found the SNR a good single predictor of 
tracking precision23. Motivated by this observation, we systematically varied the SNR ratio and determined the 
detection and tracking accuracy of our software. In Module 1, endpoints of non-dynamic microtubule seeds 
can be accurately localized with subpixel resolution even at low SNRs. Moreover, the detection error is normally 
distributed showing no bias towards microtubule direction. From this we concluded that the detection precision 
was robust even at experimentally relevant SNRs and did not depend on the filament orientation. We then showed 
that allowing the final fit to follow a 3rd order polynomial function enabled us to track straight, bending, and 
crossing microtubules. The tracking accuracy achieved pixel resolution, providing a close to molecular precision.

While the above mentioned programs reliably track microtubules with nanoscale precision, both approaches 
require the manual selection of each individual microtubule to be tracked, neither of the program offers auto-
mated data analysis nor do the authors comment on how either software performs on bending or crossing micro-
tubules. MTrack is a fully automated workflow that provides detection and tracking of microtubules and is - to 
our knowledge - the first software that offers automated data interpretation using iterative robust outlier removal. 
Directly tracking microtubules and analyzing their dynamics is different to tracking and analyzing end-binding 
proteins (EBs)41,42. Microtubule end-binding proteins such as EB1 accumulate exclusively at growing microtubule 
ends11,43 but get lost once microtubules shrink. In such datasets, microtubule behavior has to be interpolated dur-
ing phases of microtubule shortening and pausing. In contrast, MTrack can make use of the full length over time 
information giving by the tracking module to extract information about MT dynamics.

In sum, MTrack is the first software that reliably detects, tracks, and analyzes the behavior of dynamic micro-
tubules. Each module is automated yet highly adaptable and can be used (1) to robustly detect the end points of 
any linear, fluorescent, filamentous structure, (2) to reliably track fluorescent structures or (3) to analyze length 
over time plots in an automated fashion.

Materials and Methods
point spread Function (psF). The Point Spread Function (PSF) of a microscope is well approximated by 
the images of single subdiffraction-sized fluorescent beads. We quantified the PSF and the resolution by fitting 2D 
Gaussian functions to individual beads for each wavelength. The estimated resolution of the microscope based on 
the mean value of the full width half maximum (FWHM) is 199 nm and 205 nm for the 561 nm and the 647 nm 
laser, respectively.

signal-to-noise Ratio (sNR). After background subtraction, we measure and calculate the SNR of seeds 
and dynamic microtubules by IMT/σMT where IMT is the mean and σMT is the standard deviation of the pixel inten-
sities along a line scan of a seed or dynamic microtubule.

In the simulations, we use the ImageJ Poisson noise generator to measure detection and tracking accuracy at 
different SNRs. This plugin computes Poisson distributed values for each pixel of an image based on ground truth 
data and a target SNR. Poisson noise is the main source of fluctuations in fluorescence microscopy, it occurs when 
a finite number of particles that carry energy, such as photons in an optical device, is small enough to give rise to 
detectable statistical fluctuations in a measurement.
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experimental Data, tIRF microscopy and Imaging. The in vitro reconstitution of microtubule dynam-
ics was performed as described14,16. Briefly, GMPCPP-stabilized bovine tubulin seeds contained 10% Cy5-labeled 
and 20% biotin-labeled tubulin. Polymerization reactions were carried out at 37 °C in BRB80 buffer (80 mM 
PIPES, 1 mM MgCl2, 1 mM EGTA, pH 6.8) supplemented with 1% β-mercaptoethanol, 1 mg/mL casein, and 
1 mM GTP at different concentrations of free tubulin. Free tubulin was either purified from Xenopus egg 
extracts44 or bovine brain tubulin (purchased from PurSolutions) containing 10% Cy3-labeled tubulin. Reaction 
chambers were constructed from glass coverslips and slides passivated with dichlorodimethylsilane45.

