
 
Repository of the Max Delbrück Center for Molecular Medicine (MDC) 
in the Helmholtz Association  
 
https://edoc.mdc-berlin.de/18026/ 
 
 
 
 
 
Autocrine LTA signaling drives NF-κB and JAK-STAT activity and 
myeloid gene expression in Hodgkin lymphoma 
 
von Hoff L., Kärgel E., Franke V., McShane E., Schulz-Beiss K.W., Patone G., Schleussner N., 
Kolesnichenko M., Hübner N., Daumke O., Selbach M., Akalin A., Mathas S., Scheidereit C. 
 
 
 
 
 
This is a copy of the final article, republished here by permission of the publisher and originally 
published in: 
 
Blood 
2019 MAR 28 ; 133(13): 1489-1494 
2019 JAN 29 (first published online: accepted manuscript) 
doi: 10.1182/blood-2018-08-871293  
 
Publisher: The American Society of Hematology 
 
Copyright © 2019 by The American Society of Hematology 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://edoc.mdc-berlin.de/18026/
https://doi.org/10.1182/blood-2018-08-871293
https://www.hematology.org/


 
© YYYY by The American Society of Hematology 



Brief Report

LYMPHOID NEOPLASIA

Autocrine LTA signaling drives NF-kB and JAK-STAT
activity and myeloid gene expression in
Hodgkin lymphoma
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KEY PO INT S

l Constitutive NF-kB
and JAK/STAT
activation in HRS cells
is caused by an
autocrine feedback
loop driven by
secreted LTA.

l LTA promotes
expression of
multiple cytokines,
chemokines,
receptors, and
immune checkpoint
ligands that are typical
for HRS cells.

Persistent NF-kB activation is a hallmark of the malignant Hodgkin/Reed-Sternberg (HRS)
cells in classical Hodgkin lymphoma (cHL). Genomic lesions, Epstein-Barr virus infection,
soluble factors, and tumor–microenvironment interactions contribute to this activation.
Here, in an unbiased approach to identify the cHL cell-secreted key factors for NF-kB
activation, we have dissected the secretome of cultured cHL cells by chromatography and
subsequent mass spectrometry. We identified lymphotoxin-a (LTA) as the causative factor
for autocrine andparacrine activation of canonical and noncanonical NF-kB in cHL cell lines. In
addition to inducing NF-kB, LTA promotes JAK2/STAT6 signaling. LTA and its receptor
TNFRSF14 are transcriptionally activated by noncanonical NF-kB, creating a continuous
feedback loop. Furthermore, LTA shapes the expression of cytokines, receptors, immune
checkpoint ligands and adhesion molecules, including CSF2, CD40, PD-L1/PD-L2, and
VCAM1. Comparison with single-cell gene-activity profiles of human hematopoietic cells
showed that LTA induces genes restricted to the lymphoid lineage, as well as those largely
restricted to the myeloid lineage. Thus, LTA sustains autocrine NF-kB activation, impacts
activation of several signaling pathways, and drives expression of genes essential for mi-

croenvironmental interactions and lineage ambiguity. These data provide a robust rationale for targeting LTA as
a treatment strategy for cHL patients. (Blood. 2019;133(13):1489-1494)

Introduction
The malignant Hodgkin/Reed-Sternberg (HRS) cells of classical
Hodgkin lymphoma (cHL) represent only a small fraction of the
neoplastic lesions.1 HRS cells depend on intensive interactions with
their microenvironment, through surface receptors, cytokines,
and chemokines, for their survival. Disruption of this interaction
is explored as a therapeutic strategy.2 Despite their B-cell or-
igin, HRS cells lack typical B-cell markers and instead express
genes of other hematopoietic lineages, includingmyeloid cells.
Their altered gene expression is due to the deregulation of
several transcription factor pathways, including NF-kB.3 Acti-
vation of the canonical and noncanonical NF-kB pathways is
a hallmark of HRS cells.4-6 Genomic lesions, Epstein-Barr virus
infection, and cytokine–receptor interactions contribute to the
NF-kB activation.1 Proteomic secretome analyses can provide
pathogenetically relevant insights into the interaction between
HRS cells and infiltrating lymphocytes.7 Here, we dissected the

secretome of cultured cHL cells to identify secreted key factors
essential for the constitutive NF-kB activity.

