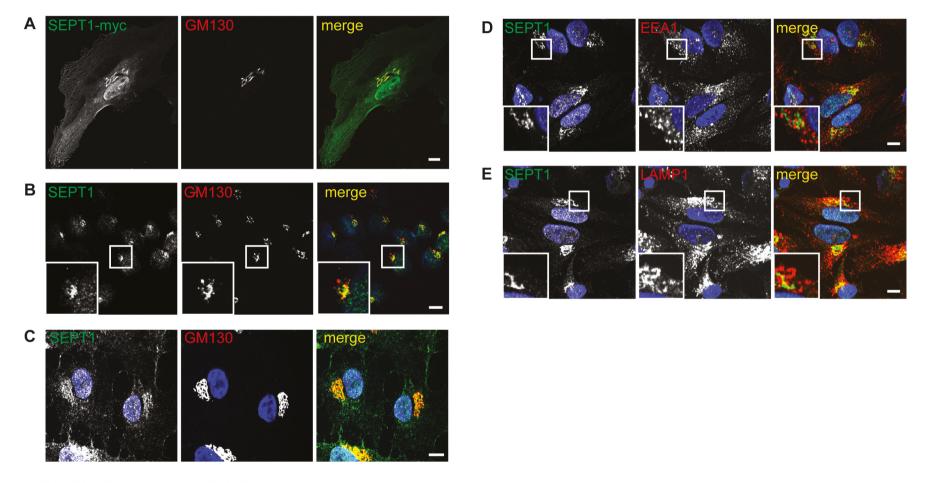

Table S1

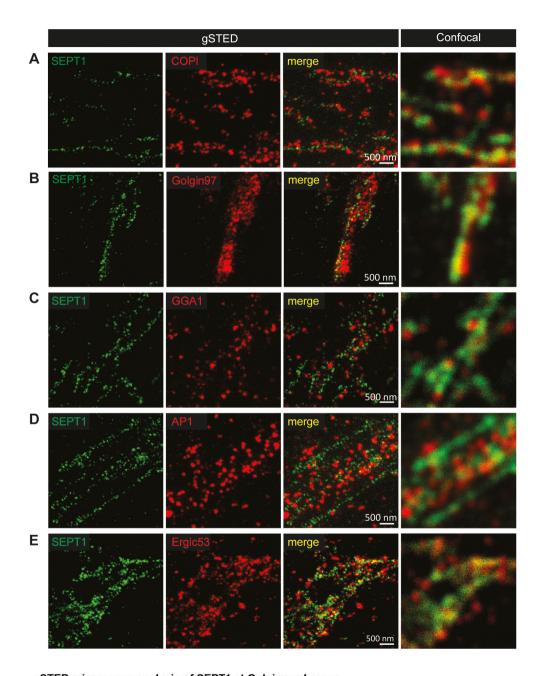
Antibody	SOURCE	IDENTIFIER	IF	WB
				1:200 /
SEPT1	Santa Cruz	SC-398586		1:500
SEPT1	This study	N/A	1:200	1:500
SEPT2	Sigma-Aldrich	HPA018481	1:200	1:5,000
SEPT6	This study	N/A	1:50	
SEPT6	Sigma Aldrich	HPA005665		1:1,000
SEPT7	This study	N/A	1:100	
SEPT7	Santa Cruz	SC-20620		1:500
SEPT9	(Diesenberg et al., 2015)	N/A	1:400	
SEPT9	abnova	H00010801		1:500
GM130	BD Bioscience	610822	1:200	1:100
GM130	Abcam	ab52649	1:200	
γ-tubulin	Abcam	ab11316		1:1,000
α-tubulin	Sigma-Aldrich	T5168	1:500	1:2,000
EEA1	BD Biosciences	610456	1:100	
Ergic-53	Santa Cruz	sc-398893	1:100	
COPI	(Faulstich et al., 1996)	N/A	1:50	
AP1	BD Bioscience	610386	1:200	
GGA1	Abnova	H00026088-B01	1:100	
Vps26	Abcam	23892	1:100	
CEP170	Invitrogen	41-3220	1:100	1:100
CEP170	Abcam	ab72505		1:200
LAMP-1	BD pharmingen	555798	1:200	
Golgin97	Invitrogen	A-21270	1:50	
TGN46	Abcam	ab50595	1:100	
GAPDH	Sigma-Aldrich	G8795		1:20,000
Golgin104	Sigma-Aldrich	HPA018019		1:400
Giantin	Biolegend	924302	1:400	1:500
Talin	Sigma-Aldrich	T3287		1:2,000
Myc	Santa Cruz	9E10	1:200	1:1,000
GFP	Clontech	632381		1:2,500

Movie 1. SIM control GM130green_golgin97red


HeLa cells were treated with siCtrl, fixed, immunostained for GM130 (green) and golgin97 (red) and monitored by 3D-SIM microscopy.