Images were taken on the motorized inverted Nikon Eclipse Ti-E microscope with a motorized TIRF angle 
controlled with ND acquisition software, equipped with a Nikon Plan Apochromat 100x/1.5NA oil immersion 
objective lens and an EMCCD, Andor iXon Ultra X3 987 Camera. Cy5-labeled seeds were imaged with a 647 nm 
laser at 1.5 mW (0.2%) and 50 ms exposure time. Cy3-labeled dynamic microtubule μs were imaged with a 
561 nm laser at 0.54 mW (1.2%) and 50 ms exposure time. Image size is 512 × 512 with a pixel size of 156 nm. 
Movies analysed by MTrack have been taken from polymerization reactions with Xenopus laevis, Xenopus trop-
icalis and Bos taurus tubulin ranging from 6–20 μM total tubulin with growth speeds ranging from 0.4 μm/min 
to 3 μm/min (also see Supplementary Fig. 3).

Mathematics
Fitting Microtubule Intensity Models. MTrack fits a microtubule’s pixel intensities by using a model, 
which is a sum of Gaussians along a polynomial. In order to determine the model parameters, we perform mini-
mization of χ squared function defined as

∑χ θ θ
→

= −
→

.I F( ) ( ( )) (1)i i i
2 2

The sum is over the pixel co-ordinates (ix, iy) and Ii is the pixel intensity at that position. Fi represents the value 
given by the model at the same pixel co-ordinate, and model parameters are represented by the vector θ

→
. The 

components of the vector are dependent on the model used (Line model or 3rd order polynomial to approximate 
a beam model46). These components will be described in the sections detailing the respective model.

Line Model. For the seed image, MTrack uses a first order polynomial. A first order polynomial is a line in the 
image and in this model we place Gaussians along the line. The function F introduced before has the following 
form:
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centroids are always along the line, which is defined as the argument of the delta function. Bg is the background 
intensity term, A is the amplitude of all Gaussians J. Gj,i defines a two dimensional Gaussian located at pixel loca-
tion (ix, iy). In our sum of Gaussian model, the intensity contribution of Gaussian j at pixel location i is given by
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For the seed image the line parameters (m and c) are determined by using MSER29. σx and σy are user input 
for the PSF of the microscope and are not fit parameters. The fit parameters to be determined are the start and 
the end sub-pixel co-ordinate of the model (μx,start, μy,start) and (μx,end, μy,end) respectively, the spacing between the 
Gaussians ds, the background term Bg and the amplitude A.

In order to determine these parameters, the function defined in 1 is minimized using the Levenberg-Marquardt 
solver47,48. Such a minimization requires providing derivatives with respect to the fit parameters. MTrack uses 
analytical derivatives for that and their form is described in the next section.

Analytical Derivatives for Line Models. Derivative with respect to μs. Using the expression in 6, we can 
write the derivative with respect to the first term as

μ σ
μ=

∂
∂

= − ⋅μ


D F A i I G2 (( ) )
(8)

i
s

s s,( )
,start

2 ,start starts,start

Here, we have used the vector notation to represent the co-ordinates (s = 0, 1) for (x, y) co-ordinates respec-
tively and 

→
I  represents the unity vector. The derivative with respect to the end point is also similar to above with 

μs,start being replaced by μs,end and Gstart being replaced by Gend.

Derivative with respect to ds. We define

=












+

+












��
B m

m

m

1

1

1 (9)

2

2

and

∑
σ

μ=
∂

∂
=

→
− → ⋅

→
D

ds
F j i B G2 (( ) )

(10)i ds j s s j j i, 2 , ,

Derivative with respect to A and Bg. For A the derivative is 6 without the B term and for derivative with respect 
to Bg it is unity.

polynomial Model. For the time-lapse images, MTrack uses a polynomial model to do the fitting, which 
allows tracking of bending and crossing microtubules. We use a 3rd order polynomial and modify the model 
presented in 2 to the following:

∑ δ μ μ μ μ= × − − − − +F A G I b m c Bg( ) (11)i j j i y j x j x j x jpoly, , , ,
3

,
2

,

We now have two more parameters to determine I and b. I is the inflection of the polynomial and b describes 
the curvature of the polynomial. Now, the delta function represents putting the centroids of the Gaussians along 
a curve represented by the argument of the delta function. There are two more fit parameters to be determined: b 
and I. For doing so, we need analytical derivatives for the fit function in 1 with respect to these two new parame-
ters. These will be derived in the following section. The spacing ds between the Gaussians now becomes

μ μ

μ μ μ μ

μ μ μ μ

μ μ μ

= +

= + + +

= + +

= + + +

ds d d

I b m c

d I b m d

ds d I b m

(3 2 )

1 (3 2 ) (12)

x j y j

y j x j x j x j

y j x j x j x j

x j x j x j

,
2

,
2

, ,
3

,
2

,

, ,
2

, ,

, ,
2

,
2

Analytical Derivatives for polynomial Model. Derivative with Respect to μs, A and Bg. These deriva-
tives are the same as described for the line model.