Study design
Cell lines were from Deutsche Sammlung von Mikroorganismen
und Zellkulturen (Braunschweig, Germany). For information about
culture conditions, cell treatments, protein extraction, western
blotting, and electrophoretic mobility shift assays (EMSAs),
see supplemental Materials and methods, available on the
Blood Web site.

The lentiCRIPSPR-v2 vector for CRISPR/Cas9-mediated gene
knockout was from Feng Zhang (Addgene plasmid #52961).
Guide RNAs (gRNAs) were designed using CrispRGold.8 For
lentiviral packaging, transfection, and cellular transduction,
see supplemental Materials and methods.

© 2019 by The American Society of Hematology blood® 28 MARCH 2019 | VOLUME 133, NUMBER 13 1489

D
ow

nloaded from
 http://ashpublications.org/blood/article-pdf/133/13/1489/1556983/blood871293.pdf by guest on 05 M

ay 2023

https://crossmark.crossref.org/dialog/?doi=10.1182/blood-2018-08-871293&domain=pdf&date_stamp=2019-03-28


Gene expression was measured with human Clariom S
(Thermo Fisher Scientific) and analyzed using a Transcriptome
Analysis Console 4.0. The data have been deposited in

ArrayExpress9 at European Molecular Biology Laboratory–
European Bioinformatics Institute under accession number
E-MTAB-6896.
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Figure 1. LTA secretion by cHL cells drives NF-kB activation through a self-sustained feedback loop. (A) Flow scheme, identification of NF-kB–activating factors in L1236
cHL cell secretome. (B) HeLa cells were left untreated (UT) or were stimulated with SUP of L1236 cells for 24 hours with 80 mg/mL immunoglobulin G control (IgG) or LTA-neutralizing
antibody (nAb). Subcellular localization of the indicatedproteins was determined in cytoplasmic (C) and nuclear (N) extracts bywestern blot analysis andNF-kBactivationby EMSA (bottom
panel). (C) HeLa cells were treated with conditioned SUP of the cHL cell lines with 100mg/mL human Fc control (Fc) or etanercept (Eta). Whole-cell extracts were analyzed for NF-kBDNA
binding by EMSA. (D) Box plot representing the distribution of LTA mRNA expression in malignancies and normal B cells.14 cHL samples are indicated in red. (E) Chromatin immu-
noprecipitationwasperformed in L1236 cells usingp52 andRelB-specific antibodies. Regulatory regionsof LTA andTNFRSF14were analyzed forDNA recruitment. Error bars represent the
standard error of the mean. (F) Knockdown of the noncanonical NF-kB subunits was performed in L1236 cells. Cells were harvested after 4 days. Whole-cell extracts were analyzed by
western blotting for expression of LTA, using LDH-A as control. (G) L1236 cells were transducedwith either pWPI control or A20-expressing vector. Expression of A20, LTA, and LDH-Awas
determined by western blotting as in (F). BL, Burkitt’s lymphoma; CB, centroblasts; CC, centrocytes; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; M, mature B cells;
N, naive B cells; NLPHL, nodular lymphocyte-predominant Hodgkin lymphoma; NSC, non-silencing siRNA control; PC, plasma cells; TCRBL, T-cell–rich B-cell lymphoma.
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Figure 2. LTA drives NF-kB and JAK/STAT activation and constitutes a mixed lymphoid/myeloid gene-expression program in cHL cells. (A) Whole-cell extracts of
L1236 wild-type (WT), control (v2), and 2 LTA-KO clones for each gRNA (LTAg2 and LTAg3) were analyzed in western blots for expression and phosphorylation of indicated
proteins. Nuclear extracts of control and KO cells were assessed for NF-kB DNA binding activity by EMSA (bottom panel). (B) L1236 control and LTA clonal KO cells (g2_1) were
cultivated at a cell density of 5 3 105 cells per milliliter in RPMI 1640 without fetal calf serum. The medium was collected after 24 hours, and cytokine secretion was analyzed
using the Cytokine Array C3. (C) L1236 control cells or the indicated LTA-KO clones were cultured for 72 hours. Expression levels of indicated target genes were verified
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For additional methodology, see supplemental Materials and
methods.