Movie 2. SIM siSEPT1 GM130green_golgin97red

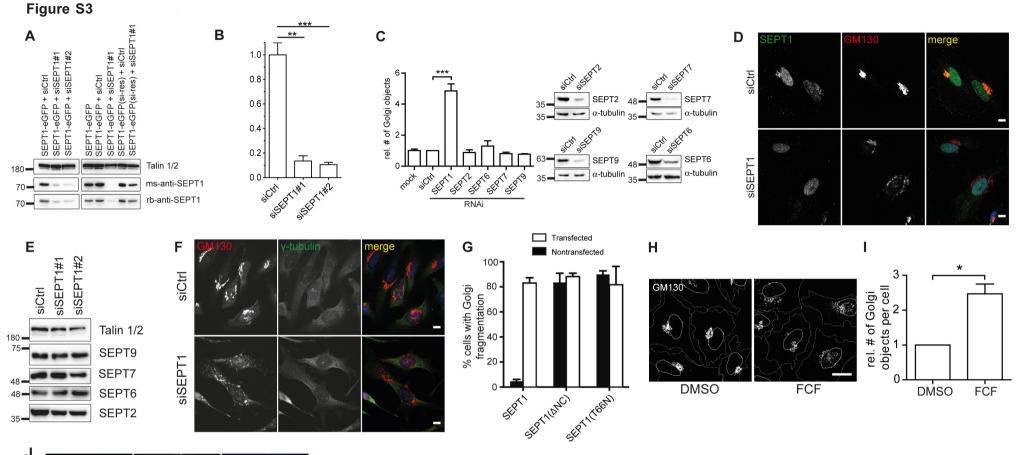
HeLa cells were treated with siSEPT1#1, fixed, immunostained for GM130 (green) and golgin97 (red) and monitored by 3D-SIM microscopy.


Figure S1

SEPT1 localizes predominantly to the cis-Golgi.

- (A) Localization of myc-tagged SEPT1 upon overexpression in HeLa cells, and immunostaining for myc and GM130.
- (B) Immunostaining of endogenous SEPT1 and GM130 in Jurkat cells.
- (C) Immunostaining of endogenous SEPT1 and GM130 in RPE1 cells.
- (D) Staining of SEPT1 and EEA1 (early endosome) in HeLa cells.
- (E) Staining of SEPT1 and LAMP1 (lysosome) in HeLa cells. All scale bars, 10 μm.

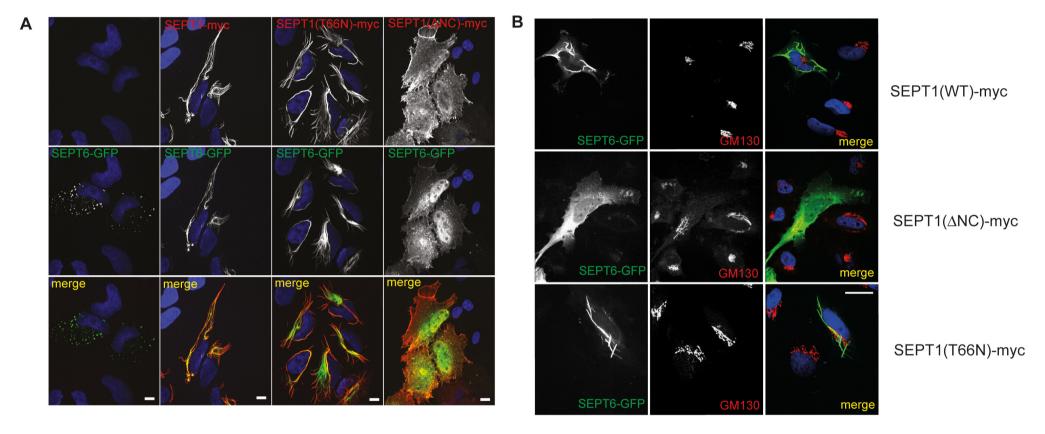
Figure S2



gSTED microscopy analysis of SEPT1 at Golgi membranes.