Derivative with Respect to ds. The term m is now determined by the other fit parameters and can be written as

μ μ

μ μ
μ μ μ μ μ μ=

−

−
− + − + +m b I( ) ( )

(13)

y y

x x
x x x x x x

,end ,start

,end ,start
,end ,start ,start

2
,end

2
,start ,end

We define a new term S as

μ μ= + +S m b I2 3 (14)x x,start ,start
2

The vector 
→
B  can then be redefined as
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1
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2

2

The derivative with respect to ds can then be written as before

∑
σ

μ=
∂

∂
=

→
− → ⋅

→
D

ds
F j i B G2 (( ) )

(16)i ds j s s j j i, 2 , ,

Derivative with Respect to Curvature (b). We define a term H as

μ μ μ
= −






− +

+






H Sds
S

2 ( )

(1 ) (17)
x x x,start ,end

2 3/2

Defining a vector 
→
J  as

μ μ μ=










+ − + ×
+










��
J

H

SH ds

m
(2 ( ))

1 (18)
x x x,start ,end 2

The derivative with respect to b can then be written as before

∑
σ

μ=
∂
∂

=
→

− → ⋅
→

D
b

F j i J G2 (( ) )
(19)i b j s s j j i, 2 , ,

Derivative with Respect to Inflection (IF). We define a term K as

K Sds
S

3 ( )

(1 ) (20)

x x x x x
2

,start
2

,end
2

,end ,start
2 3/2

μ μ μ μ μ
= −







− + +

+







Defining a vector 
→
L  as

μ μ μ μ μ=










+ − + + ×
+










��
L

K

SK ds

m
(3 ( ))

1 (21)
x x x x x
2

,start
2

,end
2

,end ,start 2

The derivative with respect to IF can then be written as before

∑
σ

μ=
→

− → ⋅
→

D j i L G2 (( ) )
(22)i IF j s s j j i, 2 , ,

Line parameters from MseR ellipses. For the seed image the line parameters need to be determined. 
The line parameters are the slope and the intercept of the line, for a two dimensional ellipse, the covariance matrix 
can be represented as

= 







M p q
q r

Here σ=p x
2, σ=r y

2, q = ρxy. Defining a parameter dr as = + − +dr p q pr r4 22 2 2. The eigenvalues of the 
2 × 2 matrix are given by

λ =
+ ±p r dr

2 (23)

The eigenvector is given by

�� q
r p dr

2
(24)

υ =




 − ±







Any point (x, y) along the vector can be represented as

= + − +x y x y t q r p dr( , ) ( , ) (2 , ) (25)c c
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Eliminating t from the above vector equation gives us the line parameters (slope = m, intercept = c) of the 
major axis of the ellipse as

=
− +

= −
− +m r p dr

q
c y x r p dr

q2
,

2 (26)c c

the Levenberg-Marquradt solver. In order to obtain the optimized set of parameters, we use the 
Levenberg-Marquradt solver to minimize the sum of squared differences in Eq. 1. The χ squared function can be 
written as

I F f[ ( )] ( ) (27)i i i
2

pixels
2

pixels
2�� ��

∑ ∑χ θ θ= − =

To do so, we perform Taylor expansion on the χ2 function as

χ θ δ χ θ δ δ δ
→

+
→

=
→

+
→

+
→ →

g H( ) ( ) 1
2 (28)

T T2 2

δ is given by

δ λ
→

= − + − −H I g( ) , (29)1 1

and the matrix H is given by

∑ θ θ θ θ= ∇
→

∇
→

+ ∇∇
→

H f f f f2 ( ) ( ) 2 ( ) ( ) (30)i
T

i i
T

i

As the matrix H is sparse, the second term containing the 2nd order derivative is ignored and only the first term 
is kept. We minimize the χ squared function with respect to delta and if the solution is going towards minima the 
λ parameter is decreased by a factor of 10, else increased by the same factor.