Results and discussion
cHL cells display constitutive canonical and noncanonical NF-kB
activation5 and secrete soluble factors, which induce global
NF-kB activity.10 For unbiased identification of NF-kB–activating
factors, we dissected the cHL cell secretome (Figure 1A). The su-
pernatant (SUP) of L1236 cells was fractionated chromatographi-
cally, andNF-kB–inducing and control fractions were subjected to
mass spectrometry (supplemental Figure 1A-B). LTA was the only
cytokine among 72 extracellular proteins enriched in the active
fractions (supplemental Table 1). LTA activates NF-kB11 and is
expressed in primaryHRS cells12; we foundDNase I accessibility of
its gene in cHL cell lines but not in non-Hodgkin cell lines.13

Therefore, LTA was selected for further analyses.

We detected LTA specifically in the conditioned medium of cHL
cell lines, with the exception of L540, but not in that from non-
Hodgkin cell lines (supplemental Figure 1C). SUP of cHL cells
and recombinant LTA activated a canonical and noncanonical
NF-kB subunit pattern in HeLa cells resembling the constitutive
activity in cHL cells (supplemental Figure 2). Addition of LTA-
neutralizing antibody or the tumor necrosis factor (TNF)/LTA
decoy receptor etanercept to cHL cell SUP completely blocked
NF-kB activation (Figure 1B-C). Thus, LTA is a crucial NF-kB–
inducing factor secreted by cHL cell lines.

Reanalysis of expression data from microdissected lymphomas
and B cells14 revealed the highest LTA expression in Hodgkin
lymphoma (Figure 1D). Among the LTA receptors TNFRSF1A,
TNFRSF1B, and TNFRSF14,15 only TNFRSF14 displayed consistent
surface expression in cHL cells (supplemental Figure 3A-B). LTA
also forms heterotrimers with LTB, allowing LTBR binding. How-
ever, only HDLM-2 cells expressed LTB (supplemental Figure 4A),
and the absence of LTBR and the insignificant expression of the
TNFRSF14 coreceptors BTLA and CD160 (supplemental Figure
4B-D) indicated TNFRSF14 as a mediator of LTA signaling.

LTA and TNFRSF14 genes recruit noncanonical NF-kB in L1236
cells, and knockdown of NFKB2 and RELB, but not of NFKB1
and RELA, diminished LTA and TNFRSF14 levels (Figure 1E-F;
supplemental Figure 5A). Mutations in the pathway inhibitors
NFKBIA and TNFAIP3/A20 contribute to persistent NF-kB ac-
tivity in HRS cells.16 Interestingly, L540 cells, which do not
secrete LTA, lack these mutations (supplemental Figure 5B).
A20 reexpression in L1236 cells reduced LTA levels (Figure 1G;
supplemental Figure 5C), underlining the importance of A20
mutations or loss17 also in the context of LTA regulation.

To determine LTA’s impact on global gene expression, we gen-
erated L1236 LTA-knockout (KO) cells (supplemental Figure 6A).
In the selected clones, g2_1 and g3_4, LTA inactivation altered

the expression of 803 genes (supplemental Table 2); 634 genes
were downregulated, and 169 genes were upregulated. Gene
set enrichment analysis revealed highest enrichment of the
hallmark gene sets18 TNFA_signaling_via_NF-kB, IL6_JAK_
STAT3_Signaling, and Inflammatory_Response (supplemental
Figure 6B). Enrichment analysis (Enrichr)19 of the LTA-activated genes
using the Cancer Cell Line Encyclopedia revealed a significant
overlap between L1236_HAEMATOPOIETIC_AND_LYMPHOID_
TISSUE and cHL cell lines L428, SUP-HD1, and HDLM-2, indicating
that LTA-dependent gene expression is a representative feature
of the cHL gene signature (supplemental Table 3).