- (A) Analysis of HeLa cells co-immunolabeled with antibodies recognizing SEPT1 and the trafficking adaptor COPI (recruited to the cis-Golgi and to ER-Golgi-Intermediate-Compartment, ERGIC),
- (B) Golgin97 (trans-Golgi),
- (C) GGA1 (trans-Golgi trafficking adaptor),
- (D) AP1 (trans-Golgi adaptor), or
- (E) Ergic53. All scale bars, 500 nm.

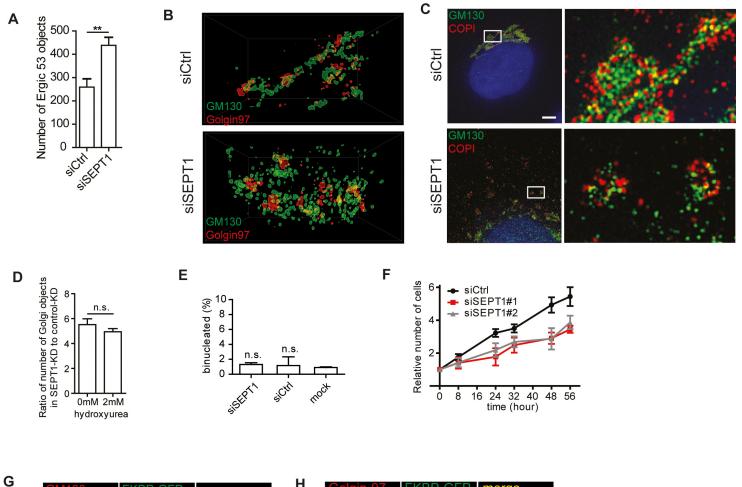
DMSO

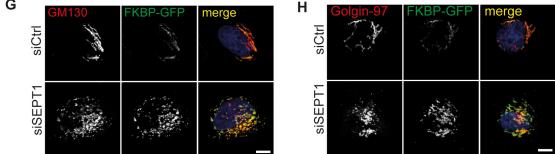

FCF

$\label{lem:continuous} \textbf{Depletion of SEPT1}, \ \textbf{but not of other septin family members perturbs Golgi integrity}.$

- (A) Western blot analysis of lysates derived from HeLa cells upon co-transfection of SEPT1-eGFP and the indicated siRNAs.
- (B) Quantification of SEPT1 mRNA levels determined by RT-PCR from HeLa cells, treated with the indicated siRNAs. Bars indicate mean (± s.e.m) SEPT1 levels upon normalization to actin B amounts. Unpaired two-tailed Student's t-test (SEPT1#1: N=3; mean=0.136; p-value=0.0013; t= 8.07; df=4; SEPT1#2: N=3; mean=0.106; p-value=0.0009; t=8.899; df=4).
- (C) HeLa cells depleted of SEPT2, SEPT6, SEPT7 or SEPT9 were fixed and stained for GM130. Bars indicate the mean number of Golgi objects (mean ± s.e.m.). Unpaired two-tailed Student's t-test, ***P<0.001, SEPT1(N=6; t= 8.56; df=5), SEPT2 (N=3; p-value= 0.5581; t=0.6966; df=2), SEPT6 (N=3; p-value=0.4806; t=0.8596; df=2), SEPT7 (N=3; p-value=0.16; t=2.19; df=2), SEPT9 (N=2). Depletion of SEPT2, SEPT6, SEPT7 or SEPT9 was confirmed by Western blotting.
- (D) Immunostaining for SEPT1 and GM130 in HeLa cells upon transfection of siCtrl or siSEPT1#1.
- (E) Western blot analysis of lysates derived from HeLa cells upon transfection of the indicated siRNAs.
- (F) Immunostaining for GM130 and ⊠-tubulin in siCtrl- and siSEPT1#1-treated HeLa cells.
- (G) Quantification of cells displaying a fragmented Golgi ribbon upon re-introduction of myc-tagged SEPT1 (FL), SEPT1 (SNC) or SEPT1(T66N) into siSEPT1#1-depleted cells.
- (H) HeLa cells treated with DMSO or 150 μM FCF were immunolabeled for GM130. Scale bar, 15 μm.
- (I) Quantification of Golgi fragments as depicted in (B). Data are represented as mean ± SEM, paired t-test, *P<0.05 (N=3; n=372-447; t=5.198; df=2).
- (J) Immunostaining of SEPT1 and GM130 in DMSO- or FCF-treated HeLa cells. Scale bar, 10 μm.