Gaussian Mask Fits. After obtaining the optimized set of parameters from the Levenberg-Marquradt solver, 
we refine the obtained result by doing a weighted sum of Gaussian mask fits31 to further improve the accuracy of 
the detection. For this step we construct the mask for the start and end positions as

�� ��
��

�� �� ��
��

�� ��
��

�� �� ��
��

W x x x ds x

W x x x ds x

exp ( )
2

exp ( )
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2
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2 (31)

c c

c c

end

2

2

2

2

start

2

2

2

2

σ σ

σ σ

=




−

− 



 +








−

+ − 







=




−
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 +








−

− − 







This is an iterative process of finding the location of the mask constructed by sum of two Gaussians and at the 
end of the iteration we obtain a sub-pixel accurate localization of the end points of the microtubule. The process 
is repeated for each frame and for all the detected microtubules.

one-to-one Mapping of Microtubules to MseR Regions. For seeds as well as (non-colliding) dynamic 
microtubules, there is a one-to-one mapping of the detected microtubules with the MSER-segmented regions. In 
order to make an initial guess for the start and the end position, we use the slope of the line determined for the 
seeds and determine the intersection point of the line with the MSER-segmented region as the initial guess for the 
start and the end position of the dynamic microtubule.

For the dynamic channel, we draw a line from the start and end position of the previous frame and determine 
the intersection point of the drawn line with the MSER segmented region. Along that line we look for the inten-
sity points which are at least greater than 50% of the maximum intensity value in that region. The guess for the 
polynomial function, which the microtubule growth follows is taken from the polynomial function determined in 
the previous frame. For the first frame in the dynamic channel the line parameters are used from the seed image 
frame and the polynomial parameters are assumed to be 0 and then determined via the optimizer.

Handling Colliding Microtubules. Each microtubule evolves according to a polynomial function, whose 
parameters are determined in each frame using the function parameters of its evolution in the previous frame. 
Including prior knowledge helps making good initial guesses for the localization to proceed in the current frame. 
As the dynamic function of evolution of each microtubule is smooth and unique, the optimizer is unlikely to 
make mistakes and if it does the program can recognize that by noting sharp changes in the polynomial func-
tion parameters of growth of a given microtubule. Two special cases are discussed with respect to colliding 
microtubules.

Single MSER Region for Multiple Colliding Microtubules. In a scenario where a single segmented region contains 
multiple microtubules, the optimizer relies on the polynomial parameters for the microtubule determined in 
the previous frame and is able to correctly determine the growing end points. MTrack keeps track of the angular 
change in the direction of the dynamic microtubules and determines a mistake if the angular change is greater 
than a user defined value, which by default is 20 degrees.
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Multiple MSER Regions for a Single Microtubule. When microtubules are close or collide, it may happen that 
a single microtubule finds itself in multiple MSER segmented regions. In such a case, the optimizer will fit in all 
regions to determine the growing end point location and will choose the point closest to the last known location 
of the microtubule.

simulations. Microtubules are simulated using linear models and 3rd order polynomials, where the parame-
ters of each function are determined by a random number generator. Images are created by convolution with the 
PSF, adding a background, and rendering the final pixel intensities using a Poisson process. The simulation code 
is available on Github https://github.com/PreibischLab/MTrack/tree/master/src/main/java/dummyMT.

Documentation and Installation. Detailed documentation and installation instructions are available on 
the ImageJ wiki http://imagej.net/MicrotubuleTracker.

Data Availability
The code is open-source, mostly implemented in ImgLib249 and is provided as Fiji28 plugin. The iterative RANSAC 
for functions is based on the mpicbg package written by Stephan Saalfeld50. The source code is available on GitHub 
https://github.com/PreibischLab/MTrack. It is released under GPLv3. An example dataset is available for down-
load on the ImageJ wiki including the MTrack parameters to successfully run and analyze the demo movie: http://
imagej.net/MicrotubuleTracker#Example The expected runtime is 10–20 min on standard hardware.
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