LTA KO strongly decreased NF-kB DNA binding and expression of
p105/p50, c-Rel, RelB, and p52 (Figure 2A; supplemental Figure 7A),
as well as decreased JAK2 expression, STAT6 phosphorylation,
and DNA binding (Figure 2A; supplemental Figure 7B). Thus,
autocrine LTA signaling is a major force driving constitutive
NF-kB and JAK2/STAT6 activation in cHL cells. LTA inactivation
sensitized cells toward proapoptotic stress elicited by g-irradiation
(supplemental Figure 8). Reduced transcription factor activity
resulted in altered cytokine and chemokine expression and secretion
(Figure 2B; supplemental Figure 9). In addition, CSF2, interleukin-6,
CCL17, CCL2, and CCL5 levels were strongly reduced. Furthermore,
receptors and adhesion molecules were downregulated (Figure 2C),
including the NF-kB targets CD44, CD40, CD80, and CCR4.5 Im-
portantly, PD-L1 (CD274) and PD-L2 (PDCD1LG2) levels were se-
verely reduced (Figure 2C-D). These ligands play a key role in the
immune evasion of HRS cells.20 They are induced by JAK/STAT
signaling and are highly expressed on HRS cells.2

Finally, we integrated our signature of LTA-activated genes with
human peripheral blood mononuclear cell (PBMC) single-cell ex-
pression profiles.21 Subsets of LTA-regulated genes clustered into
coexpression modules, groups of genes with similar expression
patterns across the cell types. These genes cluster into 2 main
groups: highly expressed in lymphoid or myeloid cells (Figure 2E),
showing that LTA activates genes in cHL cells that are normally
expressed in cells of the lymphoid and myeloid lineages (see
also supplemental Figure 10). Interestingly, LTA and its receptors
have disjointed expression patterns in PBMCs; the highest per-
centages of LTA-expressing cells were found in lymphoid pop-
ulations, whereas LTA receptors were highly and preferentially
expressed inmyeloid cells (Figure 2F), suggesting aparacrinemode
of LTA action and the primary importance of LTA signaling in
myeloid cells.

Taken together, we identified LTA as a key NF-kB and JAK/
STAT pathway-inducing factor in L1236 cHL cells. Our findings
are supported by previous studies showing LTA in primary HRS
cells and the conditioned medium of cHL cell lines.12,22-24 LTA
induces its own expression through self-sustained feedback loop
signaling via TNFRSF14, thereby activating NF-kB. This loop is
enhanced by the lack of negative feedback regulators, such
as A20.

Figure 2 (continued) by real-time quantitative polymerase chain reaction. Error bars represent the standard error of the mean. (D) PD-L1 and PD-L2 cell surface expression
levels were analyzed by flow cytometry. Filled curve: isotype control. (E) Coexpression analysis of LTA target genes in healthy PBMCs.21 Heat map shows the similarity between
expression profiles of each pair of LTA target genes. Positive correlation between 2 genes is designated by the intensity of the red color, whereas the blue gradient designates
negative correlation (genes with more similar expression profiles are positioned closer on the heat map). Red blocks show the existence of gene-regulatory modules. Based on
their level of expression, genes were annotated as expressed primarily in the lymphoid lineage or themyeloid lineage (orange/green annotation). (F) Expression of LTA and LTA
receptors in PBMCs. The x-axis shows the percentage of cells in a cell population that express the corresponding gene. The y-axis shows the average gene expression in
expressing cells. Cell populations expressing the gene in ,1% of the cells were removed from the visualization. The color depicts the cell type.
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The LTA-induced genes are of lymphoid and myeloid origin, in-
dicating that the LTA–TNFRSF14 signaling axis contributes to the
unique admixture of myeloid gene expression and lineage ambi-
guity of cHL. Indeed, signaling through TNFRSF14 has been shown
to promote myeloid differentiation of human stem cells.25 LTA could
function as a directional and paracrine signaling molecule from
lymphoid to myeloid cells. Because cHL cells express LTA, as well as
TNFRSF14, LTA signaling switches from paracrine to autocrine.

The expression control of PD-L1 and PD-L2 by LTA may con-
tribute to immune surveillance evasion.2 Our data, revealing
LTA-mediated autocrine regulation of cHL cells and its pivotal
role in upstream NF-kB activation resulting in apoptosis pro-
tection and paracrine effects on the microenvironment,12 pro-
vide a robust rationale for LTA targeting as a treatment strategy
for cHL patients.
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