Figure S4

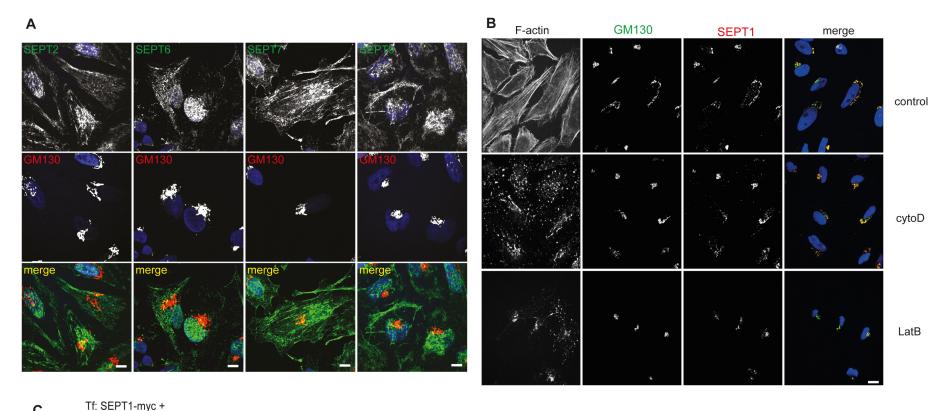


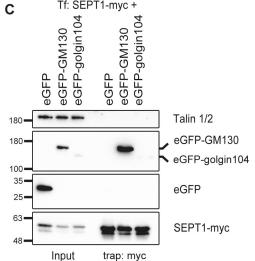

Analysis of SEPT1 variants used for rescue experiments.

⁽A) SEPT6-eGFP overexpressed alone, or co-expressed with SEPT1-myc (WT) or mutants. Co-expression with SEPT1(WT) or SEPT1(T66N) triggers formation of artificial septin fibers. SEPT1(ΔNC) cannot form filaments with SEPT6. Scale bar, 10 μm.

⁽B) Immunostaining of GM130 upon co-transfection of HeLa cells with SEPT1-myc (WT, ΔNC or T66N) and SEPT6-eGFP.

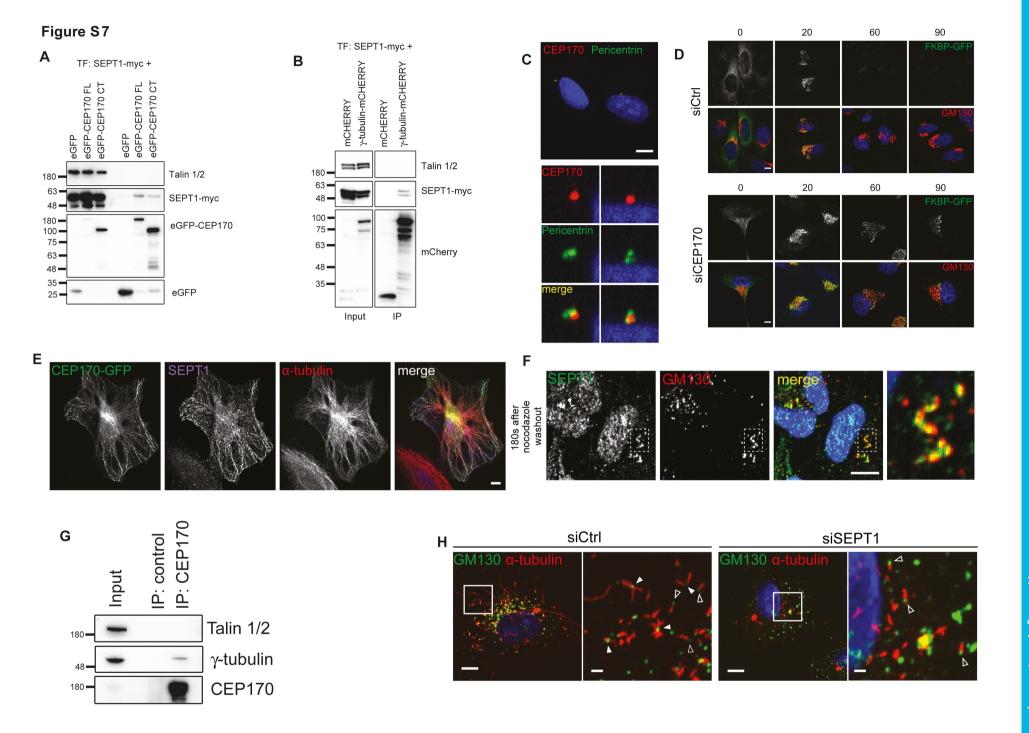
Figure S5





Analysis of Golgi defects in SEPT1-depleted cells by 3D-SIM, and of the impact of SEPT1 on mitosis, proliferation and secretion.

- (A) Number of Ergic53-positive objects in control or SEPT1-depleted cells, as determined from 3D-SIM images. Data are represented as mean ± SEM, unpaired two-tailed Student's t-test, **P<0.01(n=9; t=3.623; df=16).
- (B) Surface representation of cis- (GM130) and trans- (Golgin97) Golgi objects derived from 3D-SIM images.
- (C) 3D-SIM image of GM130 and COPI labeling in HeLa cells after control or SEPT1-depletion.
- (D) Relative increase in the number of Golgi objects observed in cells treated with 0 mM or 2 mM hydroxyurea (mean ± SEM). SEPT1 depletion increases the number of Golgi objects, and this defect is not cured by administration of hydroxyurea. Unpaired two-tailed Student's t-test, *P<0.05 (N=3; n=224-355; p-value=0.344; t=1.072; df=4).
- (E) Percentage of binucleated cells in control and SEPT1-depleted cells (mean ± SEM), unpaired two-tailed Student's t-test, ns = not significant.
- (F) Proliferation of HeLa cells transfected with control, siSEPT1#1 or siSEPT1#2 siRNAs and cells. Data indicate relative numbers of cells at different time points (mean ± s.e.m; N=3).
- (G) Secretion of FKBP(F36M)-GFP reporter was induced for 30 min in control and SEPT1-depleted cells, and fixed cells were then immunostained for GM130 (cis-Golgi). Scale bar, 5 µm.
- (H) Cells as treated in (G) were immunostained with Golgin97 (trans-Golgi). Scale bar, 5 µm.


Figure S6

Localization of highly abundant septin family members, implication of F-actin on SEPT1 recruitment to Golgi membranes, and association of SEPT1 with GM130 and golgin104.

- (A) HeLa cells were immunolabeled for GM130 and SEPT2, SEPT6, SEPT7 or SEPT9. None of these septin family members displays a prominent localization at the Golgi.
- (B) HeLa cells were incubated with DMSO (control), 2 μ M cytochalasin D or 2 μ M latrunculin B for 30 min, fixed in 2% PFA and immunolabeled for F-actin (AlexaFluor568-labeled phalloidin), GM130 and SEPT1. All scale bars, 10 μ m.
- (C) Co-immunoprecipitation of eGFP, eGFP-GM130 or eGFP-golgin104 with myc-tagged SEPT1 from co-transfected Hek293T cells. Samples were probed by Western blotting for myc (SEPT1), eGFP and talin 1/2.

SEPT1 associates with CEP170 and γ-tubulin to connect cis-Golgi membranes to the microtubule nucleating machinery.

- (A) SEPT1-myc co-purifies with eGFP-CEP170 full length, but not eGFP-CEP170 CT from co-transfected Hek293T cells. Samples were probed by Western blotting for myc (SEPT1), eGFP (eGFP), CEP170 (eGFP-CEP170 FL and CT) and talin 1/2.
- (B) γ -tubulin-mCherry co-immunoprecipitates SEPT1-myc from transfected Hek293T cells.
- (C) CEP170 localizes to the centrosome. Endogenous CEP170 and pericentrin were immunolabeled in methanol-fixed HeLa cells. Note that cold methanol disrupts septin filament integrity (not shown).
- (D) Secretion of FKBP(F36M)-GFP reporter was induced for 30 min in control and CEP170-depleted HeLaM C1 cells, and fixed cells were then immunostained for GM130 (cis-Golgi) and monitored by confocal fluorescence microscopy.
- (E) Upon overexpression in HeLa cells eGFP-CEP170 co-localizes with SEPT1 on microtubules.
- (F) RPE1 cells were treated with nocodazole for 2 h, fixed in 2% PFA 3 min after wash-out, and immunolabeled for GM130 and SEPT1. Enlarged figure inset (right panel) depicts SEPT1 connecting neighboring GM130-positive Golgi objects.
- (G) Endogenous γ-tubulin affinity-purifies together with CEP170 from Jurkat cell lysates. Endogenous CEP170 was immunoprecipitated, and the affinity-purified material was analyzed by Western blotting.
- (H) Control and SEPT1-depleted RPE1 cells were fixed 90 s after nocodazole washout and stained for α-tubulin and GM130. Open arrows: single microtubule growing from an individual Golgi object. Closed arrows: grouped microtubules growing from an individual Golgi object. All scale bars, 10 μm.